JP3866208B2 - Ultrafiltration membrane and hydrogen separation membrane, method for producing the same, and method for separating hydrogen - Google Patents

Ultrafiltration membrane and hydrogen separation membrane, method for producing the same, and method for separating hydrogen Download PDF

Info

Publication number
JP3866208B2
JP3866208B2 JP2003070587A JP2003070587A JP3866208B2 JP 3866208 B2 JP3866208 B2 JP 3866208B2 JP 2003070587 A JP2003070587 A JP 2003070587A JP 2003070587 A JP2003070587 A JP 2003070587A JP 3866208 B2 JP3866208 B2 JP 3866208B2
Authority
JP
Japan
Prior art keywords
hydrogen
fine particles
film
membrane
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003070587A
Other languages
Japanese (ja)
Other versions
JP2004000911A (en
Inventor
安行 松村
俊江 中森
栄二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2003070587A priority Critical patent/JP3866208B2/en
Publication of JP2004000911A publication Critical patent/JP2004000911A/en
Application granted granted Critical
Publication of JP3866208B2 publication Critical patent/JP3866208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結金属で形成された膜の空隙部を金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子で充填してなることを特徴とする限外濾過膜、その製造方法及びそれを使用する水素の分離方法に関する。
【0002】
【従来の技術】
有効細孔径が0.01ミクロン以上、0.2ミクロン以下の細孔によって構成される膜は限外濾過膜と呼ばれ混合気体の分離、気液分離、固液分離等の分離用途、触媒担体、気体あるいは液体分離膜の支持体等の気体及び/または液体の透過体の構成物としての用途等がある。そのような物質としては高分子多孔性膜、多孔質ガラス膜、アルミナ等の多孔質セラミックス膜、焼結金属膜、等が挙げられる。しかし、高分子材料は熱及び化学的な耐性に乏しいし、多孔質ガラス膜は通常、水蒸気に対して耐性が乏しい。また、アルミナ等の多孔質セラミックスは、それらの欠点はないものの金属への接合性が悪く特に高温で使用する場合、装置への接続は容易ではない。その点、焼結金属膜はそのような熱及び化学的な耐性および接続性に優れているが有効細孔径を小さくすることが難しく有効細孔径は通常0.2ミクロン以上である。そこで、このような焼結金属膜表面に例えば懸濁したセラミックス溶液を塗布することにより有効細孔径が0.01から0.2ミクロンのセラミックス膜をコーティングし、限外濾過膜とする。しかし、このような膜ではセラミックスと金属の熱膨張性が異なるため熱衝撃を受けた場合、金属−セラミックスの接合性が悪化しその結果としてセラミックス膜の亀裂や焼結金属膜表面からの剥離等が生じ、ともすれば高温での性能劣化をもたらす。また、物理的な衝撃、例えば、透過流体中にある微粒子との接触により外表面にあるセラミックス膜が傷つき性能が劣化するおそれがある。また、これらの限外濾過膜はパラジウム薄膜やパラジウム合金薄膜の支持体として利用され水素分離膜として利用されるが、やはり同様の問題が生じるため、工業的な利用価値が損なわれる。
【0003】
【発明が解決しようとする課題】
本発明は上記の問題を解決し、熱安定性及び化学的な耐性を有し、物理的な衝撃にも強く、しかも高温における接続性にも優れた限外分離膜及び水素分離膜を提供するものである。
【0004】
【課題を解決するための手段】
本発明者は、このような課題に対して種々の実験・研究を進めた結果、焼結金属膜の空隙を金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子で充填すると有効細孔径が0.2ミクロン以下の限外濾過膜が得られ、所期の効果を得ることが容易になることを見いだし、また、この限外濾過膜を支持体として、その上にパラジウム薄膜或いはパラジウム合金薄膜を形成すると、所期の効果を得ることが容易となることを見出し本発明を完成するに至ったものである。これらの膜の製造法は極めて容易であり、大規模な製造設備を要さず大量の製造も容易である。
【0005】
すなわち、本発明は
(1) 焼結金属で形成された膜の空隙部を金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子で充填してなることを特徴とする限外濾過膜、
(2) 焼結金属で形成された膜の空隙部を(イ)金属微粒子及び/または金属酸化物微粒子及び/または(ロ)セラミックス微粒子で充填してなる膜を支持体とし、その上にパラジウム薄膜を密着させたことを特徴とする水素分離膜、
(3) 焼結金属で形成された膜の空隙部を(イ)金属微粒子及び/または金属酸化物微粒子及び/または(ロ)セラミックス微粒子で充填してなる膜を支持体とし、その上に(イ)パラジウム薄膜及び/または(ロ)パラジウム合金の薄膜を密着させたことを特徴とする水素分離膜、
(4) パラジウム合金がパラジウムと、銀、金、白金、ニッケル及びコバルトからなる群から選ばれる一種またはニ種以上の貴金属であることを特徴とする前記(3)に記載の水素分離膜、
(5) 焼結金属で形成された膜の空隙内に金属微粒子、金属酸化物微粒子、セラミックス微粒子を流通させることを特徴とする前記(1)に記載の限外濾過膜の製造法、
(6) 焼結金属で形成された膜の空隙部を(イ)金属微粒子及び/または金属酸化物微粒子及び/または(ロ)セラミックス微粒子で充填してなる膜を支持体とし、その上にパラジウム薄膜を密着させることを特徴とする前記(2)に記載の水素分離膜の製造法、
(7) 焼結金属で形成された膜の空隙部を(イ)金属微粒子及び/または金属酸化物微粒子及び/または(ロ)セラミックス微粒子で充填してなる膜を支持体とし、その上に(イ)パラジウム薄膜及び/またはパラジウム合金の薄膜を密着させることを特徴とする前記(3)に記載の水素分離膜の製造法、
(8) 焼結金属で形成された膜の空隙部を(イ)金属微粒子及び/または金属酸化物微粒子及び/または(ロ)セラミックス微粒子で充填してなる膜を支持体とし、その上にパラジウム薄膜を密着させた前記(2)に記載の水素分離膜を用いることを特徴とする水素の分離方法、
(9) 焼結金属で形成された膜の空隙部を(イ)金属微粒子及び/または金属酸化物微粒子及び/または(ロ)セラミックス微粒子で充填してなる膜を支持体とし、その上に(イ)パラジウム薄膜及び/または(ロ)パラジウム合金の薄膜を密着させた前記(3)に記載の水素分離膜を用いることを特徴とする水素の分離方法、
に関する。
【0006】
【発明の実施の形態】
請求項1に係わる発明
本発明の限外濾過膜においては、焼結金属膜を支持体とし、この支持体空隙中に金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子が充填されていることが望ましい。
焼結金属膜の材質としては例えばステンレス、ハステロイ合金、インコネル合金、ニッケル、ニッケル合金、チタン、チタン合金、等が挙げられる。焼結金属膜の有効細孔径には特に制限はないが有効細孔径が0.2ミクロン程度であるのが好ましい。但し、その有効細孔径が0.2ミクロン以上であっても、請求項2で記述するように、その有効細孔径に適合する粒子サイズの金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子を含んだ溶液を細孔内に流通することで、その有効細孔径を0.2ミクロン程度にすることが出来るので支障はない。また、例えば、ニッケル、銅、クロム、亜鉛、錫、鉄等の金属めっきにより、焼結金属膜表面および細孔内を金属によって修飾し、有効細孔径を小さくしてもよい。焼結金属膜空隙中に充填する金属微粒子としては例えば、ニッケル、鉄、銀、銅、パラジウム、等、微粒子である金属であれば特に制限されないが、その有効粒子径が母材となる膜の有効細孔径以下の粒子が含まれることが必須である。焼結金属膜空隙中に充填する金属酸化物微粒子及び/あるいはセラミックスとしては例えば、酸化アルミニウム、酸化鉄、酸化ジルコニウム、酸化セリウム、酸化銀、酸化銅、酸化アルミ、酸化ジルコニウム、窒化珪素、等、微粒子である酸化金属あるいはセラミックスであれば特に制限されないがその有効粒子径は母材となる膜の有効細孔径以下であることが必須である。このような限外濾過膜を使用してガス透過を行った場合、例えばアルゴンガスの透過速度を基準とした場合、水素の透過速度はその3.5倍以上となる。これは有効細孔径が0.01ミクロンから0.2ミクロンの領域に達するとクヌーセン流が生じ透過ガスの分子量の大小によって透過速度の異なりが生じるためである。また、焼結金属膜の空隙中への微粒子の充填の度合いは走査電子顕微鏡を用いて膜の断面を観察すれば容易に判明する。このような構造体である場合、燒結金属の空隙中に微粒子が保持される形態となり、その微粒子が形成する細孔が限外濾過膜としての機能を果たす。そのため濾過膜外表面を損傷させたとしても大きな性能の劣化は生じない。
【0007】
請求項2に係わる発明
本発明の水素分離膜においては請求項1に記載されている限外濾過膜を支持体として、その上にパラジウム薄膜を形成することが好ましい。パラジウム薄膜に水素の選択的透過能があることは極めて良く知られている。請求項1に記載されている限外濾過膜を支持体とすることにより焼結金属膜上に密着性よくパラジウム薄膜を形成できるが、例えば単なる焼結金属膜上にパラジウム薄膜を形成すると焼結金属膜上の有効細孔径が大きすぎるので完全に細孔をパラジウムで封止するために多量のパラジウムを必要とし、しかも、焼結金属膜の空隙が存在するためパラジウム膜との密着性が損なわれ膜の安定性を失う結果となる。
限外濾過膜上のパラジウム膜厚としては通常、3ミクロンから50ミクロン、好ましくは5ミクロンから20ミクロンである。膜厚が小さすぎると水素の選択分離性能が失われ、膜厚が大きすぎると経済性が失われる。
【0008】
請求項3、4に係わる発明
本発明の水素分離膜においては請求項1に記載されている限外濾過膜を支持体として、その上にパラジウム薄膜及び/またはパラジウム合金の薄膜をコーティングすることが好ましい。パラジウム合金を構成する金属は、パラジウムと例えば銀、金、白金、ニッケル及びコバルト等からなる群から選ばれる一種または二種以上である(請求項4に係わる発明。以下も同じ。)。このようなパラジウム合金薄膜に水素の選択的透過能があり、合金化により水素透過性能が高まることは極めて良く知られている。
限外濾過膜上のパラジウム合金膜厚としては通常、3ミクロンから50ミクロン、好ましくは5ミクロンから20ミクロンである。膜厚が小さすぎると水素の選択分離性能が失われ、膜厚が大きすぎると経済性が失われる。
【0009】
請求項5に係わる発明
本発明は、上記請求項1に記載されている限外濾過膜の製造方法であって、金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子及び/または金属水酸化物微粒子を溶媒に懸濁させ、それを焼結金属膜に透過させることにより、これらの微粒子を焼結金属膜の空隙内に固定することを特徴とする。
当該発明では焼結金属膜の空隙中に微粒子を堆積・固定する必要があるため、微粒子の有効粒径は特には制限されないもの堆積の効率化の為には、有効粒径をその有効細孔径の近傍とすることが好ましい。大きすぎると細孔に入らないし小さすぎると細孔を通過して空隙中に固定されない。微粒子としてはその粒径に制限があるだけで組成については制約はない。仮に微粒子に有機物が付着していても例えば空気中における焼成などの操作で有機物を除去し微粒子を構成する無機物が焼結金属膜の空隙中に残存するので問題がない。また、金属水酸化物がセラミックス微粒子に付着したような微粒子であっても、その有効粒径が焼結金属膜内の空隙の有効細孔径の近傍であれば問題がない。
微粒子懸濁液の膜への透過は液を膜の片方の面から細孔内に圧入するか、または/及び、膜の片方を減圧にして液を吸引することによって行えばよい。焼結金属膜の有効細孔径が0.2ミクロン以上であっても、その細孔径に応じた有効粒径を有する粒子を焼結金属膜に通過せしめることにより、この粒子の焼結金属膜の空隙中への堆積が生じて有効細孔径が小さくなり、その後、粒子の有効直径を小さくしながら同様の操作を繰り返すことにより、有効細孔径が0.2ミクロン以下の限外濾過膜を得ることが出来る。この微粒子懸濁液の膜への透過操作の際に超音波等による液及び焼結金属膜の震盪を行うと、より良好な結果が得られる。
微粒子の焼結金属膜空隙中への堆積を行った後、引き続き、微粒子の粒径を変えて微粒子懸濁液の透過を行い有効細孔径の更なる制御を行っても差し支えがないが、微粒子の堆積後、一旦、加熱等の操作により乾燥あるいは焼成することにより微粒子の空隙内への安定化を図り、更に、この膜に微粒子を懸濁した液を通過させ、微粒子を残存する空隙内へ固定する操作を繰り返すことにより所望の有効細孔径を有する限外濾過膜を得ることが出来る。この時使用する微粒子の有効粒径は特に限定されないが、堆積の効率化の為には残存する空隙の形成する細孔の有効細孔径の近傍であることが好ましい。
【0010】
請求項6に係わる発明
本発明は上記請求項2に記載されている水素分離膜の製造方法であって、請求項1に記載の限外濾過膜を支持体として、その上にパラジウム薄膜を公知の例えば無電解めっき法、電解めっき法、化学蒸着法等のパラジウム薄膜作成方法によって形成すればよい。限外濾過膜は微粒子を堆積させた直後に使用しても支障ない。電解めっき法や無電解めっきによるパラジウム薄膜形成の場合、めっき液を限外濾過膜の片方の面から細孔内に圧入するか、または/及び、限外濾過膜の片方を減圧にして液を吸引することによって行えば、更にパラジウム薄膜の密着性が高まる。
【0011】
請求項7に係わる発明
本発明は上記請求項3に記載されている水素分離膜の製造方法であって、請求項1に記載の限外濾過膜を支持体として、その上に上記したパラジウム薄膜及び/またはパラジウム合金薄膜を公知の方法によって形成すればよい。合金薄膜作成方法としては、例えば電解めっき法、無電解めっき法や化学蒸着法等の公知のパラジウム合金薄膜作成方法によって限外濾過膜上にパラジウム合金薄膜を直接形成することが挙げられる。また、他に、例えば電解めっき法、無電解めっき法や化学蒸着法等のパラジウム薄膜作成方法によって限外濾過膜上にパラジウム薄膜を形成後、更に公知の方法、例えば電解めっき法、無電解めっき法や化学蒸着法で銀、金、白金、ニッケル、コバルト等の貴金属をその表面にコーティング後、例えば300℃以上の温度で水素等の還元ガス中で加熱することが挙げられる。これらは公知方法に従って行われてよい。
【0012】
請求項8に係わる発明
本発明は上記請求項2に記載されている水素分離膜を使用してなる水素の分離方法である。水素の分離方法としては請求項2に記載されている水素分離膜の片側(水素含有気体側)に水素を含有する気体を置き、その反対側(水素側)の水素分圧を水素含有気体側の水素分圧以下にすれば、水素分離膜中を水素が選択的に透過し、水素含有気体側にある水素を水素側に分離することができる。この水素分離膜は通常200℃から700℃、好ましくは300℃から600℃の温度で利用できる。温度が低すぎるとパラジウム膜の脆化が生じ、温度が高すぎるとパラジウム膜の劣化が生じる。このような水素分離膜を用いると水素の選択的分離が可能となる。
【0013】
請求項9に係わる発明
本発明は上記請求項3に記載されている水素分離膜を使用してなる水素の分離方法である。水素の分離方法としては請求項2に記載されている水素分離膜の片側(水素含有気体側)に水素を含有する気体を置き、その反対側(水素側)の水素分圧を水素含有気体側の水素分圧以下にすれば、水素分離膜中を水素が選択的に透過し、水素含有気体側にある水素を水素側に分離することができる。この水素分離膜は通常200℃から700℃、好ましくは300℃から600℃の温度で利用できる。温度が低すぎるとパラジウム合金膜の脆化が生じ、温度が高すぎるとパラジウム合金膜の劣化が生じる。このような水素分離膜を用いると水素の選択的分離が可能となる。
【0014】
【実施例】
製造例
以下に限外濾過膜及び水素分離膜の製造例を挙げ、本発明の特徴とするところを更にいっそう明瞭なものとする。
【0015】
製造例1
一方を封じた有効細孔径が0.2ミクロンのステンレス製焼結金属管を有効粒子径が0.07ミクロンから1.0ミクロンに分布する水酸化ジルコニウムゾルを懸濁させた水溶液に入れ、金属管の開口部を減圧し水酸化ジルコニウムゾルを懸濁させた水溶液を吸引した。この時、超音波による震盪を行い水酸化ジルコニウムゾルの分散と焼結金属膜の空隙への水酸化ジルコニウムゾルの拡散を容易なものとした。吸引を3時間行った後、120℃で乾燥を5時間行い、その後、400℃で2時間、空気中で加熱した。得られた限外濾過膜の単位膜面積当たりの水素透過速度は差圧0.2atmで135ml/cm/min、アルゴン透過速度は37ml/cm/minであった(H2/Ar=3.6)。尚、母材となった焼結金属管の単位膜面積当たりの水素透過速度は差圧0.2atmで344ml/cm/min、アルゴン透過速度は131ml/cm/minであった(H2/Ar=2.6)。
【0016】
製造例2
製造例1で得た限外濾過膜を母材とし製造例1と同様の手法で0.05ミクロンから0.1ミクロンに分布した水酸化ジルコニウムゾルを懸濁させた水溶液を用いて限外濾過膜を得た。得られた限外濾過膜の単位膜面積当たりの水素透過速度は差圧0.2atmで58ml/cm/min、アルゴン透過速度は16ml/cm/minであった(H2/Ar=4.1)。
【0017】
製造例3
製造例1で得た限外濾過膜を母材とし製造例1と同様の手法で0.05ミクロンから0.8ミクロンに分布したニッケル微粒子を懸濁させた水溶液を用いて限外濾過膜を得た。得られた限外濾過膜の単位膜面積当たりの水素透過速度は差圧0.2atmで67ml/cm/min、アルゴン透過速度は18ml/cm/minであった(H2/Ar=3.7)。
【0018】
製造例4
製造例1で得た限外濾過膜を母材とし製造例1と同様の手法で0.1ミクロンから0.8ミクロンに分布した水酸化パラジウム−水酸化ジルコニウム共沈殿物を懸濁させた水溶液を用いて限外濾過膜を得た。得られた限外濾過膜の単位膜面積当たりの水素透過速度は差圧0.2atmで41ml/cm/min、アルゴン透過速度は10ml/cm/minであった(H2/Ar=4.1)。
【0019】
製造例5
一方を封じた有効細孔径が1ミクロンのステンレス製焼結金属管を有効粒子径が0.07ミクロンから2ミクロンに分布するニッケル微粒子を懸濁させた水溶液に入れ、金属管の開口部を減圧し、ニッケル微粒子を懸濁させた水溶液を吸引した。引き続き、この金属管を水酸化ジルコニウムゾルを懸濁させた水溶液に入れ、金属管の開口部を減圧し、水酸化ジルコニウムゾルを懸濁させた水溶液を吸引した。この時、超音波による震盪を行い水酸化セリウムゾルの分散と焼結金属膜の空隙への水酸化ジルコニウムゾルの拡散を容易なものとした。吸引を3時間行った後、120℃で乾燥を5時間行い、その後、400℃で2時間、空気中で加熱した。得られた限外濾過膜の単位膜面積当たりの水素透過速度は差圧0.2atmで30ml/cm/min、アルゴン透過速度は8ml/cm/minであった(H2/Ar=3.8)。
【0020】
製造例6
製造例3で得た限外濾過膜を市販のアルカリ性触媒付与溶液に室温で浸漬し、限外濾過膜表面にパラジウム核を形成した。これを市販の無電解パラジウムめっき液に60℃で浸漬し金属管の開口部を減圧しめっき液を吸引した。めっき液の流れが停止した時点で限外濾過膜をめっき液から引き上げ洗浄、乾燥した。水素分離性能試験後、走査電子顕微鏡観察によって判明したパラジウム膜厚は7−10ミクロンであった。
【0021】
製造例7
一方を封じた有効細孔径が0.5ミクロンのステンレス焼結金属管を市販のニッケルストライクめっき浴に入れて電気めっきを行い、焼結金属管表面および細孔内部にニッケル薄膜を形成した。この焼結金属管を0.2ミクロンから3ミクロンに分布した水酸化セリウムゾルを懸濁させた水溶液に入れ、金属管の開口部を減圧し水酸化セリウムゾルを吸引した。引き続き、この金属管を0.1ミクロンから0.5ミクロンに分布するニッケル微粒子を懸濁させた水溶液に入れ、金属管の開口部を減圧し、ニッケル微粒子を吸引した。このようにして得られた限外濾過膜を塩化パラジウム、硫酸銀、EDTA、エチレンジアミン、炭酸アンモニウム及びアンモニア水により構成されるパラジウム−銀合金めっき浴に入れ、パラジウム−銀合金薄膜を電解めっきした後、洗浄、乾燥した。水素分離性能試験後、走査電子顕微鏡観察によって判明したパラジウム合金膜厚は10〜15ミクロンであった。
【0022】
以下に水素分離方法の実施例を挙げ、本発明の特徴とするところを更にいっそう明瞭なものとする。
【0023】
実施例1
製造例6で得た水素分離膜を300℃に保ち、分離膜の外側に水素1.4気圧とアルゴン1.4気圧の混合気体を置き水素分離膜の内側を大気圧とした。その結果、7ml/cm/minの流量で水素が膜の外側から内側に分離された。また、アルゴンの透過はなかった。
【0024】
実施例2
製造例6で得た水素分離膜を600℃に保ち、分離膜の外側に水素1.4気圧とアルゴン1.4気圧の混合気体を置き水素分離膜の内側を大気圧とした。その結果、22ml/cm/minの流量で水素が膜の外側から内側に分離された。また、アルゴンの透過はなかった。
【0025】
実施例3
製造例7で得た水素分離膜を500℃に保ち、分離膜の外側に水素1.4気圧とアルゴン1.4気圧の混合気体を置き水素分離膜の内側を大気圧とした。その結果、15ml/cm/minの流量で水素が膜の外側から内側に分離された。また、アルゴンの透過はなかった。
【0026】
【発明の効果】
本発明による限外濾過膜は公知の限外分離膜に比して熱的、機械的に安定であり、しかも製造に煩雑な操作を要求しない。従って高温における気体の粗分離や、固体と液体の濾過分離、ガス透過を伴う高温における触媒反応への利用が可能である。また、本発明による水素分離膜は公知の水素分離膜に比して熱的、機械的に安定であり、しかも製造に煩雑な操作を要求しない。従って、高温における水素の選択的分離に使用することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrafiltration membrane characterized in that a void portion of a membrane formed of sintered metal is filled with metal fine particles and / or metal oxide fine particles and / or ceramic fine particles, a method for producing the same, and the method The present invention relates to a hydrogen separation method.
[0002]
[Prior art]
A membrane composed of pores having an effective pore diameter of 0.01 micron or more and 0.2 micron or less is called an ultrafiltration membrane, and is used for separation of mixed gas, gas-liquid separation, solid-liquid separation, etc., catalyst carrier In addition, there are uses as a constituent of a gas and / or liquid permeate such as a support for a gas or liquid separation membrane. Examples of such a substance include a polymer porous film, a porous glass film, a porous ceramic film such as alumina, and a sintered metal film. However, polymeric materials have poor heat and chemical resistance, and porous glass membranes usually have poor resistance to water vapor. In addition, porous ceramics such as alumina do not have these drawbacks, but have poor bondability to metals, and are not easily connected to devices when used at high temperatures. In that respect, the sintered metal film is excellent in such heat and chemical resistance and connectivity, but it is difficult to reduce the effective pore diameter, and the effective pore diameter is usually 0.2 microns or more. Therefore, for example, a suspended ceramic solution is applied to the surface of such a sintered metal film to coat a ceramic film having an effective pore size of 0.01 to 0.2 microns to obtain an ultrafiltration membrane. However, in such a film, the thermal expansibility of ceramics and metal is different, so when subjected to thermal shock, the metal-ceramic bondability deteriorates, resulting in cracks in the ceramic film, peeling from the surface of the sintered metal film, etc. Which results in performance degradation at high temperatures. Further, the ceramic film on the outer surface may be damaged due to physical impact, for example, contact with fine particles in the permeating fluid, and the performance may be deteriorated. In addition, these ultrafiltration membranes are used as a support for a palladium thin film or a palladium alloy thin film and used as a hydrogen separation membrane. However, since the same problem occurs, the industrial utility value is impaired.
[0003]
[Problems to be solved by the invention]
The present invention solves the above problems, and provides an ultra-separation membrane and a hydrogen separation membrane that have thermal stability and chemical resistance, are resistant to physical impact, and are excellent in connectivity at high temperatures. Is.
[0004]
[Means for Solving the Problems]
As a result of conducting various experiments and researches on such problems, the present inventor has found that the effective pore diameter is reduced when the voids of the sintered metal film are filled with metal fine particles and / or metal oxide fine particles and / or ceramic fine particles. It has been found that an ultrafiltration membrane of 0.2 micron or less can be obtained, and that it is easy to obtain the desired effect, and this ultrafiltration membrane is used as a support, and a palladium thin film or a palladium alloy thin film thereon. As a result, it has been found that the intended effect can be easily obtained, and the present invention has been completed. The manufacturing method of these films is very easy, and does not require a large-scale manufacturing facility, and can be easily manufactured in large quantities.
[0005]
That is, the present invention is (1) an ultrafiltration membrane characterized in that a void formed in a sintered metal is filled with metal fine particles and / or metal oxide fine particles and / or ceramic fine particles,
(2) A void formed in a film formed of sintered metal is filled with (a) metal fine particles and / or metal oxide fine particles and / or (b) ceramic fine particles as a support, and palladium is formed thereon. A hydrogen separation membrane characterized by having a thin film adhered thereto;
(3) A film formed by filling voids of a film formed of sintered metal with (a) metal fine particles and / or metal oxide fine particles and / or (b) ceramic fine particles is used as a support, and ( A) hydrogen separation membrane characterized in that a palladium thin film and / or (b) a palladium alloy thin film is in close contact;
(4) The hydrogen separation membrane according to (3), wherein the palladium alloy is one or two or more kinds of noble metals selected from the group consisting of palladium and silver, gold, platinum, nickel, and cobalt,
(5) The method for producing an ultrafiltration membrane according to (1), wherein metal fine particles, metal oxide fine particles, and ceramic fine particles are circulated in the voids of the film formed of sintered metal,
(6) A film formed by filling voids of a film formed of sintered metal with (a) metal fine particles and / or metal oxide fine particles and / or (b) ceramic fine particles is used as a support, and palladium is formed thereon. The method for producing a hydrogen separation membrane according to (2), wherein a thin film is adhered,
(7) A film formed by filling voids of a film formed of sintered metal with (a) metal fine particles and / or metal oxide fine particles and / or (b) ceramic fine particles is used as a support, and ( A) A method for producing a hydrogen separation membrane as described in (3) above, wherein a palladium thin film and / or a palladium alloy thin film is adhered.
(8) A film formed by filling voids of a film formed of sintered metal with (a) metal fine particles and / or metal oxide fine particles and / or (b) ceramic fine particles is used as a support, and palladium is formed thereon. A hydrogen separation method according to (2), wherein a thin film is adhered,
(9) A film formed by filling voids of a film made of sintered metal with (a) metal fine particles and / or metal oxide fine particles and / or (b) ceramic fine particles is used as a support, and ( (A) a hydrogen separation method using the hydrogen separation membrane according to (3) above, wherein a palladium thin film and / or (b) a palladium alloy thin film is adhered;
About.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the ultrafiltration membrane of the present invention, a sintered metal membrane is used as a support, and the fine particles of the support are filled with metal fine particles and / or metal oxide fine particles and / or ceramic fine particles. It is desirable.
Examples of the material of the sintered metal film include stainless steel, hastelloy alloy, inconel alloy, nickel, nickel alloy, titanium, titanium alloy, and the like. The effective pore diameter of the sintered metal film is not particularly limited, but the effective pore diameter is preferably about 0.2 microns. However, even if the effective pore diameter is 0.2 microns or more, the metal fine particles and / or metal oxide fine particles and / or ceramic fine particles having a particle size suitable for the effective pore diameter as described in claim 2 Since the effective pore diameter can be reduced to about 0.2 microns by circulating the solution containing the liquid in the pores, there is no problem. Further, for example, the surface of the sintered metal film and the inside of the pores may be modified with a metal by metal plating such as nickel, copper, chromium, zinc, tin, iron, etc. to reduce the effective pore diameter. The metal fine particles to be filled in the voids of the sintered metal film are not particularly limited as long as the metal is a fine metal such as nickel, iron, silver, copper, palladium, etc. It is essential that particles having an effective pore size or less are included. Examples of the metal oxide fine particles and / or ceramics filled in the voids of the sintered metal film include, for example, aluminum oxide, iron oxide, zirconium oxide, cerium oxide, silver oxide, copper oxide, aluminum oxide, zirconium oxide, silicon nitride, etc. Although it is not particularly limited as long as it is a metal oxide or ceramic that is a fine particle, it is essential that its effective particle size is equal to or less than the effective pore size of the film as the base material. When gas permeation is performed using such an ultrafiltration membrane, for example, based on the permeation rate of argon gas, the permeation rate of hydrogen is 3.5 times or more. This is because a Knudsen flow occurs when the effective pore diameter reaches an area of 0.01 to 0.2 microns, and the permeation rate varies depending on the molecular weight of the permeated gas. Further, the degree of filling of the fine particles into the voids of the sintered metal film can be easily determined by observing the cross section of the film using a scanning electron microscope. In the case of such a structure, the fine particles are retained in the voids of the sintered metal, and the pores formed by the fine particles function as an ultrafiltration membrane. Therefore, even if the outer surface of the filtration membrane is damaged, the performance is not greatly deteriorated.
[0007]
Invention of Claim 2 In the hydrogen separation membrane of the present invention, it is preferable to form a palladium thin film on the ultrafiltration membrane described in claim 1 as a support. It is well known that palladium thin films have a selective hydrogen permeability. By using the ultrafiltration membrane according to claim 1 as a support, a palladium thin film can be formed on the sintered metal film with good adhesion. For example, if a palladium thin film is formed on a simple sintered metal film, sintering Since the effective pore diameter on the metal film is too large, a large amount of palladium is required to completely seal the pores with palladium, and the adhesion with the palladium film is impaired due to the presence of voids in the sintered metal film. As a result, the stability of the film is lost.
The palladium film thickness on the ultrafiltration membrane is usually 3 to 50 microns, preferably 5 to 20 microns. If the film thickness is too small, the hydrogen selective separation performance is lost, and if the film thickness is too large, the economy is lost.
[0008]
Inventions According to Claims 3 and 4 In the hydrogen separation membrane of the present invention, the ultrafiltration membrane described in claim 1 is used as a support, and a palladium thin film and / or a palladium alloy thin film is coated thereon. preferable. The metal which comprises a palladium alloy is 1 type, or 2 or more types chosen from the group which consists of palladium, for example, silver, gold | metal | money, platinum, nickel, cobalt, etc. (The invention concerning Claim 4. The same also applies hereafter). It is well known that such a palladium alloy thin film has a selective hydrogen permeation ability and the hydrogen permeation performance is enhanced by alloying.
The palladium alloy film thickness on the ultrafiltration membrane is usually 3 to 50 microns, preferably 5 to 20 microns. If the film thickness is too small, the hydrogen selective separation performance is lost, and if the film thickness is too large, the economy is lost.
[0009]
The invention according to claim 5 The present invention provides a method for producing the ultrafiltration membrane according to claim 1, wherein the metal fine particles and / or metal oxide fine particles and / or ceramic fine particles and / or metal hydroxide are produced. The fine particles are fixed in the voids of the sintered metal film by suspending the fine particles in a solvent and allowing the fine particles to permeate the sintered metal film.
In the present invention, since it is necessary to deposit and fix the fine particles in the voids of the sintered metal film, the effective particle size of the fine particles is not particularly limited. It is preferable to be in the vicinity of. If it is too large, it will not enter the pores, and if it is too small, it will pass through the pores and not be fixed in the voids. There is no restriction on the composition of the fine particles, only the particle size is limited. Even if the organic matter adheres to the fine particles, for example, the organic matter is removed by an operation such as firing in the air, and the inorganic matter constituting the fine particles remains in the voids of the sintered metal film, so there is no problem. Moreover, even if the metal hydroxide is a fine particle in which the ceramic fine particle is adhered to the ceramic fine particle, there is no problem as long as the effective particle diameter is close to the effective pore diameter of the void in the sintered metal film.
Permeation of the fine particle suspension into the membrane may be performed by pressing the liquid into the pores from one side of the film or / and sucking the liquid while reducing the pressure on one side of the film. Even if the effective pore diameter of the sintered metal film is 0.2 microns or more, the particles having an effective particle diameter corresponding to the pore diameter are allowed to pass through the sintered metal film, so that Accumulation in the voids reduces the effective pore size, and then repeats the same operation while reducing the effective diameter of the particles to obtain an ultrafiltration membrane with an effective pore size of 0.2 microns or less. I can do it. A better result can be obtained by shaking the liquid and the sintered metal film with ultrasonic waves or the like during the permeation operation of the fine particle suspension through the film.
After the fine particles are deposited in the voids of the sintered metal film, the fine particle suspension can be changed to allow the fine particle suspension to permeate further to control the effective pore diameter. After deposition, the fine particles are stabilized in the voids by drying or baking once by an operation such as heating, and the liquid in which the fine particles are suspended is allowed to pass through the film, and the fine particles remain in the remaining voids. By repeating the fixing operation, an ultrafiltration membrane having a desired effective pore diameter can be obtained. The effective particle size of the fine particles used at this time is not particularly limited, but it is preferably in the vicinity of the effective pore size of the pores formed by the remaining voids in order to increase the deposition efficiency.
[0010]
The invention according to claim 6 The present invention is a method for producing a hydrogen separation membrane according to claim 2, wherein the ultrafiltration membrane according to claim 1 is used as a support, and a palladium thin film is publicly known thereon. For example, a palladium thin film forming method such as an electroless plating method, an electrolytic plating method, or a chemical vapor deposition method may be used. The ultrafiltration membrane can be used immediately after the fine particles are deposited. In the case of forming a palladium thin film by electroplating or electroless plating, the plating solution is pressed into the pores from one side of the ultrafiltration membrane, and / or the pressure is reduced by reducing one side of the ultrafiltration membrane. If it carries out by attracting | sucking, the adhesiveness of a palladium thin film will increase further.
[0011]
The invention according to claim 7 The present invention is a method for producing a hydrogen separation membrane according to claim 3, wherein the ultrafiltration membrane according to claim 1 is used as a support and the palladium thin film is formed thereon. And / or a palladium alloy thin film may be formed by a known method. As an alloy thin film production method, for example, a palladium alloy thin film is directly formed on an ultrafiltration membrane by a known palladium alloy thin film production method such as an electrolytic plating method, an electroless plating method or a chemical vapor deposition method. In addition, after forming a palladium thin film on the ultrafiltration membrane by a palladium thin film preparation method such as an electrolytic plating method, an electroless plating method, or a chemical vapor deposition method, further known methods such as an electrolytic plating method, an electroless plating method, etc. For example, a noble metal such as silver, gold, platinum, nickel or cobalt is coated on the surface by a chemical vapor deposition method or a chemical vapor deposition method, and then heated in a reducing gas such as hydrogen at a temperature of 300 ° C. or higher. These may be performed according to known methods.
[0012]
Invention of Claim 8 The present invention is a method for separating hydrogen using the hydrogen separation membrane described in claim 2 above. As a hydrogen separation method, a hydrogen-containing gas is placed on one side (hydrogen-containing gas side) of the hydrogen separation membrane described in claim 2, and the hydrogen partial pressure on the opposite side (hydrogen side) is set to the hydrogen-containing gas side. If the hydrogen partial pressure is less than or equal to, hydrogen selectively permeates through the hydrogen separation membrane, and hydrogen on the hydrogen-containing gas side can be separated to the hydrogen side. This hydrogen separation membrane can be used usually at a temperature of 200 ° C. to 700 ° C., preferably 300 ° C. to 600 ° C. If the temperature is too low, embrittlement of the palladium film occurs, and if the temperature is too high, the palladium film deteriorates. Use of such a hydrogen separation membrane makes it possible to selectively separate hydrogen.
[0013]
Invention of Claim 9 The present invention is a method for separating hydrogen using the hydrogen separation membrane described in claim 3 above. As a hydrogen separation method, a hydrogen-containing gas is placed on one side (hydrogen-containing gas side) of the hydrogen separation membrane described in claim 2, and the hydrogen partial pressure on the opposite side (hydrogen side) is set to the hydrogen-containing gas side. If the hydrogen partial pressure is less than or equal to, hydrogen selectively permeates through the hydrogen separation membrane, and hydrogen on the hydrogen-containing gas side can be separated to the hydrogen side. This hydrogen separation membrane can be used usually at a temperature of 200 ° C. to 700 ° C., preferably 300 ° C. to 600 ° C. When the temperature is too low, embrittlement of the palladium alloy film occurs, and when the temperature is too high, the palladium alloy film deteriorates. Use of such a hydrogen separation membrane makes it possible to selectively separate hydrogen.
[0014]
【Example】
Production examples The production examples of the ultrafiltration membrane and the hydrogen separation membrane are given below, and the features of the present invention are further clarified.
[0015]
Production Example 1
A stainless sintered metal tube with an effective pore size of 0.2 microns sealed on one side is placed in an aqueous solution in which a zirconium hydroxide sol with an effective particle size of 0.07 to 1.0 microns is suspended. The opening of the tube was decompressed and the aqueous solution in which the zirconium hydroxide sol was suspended was sucked. At this time, ultrasonic shaking was performed to facilitate the dispersion of the zirconium hydroxide sol and the diffusion of the zirconium hydroxide sol into the voids of the sintered metal film. After performing suction for 3 hours, drying was performed at 120 ° C. for 5 hours, and then heated in air at 400 ° C. for 2 hours. The resulting ultrafiltration hydrogen permeation rate per unit membrane area of the filtration membrane 135ml / cm 2 / min at a differential pressure 0.2 atm, argon permeation rate was 37ml / cm 2 / min (H2 / Ar = 3. 6). The sintered metal tube used as a base material had a hydrogen permeation rate per unit membrane area of 344 ml / cm 2 / min at a differential pressure of 0.2 atm, and an argon permeation rate of 131 ml / cm 2 / min (H2 / Ar = 2.6).
[0016]
Production Example 2
Using the ultrafiltration membrane obtained in Production Example 1 as a base material, ultrafiltration was performed using an aqueous solution in which zirconium hydroxide sol distributed from 0.05 to 0.1 microns was suspended in the same manner as in Production Example 1. A membrane was obtained. The hydrogen permeation rate per unit membrane area of the obtained ultrafiltration membrane was 58 ml / cm 2 / min at a differential pressure of 0.2 atm, and the argon permeation rate was 16 ml / cm 2 / min (H2 / Ar = 4. 1).
[0017]
Production Example 3
Using the ultrafiltration membrane obtained in Production Example 1 as a base material, an ultrafiltration membrane was prepared using an aqueous solution in which nickel fine particles distributed from 0.05 to 0.8 microns were suspended in the same manner as in Production Example 1. Obtained. The resulting ultrafiltration hydrogen permeation rate per unit membrane area of the filtration membrane is 67ml / cm 2 / min at a differential pressure 0.2 atm, argon permeation rate was 18ml / cm 2 / min (H2 / Ar = 3. 7).
[0018]
Production Example 4
An aqueous solution in which a palladium hydroxide-zirconium hydroxide coprecipitate distributed from 0.1 to 0.8 microns is suspended by the same method as in Production Example 1 using the ultrafiltration membrane obtained in Production Example 1 as a base material. Was used to obtain an ultrafiltration membrane. The obtained ultrafiltration membrane had a hydrogen permeation rate per unit membrane area of 41 ml / cm 2 / min at a differential pressure of 0.2 atm, and an argon permeation rate of 10 ml / cm 2 / min (H2 / Ar = 4. 1).
[0019]
Production Example 5
A stainless sintered metal tube with an effective pore size of 1 micron sealed in one is placed in an aqueous solution in which nickel fine particles with an effective particle size ranging from 0.07 micron to 2 microns are suspended, and the opening of the metal tube is decompressed. Then, the aqueous solution in which the nickel fine particles were suspended was sucked. Subsequently, the metal tube was put into an aqueous solution in which zirconium hydroxide sol was suspended, the opening of the metal tube was decompressed, and the aqueous solution in which zirconium hydroxide sol was suspended was sucked. At this time, ultrasonic shaking was performed to facilitate the dispersion of the cerium hydroxide sol and the diffusion of the zirconium hydroxide sol into the voids of the sintered metal film. After performing suction for 3 hours, drying was performed at 120 ° C. for 5 hours, and then heated in air at 400 ° C. for 2 hours. The hydrogen permeation rate per unit membrane area of the obtained ultrafiltration membrane was 30 ml / cm 2 / min at a differential pressure of 0.2 atm, and the argon permeation rate was 8 ml / cm 2 / min (H2 / Ar = 3. 8).
[0020]
Production Example 6
The ultrafiltration membrane obtained in Production Example 3 was immersed in a commercially available alkaline catalyst application solution at room temperature to form palladium nuclei on the surface of the ultrafiltration membrane. This was immersed in a commercially available electroless palladium plating solution at 60 ° C., and the opening of the metal tube was decompressed to suck the plating solution. When the flow of the plating solution stopped, the ultrafiltration membrane was pulled up from the plating solution, washed and dried. After the hydrogen separation performance test, the palladium film thickness determined by observation with a scanning electron microscope was 7-10 microns.
[0021]
Production Example 7
A stainless sintered metal tube having an effective pore diameter of 0.5 microns sealed on one side was placed in a commercially available nickel strike plating bath and electroplated to form a nickel thin film on the surface of the sintered metal tube and inside the pores. This sintered metal tube was put into an aqueous solution in which cerium hydroxide sol distributed from 0.2 to 3 microns was suspended, and the opening of the metal tube was decompressed to suck the cerium hydroxide sol. Subsequently, the metal tube was put into an aqueous solution in which nickel fine particles distributed from 0.1 to 0.5 microns were suspended, the opening of the metal tube was decompressed, and the nickel fine particles were sucked. After putting the ultrafiltration membrane thus obtained in a palladium-silver alloy plating bath composed of palladium chloride, silver sulfate, EDTA, ethylenediamine, ammonium carbonate and aqueous ammonia, and electroplating the palladium-silver alloy thin film Washed and dried. After the hydrogen separation performance test, the palladium alloy film thickness determined by observation with a scanning electron microscope was 10 to 15 microns.
[0022]
Examples of the hydrogen separation method will be given below to further clarify the features of the present invention.
[0023]
Example 1
The hydrogen separation membrane obtained in Production Example 6 was kept at 300 ° C., and a mixed gas of 1.4 atm hydrogen and 1.4 atm argon was placed outside the separation membrane, and the inside of the hydrogen separation membrane was set to atmospheric pressure. As a result, hydrogen was separated from outside to inside of the membrane at a flow rate of 7 ml / cm 2 / min. Moreover, there was no permeation | transmission of argon.
[0024]
Example 2
The hydrogen separation membrane obtained in Production Example 6 was kept at 600 ° C., and a mixed gas of 1.4 atm hydrogen and 1.4 atm argon was placed outside the separation membrane, and the inside of the hydrogen separation membrane was at atmospheric pressure. As a result, hydrogen was separated from the outside to the inside of the membrane at a flow rate of 22 ml / cm 2 / min. Moreover, there was no permeation | transmission of argon.
[0025]
Example 3
The hydrogen separation membrane obtained in Production Example 7 was kept at 500 ° C., and a mixed gas of 1.4 atm hydrogen and 1.4 atm argon was placed outside the separation membrane, and the inside of the hydrogen separation membrane was at atmospheric pressure. As a result, hydrogen was separated from outside to inside of the membrane at a flow rate of 15 ml / cm 2 / min. Moreover, there was no permeation | transmission of argon.
[0026]
【The invention's effect】
The ultrafiltration membrane according to the present invention is thermally and mechanically stable as compared with known ultrafiltration membranes, and does not require complicated operations for production. Therefore, it can be used for rough gas separation at high temperature, filtration separation of solid and liquid, and catalytic reaction at high temperature with gas permeation. In addition, the hydrogen separation membrane according to the present invention is thermally and mechanically stable as compared with known hydrogen separation membranes, and does not require complicated operations for production. Therefore, it can be used for the selective separation of hydrogen at high temperatures.

Claims (2)

焼結金属で形成された膜の空隙部を金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子で充填してなることを特徴とする限外濾過膜 An ultrafiltration membrane, wherein a void portion of a membrane formed of sintered metal is filled with metal fine particles and / or metal oxide fine particles and / or ceramic fine particles . 焼結金属で形成された膜の空隙内に金属微粒子及び/または金属酸化物微粒子及び/またはセラミックス微粒子を流通させることを特徴とする請求項1に記載の限外濾過膜の製造法 2. The method for producing an ultrafiltration membrane according to claim 1, wherein metal fine particles and / or metal oxide fine particles and / or ceramic fine particles are circulated in the voids of the film formed of sintered metal .
JP2003070587A 2002-03-25 2003-03-14 Ultrafiltration membrane and hydrogen separation membrane, method for producing the same, and method for separating hydrogen Expired - Fee Related JP3866208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070587A JP3866208B2 (en) 2002-03-25 2003-03-14 Ultrafiltration membrane and hydrogen separation membrane, method for producing the same, and method for separating hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002082866 2002-03-25
JP2003070587A JP3866208B2 (en) 2002-03-25 2003-03-14 Ultrafiltration membrane and hydrogen separation membrane, method for producing the same, and method for separating hydrogen

Publications (2)

Publication Number Publication Date
JP2004000911A JP2004000911A (en) 2004-01-08
JP3866208B2 true JP3866208B2 (en) 2007-01-10

Family

ID=30445881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070587A Expired - Fee Related JP3866208B2 (en) 2002-03-25 2003-03-14 Ultrafiltration membrane and hydrogen separation membrane, method for producing the same, and method for separating hydrogen

Country Status (1)

Country Link
JP (1) JP3866208B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327942C (en) 2004-01-09 2007-07-25 中国科学院大连化学物理研究所 Composite metal palladium membrane or alloy palladium membrane and its preparing method
JP4415742B2 (en) * 2004-04-21 2010-02-17 株式会社Ihi Method for producing hydrogen separation sheet, powder rolling apparatus and powder rolling method
FR2869241B1 (en) * 2004-04-23 2006-07-21 Tech Avancees & Membranes Ind MODIFIED POROSITY SUPPORT AND MEMBRANE FOR THE TANGENTIAL FILTRATION OF A FLUID
US7727596B2 (en) * 2004-07-21 2010-06-01 Worcester Polytechnic Institute Method for fabricating a composite gas separation module
JP2006083446A (en) * 2004-09-17 2006-03-30 Okuno Chem Ind Co Ltd Electroless palladium-silver alloy plating liquid
US7524361B2 (en) * 2006-01-12 2009-04-28 Korea Institute Of Energy Research Porous hydrogen separation membrane and method for preparing the same
JP5363121B2 (en) * 2006-12-28 2013-12-11 株式会社ミクニ Hydrogen permeable membrane and manufacturing method thereof
CN111389239B (en) * 2020-03-20 2022-04-22 西安工程大学 Pd/Ag/SiO2Method for preparing composite membrane

Also Published As

Publication number Publication date
JP2004000911A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4729755B2 (en) Composite membrane, method for producing the same, and hydrogen separation membrane
KR100247557B1 (en) Preparation of composite membranes for separation of hydrogen
US6066592A (en) Gas separator
EP0818233B1 (en) Gas separator
AU2003203623A1 (en) Composite membrane and production method therefor
JP4753180B2 (en) Hydrogen separation material and method for producing the same
TW200835550A (en) A gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
JP3866208B2 (en) Ultrafiltration membrane and hydrogen separation membrane, method for producing the same, and method for separating hydrogen
KR20140095052A (en) Method for preparing a palladium-gold alloy gas separation membrane system
JP4572385B2 (en) Hydrogen purification separation method
JP2009022843A (en) High-durability hydrogen separation membrane and its manufacturing method
JP2011206629A (en) Defect-free hydrogen separation membrane, method of producing the same, and method of separating hydrogen
JP3342294B2 (en) Method for producing zeolite separation membrane
JP2005503261A (en) Novel inorganic nanofiltration membrane
JP3117276B2 (en) Hydrogen separation membrane
CN103252170B (en) Base material and preparation process thereof
JP4112856B2 (en) Method for producing gas separator
JP3305484B2 (en) Joint of metal-coated ceramic and metal and hydrogen gas separation device using the same
JP3770504B2 (en) Zeolite membrane and method for producing the same
JP3755056B2 (en) Hydrogen separation membrane, method for producing the same, and method for separating hydrogen
JP3045329B2 (en) Method for producing hydrogen separation membrane
JP4038292B2 (en) Hydrogen separator
JP2000317282A (en) Hydrogen separator
JPH05285355A (en) Membrane for separation of hydrogen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees