JP3866717B2 - Molten metal treatment agent and molten metal treatment method - Google Patents

Molten metal treatment agent and molten metal treatment method Download PDF

Info

Publication number
JP3866717B2
JP3866717B2 JP2004013572A JP2004013572A JP3866717B2 JP 3866717 B2 JP3866717 B2 JP 3866717B2 JP 2004013572 A JP2004013572 A JP 2004013572A JP 2004013572 A JP2004013572 A JP 2004013572A JP 3866717 B2 JP3866717 B2 JP 3866717B2
Authority
JP
Japan
Prior art keywords
molten metal
fluoroketone
carbon dioxide
metal treatment
chf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004013572A
Other languages
Japanese (ja)
Other versions
JP2004276116A (en
Inventor
宏 讃井
章司 関原
英俊 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004013572A priority Critical patent/JP3866717B2/en
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to CA002516996A priority patent/CA2516996C/en
Priority to US10/546,147 priority patent/US7776132B2/en
Priority to PCT/JP2004/002276 priority patent/WO2004076098A1/en
Priority to KR1020057015629A priority patent/KR100773328B1/en
Priority to CN2008100098517A priority patent/CN101275188B/en
Priority to EP04714891A priority patent/EP1598131A1/en
Publication of JP2004276116A publication Critical patent/JP2004276116A/en
Application granted granted Critical
Publication of JP3866717B2 publication Critical patent/JP3866717B2/en
Priority to US12/453,684 priority patent/US7776134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、マグネシウム、マグネシウム合金などを溶融させた溶融金属の酸化や蒸発を防止することを目的として、溶融金属表面に接触する雰囲気ガスに使用される溶融金属処理剤および溶融金属処理方法に関する。   The present invention relates to a molten metal treatment agent and a molten metal treatment method used for an atmospheric gas in contact with a molten metal surface for the purpose of preventing oxidation or evaporation of molten metal obtained by melting magnesium, a magnesium alloy, or the like.

マグネシウム、マグネシウム合金等を鋳造等のため溶融させる場合には、溶融金属の酸化や蒸発を防止するため、保護用のガスが溶解炉内の雰囲気ガスとして用いられる。
上記雰囲気ガスとしては、六フッ化硫黄を不活性ガスなどのベースガスで希釈した混合ガスが用いられている(例えば、特許文献1)。
この混合ガスを用いることによって、炉内の酸素濃度を低減し、溶融金属の酸化(燃焼)を防止することができる。さらに、六フッ化硫黄と金属(マグネシウム等)との反応生成物からなる被膜が溶融金属表面に形成されるため、溶融金属の蒸発を防ぐことができる。
特表2000−501653号公報
In the case of melting magnesium, a magnesium alloy or the like for casting or the like, a protective gas is used as an atmospheric gas in the melting furnace to prevent oxidation and evaporation of the molten metal.
As the atmospheric gas, a mixed gas obtained by diluting sulfur hexafluoride with a base gas such as an inert gas is used (for example, Patent Document 1).
By using this mixed gas, the oxygen concentration in the furnace can be reduced and oxidation (combustion) of the molten metal can be prevented. Furthermore, since a film made of a reaction product of sulfur hexafluoride and a metal (magnesium or the like) is formed on the surface of the molten metal, the evaporation of the molten metal can be prevented.
JP 2000-501653 A

しかしながら、上記従来技術で用いられる六フッ化硫黄は、温暖化ガス(温暖化係数:23900)に指定されており、環境保全の観点から代替物が求められていた。
本発明は、上記事情に鑑みてなされたもので、溶融金属の酸化や蒸発を防ぐことができ、かつ環境に悪影響を及ぼすことがない溶融金属処理剤および溶融金属処理方法を提供することを目的とする。
However, sulfur hexafluoride used in the above prior art is designated as a warming gas (warming factor: 23900), and an alternative has been demanded from the viewpoint of environmental conservation.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a molten metal treatment agent and a molten metal treatment method that can prevent oxidation and evaporation of molten metal and that do not adversely affect the environment. And

本発明の溶融金属処理剤は、溶融金属の表面に接触する雰囲気ガスに用いられる溶融金属処理剤であって、液化炭酸ガス中に0.01〜10質量%のフロロケトンが溶解された液状混合物からなることを特徴とする。
フロロケトンは、パーフロロケトン、水素化フロロケトン、およびその混合物から選ばれた1種以上が好ましい。
フロロケトンがパーフロロケトンである場合には、CFCFC(O)CF(CF、(CFCFC(O)CF(CF、CF(CFC(O)CF(CF、CF(CFC(O)CF(CF、CF(CFC(O)CF、CFCFC(O)CFCFCF、CFC(O)CF(CF、およびパーフロロシクロヘキサノンからなる群より選ばれた1種以上が好ましい。
フロロケトンが水素化フロロケトンである場合には、HCFCFC(O)CF(CF、CFC(O)CHC(O)CF、CC(O)CF(CF、CFCFC(O)CH、(CFCFC(O)CH、CFCFC(O)CHF、CFCFC(O)CHF、CFCFC(O)CHCF、CFCFC(O)CHCH、CFCFC(O)CHCHF、CFCFC(O)CHCHF、CFCFC(O)CHCHF、CFCFC(O)CHFCH、CFCFC(O)CHFCHF、CFCFC(O)CHFCHF、CFCFC(O)CFCH、CFCFC(O)CFCHF、CFCFC(O)CFCHF、(CFCFC(O)CHF、(CFCFC(O)CHF、CFCF(CHF)C(O)CHF、CFCF(CHF)C(O)CHF、およびCFCF(CHF)C(O)CFからなる群より選ばれた1種以上が好ましい。
フロロケトンは、C(CO)Cであることが好ましい。
本発明の溶融金属処理剤は、容器内に液体状態で充填されている構成とすることができる。
前記容器は、溶融金属処理剤が接触する部材のうち、合成樹脂からなる部材の少なくとも表面が、ネオプレンゴム、ブチルゴム、フッ素ゴム、エチレンプロピレンゴム、シリコーンゴム、ニトリルゴム、テフロン(登録商標)、ナイロン、デルリン(登録商標)、ダイフロン(登録商標)からなる群より選ばれた1種以上からなる構成とすることができる。
The molten metal treatment agent of the present invention is a molten metal treatment agent used for an atmospheric gas that is in contact with the surface of the molten metal, from a liquid mixture in which 0.01 to 10% by mass of a fluoroketone is dissolved in a liquefied carbon dioxide gas. It is characterized by becoming.
The fluoroketone is preferably at least one selected from perfluoroketone, hydrogenated fluoroketone, and mixtures thereof.
When the fluoroketone is perfluoroketone, CF 3 CF 2 C (O) CF (CF 3 ) 2 , (CF 3 ) 2 CFC (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 2 C (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 3 C (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 5 C (O) CF 3 , CF 3 CF 2 C (O) One or more selected from the group consisting of CF 2 CF 2 CF 3 , CF 3 C (O) CF (CF 3 ) 2 , and perfluorocyclohexanone is preferred.
When the fluoroketone is a hydrogenated fluoroketone, HCF 2 CF 2 C (O) CF (CF 3 ) 2 , CF 3 C (O) CH 2 C (O) CF 3 , C 2 H 5 C (O) CF (CF 3 ) 2 , CF 2 CF 2 C (O) CH 3 , (CF 3 ) 2 CFC (O) CH 3 , CF 3 CF 2 C (O) CHF 2 , CF 3 CF 2 C (O) CH 2 F, CF 3 CF 2 C (O) CH 2 CF 3 , CF 3 CF 2 C (O) CH 2 CH 3 , CF 3 CF 2 C (O) CH 2 CHF 2 , CF 3 CF 2 C (O) CH 2 CHF 2 , CF 3 CF 2 C (O) CH 2 CH 2 F, CF 3 CF 2 C (O) CHFCH 3 , CF 3 CF 2 C (O) CHFCHF 2 , CF 3 CF 2 C (O) CHFCH 2 F, CF 3 CF 2 C (O) CF 2 CH 3 CF 3 CF 2 C (O) CF 2 CHF 2 , CF 3 CF 2 C (O) CF 2 CH 2 F, (CF 3 ) 2 CFC (O) CHF 2 , (CF 3 ) 2 CFC (O) CH From 2 F, CF 3 CF (CH 2 F) C (O) CHF 2 , CF 3 CF (CH 2 F) C (O) CH 2 F, and CF 3 CF (CH 2 F) C (O) CF 3 One or more selected from the group consisting of
The fluoroketone is preferably C 3 F 7 (CO) C 2 F 5 .
The molten metal treating agent of the present invention can be configured to be filled in a liquid state in a container.
In the container, at least the surface of a member made of a synthetic resin among members in contact with the molten metal treatment agent is neoprene rubber, butyl rubber, fluorine rubber, ethylene propylene rubber, silicone rubber, nitrile rubber, Teflon (registered trademark), nylon , Delrin (registered trademark), and Daiflon (registered trademark).

本発明の溶融金属処理方法は、液化炭酸ガス中に0.01〜10質量%のフロロケトンが溶解された液状混合物からなる溶融金属処理剤を気化させ、溶融金属の表面に接触する雰囲気ガスとして供給することを特徴とする。
本発明では、液化炭酸ガス中に0.01〜10質量%のフロロケトンが溶解された液状混合物からなる溶融金属処理剤を、噴霧手段を用いて霧状化するとともに液化炭酸ガスを気化させ、この炭酸ガスを噴霧用推進剤として、霧状のフロロケトンを、溶融金属の表面に接触する雰囲気ガスとして供給する方法をとることもできる。
本発明において、フロロケトンとは、ケトンに含まれる水素の少なくとも一部をフッ素で置換したものを指す。
The molten metal treatment method of the present invention vaporizes a molten metal treatment agent comprising a liquid mixture in which 0.01 to 10% by mass of a fluoroketone is dissolved in liquefied carbon dioxide gas, and supplies it as an atmospheric gas in contact with the surface of the molten metal. It is characterized by doing.
In the present invention, the molten metal treatment agent comprising a liquid mixture in which 0.01 to 10% by mass of fluoroketone is dissolved in liquefied carbon dioxide gas is atomized using a spraying means and the liquefied carbon dioxide gas is vaporized. It is also possible to use a method in which carbon dioxide gas is used as a propellant for spraying and mist-like fluoroketone is supplied as an atmospheric gas in contact with the surface of the molten metal.
In the present invention, the fluoroketone refers to a substance in which at least a part of hydrogen contained in the ketone is substituted with fluorine.

上記溶融金属処理剤は、液化炭酸ガス中に、0.01〜10質量%のフロロケトンが溶解された液状混合物からなるものである。
フロロケトンは温暖化効果が低く、大気中で分解しやすい物質であるため、環境に悪影響が及ぶのを防ぐことができる。
The said molten metal processing agent consists of a liquid mixture by which 0.01-10 mass% fluoroketone was melt | dissolved in the liquefied carbon dioxide gas.
Since fluoroketone has a low warming effect and is easily decomposed in the air, it can prevent adverse effects on the environment.

また、あらかじめ混合されたフロロケトンと液化炭酸ガスを用いるので、別系統で供給されたフロロケトンと液化炭酸ガスとを使用直前に混合する場合に比べ、フロロケトンと液化炭酸ガスとの混合比を確実に一定にすることができる。
このため、溶融金属処理剤のフロロケトン濃度を精度良く定めることができる。従って、溶融金属の酸化や蒸発を確実に防ぎ、かつ有害物質(COF等)の発生を抑えることができる。また低コスト化を図ることができる。
In addition, because pre-mixed fluoroketone and liquefied carbon dioxide are used, the mixing ratio of fluoroketone and liquefied carbon dioxide is reliably constant compared to the case where fluorketone and liquefied carbon dioxide supplied in separate systems are mixed immediately before use. Can be.
For this reason, the fluoroketone density | concentration of a molten metal processing agent can be defined with a sufficient precision. Therefore, oxidation and evaporation of the molten metal can be reliably prevented, and generation of harmful substances (COF 2 and the like) can be suppressed. Moreover, cost reduction can be achieved.

上記溶融金属処理剤では、少量のフロロケトンと多量の液化炭酸ガスとが混合されているので、これが漏洩した場合でも漏洩ガス中のフロロケトン濃度を許容濃度以下とすることができ、安全性の点で有利である。また、取り扱いが容易となる。   In the above molten metal treatment agent, since a small amount of fluoroketone and a large amount of liquefied carbon dioxide gas are mixed, even if this leaks, the fluoroketone concentration in the leaked gas can be reduced to an allowable concentration or less, and in terms of safety. It is advantageous. Moreover, handling becomes easy.

図1は、本発明の溶融金属処理方法の一実施形態を実施可能な処理装置を示すものである。
図1中、符号1は溶融金属処理剤が充填される耐圧容器であり、符号2は溶融金属処理剤を気化させる蒸発器であり、符号3は溶融金属処理剤の流量を検出する流量計であり、符号4は対象となる金属を溶融させる溶解炉である。
FIG. 1 shows a processing apparatus capable of carrying out an embodiment of the molten metal processing method of the present invention.
In FIG. 1, reference numeral 1 is a pressure vessel filled with a molten metal treatment agent, reference numeral 2 is an evaporator for vaporizing the molten metal treatment agent, and reference numeral 3 is a flowmeter for detecting the flow rate of the molten metal treatment agent. Yes, 4 is a melting furnace for melting the target metal.

耐圧容器1内には、液体状態の溶融金属処理剤が充填されている。
この溶融金属処理剤は、液化炭酸ガス中にフロロケトン(fluorinated ketone)が溶解された液状混合物からなるものである。
フロロケトンは、パーフロロケトン、水素化フロロケトン、およびその混合物から選ばれた1種以上であることが好ましい。
The pressure vessel 1 is filled with a molten metal processing agent in a liquid state.
The molten metal treating agent is a liquid mixture in which a fluorinated ketone is dissolved in liquefied carbon dioxide gas.
The fluoroketone is preferably at least one selected from perfluoroketone, hydrogenated fluoroketone, and mixtures thereof.

パーフロロケトンとしては、炭素数が5〜9であるものが好ましい。
パーフロロケトンとしては、CFCFC(O)CF(CF、(CFCFC(O)CF(CF、CF(CFC(O)CF(CF、CF(CFC(O)CF(CF、CF(CFC(O)CF、CFCFC(O)CFCFCF、CFC(O)CF(CF、およびパーフロロシクロヘキサノンからなる群より選ばれた1種以上が好ましい。すなわち、これらのうち1種を用いてもよいし、2種以上を混合して用いてもよい。
As the perfluoroketone, those having 5 to 9 carbon atoms are preferable.
As perfluoroketone, CF 3 CF 2 C (O) CF (CF 3 ) 2 , (CF 3 ) 2 CFC (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 2 C (O) CF ( CF 3) 2, CF 3 ( CF 2) 3 C (O) CF (CF 3) 2, CF 3 (CF 2) 5 C (O) CF 3, CF 3 CF 2 C (O) CF 2 CF 2 CF 3 , at least one selected from the group consisting of CF 3 C (O) CF (CF 3 ) 2 and perfluorocyclohexanone is preferred. That is, one of these may be used, or two or more may be mixed and used.

水素化フロロケトンとしては、炭素数が4〜7であるものが好ましい。
水素化フロロケトンとしては、HCFCFC(O)CF(CF、CFC(O)CHC(O)CF、CC(O)CF(CF、CFCFC(O)CH、(CFCFC(O)CH、CFCFC(O)CHF、CFCFC(O)CHF、CFCFC(O)CHCF、CFCFC(O)CHCH、CFCFC(O)CHCHF、CFCFC(O)CHCHF、CFCFC(O)CHCHF、CFCFC(O)CHFCH、CFCFC(O)CHFCHF、CFCFC(O)CHFCHF、CFCFC(O)CFCH、CFCFC(O)CFCHF、CFCFC(O)CFCHF、(CFCFC(O)CHF、(CFCFC(O)CHF、CFCF(CHF)C(O)CHF、CFCF(CHF)C(O)CHF、およびCFCF(CHF)C(O)CFからなる群より選ばれた1種以上が好ましい。すなわち、これらのうち1種を用いてもよいし、2種以上を混合して用いてもよい。
As the hydrogenated fluoroketone, those having 4 to 7 carbon atoms are preferable.
Examples of hydrogenated fluoroketones include HCF 2 CF 2 C (O) CF (CF 3 ) 2 , CF 3 C (O) CH 2 C (O) CF 3 , and C 2 H 5 C (O) CF (CF 3 ) 2. , CF 2 CF 2 C (O) CH 3 , (CF 3 ) 2 CFC (O) CH 3 , CF 3 CF 2 C (O) CHF 2 , CF 3 CF 2 C (O) CH 2 F, CF 3 CF 2 C (O) CH 2 CF 3 , CF 3 CF 2 C (O) CH 2 CH 3 , CF 3 CF 2 C (O) CH 2 CHF 2 , CF 3 CF 2 C (O) CH 2 CHF 2 , CF 3 CF 2 C (O) CH 2 CH 2 F, CF 3 CF 2 C (O) CHFCH 3 , CF 3 CF 2 C (O) CHFCHF 2 , CF 3 CF 2 C (O) CHFCH 2 F, CF 3 CF 2 C (O) CF 2 CH 3, CF 3 CF 2 C O) CF 2 CHF 2, CF 3 CF 2 C (O) CF 2 CH 2 F, (CF 3) 2 CFC (O) CHF 2, (CF 3) 2 CFC (O) CH 2 F, CF 3 CF ( 1 selected from the group consisting of CH 2 F) C (O) CHF 2 , CF 3 CF (CH 2 F) C (O) CH 2 F, and CF 3 CF (CH 2 F) C (O) CF 3 More than species are preferred. That is, one of these may be used, or two or more may be mixed and used.

なかでも特に、ペンタフロロエチル−ヘプタフロロプロピルケトン、すなわちC(CO)C(例えばCFCFC(O)CF(CF、CFCFC(O)CFCFCF)を用いるのが好ましい。 In particular, pentafluoroethyl-heptafluoropropyl ketone, ie C 3 F 7 (CO) C 2 F 5 (for example CF 3 CF 2 C (O) CF (CF 3 ) 2 , CF 3 CF 2 C (O)) CF 2 CF 2 CF 3 ) is preferably used.

フロロケトンの分子量は、250以上(好ましくは300以上)とするのが好ましい。分子量がこの範囲にあるものを使用することによって、溶融金属処理剤中のフロロケトンが液化炭酸ガスに対し均一になりやすくなる。
1分子のフロロケトンに含まれるカルボニル基の数は、1が好ましい。
The molecular weight of the fluoroketone is preferably 250 or more (preferably 300 or more). By using a material having a molecular weight within this range, the fluoroketone in the molten metal treating agent tends to be uniform with respect to the liquefied carbon dioxide gas.
The number of carbonyl groups contained in one molecule of fluoroketone is preferably 1.

フロロケトンの濃度は、0.01〜10質量%(好ましくは0.05〜5質量%)とされる。フロロケトン濃度をこの範囲とすることによって、溶融金属の酸化および蒸発を確実に防ぐとともに、有害物質の発生を抑えることができる。
フロロケトン濃度が上記範囲未満であると、フロロケトンと溶融金属(マグネシウム等)との反応生成物からなる被膜の形成が不十分となり、溶融金属の酸化や蒸発が起こりやすくなる。フロロケトン濃度が上記範囲を越えると、COFなどの有害物質が発生しやすくなる。
なお、フロロケトンは、通常、常温で液体であるため、炭酸ガスに混合させるには、気化させる必要がある。
The concentration of the fluoroketone is 0.01 to 10% by mass (preferably 0.05 to 5% by mass). By making the fluoroketone concentration within this range, it is possible to reliably prevent oxidation and evaporation of the molten metal and to suppress generation of harmful substances.
When the fluoroketone concentration is less than the above range, the formation of a film composed of a reaction product of fluoroketone and molten metal (magnesium or the like) becomes insufficient, and oxidation or evaporation of the molten metal is likely to occur. When the fluoroketone concentration exceeds the above range, harmful substances such as COF 2 are likely to be generated.
In addition, since fluoroketone is normally a liquid at normal temperature, it needs to be vaporized in order to mix with carbon dioxide gas.

液化炭酸ガスの濃度は、90〜99.99質量%(好ましくは95〜99.95質量%)とするのが好ましい。   The concentration of the liquefied carbon dioxide gas is preferably 90 to 99.99% by mass (preferably 95 to 99.95% by mass).

溶融金属処理剤は、液化炭酸ガスおよびフロロケトン以外に、他の成分を含んでいてもよい。
上記他の成分としては、酸素(O)を挙げることができる。酸素(O)濃度は、0.4〜10mL/L(好ましくは0.6〜10mL/L)とするのが好適である。酸素(O)濃度をこの範囲とすることによって、有害物質(例えばパーフロロイソブチレン(PFIB)、COF 、HF等)の生成を抑制し、かつ溶融金属の酸化を防ぐことができる。
The molten metal treating agent may contain other components in addition to liquefied carbon dioxide gas and fluoroketone.
As the other components include oxygen (O 2). The oxygen (O 2 ) concentration is preferably 0.4 to 10 mL / L (preferably 0.6 to 10 mL / L). By setting the oxygen (O 2 ) concentration within this range, generation of harmful substances (for example, perfluoroisobutylene (PFIB), COF 2 , HF, etc.) can be suppressed, and oxidation of the molten metal can be prevented.

フロロケトンは、フロロカルボン酸とグリニャール試薬との反応により合成することができる。
なお、耐圧容器1内に充填された液状の溶融金属処理剤を容器入り溶融金属処理剤と呼ぶ。
The fluoroketone can be synthesized by a reaction between a fluorocarboxylic acid and a Grignard reagent.
In addition, the liquid molten metal processing agent filled in the pressure vessel 1 is referred to as a molten metal processing agent in a container.

耐圧容器1としては、液化炭酸ガスの貯蔵などに用いられるものが使用可能である。
通常、耐圧容器1には、バルブのパッキン等に合成樹脂材料が用いられている。
溶融金属処理剤を耐圧容器1から取り出す際に溶融金属処理剤が接触する部材のうち、合成樹脂からなる部材(バルブのパッキン等)は、少なくとも表面がネオプレンゴム、ブチルゴム、フッ素ゴム、エチレンプロピレンゴム、シリコーンゴム、ニトリルゴム、テフロン(登録商標)、ナイロン、デルリン(登録商標)、ダイフロン(登録商標)からなる群より選ばれた1種以上からなることが好ましい。
これらはフロロケトンによって劣化しにくい材料であるため、これらの材料を使用することによって、耐圧容器1のバルブのパッキン等がフロロケトンにより劣化するのを防ぎ、供給流量を正確に定めることができる。なお、これらの材料は、耐圧容器1のバルブ等だけでなく、溶融金属処理剤を溶解炉まで供給する系統のいずれの部材にも用いることができる。
As the pressure vessel 1, one used for storage of liquefied carbon dioxide gas or the like can be used.
Usually, the pressure resistant container 1 is made of a synthetic resin material for valve packing or the like.
Of the members that come into contact with the molten metal treatment agent when the molten metal treatment agent is taken out from the pressure vessel 1, at least the surface of the member made of synthetic resin (valve packing, etc.) is neoprene rubber, butyl rubber, fluorine rubber, ethylene propylene rubber. It is preferably made of at least one selected from the group consisting of silicone rubber, nitrile rubber, Teflon (registered trademark), nylon, delrin (registered trademark), and Daiflon (registered trademark).
Since these are materials that are not easily deteriorated by fluoroketone, the use of these materials prevents the packing of the valve of the pressure-resistant container 1 from being deteriorated by the fluoroketone, and the supply flow rate can be accurately determined. These materials can be used not only for the valve of the pressure vessel 1 but also for any member of the system that supplies the molten metal treating agent to the melting furnace.

溶融金属処理剤を耐圧容器1内に充填するには、まずフロロケトンを耐圧容器1内に供給し、次いで液化炭酸ガスを耐圧容器1内に供給するのが好ましい。
比較的多量に用いられる液化炭酸ガスを、フロロケトンより後に供給することによって、液化炭酸ガス供給の際に液化炭酸ガスとフロロケトンとを十分に混合し均一化することができる。
In order to fill the pressure-resistant container 1 with the molten metal treating agent, it is preferable to first supply fluoroketone into the pressure-resistant container 1 and then supply liquefied carbon dioxide gas into the pressure-resistant container 1.
By supplying the liquefied carbon dioxide gas used in a relatively large amount after the fluoroketone, the liquefied carbon dioxide gas and the fluoroketone can be sufficiently mixed and homogenized when the liquefied carbon dioxide gas is supplied.

次に、上記装置を用いて溶融金属を処理する方法を説明する。
マグネシウム、マグネシウム合金等の金属を溶解炉4内に入れ、加熱し溶融させる。溶解炉4内の温度は、600〜800℃とすることができる。
耐圧容器1内の溶融金属処理剤を液状のまま取り出し、蒸発器2に導入し気化させる。
得られたガス状の溶融金属処理剤を、流量計3を経て溶解炉4に供給する。溶融金属処理剤は、溶解炉4内に満たされ、溶融金属の表面に接触する雰囲気ガスとなる。
溶融金属処理剤中のフロロケトンは、溶融したマグネシウム等と反応し、MgFなどからなる被膜を溶融金属表面に形成する。この被膜によって、溶融金属の酸化(燃焼)や蒸発を防ぐことができる。
溶融金属は、鋳造などにより金属成形品とすることができる。
Next, a method for treating molten metal using the above apparatus will be described.
A metal such as magnesium or magnesium alloy is placed in the melting furnace 4 and heated to melt. The temperature in the melting furnace 4 can be 600-800 degreeC.
The molten metal treatment agent in the pressure vessel 1 is taken out in a liquid state, introduced into the evaporator 2 and vaporized.
The obtained gaseous molten metal treating agent is supplied to the melting furnace 4 through the flow meter 3. The molten metal treating agent is filled in the melting furnace 4 and becomes an atmospheric gas that contacts the surface of the molten metal.
The fluoroketone in the molten metal treating agent reacts with molten magnesium or the like, and forms a film made of MgF 2 or the like on the surface of the molten metal. With this coating, oxidation (combustion) and evaporation of the molten metal can be prevented.
The molten metal can be made into a metal molded product by casting or the like.

上記溶融金属処理剤は、液化炭酸ガス中に、0.01〜10質量%のフロロケトンが溶解された液状混合物からなるものである。
フロロケトンは温暖化効果が低く、大気中で分解しやすい物質であるため、環境に悪影響が及ぶのを防ぐことができる。
The said molten metal processing agent consists of a liquid mixture by which 0.01-10 mass% fluoroketone was melt | dissolved in the liquefied carbon dioxide gas.
Since fluoroketone has a low warming effect and is easily decomposed in the air, it can prevent adverse effects on the environment.

また、あらかじめ混合されたフロロケトンと液化炭酸ガスを用いるため、別系統で供給されたフロロケトンと液化炭酸ガスと使用直前に混合する場合に比べ、フロロケトンと液化炭酸ガスとの混合比を確実に一定にすることができる。
このため、溶解炉4に供給される溶融金属処理剤のフロロケトン濃度を精度良く定めることができる。従って、溶融金属の酸化や蒸発を確実に防ぎ、かつ有害物質(COF等)の発生を抑えることができる。また低コスト化を図ることができる。
これに対し、フロロケトンと液化炭酸ガスとを別系統で供給し、これらを使用直前に混合する方法をとる場合には、フロロケトンの供給量が微量となるため、その流量調節に厳密な管理が必要となり、精密ポンプなどの設備コストの高騰を招くことになる。
In addition, since pre-mixed fluoroketone and liquefied carbon dioxide are used, the mixing ratio of fluoroketone and liquefied carbon dioxide is ensured to be constant compared to the case where fluorketone and liquefied carbon dioxide supplied in separate systems are mixed immediately before use. can do.
For this reason, the fluoroketone concentration of the molten metal treatment agent supplied to the melting furnace 4 can be accurately determined. Therefore, oxidation and evaporation of the molten metal can be reliably prevented, and generation of harmful substances (COF 2 and the like) can be suppressed. Moreover, cost reduction can be achieved.
On the other hand, when the method of supplying fluoroketone and liquefied carbon dioxide gas in separate systems and mixing them immediately before use, the supply amount of fluoroketone is very small, so strict control is required for the flow rate adjustment. As a result, the cost of equipment such as precision pumps will increase.

上記溶融金属処理剤では、少量のフロロケトンと多量の液化炭酸ガスとが混合されているので、耐圧容器1から漏洩した場合でも漏洩ガス中のフロロケトン濃度を許容濃度以下とすることができ、安全性の点で有利である。また、取り扱いが容易となる点でも好ましい。
これに対し、またフロロケトンと液化炭酸ガスとを別系統で供給する場合には、高濃度のフロロケトンを使用するため、安全性確保のための設備等が必要となり、取り扱い性の点で劣る。
In the above-mentioned molten metal processing agent, since a small amount of fluoroketone and a large amount of liquefied carbon dioxide gas are mixed, even if leaked from the pressure vessel 1, the fluoroketone concentration in the leaked gas can be reduced to an allowable concentration or less. This is advantageous. Moreover, it is also preferable in terms of easy handling.
On the other hand, when supplying fluoroketone and liquefied carbon dioxide gas in separate systems, since high-concentration fluoroketone is used, facilities for ensuring safety are required, and the handling is inferior.

図2は、本発明の溶融金属処理方法の他の実施形態を実施可能な処理装置を示すものである。
ここに示す処理装置は、蒸発器2が設けられておらず、供給配管に噴霧ノズル5(噴霧手段)が設けられている点で図1に示す処理装置と異なる。
FIG. 2 shows a processing apparatus capable of carrying out another embodiment of the molten metal processing method of the present invention.
The processing apparatus shown here is different from the processing apparatus shown in FIG. 1 in that the evaporator 2 is not provided and the spray nozzle 5 (spraying means) is provided in the supply pipe.

以下、この装置を用いて溶融金属を処理する方法を説明する。
耐圧容器1内の溶融金属処理剤を、噴霧ノズル5で霧状化して溶解炉4内に供給する。この際、液化炭酸ガスは気化し、霧状のフロロケトンの流れを加速させる噴霧用推進剤として機能するため、霧状のフロロケトンを溶解炉4に効率よく供給することができる。
霧状のフロロケトンは気化し、このフロロケトンと炭酸ガスとの混合ガスは溶解炉4内の雰囲気ガスとなる。
Hereinafter, a method of treating molten metal using this apparatus will be described.
The molten metal treating agent in the pressure vessel 1 is atomized by the spray nozzle 5 and supplied into the melting furnace 4. At this time, since the liquefied carbon dioxide vaporizes and functions as a propellant for spraying that accelerates the flow of the mist-like fluoroketone, the mist-like fluoroketone can be efficiently supplied to the melting furnace 4.
The atomized fluoroketone is vaporized, and the mixed gas of the fluoroketone and carbon dioxide gas becomes the atmospheric gas in the melting furnace 4.

この処理方法によれば、溶融金属処理剤を噴霧ノズル5で霧状化して溶解炉4に供給するため、溶融金属処理剤が容易に気化する。
従って、溶融金属処理剤の気化に要する熱エネルギーを抑え、フロロケトン濃度によっては蒸発器を不要とすることができる。
According to this processing method, since the molten metal treatment agent is atomized by the spray nozzle 5 and supplied to the melting furnace 4, the molten metal treatment agent is easily vaporized.
Therefore, the heat energy required for vaporizing the molten metal treatment agent can be suppressed, and an evaporator can be dispensed with depending on the fluoroketone concentration.

(実施例1)
内容積10Lの耐圧容器1内に、13gのペンタフロロエチル−ヘプタフロロプロピルケトン(C(CO)C)を供給し、次いで6kgの液化炭酸ガスを、容器内圧が6kPaとなるように充填した。
耐圧容器1内の溶融金属処理剤を流量9g/分で導出し、気化させてC(CO)C濃度を赤外式フロン濃度計で経時的に測定した。
測定結果を図3に示す。
図3より、フロロケトン濃度をほぼ一定に維持することができたことが確認された。
Example 1
13 g of pentafluoroethyl-heptafluoropropyl ketone (C 3 F 7 (CO) C 2 F 5 ) is supplied into the pressure-resistant container 1 having an internal volume of 10 L, and then 6 kg of liquefied carbon dioxide gas is supplied at an internal pressure of 6 kPa. It was filled to become.
The molten metal treating agent in the pressure vessel 1 was led out at a flow rate of 9 g / min, vaporized, and the C 3 F 7 (CO) C 2 F 5 concentration was measured over time with an infrared freon densitometer.
The measurement results are shown in FIG.
From FIG. 3, it was confirmed that the fluoroketone concentration could be maintained almost constant.

(実施例2)
実施例1で得られた溶融金属処理剤を流量9g/分で耐圧容器1から導出し、気化させ、鋼製るつぼ(内径125mm、高さ245mm、厚さ5mm)内の溶融マグネシウム3kg(680℃)に、3時間接触させた。
その結果、溶融マグネシウム表面に被膜が形成されたこと、および溶融マグネシウムが燃焼していないことが確認された。
比較のため、溶融金属処理剤の供給を停止し、これに代えて同流量の乾燥空気を供給したところ、溶融マグネシウム表面が発火したことが確認された。
(Example 2)
The molten metal treatment agent obtained in Example 1 was led out from the pressure vessel 1 at a flow rate of 9 g / min, vaporized, and 3 kg (680 ° C.) of molten magnesium in a steel crucible (inner diameter 125 mm, height 245 mm, thickness 5 mm). ) For 3 hours.
As a result, it was confirmed that a film was formed on the surface of the molten magnesium and that the molten magnesium was not burned.
For comparison, it was confirmed that the molten magnesium surface ignited when the supply of the molten metal treating agent was stopped and the same flow of dry air was supplied instead.

(実施例3)
表1に示す材料からなるOリング状の試験片を、実施例1で用いたものと同じ溶融金属処理剤に浸漬させ、浸漬前後の変化を調べた。
なお、硬度、重量、体積の変化は、(試験後の値−試験前の値)/試験前の値*100によって算出した。
(Example 3)
An O-ring-shaped test piece made of the material shown in Table 1 was immersed in the same molten metal treating agent as used in Example 1, and changes before and after immersion were examined.
The changes in hardness, weight, and volume were calculated by (value after test−value before test) / value before test * 100.

Figure 0003866717
Figure 0003866717

本発明の溶融金属処理方法の一実施形態を実施可能な処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which can implement one Embodiment of the molten metal processing method of this invention. 本発明の溶融金属処理方法の他の実施形態を実施可能な処理装置を示す概略構成図である。It is a schematic block diagram which shows the processing apparatus which can implement other embodiment of the molten metal processing method of this invention. 試験結果を示すグラフである。It is a graph which shows a test result.

符号の説明Explanation of symbols

1・・・耐圧容器、2・・・蒸発器、4・・・溶解炉、5・・・噴霧ノズル(噴霧手段)


DESCRIPTION OF SYMBOLS 1 ... Pressure-resistant container, 2 ... Evaporator, 4 ... Melting furnace, 5 ... Spray nozzle (spraying means)


Claims (9)

溶融金属の表面に接触する雰囲気ガスに用いられる溶融金属処理剤であって、
液化炭酸ガス中に0.01〜10質量%のフロロケトンが溶解された液状混合物からなることを特徴とする溶融金属処理剤。
A molten metal treatment agent used for atmospheric gas in contact with the surface of the molten metal,
A molten metal treating agent comprising a liquid mixture in which 0.01 to 10% by mass of fluoroketone is dissolved in liquefied carbon dioxide gas.
フロロケトンが、パーフロロケトン、水素化フロロケトン、およびその混合物から選ばれた1種以上であることを特徴とする請求項1に記載の溶融金属処理剤。   The molten metal treating agent according to claim 1, wherein the fluoroketone is at least one selected from perfluoroketone, hydrogenated fluoroketone, and a mixture thereof. フロロケトンがパーフロロケトンであり、このパーフロロケトンが、CFCFC(O)CF(CF、(CFCFC(O)CF(CF、CF(CFC(O)CF(CF、CF(CFC(O)CF(CF、CF(CFC(O)CF、CFCFC(O)CFCFCF、CFC(O)CF(CF、およびパーフロロシクロヘキサノンからなる群より選ばれた1種以上であることを特徴とする請求項2に記載の溶融金属処理剤。 The fluoroketone is perfluoroketone, and this perfluoroketone is CF 3 CF 2 C (O) CF (CF 3 ) 2 , (CF 3 ) 2 CFC (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 2 C (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 3 C (O) CF (CF 3 ) 2 , CF 3 (CF 2 ) 5 C (O) CF 3 , CF 3 CF 2 C The at least one selected from the group consisting of (O) CF 2 CF 2 CF 3 , CF 3 C (O) CF (CF 3 ) 2 , and perfluorocyclohexanone. Molten metal treatment agent. フロロケトンが水素化フロロケトンであり、この水素化フロロケトンが、HCFCFC(O)CF(CF、CFC(O)CHC(O)CF、CC(O)CF(CF、CFCFC(O)CH、(CFCFC(O)CH、CFCFC(O)CHF、CFCFC(O)CHF、CFCFC(O)CHCF、CFCFC(O)CHCH、CFCFC(O)CHCHF、CFCFC(O)CHCHF、CFCFC(O)CHCHF、CFCFC(O)CHFCH、CFCFC(O)CHFCHF、CFCFC(O)CHFCHF、CFCFC(O)CFCH、CFCFC(O)CFCHF、CFCFC(O)CFCHF、(CFCFC(O)CHF、(CFCFC(O)CHF、CFCF(CHF)C(O)CHF、CFCF(CHF)C(O)CHF、およびCFCF(CHF)C(O)CFからなる群より選ばれた1種以上であることを特徴とする請求項2に記載の溶融金属処理剤。 The fluoroketone is a hydrogenated fluoroketone, and this hydrogenated fluoroketone is HCF 2 CF 2 C (O) CF (CF 3 ) 2 , CF 3 C (O) CH 2 C (O) CF 3 , C 2 H 5 C ( O) CF (CF 3) 2 , CF 2 CF 2 C (O) CH 3, (CF 3) 2 CFC (O) CH 3, CF 3 CF 2 C (O) CHF 2, CF 3 CF 2 C (O ) CH 2 F, CF 3 CF 2 C (O) CH 2 CF 3 , CF 3 CF 2 C (O) CH 2 CH 3 , CF 3 CF 2 C (O) CH 2 CHF 2 , CF 3 CF 2 C ( O) CH 2 CHF 2, CF 3 CF 2 C (O) CH 2 CH 2 F, CF 3 CF 2 C (O) CHFCH 3, CF 3 CF 2 C (O) CHFCHF 2, CF 3 CF 2 C (O ) CHFCH 2 F, CF 3 CF 2 C ( ) CF 2 CH 3, CF 3 CF 2 C (O) CF 2 CHF 2, CF 3 CF 2 C (O) CF 2 CH 2 F, (CF 3) 2 CFC (O) CHF 2, (CF 3) 2 CFC (O) CH 2 F, CF 3 CF (CH 2 F) C (O) CHF 2 , CF 3 CF (CH 2 F) C (O) CH 2 F, and CF 3 CF (CH 2 F) C ( The molten metal treating agent according to claim 2, which is one or more selected from the group consisting of O) CF 3 . フロロケトンが、C(CO)Cであることを特徴とする請求項1に記載の溶融金属処理剤。 The molten metal treating agent according to claim 1, wherein the fluoroketone is C 3 F 7 (CO) C 2 F 5 . 請求項1〜5のうちいずれか1項に記載の溶融金属処理剤において、容器内に液体状態で充填されていることを特徴とする溶融金属処理剤。   The molten metal processing agent according to any one of claims 1 to 5, wherein the container is filled in a liquid state. 前記容器は、溶融金属処理剤が接触する部材のうち、合成樹脂からなる部材の少なくとも表面が、ネオプレンゴム、ブチルゴム、フッ素ゴム、エチレンプロピレンゴム、シリコーンゴム、ニトリルゴム、テフロン(登録商標)、ナイロン、デルリン(登録商標)、ダイフロン(登録商標)からなる群より選ばれた1種以上からなることを特徴とする請求項6に記載の溶融金属処理剤。   In the container, at least the surface of the member made of synthetic resin among the members in contact with the molten metal treatment agent is neoprene rubber, butyl rubber, fluorine rubber, ethylene propylene rubber, silicone rubber, nitrile rubber, Teflon (registered trademark), nylon The molten metal treating agent according to claim 6, comprising at least one selected from the group consisting of Delrin (registered trademark) and Daiflon (registered trademark). 液化炭酸ガス中に0.01〜10質量%のフロロケトンが溶解された液状混合物からなる溶融金属処理剤を気化させ、溶融金属の表面に接触する雰囲気ガスとして供給することを特徴とする溶融金属処理方法。   A molten metal treatment characterized in that a molten metal treatment agent comprising a liquid mixture in which 0.01 to 10% by mass of fluoroketone is dissolved in liquefied carbon dioxide is vaporized and supplied as an atmospheric gas in contact with the surface of the molten metal. Method. 液化炭酸ガス中に0.01〜10質量%のフロロケトンが溶解された液状混合物からなる溶融金属処理剤を、噴霧手段を用いて霧状化するとともに液化炭酸ガスを気化させ、この炭酸ガスを噴霧用推進剤として、霧状のフロロケトンを、溶融金属の表面に接触する雰囲気ガスとして供給することを特徴とする溶融金属処理方法。   The molten metal treatment agent comprising a liquid mixture in which 0.01 to 10% by mass of fluoroketone is dissolved in liquefied carbon dioxide is atomized using a spraying means, and the liquefied carbon dioxide is vaporized, and the carbon dioxide is sprayed. A molten metal treatment method characterized by supplying mist-like fluoroketone as an atmospheric gas in contact with the surface of a molten metal as a propellant for use.
JP2004013572A 2003-02-28 2004-01-21 Molten metal treatment agent and molten metal treatment method Expired - Lifetime JP3866717B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004013572A JP3866717B2 (en) 2003-02-28 2004-01-21 Molten metal treatment agent and molten metal treatment method
US10/546,147 US7776132B2 (en) 2003-02-28 2004-02-26 Molten metal treatment, method for treating molten metal, and apparatus and method for feeding cover gas to molten metal
PCT/JP2004/002276 WO2004076098A1 (en) 2003-02-28 2004-02-26 Molten metal treating agent, method of treating molten metal, apparatus and method for supplying covering gas for molten metal
KR1020057015629A KR100773328B1 (en) 2003-02-28 2004-02-26 Molten metal treating agent, method for treating molten metal, and apparatus and method for feeding cover gas to molten metal
CA002516996A CA2516996C (en) 2003-02-28 2004-02-26 Molten metal treatment,method for treating molten metal, and apparatus and method for feeding cover gas to molten metal
CN2008100098517A CN101275188B (en) 2003-02-28 2004-02-26 Molten metal treating agent, method for treating molten metal, and apparatus and method for feeding cover gas to molten metal
EP04714891A EP1598131A1 (en) 2003-02-28 2004-02-26 Molten metal treating agent, method of treating molten metal, apparatus and method for supplying covering gas for molten metal
US12/453,684 US7776134B2 (en) 2003-02-28 2009-05-19 Molten metal treatment, method for treating molten metal, and apparatus and method for feeding cover gas to molten metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003053306 2003-02-28
JP2004013572A JP3866717B2 (en) 2003-02-28 2004-01-21 Molten metal treatment agent and molten metal treatment method

Publications (2)

Publication Number Publication Date
JP2004276116A JP2004276116A (en) 2004-10-07
JP3866717B2 true JP3866717B2 (en) 2007-01-10

Family

ID=33301883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013572A Expired - Lifetime JP3866717B2 (en) 2003-02-28 2004-01-21 Molten metal treatment agent and molten metal treatment method

Country Status (1)

Country Link
JP (1) JP3866717B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258347A (en) * 2005-03-16 2006-09-28 Taiyo Nippon Sanso Corp Magnesium dissolution device and method for supplying cover gas thereto
JP4627045B2 (en) 2005-04-27 2011-02-09 セントラル硝子株式会社 Metal production protective gas
WO2007063674A1 (en) 2005-12-01 2007-06-07 Central Glass Company, Limited Protective gas composition for magnesium/magnesium alloy production and combustion preventing method
JP2008116108A (en) 2006-11-02 2008-05-22 Taiyo Nippon Sanso Corp Method for supplying cover gas
JP4808675B2 (en) * 2007-05-14 2011-11-02 大陽日酸株式会社 Method for producing mixed liquid

Also Published As

Publication number Publication date
JP2004276116A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US7776134B2 (en) Molten metal treatment, method for treating molten metal, and apparatus and method for feeding cover gas to molten metal
JP3866717B2 (en) Molten metal treatment agent and molten metal treatment method
JP7334838B2 (en) system
EP1204499B1 (en) Cover gases
US8900540B2 (en) Oxidation treatment method and oxidation treatment apparatus
RU2763844C1 (en) Method for preparation and supply of a protective gas mixture for melting magnesium alloys
JP2005171374A (en) Apparatus and method for supplying covering gas for molten metal
JP2008116108A (en) Method for supplying cover gas
CZ2002504A3 (en) Protective atmospheres of metals and alloys under elevated temperatures based on gases exhibiting reduced effect on global calescence
CN100411775C (en) Molten metal treating agent, method of treating molten metal, apparatus and method for supplying covering gas for molten metal
US11458412B2 (en) Controlled vapor delivery into low pressure processes
KR102325010B1 (en) Apparatus for supplying protective gas to molten magnesium alloy
JP2005201559A (en) Cover gas supply method for molten metal
CN110520509B (en) Process for odorizing cryogenic fluids
Wu et al. Thermodynamic and kinetic aspects of sulfur evaporation from Fe–C alloy droplets
JP2010023104A (en) Method for preventing combustion of molten metal of magnesium or magnesium alloy
JP6352130B2 (en) Ozone water production method and apparatus using ozone hydrate
TW201938518A (en) Method for producing tetrafluoromethane
TW201938519A (en) Method of producing tetrafluoromethane
JP2010095782A (en) Method and system for feeding gas composition for preventing firing of molten metal of magnesium or magnesium alloy
JP2020101378A (en) Corrosion prevention method for nuclear reactor
JPH093444A (en) Coolant
JP2006308176A (en) Coolant, cooling method and coolant feeder
JP2016064943A (en) Ozone generating method using ozone hydrates and apparatus therefor
PL49652B1 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060525

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3866717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term