JP3865807B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP3865807B2
JP3865807B2 JP28998895A JP28998895A JP3865807B2 JP 3865807 B2 JP3865807 B2 JP 3865807B2 JP 28998895 A JP28998895 A JP 28998895A JP 28998895 A JP28998895 A JP 28998895A JP 3865807 B2 JP3865807 B2 JP 3865807B2
Authority
JP
Japan
Prior art keywords
film
chamber
organic
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28998895A
Other languages
Japanese (ja)
Other versions
JPH09134787A (en
Inventor
禎之 浮島
昌敏 佐藤
哲夫 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP28998895A priority Critical patent/JP3865807B2/en
Publication of JPH09134787A publication Critical patent/JPH09134787A/en
Application granted granted Critical
Publication of JP3865807B2 publication Critical patent/JP3865807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセンス素子(以下、「有機EL素子」という)に関する。
【0002】
【従来の技術】
従来、有機EL素子として、図5に示すように、基板1上に設けられた透明陽極2と金属陰極5との間に正孔輸送層3と有機蛍光色素(発光層)4とが積層されたものが知られている。また、図6に示すように、基板1上に設けられた透明陽極2と金属陰極5との間に正孔輸送層3、発光層4、電子輸送層6からなる3層が積層された構造のものも知られている。
【0003】
有機EL素子は、通常、パターニングされた透明陽極2上へ蒸着マスクを介して正孔輸送層3、発光層4、電子輸送層6、金属陰極5を、順次、成膜して作製される。
【0004】
【発明が解決しようとする課題】
有機EL素子の膜厚は、通常、透明陽極2が100〜200nm、正孔輸送層3、発光層4、電子輸送層6からなる有機層が全体で100〜300nm、陰極5が100〜300nmである。有機EL素子においては、透明陽極2と金属陰極5との間に50〜100MV/mの高電界を印加して作動させているため、主に電極の端面(エッジ部)に電界が集中し易く、そのロスがジュール熱となり、有機薄膜と金属陰極との間を剥離させ、非発光領域(ダークスポット)を生じるという不具合が起こる。
【0005】
上記有機層は、蒸着法で作製するために、透明陽極の側部へ膜が成長しずらい。そのために、図7中で○印で囲まれた部分における有機層7の膜厚が他の部分と比べて薄くなり、電界がここへ集中し易いという問題がある。図7中、1、2及び5は、図5及び6におけるものと同じものを示す。
【0006】
また、金属陰極5は、蒸着マスクを介して形成されるために、細かいパターンの発光面が得られにくく、ディスプレイを作製する上で問題になっている。
【0007】
本発明は、透明陽極の端面の影響をなくして、素子の短絡、非発光領域の増加といった問題を解消し、安定な発光面を有する有機EL素子を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は、基板上に設けられた陽極、有機層及び陰極からなり、該陽極上又は該陽極間へパターニングにより絶縁層が設けられ、その上に該有機層及び陰極が形成されている有機エレクトロルミネッサンス素子において、前記絶縁層を尿素の蒸着重合および該蒸着重合で得られるオリゴマー状態を含むポリ尿素膜の紫外線露光と加熱現像とで形成し、更に該絶縁層を酸素プラズマ処理したことを特徴とする。
【0009】
本発明の有機EL素子では、例えば、図1に示すように、基板1上に設けられた透明陽極2上に絶縁膜をパターニングして得た絶縁層8が設けられ、その上に正孔輸送層3、発光層4、電子輸送層(図示せず)及び金属陰極5が、成膜されている。また、図2に示すように、基板1上へ透明電極2がパターニングされている場合は、透明電極間へ絶縁8を埋め込むように作製する。
【0010】
前記絶縁層としては、蒸着せしめたポリ尿素膜を紫外線露光後、加熱現像によりパターニングされた膜が用いられる。この現像工程では、紫外線露光後、光未照射部が加熱による分解で取り除かれる
【0011】
本発明の有機EL素子は、例えば、基板上に設けられた陽極上又は陽極間へパターニングにより絶縁層を形成し、その上に有機層を形成し、次いでその上に電極パターンのマスク蒸着をせずに陰極を形成して、該絶縁層で囲まれたパターンの中に発光面を形成することにより作製される
【0012】
本発明では、上記したように、透明陽極上又は陽極間にパターニングされた絶縁層を設けてあるので、発光は絶縁層が抜けた部分で起こる。このため、金属陰極5は特にパターニングされた膜を用いなくてよい。従って、有機EL素子の作製プロセスにおいて、金属陰極のパターニングプロセスを省略することができる。
【0013】
また、透明陽極の端部(エッジ部)の影響がなくなるために、電圧を印加したときに電界の集中する部分がなくなり、膜全体に均一に電界が印加されるので、安定した発光を得ることができる。
【0014】
上記絶縁膜は、微細加工することが可能なので、1画素あたりの面積を小さくすることができる。従来の金属陰極のマスク蒸着においては、0.5mm×0.5mmの面積が限界であり、それより小さい面積では微細加工が困難であった。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の態様を説明する。
【0016】
まず、有機EL素子の構造について説明する。
【0017】
該有機EL素子の構造としては、陽極/絶縁層/発光層/陰極のような有機化合物膜が発光層(高分子膜又はオリゴマー膜からなる)のみの単層構造の場合、陽極/絶縁層/正孔輸送層/発光層/陰極又は陽極/絶縁層/発光層/電子輸送層/陰極のような有機化合物膜が正孔輸送層と発光層或いは発光層と電子輸送層の2層構造の場合、陽極/絶縁層/正孔輸送層/発光層/電子輸送層/陰極のような有機化合物膜が3層構造の場合がある。
【0018】
ここで、絶縁層としては、前記したように、紫外線露光されたポリ尿素膜が加熱現像によりパターニングされている。
【0019】
また、有機化合物膜の正孔輸送層としては、例えば、N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−1,1′−ビフェニル−4,4′−ジアミン(以下、TPDという)に代表される正孔輸送能を持つ低分子色素を蒸着法により形成した薄膜や正孔輸送性の分子構造を有する高分子膜(ポリアミド、ポリイミド、ポリアゾメチン等)を蒸着重合法により形成した薄膜が用いられ、また正孔輸送性の低分子色素を高分子薄膜中に蒸着分散させたものでもよい。
【0020】
また、発光層としては、例えば、8−オキシキノリノアルミニウム錯体(以下、Alq3 という)に代表される発光性色素を蒸着法により形成した薄膜やスチルベン、オキサジアゾール等の共役系構造を有する高分子膜を蒸着重合法により形成した薄膜が用いられ、また発光性色素を高分子薄膜中に蒸着分散させたものでもよい。
【0021】
更に、電子輸送層としては、例えば、Alq3 やオキサジアゾール誘導体の蒸着薄膜が用いられ、またアントラキノジメタン誘導体、ジフェニルキノン誘導体の薄膜も用いることができる。
【0022】
本発明において用いる絶縁層の成膜装置の一例は、以下説明するように、真空中で感光性合成樹脂の原料モノマーを蒸発させる蒸発源と、原料モノマーの蒸着重合でポリ尿素膜の絶縁膜が形成される基板を互いに対向して配置した蒸着重合室と、基板上の該絶縁膜に紫外線を照射する紫外線源と、該絶縁膜にパターンを形成するために用いるフォトマスクを配置した露光室と、紫外線の照射露光後の絶縁膜に加熱処理を施す加熱装置を配置した現像室とからなる。
【0023】
まず、図3は、絶縁層たるポリ尿素層のパターン形成装置の1例を示すもので、ポリ尿素膜を形成する蒸着重合室11、該ポリ尿素膜に紫外線を照射するための露光室12、紫外線を照射されたポリ尿素膜に加熱処理を施す現像室13から構成されており、バルブ14b、14cにより蒸着重合室11、露光室12、現像室13の順で互いに連通されている。
【0024】
また、蒸着重合室11の上流側にバルブ14aを介して外部の真空ポンプその他の真空排気系15aに接続された真空室16を配置し、また、現像室13の下流側にバルブ14dを介して外部の真空ポンプその他の真空排気系15bに接続された真空室17を配置し、真空排気系15a及び15bのいずれか一方、または両方の真空排気系の作動により蒸着重合室11内、露光室12内、現像室13内をそれぞれ所定の圧力に設定できるようにしてある。
【0025】
前記蒸着重合室11内に、ポリ尿素膜の蒸着重合膜を形成させるための基板1を保持する基板ホルダー18を配置すると共に、該蒸着重合室11の下方に前記基板1に対向させてポリ尿素膜の一方の原料モノマー(a)としてジアミン、他方の原料モノマー(b)としてジイソシアナートをそれぞれ蒸発させるためのガラス製の蒸発源19a、19bを設け、該各蒸発源19a、19bをその近傍に設けられた水晶振動の蒸発モニター20a、20bと、ヒーター21a、21bとによって、前記原料モノマー(a)及び(b)の蒸発量を常に一定化させる所定温度にコントロールできるようにした。
【0026】
また、基板1と両蒸発源19a、19bとの間にシャッター22を配置し、また、両蒸発源19a、19bの間に仕切板23を設けた。
【0027】
前記露光室12内の下方に基板ホルダー18に保持された基板1に対向させて紫外線源24を設け、基板1の前方に所定形状のパターンを備えるフォトマスク25を設けて、前記蒸着重合室11内で基板1の表面に形成されたポリ尿素膜に紫外線源24より紫外線を照射してパターン状に露光させるようにした。
【0028】
前記現像室13内に、基板ホルダー18に保持された基板1の背面側にハロゲンランプからなる加熱装置26を設けて、前記露光室12内で紫外線に照射されて架橋したポリ尿素膜を所定温度に加熱して非露光部分のポリ尿素膜を解重合させて除去するようにした。
【0029】
図3に示したような絶縁層の成膜装置を用いて、まず、透明電極として例えばITO(Indium-Tin-Oxide)を成膜した基板1を真空室16へ仕込み、蒸着重合室11へ搬送して基板ホルダー18上に配置された基板1上にポリ尿素膜の絶縁膜を成膜する。次いで、基板1を真空室12へ搬出して紫外線源24によりフォトマスク25を介して露光する。その後、真空室13へ搬送して、加熱装置26により紫外線未照射部を分解、蒸発させて取り除き、絶縁膜のパターニングを完了する。
【0030】
図4は、本発明の有機EL素子を製造するために用いる装置の一例を示すものであるが、ここでは陽極形成装置、絶縁層成膜装置は示されていない。図中、27は酸素プラズマ処理室、28は正孔輸送層、発光層、電子輸送層などの有機化合物膜の成膜室、29は陰極形成室、30は保護膜形成室、31は紫外線処理室を示す。そして酸素プラズマ処理室27、成膜室28、陰極形成室29、保護膜形成室30、紫外線処理室31の各室間をそれぞれ開閉自在のゲートバルブ32a、32b、32c及び32dで仕切るようにすると共に、各室内に基板1を搬送するトレー式搬送系33を配設した。
【0031】
酸素プラズマ処理室27内を真空ポンプ等の真空排気系34に接続すると共に、酸素プラズマ処理室27内にはITO膜のような陽極にプラズマ処理を施す銅製のRF電極35を配設した。
【0032】
成膜室28内を真空ポンプ等の真空排気系36に接続し、成膜室28内の下方の一方にTPD、Alq3 等の色素原料Tをその周囲に巻回したヒーター37a、37bで所定温度に加熱し、蒸発させるアルミナ製又はガラス製の色素蒸発源38a、38bを2個並設すると共に、成膜室28内の下方の他方に蒸着重合高分子膜の原料モノマーU、Vを赤外線ランプ39a及び39bで所定温度に加熱し、蒸発させるガラス製又は金属製の有機物蒸発源40a及び40bを配設した。成膜室28内の上方に色素蒸発源38a及び38b並びに有機物蒸発源40a及び40bに対向させて有機化合物膜を成膜すべき基板1を配設すると共に、基板1の裏面に基板1上に成膜された高分子膜を加熱するシースヒーター41を配設した。
【0033】
また、基板1と色素蒸発源38a及び38bとの間にシャッター42a及び42bを、また基板1と有機物蒸発源40a及び40bとの間にシャッター43をそれぞれ配設した。また、有機物蒸発源40a及び40b内にそれぞれ熱電対44a及び44bを配設した。
【0034】
陰極形成室29内を真空ポンプ等の真空排気系45に接続し、陰極形成室29内の下方の一方に陰極の一方の原料W(原料Wは、例えば、Mg)をその周囲を巻回したヒーター46で所定温度に加熱し、蒸発させるアルミナ製の陰極材料蒸発源47を配設すると共に、陰極形成室29内の下方の他方に陰極の他方の原料X(原料Xは、例えば、Ag)を所定温度に加熱し、蒸発させるタングステン製又はモリブデン製のボートからなる陰極材料蒸発源48を配設した。
【0035】
また、基板1と陰極材料蒸発源47との間にシャッター49を、また基板1と陰極材料蒸発源48との間にシャッター50をそれぞれ配設した。
【0036】
保護膜形成室30内を真空ポンプ等の真空排気系51に接続し、保護膜形成室30内の下方にポリ尿素膜のような保護膜の原料モノマーY、Z(例えば、原料Yはジアミンモノマー、原料モノマーZはジイソシアナートモノマー)を赤外線ヒーター52a及び52bで所定温度に加熱し、蒸発させるガラス製または金属製の保護膜蒸発源53a及び53bをそれぞれ配設した。
【0037】
また、基板1と保護膜蒸発源53a及び53bとの間にシャッター54を配設し、基板1近傍に保護膜の水晶振動式膜厚モニター55を配設した。さらに、保護膜蒸発源53a及び53b内にそれぞれ熱電対56a及び56bを配設した。
【0038】
紫外線処理室31内を真空ポンプ等の真空排気系57に接続し、紫外線処理室31内に紫外線を照射して低分子のポリ尿素を架橋し、高分子化させてポリ尿素保護膜とするための紫外線ランプ58を配設した。
【0039】
なお、図4中、59は有機物蒸発源40aと40bとの間に設けた仕切板、60は保護膜蒸発源53aと53bとの間に設けた仕切板をそれぞれ示す。
【0040】
図4に示されたような有機EL素子製造装置を用いて、ポリ尿素膜の絶縁膜をパターニングして得た前記基板を図4の真空室27へ仕込み、酸素プラズマ処理を行う。この場合の処理は、透明陽極上に残存する絶縁膜の除去と透明陽極上の平坦化を兼ねる。次いで、成膜室28で正孔輸送層3、発光層4、電子輸送層6等からなる有機層7を成膜する。その後、陰極形成室29で陰極を形成し、保護膜形成室30で保護膜を形成し、EL素子が完成される。
【0041】
上記図3と図4とに示された装置はまた、基板が、仕込み室から、一体化された絶縁膜形成室を経て、図4に示された酸素プラズマ処理室、有機層の成膜室、陰極形成室、随時保護膜形成室へそして次いで取り出し室へ搬送されるように構成されていてもよい。
【0042】
なお、図2に示したような、絶縁層8がパターン化された陽極(ITO)2の間に埋め込まれて平坦化されている構造を有する有機EL素子の場合には、例えば、基板1上にITOをパターニングにより形成し、その上に絶縁膜を成膜し、次いで、(1)紫外線照射(ITO上)し、(2)加熱現像することにより、ITO上の絶縁膜を除去し、残りの絶縁膜がITO間に埋め込まれて平坦化されるようにし、その後、前記したように、正孔輸送層3、発光層4、電子輸送層(図示せず)等からなる有機層を成膜し、次いで陰極5を形成し、保護膜(図示せず)を形成して、該EL素子を作製してもよい。
【0043】
【実施例】
以下、本発明の実施例を添付図面を参照して説明する。
【0044】
(実施例1)
図1に示す構造の有機EL素子の作製について説明する。
【0045】
イソプロパノール中で煮沸洗浄したガラス基板1へスパッタリング法によりITO(In23−10%SnO2 )膜2を1000Å成膜した。この基板を図3に示すポリ尿素膜のパターニング装置の真空室16へ仕込み、1.0×10-3Paに達した後、バルブ14aを開いて蒸着重合室11へ搬送した。5.3×10-3Paの圧力下で、4, 4′−ジアミノジフェニルメタン(MDA)aと4, 4′−ジフェニルメタンジイソシアナート(MDI)bとを蒸発源19a、19bからそれぞれ蒸発させて、ITO膜2の付いた基板1へオリゴマー状態のポリ尿素を6000Å堆積させた。バルブ14bを開いて、基板を真空室12へ搬送して紫外線源24によりフォトマスク25を介して中心波長254nmの光を30分照射した。次いで、バルブ14cを開いて、基板を真空室13へ搬送して、1.33×10-3Paの圧力下、加熱装置26で基板を200℃〜300℃の範囲内に加熱し、未露光部の膜を分解、蒸発させて取り除いた。こうしてITO膜2上へパターニングされたポリ尿素膜8が完成された。この時露光部の膜厚は2000Åになった。真空室17を経て基板を取り出し、これを図4に示す有機EL素子製造装置の真空室(酸素プラズマ処理室)27へ仕込んだ。この処理室を1.33×10-3Paまで排気した後、酸素を導入し、6.65Paの圧力で、RF電源により50Wのパワーでプラズマ処理を5分間行った。ゲートバルブ32aを開いて、この基板を成膜室28へ搬送し、6.65×10-4Paの真空度でN, N′−ジフェニル−N, N′−ビス(3−メチルフェニル)−1, 1′−ジフェニル−4, 4′−ジアミン(TPD)を蒸発源38aより蒸発させ、基板1上へ正孔輸送層3を500Å堆積させた。次に、8−オキシキノリノアルミニウム錯体(Alq3 )を蒸発源38bより蒸発させ、発光層4を500Å成膜した。その後、ゲートバルブ32bを開いて、基板を陰極形成室29へ搬送し、1.33×10-4Paの真空度でマグネシウムと銀とを蒸発源47、48より10:1の原子比で蒸発させ、MgAg陰電極5を2000Å成膜して有機EL素子を完成した。
【0046】
このようにして得られた絶縁パターンを用いた素子へDC電圧を印加して輝度と電流値とを測定したところ、11Vで10500cd/m2(130mA/cm2)の輝度が得られた。発光開始電圧は3Vであった。一方、絶縁パターンを用いない場合は、10000cd/m2の電流密度は500mA/cm2であった。従って、絶縁パターンを用いることにより、同一輝度での電流密度が減少したことがわかる。
【0047】
(実施例2)
実施例1で作製した有機EL素子を、ゲートバルブ32cを開いて、保護膜形成室30へ搬送し、該素子上へポリ尿素保護膜を1μm堆積させた。即ち、保護膜形成室30を真空排気系51により1.33×10-3Paまで排気した後、蒸発源53a内の原料モノマーY(4,4’−ジアミノジフェニルメタン:MDA)の温度を熱電対56aで測定しながらヒーター52aで100℃に加熱すると共に、蒸発源53b内の原料モノマーZ(4,4’−ジフェニルメタンジイソシアナート:MDI)の温度を熱電対56bで測定しながらヒーター52bで70℃に加熱し、MDA:MDIのモノマー組成比が1:1になるようにそれぞれの蒸発レートを設定後、シャッター54の開閉操作によりMDAとMDIとを蒸発させて、膜厚モニター55により陰極上に膜厚1μmに堆積させた後、陰極上で重合させてポリ尿素膜を形成した。
【0048】
かくして得られた素子について、電流密度10mA/cm2(初期輝度500cd/m2)で、大気中で連続駆動させたところ、輝度半減時間は730時間であった。非発光領域は300時間後ぐらいから出現するが、その径は100μmより大きくはならなかった。
【0049】
(実施例3)
ITO/ポリ尿素パターン/TPD(正孔輸送層)500Å/Alq3 (発光層)100Å/ポリアゾメチン(電子輸送層)300Å/MgAg(陰極)2000Å/ポリ尿素保護膜10000Åのような構造を有する有機EL素子を作製した。
【0050】
Alq3 の成膜までは実施例1と同じプロセスを繰り返した。図4の成膜室28の有機物蒸発源40aへテレフタルアルデヒド、有機物蒸発源40bへパラフェニレンジアミンをそれぞれ充填し、共蒸着を行い、ポリアゾメチン膜を300Å成膜した。MgAg電極以降の作製プロセスは実施例1及び2記載と同じプロセスを繰り返した。
【0051】
かくして得られた有機EL素子を、電流密度10mA/cm2 、700cd/m2で、大気中で連続駆動させたところ、輝度半減時間は1000時間であった。非発光領域は300時間後ぐらいから出現するが、その径は100μmより大きくはならなかった。
0052
なお、図2に示すような、絶縁8がパターン化された陽極(ITO)2の間に設けられている構造を有する有機EL素子の場合も、上記実施例と同様の結果が得られる。
【0053
【発明の効果】
本発明の有機EL素子によれば、平坦な透明陽極上又は陽極間へ絶縁層のパターンが形成されているために、陽極のエッジの影響がなくなるので、素子の短絡、非発光部の増加といった問題がなくなる。
【0054
また、絶縁層を細かくパターニングでき、陰極はベタ付けでよいので、小さな面積の発光面を得ることができる。そのため、ディスプレイを作製する上で有利である。
【0055
さらに、絶縁層パターンがポリ尿素を用いて形成されるので、耐電圧が1000MV/m以上となる。従って、絶縁層の厚さを薄くでき、1000Åぐらいまでは可能であるため、素子全体を平坦化できる。
【図面の簡単な説明】
【図1】 本発明の有機EL素子の一実施例の構造を示す模式的部分断面図である。
【図2】 本発明の有機EL素子の他の実施例の構造を示す模式的部分断面図である。
【図3】 本発明における絶縁層の成膜装置の一例の説明線図である。
【図4】 本発明の有機EL素子製造装置の一例の説明線図である。
【図5】 従来技術の有機EL素子の一例の構造を示す模式的部分断面図である。
【図6】 従来技術の3層構造の有機EL素子の一例の構造を示す模式的部分断面図である。
【図7】 従来技術の有機EL素子の問題点を説明するために該素子の一例の構造を示す模式的部分断面図である。
符号の説明
1 基板 2 透明陽極
3 正孔輸送層 4 発光層
5 金属陰極 6 電子輸送層
7 有機層 8 絶縁層
11 蒸着重合室 12 露光室
13 現像室 24 紫外線源
26 加熱装置 27 酸素プラズマ処理室
a、b 原料モノマ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electroluminescent device (hereinafter, "organic EL device") about the.
[0002]
[Prior art]
Conventionally, as an organic EL element, as shown in FIG. 5, a hole transport layer 3 and an organic fluorescent dye (light emitting layer) 4 are laminated between a transparent anode 2 and a metal cathode 5 provided on a substrate 1. Is known. In addition, as shown in FIG. 6, a structure in which three layers including a hole transport layer 3, a light emitting layer 4, and an electron transport layer 6 are laminated between a transparent anode 2 and a metal cathode 5 provided on a substrate 1. Are also known.
[0003]
The organic EL element is usually produced by sequentially forming a hole transport layer 3, a light emitting layer 4, an electron transport layer 6 and a metal cathode 5 on a patterned transparent anode 2 through a vapor deposition mask.
[0004]
[Problems to be solved by the invention]
The thickness of the organic EL element is usually 100 to 200 nm for the transparent anode 2, 100 to 300 nm for the organic layer composed of the hole transport layer 3, the light emitting layer 4 and the electron transport layer 6 as a whole, and 100 to 300 nm for the cathode 5. is there. In an organic EL element, since a high electric field of 50 to 100 MV / m is applied between the transparent anode 2 and the metal cathode 5, the electric field tends to concentrate mainly on the end face (edge portion) of the electrode. The loss becomes Joule heat, causing a problem that the organic thin film and the metal cathode are separated from each other and a non-light emitting region (dark spot) is generated.
[0005]
Since the organic layer is produced by a vapor deposition method, it is difficult for the film to grow on the side of the transparent anode. Therefore, there is a problem that the thickness of the organic layer 7 in the portion surrounded by a circle in FIG. 7 is thinner than other portions, and the electric field tends to concentrate here. In FIG. 7, 1, 2 and 5 indicate the same as those in FIGS.
[0006]
Moreover, since the metal cathode 5 is formed through a vapor deposition mask, it is difficult to obtain a light emitting surface with a fine pattern, which is a problem in producing a display.
[0007]
The present invention eliminates the influence of the end face of the transparent anode, a short circuit of the device to solve the problem of increase in the non-emitting region, and its object is to provide an organic EL device having a stable emission surface.
[0008]
[Means for Solving the Problems]
The present invention relates to an organic electroluminescence device comprising an anode, an organic layer and a cathode provided on a substrate, an insulating layer is provided on the anode or between the anodes by patterning, and the organic layer and the cathode are formed thereon. In the luminescence element, the insulating layer is formed by vapor deposition polymerization of urea and an ultraviolet exposure and heat development of a polyurea film containing an oligomer state obtained by the vapor deposition polymerization, and the insulating layer is further subjected to oxygen plasma treatment. And
[0009]
In the organic EL device of the present invention, for example, as shown in FIG. 1, an insulating layer 8 obtained by patterning an insulating film is provided on a transparent anode 2 provided on a substrate 1, and hole transport is provided thereon. A layer 3, a light emitting layer 4, an electron transport layer (not shown), and a metal cathode 5 are formed. As shown in FIG. 2, when the transparent electrode 2 is patterned on the substrate 1, the insulating layer 8 is embedded between the transparent electrodes.
[0010]
As the insulating layer, after UV exposure of the polyurea film occupies clothed evaporation, patterned film by heat development is employed. In this development step, after UV exposure, the light non-irradiated portion is removed by decomposition by pressurized heat.
[0011]
The organic EL element of the present invention, for example, an insulating layer is formed by patterning the inter-anode on or anode provided on a substrate, the organic layer was formed thereon, and then a mask vapor deposition of an electrode pattern thereon Without forming the cathode, the light emitting surface is formed in the pattern surrounded by the insulating layer.
[0012]
In the present invention, as described above, since the insulating layer patterned on the transparent anode or between the anodes is provided, light emission occurs at a portion where the insulating layer is removed. For this reason, the metal cathode 5 does not need to use a particularly patterned film. Therefore, the patterning process of the metal cathode can be omitted in the manufacturing process of the organic EL element.
[0013]
In addition, since there is no influence of the edge (edge part) of the transparent anode, there is no portion where the electric field concentrates when a voltage is applied, and the electric field is uniformly applied to the entire film, so that stable light emission can be obtained. Can do.
[0014]
Since the insulating film can be finely processed, the area per pixel can be reduced. In conventional mask deposition of metal cathodes, the area of 0.5 mm × 0.5 mm is the limit, and microfabrication is difficult at smaller areas.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
First, the structure of the organic EL element will be described.
[0017]
As the structure of the organic EL element, when the organic compound film such as anode / insulating layer / light emitting layer / cathode has a single layer structure consisting only of a light emitting layer (consisting of a polymer film or an oligomer film), the anode / insulating layer / When the organic compound film such as hole transport layer / light emitting layer / cathode or anode / insulating layer / light emitting layer / electron transport layer / cathode has a two-layer structure of a hole transport layer and a light emitting layer or a light emitting layer and an electron transport layer The organic compound film such as anode / insulating layer / hole transporting layer / light emitting layer / electron transporting layer / cathode may have a three-layer structure.
[0018]
Here, as described above, the polyurea film exposed to ultraviolet rays is patterned by heat development as the insulating layer .
[0019]
The hole transport layer of the organic compound film may be, for example, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (hereinafter referred to as “N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine”). Vapor deposition polymerization of thin films formed by vapor deposition of low molecular weight dyes with hole transport ability typified by TPD) and polymer films (polyamide, polyimide, polyazomethine, etc.) having a hole transport molecular structure A thin film formed by the above method may be used, and a low molecular dye having a hole transporting property may be deposited and dispersed in a polymer thin film.
[0020]
In addition, the light emitting layer has, for example, a thin film in which a light emitting dye typified by 8-oxyquinolino aluminum complex (hereinafter referred to as Alq 3 ) is formed by a vapor deposition method, or a conjugated structure such as stilbene or oxadiazole. A thin film in which a polymer film is formed by vapor deposition polymerization is used, and a luminescent dye may be deposited and dispersed in the polymer thin film.
[0021]
Furthermore, as the electron transport layer, for example, a vapor-deposited thin film of Alq 3 or an oxadiazole derivative is used, and a thin film of an anthraquinodimethane derivative or a diphenylquinone derivative can also be used.
[0022]
An example of the deposition apparatus of the insulating layer used in the present invention include the following as described, the evaporation source for evaporating the raw material monomer of the photosensitive synthetic resin in vacuum, absolute polyurea film vapor deposition polymerization of the raw material monomer Enmaku exposure but that the vapor deposition polymerization chamber which is disposed to face each other substrates formed was placed an ultraviolet source for irradiating ultraviolet rays to the insulating film on the substrate, a photomask used for forming a pattern on the insulating film and the chamber, and a developing chamber arranged a heating device for applying heat treatment to the insulating film after the irradiation exposure of the ultraviolet rays.
[0023]
First, FIG. 3 shows one example of a pattern forming apparatus of the insulating layer serving polyurea layer, vapor deposition polymerization chamber 11 to form a polyurea film, the exposure chamber 12 for irradiating ultraviolet rays to the polyurea membrane, The developing chamber 13 is configured to heat-treat the polyurea film irradiated with ultraviolet rays, and the vapor deposition polymerization chamber 11, the exposure chamber 12, and the developing chamber 13 are communicated with each other in this order by valves 14b and 14c.
[0024]
Further, a vacuum chamber 16 connected to an external vacuum pump or other evacuation system 15a is disposed on the upstream side of the vapor deposition polymerization chamber 11 via a valve 14a, and on the downstream side of the developing chamber 13 via a valve 14d. A vacuum chamber 17 connected to an external vacuum pump or other vacuum exhaust system 15b is disposed, and either one of the vacuum exhaust systems 15a and 15b or both of the vacuum exhaust systems are operated to operate in the vapor deposition polymerization chamber 11 and the exposure chamber 12. The inside of the developing chamber 13 can be set to a predetermined pressure.
[0025]
The vapor deposition polymerization chamber 11, with placing the substrate holder 18 for holding the substrate 1 for forming the vapor deposition polymerization film of polyurea membrane, is opposed to the substrate 1 below the the vapor deposition polymerization chamber 11 Poly Glass evaporation sources 19a and 19b for evaporating diamine as one raw material monomer (a) and diisocyanate as the other raw material monomer (b) are provided, respectively, and the respective evaporation sources 19a and 19b are Crystal evaporation evaporation monitors 20a and 20b and heaters 21a and 21b provided in the vicinity can control the evaporation amounts of the raw materials monomers (a) and (b) to a predetermined temperature that always keeps constant.
[0026]
In addition, a shutter 22 is disposed between the substrate 1 and the evaporation sources 19a and 19b, and a partition plate 23 is provided between the evaporation sources 19a and 19b.
[0027]
An ultraviolet ray source 24 is provided below the exposure chamber 12 so as to face the substrate 1 held by the substrate holder 18, a photomask 25 having a predetermined pattern is provided in front of the substrate 1, and the vapor deposition polymerization chamber 11. The polyurea film formed on the surface of the substrate 1 was irradiated with ultraviolet rays from the ultraviolet light source 24 to be exposed in a pattern.
[0028]
A heating device 26 made of a halogen lamp is provided in the developing chamber 13 on the back side of the substrate 1 held by the substrate holder 18, and the polyurea film crosslinked by being irradiated with ultraviolet rays in the exposure chamber 12 has a predetermined temperature. To remove the polyurea film in the non-exposed portion by depolymerization.
[0029]
First, the substrate 1 on which ITO (Indium-Tin-Oxide), for example, is formed as a transparent electrode is charged into the vacuum chamber 16 and transported to the vapor deposition polymerization chamber 11 using the insulating layer deposition apparatus as shown in FIG. forming a insulation Enmaku polyurea film on the arranged substrate 1 on the substrate holder 18 and. Next, the substrate 1 is carried out to the vacuum chamber 12 and exposed through the photomask 25 by the ultraviolet ray source 24. After that, it is transferred to the vacuum chamber 13 and the ultraviolet light unirradiated portion is decomposed and removed by the heating device 26 to complete the patterning of the insulating film.
[0030]
FIG. 4 shows an example of an apparatus used for manufacturing the organic EL element of the present invention, but the anode forming apparatus and the insulating layer forming apparatus are not shown here. In the figure, 27 is an oxygen plasma treatment chamber, 28 is a deposition chamber for organic compound films such as a hole transport layer, a light emitting layer, and an electron transport layer, 29 is a cathode formation chamber, 30 is a protective film formation chamber, and 31 is an ultraviolet treatment. Indicates a room. The oxygen plasma processing chamber 27, film forming chamber 28, cathode forming chamber 29, protective film forming chamber 30, and ultraviolet processing chamber 31 are partitioned by gate valves 32a, 32b, 32c, and 32d that can be opened and closed. At the same time, a tray type transfer system 33 for transferring the substrate 1 is disposed in each chamber.
[0031]
The oxygen plasma processing chamber 27 was connected to a vacuum exhaust system 34 such as a vacuum pump, and a copper RF electrode 35 for performing plasma processing on an anode such as an ITO film was disposed in the oxygen plasma processing chamber 27.
[0032]
The inside of the film forming chamber 28 is connected to an evacuation system 36 such as a vacuum pump, and predetermined ones are provided by heaters 37a and 37b in which a dye material T such as TPD or Alq 3 is wound around one side below the film forming chamber 28. Two dye evaporation sources 38a and 38b made of alumina or glass that are heated to a temperature and evaporated are arranged side by side, and the raw material monomers U and V of the vapor-deposited polymer film are placed on the other lower side in the film forming chamber 28 by infrared rays. Glass or metal organic matter evaporation sources 40a and 40b that are heated to a predetermined temperature by the lamps 39a and 39b and evaporated are disposed. A substrate 1 on which an organic compound film is to be formed is disposed above the deposition chamber 28 so as to face the dye evaporation sources 38a and 38b and the organic substance evaporation sources 40a and 40b. A sheath heater 41 for heating the formed polymer film was provided.
[0033]
Further, shutters 42a and 42b are disposed between the substrate 1 and the dye evaporation sources 38a and 38b, and a shutter 43 is disposed between the substrate 1 and the organic substance evaporation sources 40a and 40b. Further, thermocouples 44a and 44b are disposed in the organic matter evaporation sources 40a and 40b, respectively.
[0034]
The inside of the cathode forming chamber 29 is connected to an evacuation system 45 such as a vacuum pump, and one of the cathode raw materials W (the raw material W is Mg, for example) is wound around one of the lower portions of the cathode forming chamber 29. A cathode material evaporation source 47 made of alumina, which is heated to a predetermined temperature by a heater 46 and evaporated, is disposed, and the other raw material X of the negative electrode (the raw material X is, for example, Ag) on the lower side in the cathode forming chamber 29. A cathode material evaporation source 48 composed of a boat made of tungsten or molybdenum that is heated to a predetermined temperature and evaporated is disposed.
[0035]
A shutter 49 is disposed between the substrate 1 and the cathode material evaporation source 47, and a shutter 50 is disposed between the substrate 1 and the cathode material evaporation source 48.
[0036]
The inside of the protective film forming chamber 30 is connected to an evacuation system 51 such as a vacuum pump, and a raw material monomer Y, Z of a protective film such as a polyurea film is disposed below the protective film forming chamber 30 (for example, the raw material Y is a diamine monomer). The raw material monomer Z is a diisocyanate monomer) heated to a predetermined temperature by infrared heaters 52a and 52b, and glass or metal protective film evaporation sources 53a and 53b for evaporation are disposed.
[0037]
In addition, a shutter 54 is disposed between the substrate 1 and the protective film evaporation sources 53a and 53b, and a quartz vibration type film thickness monitor 55 for the protective film is disposed in the vicinity of the substrate 1. Further, thermocouples 56a and 56b are disposed in the protective film evaporation sources 53a and 53b, respectively.
[0038]
In order to connect the inside of the ultraviolet treatment chamber 31 to a vacuum exhaust system 57 such as a vacuum pump, and to irradiate the inside of the ultraviolet treatment chamber 31 with ultraviolet rays to crosslink and polymerize low molecular polyurea to form a polyurea protective film. UV lamp 58 was provided.
[0039]
In FIG. 4, 59 denotes a partition plate provided between the organic material evaporation sources 40a and 40b, and 60 denotes a partition plate provided between the protective film evaporation sources 53a and 53b.
[0040]
Using an organic EL device manufacturing apparatus as shown in FIG. 4, the substrate obtained by patterning the insulation Enmaku polyurea film was charged into the vacuum chamber 27 in FIG. 4, performs the oxygen plasma treatment. The treatment in this case serves as both removal of the insulating film remaining on the transparent anode and flattening on the transparent anode. Next, an organic layer 7 composed of the hole transport layer 3, the light emitting layer 4, the electron transport layer 6 and the like is formed in the film forming chamber 28. Thereafter, a cathode is formed in the cathode forming chamber 29 and a protective film is formed in the protective film forming chamber 30 to complete the EL element.
[0041]
The apparatus shown in FIG. 3 and FIG. 4 also includes an oxygen plasma processing chamber and an organic layer deposition chamber shown in FIG. 4 from the preparation chamber through the integrated insulating film formation chamber. It may be configured to be transported to the cathode forming chamber, the protective film forming chamber, and then to the take-out chamber.
[0042]
In the case of an organic EL element having a structure in which an insulating layer 8 is embedded between a patterned anode (ITO) 2 and planarized as shown in FIG. the ITO was formed by patterning, an insulating film thereon, then (1) ultraviolet irradiation (the ITO), (2) by heat development, removing the insulating film on the I tO, The remaining insulating film is embedded between the ITO so as to be flattened, and then, as described above, an organic layer composed of the hole transport layer 3, the light emitting layer 4, the electron transport layer (not shown) and the like is formed. The EL element may be manufactured by forming a film, then forming the cathode 5 and forming a protective film (not shown).
[0043]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0044]
Example 1
The production of the organic EL element having the structure shown in FIG. 1 will be described.
[0045]
An ITO (In 2 O 3 -10% SnO 2 ) film 2 having a thickness of 1000 mm was formed on a glass substrate 1 boiled and washed in isopropanol by sputtering. Charged the substrate into the vacuum chamber 16 of the patterning device polyurea film shown in FIG. 3, after reaching the 1.0 × 10 -3 Pa, and transported by opening the valve 14a to the vapor deposition polymerization chamber 11. Under pressure of 5.3 × 10 −3 Pa, 4,4′-diaminodiphenylmethane (MDA) a and 4,4′-diphenylmethane diisocyanate (MDI) b were evaporated from the evaporation sources 19a and 19b, respectively. Then, 6000 kg of oligomeric polyurea was deposited on the substrate 1 with the ITO film 2. The valve 14b was opened, the substrate was conveyed to the vacuum chamber 12, and light having a central wavelength of 254 nm was irradiated from the ultraviolet source 24 through the photomask 25 for 30 minutes. Next, the valve 14c is opened, the substrate is transported to the vacuum chamber 13, and the substrate is heated within the range of 200 ° C. to 300 ° C. by the heating device 26 under a pressure of 1.33 × 10 −3 Pa, and unexposed. Part of the film was removed by decomposition and evaporation. Thus, the polyurea film 8 patterned on the ITO film 2 was completed. At this time, the film thickness of the exposed portion was 2000 mm. The substrate was taken out through the vacuum chamber 17 and charged into the vacuum chamber (oxygen plasma processing chamber) 27 of the organic EL element manufacturing apparatus shown in FIG. After the processing chamber was evacuated to 1.33 × 10 −3 Pa, oxygen was introduced, and a plasma treatment was performed for 5 minutes at a pressure of 6.65 Pa and an RF power supply of 50 W. The gate valve 32a is opened, the substrate is transferred to the film forming chamber 28, and N, N'-diphenyl-N, N'-bis (3-methylphenyl)-is used at a vacuum degree of 6.65 × 10 -4 Pa. 1,1′-diphenyl-4,4′-diamine (TPD) was evaporated from the evaporation source 38 a, and 500 μm of the hole transport layer 3 was deposited on the substrate 1. Next, the 8-oxyquinolino aluminum complex (Alq 3 ) was evaporated from the evaporation source 38b, and the light emitting layer 4 was formed in a thickness of 500 mm. Thereafter, the gate valve 32b is opened, the substrate is transferred to the cathode forming chamber 29, and magnesium and silver are evaporated at an atomic ratio of 10: 1 from the evaporation sources 47 and 48 at a vacuum degree of 1.33 × 10 −4 Pa. As a result, 2000 mg of MgAg negative electrode 5 was formed to complete an organic EL device.
[0046]
When a luminance and a current value were measured by applying a DC voltage to the element using the insulating pattern thus obtained, a luminance of 10500 cd / m 2 (130 mA / cm 2 ) was obtained at 11V. The light emission starting voltage was 3V. On the other hand, when no insulating pattern was used, the current density at 10000 cd / m 2 was 500 mA / cm 2 . Therefore, it can be seen that the current density at the same luminance is reduced by using the insulating pattern.
[0047]
(Example 2)
The organic EL device produced in Example 1, by opening the gate valve 32 c, and conveyed to the protective film forming chamber 30, and the polyurea protective film is 1μm deposited onto the element. That is, after the protective film forming chamber 30 is evacuated to 1.33 × 10 −3 Pa by the vacuum exhaust system 51, the temperature of the raw material monomer Y (4,4′-diaminodiphenylmethane: MDA ) in the evaporation source 53a is adjusted to a thermocouple. While the temperature is measured at 56a, the heater 52a is heated to 100 ° C., and the temperature of the raw material monomer Z (4,4′-diphenylmethane diisocyanate: MDI ) in the evaporation source 53b is measured by the thermocouple 56b while the temperature is measured by the heater 52b. After heating to 0 ° C. and setting the respective evaporation rates so that the monomer composition ratio of MDA: MDI is 1: 1, MDA and MDI are evaporated by opening / closing the shutter 54, and the film thickness monitor 55 is used on the cathode. The film was deposited to a thickness of 1 μm and polymerized on the cathode to form a polyurea film.
[0048]
When the device thus obtained was continuously driven in the atmosphere at a current density of 10 mA / cm 2 (initial luminance 500 cd / m 2 ), the luminance half time was 730 hours. The non-light emitting region appeared after about 300 hours, but its diameter did not become larger than 100 μm.
[0049]
(Example 3)
Organic having structure such as ITO / polyurea pattern / TPD (hole transport layer) 500 Å / Alq 3 (light emitting layer) 100 Å / polyazomethine (electron transport layer) 300 Å / MgAg (cathode) 2000 Å / polyurea protective film 10000 Å An EL element was produced.
[0050]
The same process as in Example 1 was repeated until the Alq 3 film was formed. In the film formation chamber 28 of FIG. 4, terephthalaldehyde was filled into the organic matter evaporation source 40a and paraphenylenediamine was filled into the organic matter evaporation source 40b, respectively, and co-evaporation was performed to form a 300-nm polyazomethine film. The manufacturing process after the MgAg electrode was the same as described in Examples 1 and 2.
[0051]
When the organic EL device thus obtained was continuously driven in the air at a current density of 10 mA / cm 2 and 700 cd / m 2 , the luminance half time was 1000 hours. The non-light emitting region appeared after about 300 hours, but its diameter did not become larger than 100 μm.
[ 0052 ]
In the case of an organic EL element having a structure in which the insulating layer 8 is provided between the patterned anodes (ITO) 2 as shown in FIG. 2, the same results as in the above-described embodiment can be obtained.
[00 53 ]
【The invention's effect】
According to the organic EL device of the present invention, since the pattern of the insulating layer is formed on the flat transparent anode or between the anodes, the influence of the edge of the anode is eliminated, so that the device is short-circuited and the non-light emitting portion is increased. The problem disappears.
[00 54 ]
Further, since the insulating layer can be finely patterned and the cathode may be solid, a light emitting surface with a small area can be obtained. Therefore, it is advantageous in manufacturing a display.
[00 55 ]
Furthermore, the insulating layer pattern because it is formed using a polyurea, the withstand voltage is 1000 mV / m or more. Therefore, it can reduce the thickness of the insulating layer, because the Ru possible Dare to about 1000 Å, may flatten the entire device.
[Brief description of the drawings]
FIG. 1 is a schematic partial cross-sectional view showing the structure of one embodiment of an organic EL device of the present invention.
FIG. 2 is a schematic partial cross-sectional view showing the structure of another example of the organic EL element of the present invention.
FIG. 3 is an explanatory diagram of an example of an insulating layer film forming apparatus according to the present invention.
FIG. 4 is an explanatory diagram of an example of an organic EL element manufacturing apparatus of the present invention.
FIG. 5 is a schematic partial cross-sectional view showing an example of the structure of a conventional organic EL element.
FIG. 6 is a schematic partial cross-sectional view showing a structure of an example of a conventional three-layer organic EL element.
FIG. 7 is a schematic partial sectional view showing an example of the structure of an organic EL device according to the prior art in order to explain problems.
[ Explanation of symbols ]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent anode 3 Hole transport layer 4 Light emitting layer 5 Metal cathode 6 Electron transport layer 7 Organic layer 8 Insulating layer 11 Deposition polymerization chamber 12 Exposure chamber 13 Development chamber 24 Ultraviolet source 26 Heating device 27 Oxygen plasma processing chamber a, b Raw material monomer

Claims (1)

基板上に設けられた陽極、有機層及び陰極からなり、該陽極上又は該陽極間へパターニングにより絶縁層が設けられ、その上に該有機層及び陰極が形成されている有機エレクトロルミネッサンス素子において、
前記絶縁層を尿素の蒸着重合および該蒸着重合で得られるオリゴマー状態を含むポリ尿素膜の紫外線露光と加熱現像とで形成し、更に該絶縁層を酸素プラズマ処理したことを特徴とする有機エレクトロルミネッサンス素子。
In an organic electroluminescence device comprising an anode, an organic layer and a cathode provided on a substrate, an insulating layer is provided by patterning on or between the anode, and the organic layer and the cathode are formed thereon. ,
The organic electro Ruminessa, wherein the insulating layer was formed by the UV exposure of the polyurea film comprising oligomeric state obtained by vapor deposition polymerization and the vapor deposition polymerization of urea heating and development were oxygen plasma treatment the insulating layer further Element.
JP28998895A 1995-11-08 1995-11-08 Organic electroluminescence device Expired - Fee Related JP3865807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28998895A JP3865807B2 (en) 1995-11-08 1995-11-08 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28998895A JP3865807B2 (en) 1995-11-08 1995-11-08 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH09134787A JPH09134787A (en) 1997-05-20
JP3865807B2 true JP3865807B2 (en) 2007-01-10

Family

ID=17750332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28998895A Expired - Fee Related JP3865807B2 (en) 1995-11-08 1995-11-08 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP3865807B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902688A (en) * 1996-07-16 1999-05-11 Hewlett-Packard Company Electroluminescent display device
JP3886219B2 (en) * 1997-07-29 2007-02-28 株式会社アルバック Organic EL device
EP0989783A4 (en) 1998-04-10 2000-12-20 Tdk Corp Organic electroluminescence element and manufacturing method therefor
JP3078257B2 (en) 1998-04-15 2000-08-21 ティーディーケイ株式会社 Organic EL display device and manufacturing method thereof
JP4801278B2 (en) 2001-04-23 2011-10-26 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
JP4827347B2 (en) * 2001-09-19 2011-11-30 株式会社アルバック Manufacturing method of organic EL element
JP2006339049A (en) * 2005-06-02 2006-12-14 Tokki Corp Device for forming passivation film
JP2007234526A (en) * 2006-03-03 2007-09-13 Showa Denko Kk Display element
FR2926678B1 (en) * 2008-01-18 2013-05-10 Commissariat Energie Atomique METHOD FOR MANUFACTURING AN ELECTRONIC DISPLAY DEVICE COVERED WITH A PROTECTIVE PLATE.
JP4533942B2 (en) * 2008-04-21 2010-09-01 大日本印刷株式会社 Method for manufacturing electroluminescence element
KR20120036940A (en) 2009-06-05 2012-04-18 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electroluminescent device
JP6953999B2 (en) * 2017-10-26 2021-10-27 東京エレクトロン株式会社 Semiconductor device manufacturing method and substrate processing device
EP3845976B1 (en) * 2019-12-30 2024-03-20 The Swatch Group Research and Development Ltd Watch dial having a display made of organic light-emitting diodes

Also Published As

Publication number Publication date
JPH09134787A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
JP3865807B2 (en) Organic electroluminescence device
TW504941B (en) Method of fabricating an EL display device, and apparatus for forming a thin film
EP0449125B1 (en) Thin film electroluminescence device and process for production thereof
JPH10214682A (en) Manufacturing device and manufacture of organic electroluminescent element
US7704677B2 (en) Method of patterning conductive polymer layer, organic light emitting device, and method of manufacturing the organic light emitting device
JP4425438B2 (en) Method for manufacturing EL display device
JPH08222368A (en) Organic electroluminescent element, its manufacture, and manufacturing device
JPH09256142A (en) Film forming device
JP2008166127A (en) Substrate for organic el display
JPH09298088A (en) Organic electroluminescent element and its manufacture
JP2000353593A (en) Manufacturing device for and manufacture of organic electroluminescence display panel
JP2000311784A (en) Manufacture for organic electroluminescent element
JP2008288017A (en) Manufacturing method of organic electroluminescent display device
JP3868061B2 (en) Organic electroluminescence device
JP2002170670A (en) Organic elecroluminescent element and its manufacturing method as well as organic electroluminescent display
JP2003249379A (en) Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film
JP2003264071A (en) Manufacturing method of organic el element and installation of the same
JP2000348864A (en) Manufacture of organic electroluminescent element
TW200303696A (en) A cover film for organic electroluminescence element, an organic electroluminescence element using the cover film and process for producing the element using the cover film
US20010051487A1 (en) Method for making organic luminescent device
JP2005310639A (en) Manufacturing method of organic el element
JP2007141602A (en) Organic electroluminescent element, manufacturing method of the same, and manufacturing method of transparent electrode film
JP2000340367A (en) Organic electroluminescence element and its manufacture
JP2002015865A (en) Method of manufacturing organic electroluminescent element
JPH0676950A (en) Organic el element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141013

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees