JP3864131B2 - Grinder - Google Patents

Grinder Download PDF

Info

Publication number
JP3864131B2
JP3864131B2 JP2002321018A JP2002321018A JP3864131B2 JP 3864131 B2 JP3864131 B2 JP 3864131B2 JP 2002321018 A JP2002321018 A JP 2002321018A JP 2002321018 A JP2002321018 A JP 2002321018A JP 3864131 B2 JP3864131 B2 JP 3864131B2
Authority
JP
Japan
Prior art keywords
polishing
members
polishing member
fluid
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002321018A
Other languages
Japanese (ja)
Other versions
JP2004154635A (en
Inventor
眞一 榎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Technique Co Ltd
Original Assignee
M Technique Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002321018A priority Critical patent/JP3864131B2/en
Application filed by M Technique Co Ltd filed Critical M Technique Co Ltd
Priority to CN031784186A priority patent/CN1483515B/en
Priority to US10/619,479 priority patent/US7131604B2/en
Priority to DE60307741T priority patent/DE60307741T2/en
Priority to CN2009101513812A priority patent/CN101612533B/en
Priority to EP03254461A priority patent/EP1382380B1/en
Priority to AT03254461T priority patent/ATE337085T1/en
Publication of JP2004154635A publication Critical patent/JP2004154635A/en
Priority to US11/499,755 priority patent/US7278592B2/en
Application granted granted Critical
Publication of JP3864131B2 publication Critical patent/JP3864131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2713Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator the surfaces having a conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2714Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crushing And Grinding (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、磨砕機に関する。
【0002】
【従来の技術】
挽臼原理を採用する粉砕機は、相互の間隔が調整できる上下二枚の砥石を有し、固定する砥石と高速回転する砥石の間に、強力な遠心力、衝撃磨砕力、ずりを生じさせ、それらの総合作用によって微粉砕化を行っている。このような回転砥石及び固定砥石及びこれを用いた磨砕装置としては、下記の特許文献1〜5に示されたものが挙げられる。
【0003】
【特許文献1】
意匠登録第655304号公報
【0004】
【特許文献2】
意匠登録第845632号公報
【0005】
【特許文献3】
特公昭62−51658号公報
【0006】
【特許文献4】
特公平3−1061号公報
【0007】
【特許文献5】
特公平4−55830号公報
【0008】
ここで回転砥石及び固定砥石は、一般的にグラインダーと呼ばれ、その粒度は、通常16♯、24♯〜120♯、240♯程度が使用される。これらグラインダーは、粒度の違いは有るけれども凹凸を表面に形成されており、被粉砕物の硬度が高い場合、凸部の剥離や磨耗が発生し、異物混入の問題がある。
【0009】
一方、次の特許文献6に示された磨砕装置では、噴射燃料、豆乳大豆等について、1〜5μm程度の微粒子に磨砕することが報告されているが、現状では、1μm以下の超微粒子を得ることが出来ない。
【0010】
【特許文献6】
特公昭62−51658号
【0011】
また、次の特許文献7に示されたものにおいて、高脂質、高水分、高タンパク質、糖質や特殊の酵素を多く含有する物質の微粉砕では、それらの被粉砕物質のもつ特有の物性のため摩擦熱によりねばりつき・べタつき・焦げつき・フィルム化などにより物性が変化してパウダーとして商品化が不可能であったところ、回転砥石の周速度がある一定のラインを超えると、急に粉砕能力が好転し且つ摩擦熱による昇温も低下することが報告されている。しかしながら周速度3422m/分では、機械コスト及び機械的安全性にも問題が有ることを同時に報告されている。
【0012】
【特許文献7】
特開平7−185372号
【0013】
更に、次の特許文献8において、回転砥石と固定砥石のクリアランス自動制御方法が報告されているが、この方法では、高速回転により機械的発熱が発生し、駆動軸の熱膨張や回転砥石の芯振れなどの緩衝装置が無いため、最小クリアランスが数十μm以上となってしまう。
【0014】
【特許文献8】
特開平8−1020号
【0015】
次に、下記の特許文献9では、被処理流動体特に湿式(液体)粉砕・分散・乳化に有益な発明が報告されているが、これは、被処理流動体に所定の圧力を付与する流体圧力付与機構や水頭圧力が必要となる。
【0016】
【特許文献9】
特願2002−207533号
【0017】
結局、上述してきた従来の各装置では、大気圧下で被粉砕原料を投入する場合において、上下二枚の砥石(研磨部材)のクリアランスをの15μm以下にすることを実現することはできない。即ち、従来の機械的手段によっては、微細な磨砕や粉砕に適した上記のような微小なクリアランスを砥石間に確保することはできない。一方、ミルを用いて磨砕や粉砕を行うものでは、異物(ミル同士やミルと他との接触により削られて生じる異物)の混入が生じ、また、安全確保のために、高速回転出来る高性能な微粉砕機は、皆無であった。
【0018】
【発明が解決しようとする課題】
本願発明は、上記事情に基づいてなされたものであり、最近のナノテクノロジーに関する開発に絶対的に必要とされる超微粉砕を実現する磨砕機を提供するものである。即ち、高精度で超微粉砕ができ且つ異物混入無くしかもシンプルな構造で安全性が高く、安価に製作可能な磨砕機、即ち、被粉砕物を砥石間で磨砕すると共に粒度を一定にしサブミクロン以下の微粉砕を可能とし、更に、被粉砕物の適応性状、物性が広い、磨砕機を提供して、上記問題の解決を図る。
【0019】
【課題を解決するための手段】
本願第1の発明は、互いに対向するように配設され少なくとも一方が他方に対して回転することにより磨砕や粉砕の処理を行う、第1及び第2の少なくとも2つの研磨部材を備え、上記回転の中心側から両研磨部材の間に、被処理物を搬送する或いは被処理物自身となる流体を供給し、当該流体を上記第1及び第2の研磨部材の外側に排出する磨砕機において、
上記の第1及び第2の両研磨部材は、少なくともその一方が他方に対して、近接・離反可能に配設され、
両研磨部材を少なくとも近接させる方向に作用する付勢機構を備え、
上記の第1及び第2の研磨部材は、流体が両研磨部材間を通過しようとする力を両研磨部材の離反する方向に作用させる、動圧発生機構を備え、
この動圧発生機構により発生する動圧と上記の付勢機構による付勢力との均衡にて、第1及び第2の研磨部材間の間隔を、0.1〜10μmの微小間隔に維持するようにしたことを特徴とする磨砕機を提供する。
ここで流体とは、液体、気体の他、固体を含有する液体、固体を含有する気体を含む。また、この流体は、処理の対象物である場合も、処理の対象物でない場合も、双方含むものである。
磨砕機には、磨砕や粉砕の処理を行う装置の他、乳化や分散の処理を行う装置や、アトマイザー(微粒化機)を含む。
【0020】
本願の第2の発明は、上記の第1の発明に係る磨砕機において、上記第1及び第2の両研磨部材は、鏡面研磨が施された平坦部を備え、研磨部材の一方は、平坦部に溝を備え、上記の溝は、研磨部材の中心側から研磨部材の外側に向かって伸びると共に、当該溝内を通って、研磨部材の中心から研磨部材の外側に通り抜けようとする流体の流路を制限する、流路制限部を備え、この流路制限部は、回転の中心側から研磨部材の外側に向けて漸次溝の断面積を小さくするものであり、この平坦部と溝とが上記の動圧発生機構を構成すること特徴とするものを提供する。
【0021】
本願の第3の発明は、上記の第1又第2の発明に係る磨砕機において、上記の第1及び第2の研磨部材の少なくとも一方が、フローティング機構を備え、このフローティング機構は、両研磨部材間の上記近接・離反を可能とすると共に、回転により両研磨部材の少なくとも一方に生じた偏心挙動を、両研磨部材の少なくとも他方が吸収するものであることを特徴とするものを提供する。
【0022】
本願の第4の発明は、上記の第1〜第3のいずれかの発明に係る磨砕機において、上記の付勢機構は、空気などの流体圧を利用した付勢手段を用いると共に、この流体圧による付勢力の調整を行うものであり、上記の動圧発生機構により発生する動圧と上記の付勢機構による付勢力との均衡にて、第1及び第2の研磨部材間の間隔を、0.1〜10μmの微小間隔に維持するようにしたことを特徴とするものを提供する。
【0023】
本願の第5の発明は、上記の第1〜第4のいずれかの発明に係る磨砕機を用いて、上記の第1及び第2の両研磨部材の間に、被処理物を搬送する或いは被処理物自身となる流体を供給し、上記の動圧発生機構により発生する動圧と上記の付勢機構による付勢力との均衡にて、第1及び第2の研磨部材間の間隔を、0.1〜10μmの微小間隔に維持しつつ、磨砕や粉砕の処理を行うようにしたことを特徴とする被処理物の処理方法を提供するものである。
【0024】
本願の上記第1乃至第5の発明に係る磨砕機は、上記の構成を採ることにより、付勢機構3の付勢に対し、動圧発生機構4が流体の両研磨部材1,2間を通過しようとする力を利用して両研磨部材1,2間の離反力を発生させ、少なくとも、付勢機構3の付勢と当該離反力との均衡により、両研磨部材1,2間について、従来機械的な方法では不可能であった、処理に必要な微小な間隔を確保することを可能とした。
【0025】
特に、本願第2の発明に係る磨砕機は、上記の動圧発生機構4について、より好ましい手段を提供し得たものである。即ち、上記本願第2の発明に係る磨砕機は、双方の研磨部材1,2に鏡面研磨による平坦部を具備せしめると共に、当該平坦部の一方に、研磨部材の中心側から研磨部材の外側に流体が移動する経路を提供する溝を設けて、当該溝を鏡面研磨された両平坦部及び流路制限部にて、囲まれた空間とする。このため、溝を通り抜けようとする流体が流路制限部によって行き場を失い、少なくとも付勢機構3にて押し合わされた両平坦部の間に入り込み、両平坦部間(両研磨部材1,2間)に、従来機械的な方法では不可能であった、磨砕・粉砕処理に適した微小間隔を確保する。しかも、流路制限部が、回転の中心側から研磨部材の外側に向けて漸次溝の断面積を小さくすることによって、流体の通り抜けようとする力を徐々に受けるものであり、より円滑な上記の微小間隔の確保を可能とした。
【0026】
更に、本願第3の発明に係る磨砕機では、研磨部材1,2が、フローティング機構によって、両研磨部材間の上記近接・離反のみならず、回転により両研磨部材1,2の少なくとも一方に生じた偏心挙動を、両研磨部材1,2の少なくとも他方が吸収する。このため、回転や発生した熱による研磨部材の変形によって、両平坦部間(両研磨部材1,2間)の各位置における間隔の不均衡を是正し、両平坦部間(両研磨部材1,2間)の各位置における隙間を一定のものとして、より確実で均一な処理を可能とした。即ち、フローティング機構によって、上記回転における、回転軸の芯振れ、軸膨張、第1研磨部材1の面振れ、振動を吸収することができ、上記の作用を奏することができる。
【0027】
本願第4の発明に係る磨砕機は、空気などの流体圧を利用した付勢手段を用いると共に、この流体圧による付勢力の調整を行うものであり、フローティング機構の下、付勢機構と動圧発生機構とにおいて生じた力の均衡により、両研磨部材間の間隔を0.1〜10μmの微小間隔とし、従来不可能であった微小な磨砕や粉砕を実現した。
【0028】
本願第5の発明に係る被処理物の処理方法は、流体圧による付勢力の調整を行うものであり、上記の動圧発生機構により発生する動圧と上記の付勢機構による付勢力との均衡にて、第1及び第2の研磨部材間の間隔を、0.1〜10μmの微小間隔に維持するようにし、従来不可能であった微小な磨砕や粉砕を実現した。
【0029】
【発明の実施の形態】
以下、図面に基づき本願発明の実施の形態について説明する。
図1乃至図4へ、本願発明の一実施の形態を示す。図1は本願発明の一実施の形態に係る磨砕機の略縦断面図である。図2は、その一部切欠要部略縦断面図である。図3は、図1に示す磨砕機が備える第1研磨部材1の平面図である。図4は、上記磨砕機の第1及び第2研磨部材1,2の一部切欠要部略縦断面図である。
尚、説明の便宜上、Uは上方を、Sは下方を、夫々示している。
【0030】
図1乃至図4に示す磨砕機は、大気圧下で、磨砕や粉砕処理の対象となる流体或いはこのような処理の対象物を搬送する流体が投入されるものである。
図1に示す通り、この磨砕機は、回転砥石である第1研磨部材1と、当該研磨部材1を保持する第1ホルダ11と、固定砥石である第2研磨部材2と、当該第2研磨部材2が固定された第2ホルダ21と、付勢機構3と、動圧発生機構4と、第1ホルダ11と共に第1研磨部材1を回転させる駆動部5と、ハウジング6と、流体を供給(投入する)する導入部7と、流体を磨砕機の外部へ排出する排出部8とを備える。
以下、各部の構成について、詳しく説明する。
【0031】
上記の第1研磨部材1と第2研磨部材2は、夫々、円柱の中心をくり抜いた形状の環状体である。両研磨部材1,2は、両研磨部材1,2の夫々が呈する円柱の一底面を研磨用面10,20とする砥石である。
上記の研磨用面10,20は、鏡面研磨された平坦部を有する。この実施の形態において、第2研磨部材2の研磨用面20は、面全体に鏡面研磨が施された平坦面である。また、第1研磨部材1の研磨用面10は、面全体を第2研磨部材2と同様の平坦面とするが、図3へ示す通り、平坦面中に、複数の溝12…12を有する。この溝12…12は、第1研磨部材1が呈する円柱の中心を中心側として円柱の外周方向へ、放射状に伸びる。
上記の第1及び第2の研磨部材1,2の研磨用面10,20についての、鏡面研磨は、面粗度Ra0.01〜1.0μmとするのが好ましい。この鏡面研磨について、Ra0.03〜0.3μmとするのがより好ましい。
研磨部材1,2の材質については、硬質且つ鏡面研磨が可能なものを採用する。研磨部材1,2のこの硬さについて、少なくともビッカース硬さ1500以上、望ましくはビッカース硬さ1800以上とする。また、線膨張係数が小さい素材を、採用するのが好ましい。磨砕処理にて熱を発する部分と他の部分との間で、膨張率の差が大きいと歪みが発生して、適正なクリアランスの確保に影響するからである。
このような研磨部材1,2の素材として、特に、SIC(シリコンカーバイト/ビッカース硬さ2000〜2500)、表面にDLC(ダイヤモンドライクカーボン/ビッカース硬さ3000〜4000)コーティングが施されたSIC、WC(タングステンカーバイト/ビッカース硬さ1800)、表面にDLCコーティングが施されたWC、ZrB2 やBTC,B4 Cに代表されるボロン系セラミック(ビッカース硬さ4000〜5000)などを採用するのが好ましい。
【0032】
ハウジング6は、有底の筒状体であり、上方が上記の第2ホルダ21に覆われている。第2ホルダ21は、下面に上記第2研磨部2が固定されており、上方に上記導入部7が設けられている。導入部7は、外部から流体や被処理物を投入するためのホッパ70を備える。
上記の駆動部5は、電動機などの動力源(図示せず。)と、当該動力源から動力の供給を受けて回転するシャフト50とを備える。
上記回転は、第1研磨部材1の直径を100mmとした場合毎分2万回転、第1研磨部材1の直径を200mmとした場合毎分1万回転、第1研磨部材1の直径を400mmとした場合毎分5千回転である。即ち、第1研磨部材1の回転時の周速度という観点では、約6300メートル毎分であり、これは、研磨用面10と研磨用面20のドライコンタクトを防止できるために可能となったのである。
図1に示すように、シャフト50は、ハウジング6の内部に配され上下に伸びる。そして、シャフト50の上端部に上記の第1ホルダ11が、設けられている。第1ホルダ11は、第1研磨部材1を保持するものであり、上記の通りシャフト50に設けられることにより、第1研磨部材1の研磨用面10を第2研磨部材2の研磨用面20に対応させる。
【0033】
第1ホルダ11は、円柱状体であり、上面中央に、第1研磨部材1が固定されている。第1研磨部材1は、第1ホルダ11と一体となるように、固着され、第1ホルダ11に対してその位置を変えない。
一方、第2ホルダ21の上面中央には、第2研磨部材2を受容する受容凹部24が形成されている。
上記の受容凹部24は、環状の横断面を有する。第2研磨部材2は、受容凹部24と、同心となるように円柱状の受容凹部24内に収容される。
【0034】
詳しくは、上記の受容凹部24内には、第2研磨部材2と別体の環状体23が収容される。受容凹部24の底面(天部24a)には、突起物27(ピン)が設けられている。環状体23の上記天部24aを臨む面(上面)には、この突起物27を収容することが可能な凹部26が設けられている。突起物27は、環状体23の第2ホルダ21に対する回り止めである。突起物27は、凹部26内に余裕(遊び)を持つように収容される。
この環状体23の、受容凹部24の天部24aと反対側(下方)に、第2研磨部材2が収容される。環状体23の天部24aと反対側の面(下面)には、突起物25(ピン)が設けられている。第2研磨部材2の研磨用面20と反対側の面には、上記突起物25を収容する凹部22が設けられている。突起物25は、環状体23に対する第2研磨部材2の回り止めである。突起物25は、凹部22内に余裕(遊び)を持つように収容される。
【0035】
そして、この第2ホルダ21が、上記の付勢機構3を備える。付勢機構3は、ゴム製のOリングやバネなどの弾性体を用いるのが好ましい。具体的には、この実施の形態において、上記の環状体23について、その(上下)両端面間に複数の貫通孔31…31が設けられており、この貫通孔31…31に、付勢機構3となる複数のバネ30…30が収容される。これにて、第2研磨部材2の上面(研磨用面20と反対側の面)と、受容凹部24の底(天面24a)との間に、第2研磨部材2を第1研磨部材1に向けて付勢する付勢機構3が介される。即ち、バネ30…30は、第2研磨部材2の研磨用面20と反対側の面(底面)を押圧し、第1研磨部材1側(下方)に第2研磨部材2を付勢する。上記のバネ30…30は、受容凹部24の底24a上において、偏りなく分布する。
付勢機構3にバネを採用する場合、上記の通り複数のバネを用意するのに代え、第2研磨部材2の内周面の内径よりも大きく且つ第2研磨部材2の外径よりも小さな径を有するバネを一つ用意することによっても実施することができる。付勢機構3は、第2研磨部材2の研磨用面20と反対側の面(図1及び図2において第2研磨部材2の上面)の各部に、偏りなく均一な付勢力を掛けることが可能なものであればよく、上記のバネに限定するものではない。
即ち、上記において、付勢機構3は、バネ31のみにて構成されたものとしたが、この他、付勢機構3は、上記のバネ31に代え、或いはバネ31と共に、空気などの流体圧を利用した付勢手段を用いて実施することも可能である。
具体的には、図1に示すように、付勢機構3の一部として、高圧空気導入口32を設けて、付勢力の調整を行うものとしても実施可能である。この場合、付勢機構3は、高圧空気導入口32のみにて構成するものであってもよく、また、図1に示す通り、バネ31と高圧空気導入口32とによって構成するものであってもよい。
【0036】
一方、受容凹部24の内径は、第2研磨部材2の外径よりも大きく、これにて、上記の通り同心に配設した際、第2研磨部材2の外周面2bと受容凹部24の内周面との間には、図2に示すように、隙間t1が設定される。
同様に、第2研磨部材2の内周面2aと受容凹部24の中心部外周面との間には、図2に示すように、隙間t2が設定される。
上記隙間t1、t2の夫々は、振動や偏芯挙動を吸収するためのものであり、動作寸法以上確保され且つシールが可能となる大きさに設定する。例えば、第1研磨部材1の直径が100mmから400mmの場合、当該隙間t1、t2の夫々は、0.1〜0.3mmとするのが好ましい。
第1ホルダ11は、その内ホルダ15と共に、シャフト50へ一体に固定され、シャフト50と共に回転する。また、上記の突起物25,27によって、環状体23を介しても、第2ホルダ21に対して、第2研磨部材2は回らない。しかし、両研磨用面10,20間に、磨砕等の処理に必要な0.1〜10ミクロンの微小な間隔t(クリアランス/図4(B)参照)を確保するため、受容凹部24の底面(天部24a)と環状体23の上記天部24aを臨む面(上面)と間に隙間t3が設けられる。この隙間t3については、上記のクリアランスと共に、シャフト50の振れや伸びを考慮して設定する。
【0037】
上記のように、隙間t1〜t3の設定により、第1研磨部材1は、第2研磨部材1に対して近接・離反する方向に可変であるのみならず、その研磨用面10の中心や向き(方向z1,z2について)も可変としている。
即ち、この実施の形態において、付勢機構3と、上記隙間t1〜t3とが、フローティング機構を構成し、このフローティング機構によって、少なくとも第2研磨部材2の中心や傾きを、数ミクロンから数ミリの程度の僅かな量、可変としている。これにて、回転軸の芯振れ、軸膨張、第1研磨部材1の面振れ、振動を吸収する。
尚、上記突起物25と凹部22の間、及び突起物27と凹部26との間の遊びによって、第2研磨部材2の上記フローティング機構の動作は、確保され、これらの回り止めの機構に、当該動作が阻害されない。
【0038】
第1研磨部材1の研磨用面10が備える前記の溝12について、更に詳しく説明する。溝12の後端は、第1研磨部材1の内周面1aに達するものであり、その先端を第1研磨部材1の外側y(外周面側)に向けて伸ばす。この溝12は、図3(A)へ示すように、その横断面積を、環状の第1研磨部材1の中心x側から、第1研磨部材1の外側y(外周面側)に向かうにつれて、漸次減少するものとしている。
溝12の左右両側面12a,12bの間隔w1は、第1研磨部材1の中心x側から、第1研磨部材1の外側y(外周面側)に向かうにつれて小さくなる。また、溝12の深さw2は、図3(B)へ示すように、第1研磨部材1の中心x側から、第1研磨部材1の外側y(外周面側)に向かうにつれて、小さくなる。即ち、溝12の底12cは、第1研磨部材1の中心x側から、第1研磨部材1の外側y(外周面側)に向かうにつれて、浅くなる。
このように、溝12は、その幅及び深さの双方を、外側y(外周面側)に向かうにつれて、漸次減少するものとして、その横断面積を外側yに向けて漸次減少させている。そして、溝12の先端(y側)は、行き止まりとなっている。即ち、溝12の先端(y側)は、第1研磨部材1の外周面1bに達するものではなく、溝12の先端と外周面1bとの間には、外側平坦面13が介在する(この外側平坦面13は、研磨用面10の一部である)。
この実施の形態において、このような溝12の左右両側面12a,12bと底12cとが流路制限部を構成している。この流路制限部と、第1研磨部材1の溝12周囲の平坦部と、第2研磨部材2の平坦部とが、動圧発生機構4を構成している。
但し、溝12の幅及び深さの何れか一方についてのみ、上記の構成を採るものとして、断面積を減少させるものとしてよい。その場合、上記の構成を採らない、左右両側面12a,12b或いは底12cは、流路制限部とならず、動圧発生機構4の構成要素とならない。
上記の動圧発生機構4は、第1研磨部材1の回転時、両研磨部材1,2間を通り抜けようとする流体によって、両研磨部材1,2の間に所望の微小間隔を確保することを可能とする、両研磨部材1,2を離反させる方向に働く力を発生させる。このような動圧の発生により、両研磨用面10,20間に、0.1〜10μmの微小間隔を発生させることができる。このような微小間隔は、処理の対象によって、調整し選択すればよいのであるが、1〜6μmとするのが好ましく、より好ましくは、1〜2μmである。この磨砕機においては、上記のような微小間隔による従来にない磨砕や粉砕処理が可能である。
【0039】
溝12…12の夫々は、真っ直ぐ、中心x側から外側yに伸びるものであっても実施可能である。但し、この実施の形態において、図3(A)に示すように、第1研磨部材1の回転方向rについて、溝12の中心x側が、溝12の外側yよりも、先行するように(前方に位置するように)、湾曲して溝12を伸びるものとしている。
このように溝12…12が湾曲して伸びることにより、動圧発生機構4による離反力の発生をより効果的に行うことができる。
【0040】
次に、この磨砕機の動作について説明する。
導入部7(ホッパ70)から投入された、被処理物である流体Rは、環状の第2研磨部材2の中空部(中央)を通り、第1研磨部材1の回転よる遠心力を受けた流体は、両研磨部材1,2間に入り、回転する第1研磨部材1の研磨用面10と、第2研磨部材2の研磨用面20との間にて、磨砕や粉砕の処理が行われ、その後、両研磨部材1,2の外側に出て、排出部8から排出される。
上記において、環状の第2研磨部材2の中空部に入った流体Rは、図4(A)へ示すように、先ず、回転する第1研磨部材1の溝12に入る。一方、鏡面研磨された(平坦部である)両研磨用面10,20は、空気や窒素などの気体を通しても気密性が保たれている。従って、回転による遠心力を受けても、そのままでは、付勢機構3によって、押し合わされた両研磨用面10,20の間に、溝12から流体は入り込むことはできない。しかし、流路制限部として形成された溝12の上記両側面12a,12bや底12cに、流体Rは徐々に突き当たり、両研磨用面10,20を離反させる方向に働く動圧を発生させる。これによって、流体Rが溝12から平坦面に滲み出し、両研磨用面10,20の間に微小間隔(クリアランス)を確保することができる。そして、このような鏡面研磨された平坦面の間で、微小な磨砕や粉砕の処理が行われる。また上述の溝12の湾曲が、より確実に流体へ遠心力を作用させ、上記動圧の発生をより効果的にしている。
このように、この磨砕機は、動圧と付勢機構3による付勢力との均衡にて、両鏡面(研磨用面10,20)間に、微細な間隔(クリアランス)を確保することを可能とした。そして、上記の構成により、当該微細間隔は、1μm以下の超微細なものとすることができる。
また、上記フローティング機構の採用により、研磨用面10,20間のアライメントの自動調整が可能となり、回転や発生した熱による各部の物理的な変形に対して、研磨用面10,20間の各位置における、クリアランスのばらつきを、抑制し、当該各位置における上記の小間隔の維持を可能とした。
【0041】
尚、上記の実施の形態において、フローティング機構は、第2ホルダ21にのみ設けられた機構であった。この他、第2ホルダ21に代え、或いは第2ホルダ21と共に、フローティング機構を、第2ホルダ21にも設けるものとして実施することも可能である。
【0042】
図5乃至図7に、上記の溝12について、他の実施の形態を示す。
図5(A)(B)に示すように、溝12は、流路制限部の一部として、先端に平らな壁面12dを備えるものとして実施することができる。また、この図5に示す実施の形態では、底12cにおいて、第1壁面12dと、内周面1aとの間に段差12eが設けられており、この段差12eも流路制限部の一部を構成する。
図6(A)(B)に示すように、溝12は、複数に分岐する枝部12f…12fを備えるものとし、各枝部12fがその幅を狭めることにより流路制限部を備えるものとしても実施可能である。
図5及び図6の実施の形態においても、特に示した以外の構成については、図1乃至図4に示す実施の形態と同様である。
【0043】
また、上記の各実施の形態において、溝12の幅及び深さの少なくとも何れか一方について、第1研磨部材1の内側から外側に向けてその寸法を漸次小さくすることにて、流路制限部を構成するものとした。この他、図7(A)や図7(B)へ示す通り、溝12の幅や深さを変化させずに、溝12に終端面12fを設けることによって、このような溝12の終端面12fを流路制限部とすることができる。図3、図5及び図6に示す実施の形態において示した通り、動圧発生は、溝12の幅及び深さを既述の通り変化させることによって溝12の底や両側面を傾斜面とすることで、この傾斜面が流体に対する受圧部になり動圧を発生させた。一方図7(A)(B)に示す実施の形態では、溝12の終端面が流体に対する受圧部になり動圧を発生させる。
また、この図7(A)(B)に示す場合、溝12の幅及び深さの少なくとも何れか一方の寸法を漸次小さくすることも併せて実施することができる。
尚、溝12の構成について、上記の図3、図5乃至図7に示すものに限定するものではなく、他の形状の流路制限部を備えたものとして実施することが可能である。
例えば、図3、図5乃至図7示すものでは、溝12は、第1研磨部材1の外側に突き抜けるものではなかった。即ち、第1研磨部材1の外周面と、溝12との間には、外側平坦面13が存在した。しかし、このような実施の形態に限定するものではなく、上述の動圧を発生されることが可能であれば、溝12は、第1研磨部材1の外周面側に達するものであっても実施可能である。
例えば、図7(B)に示す第1研磨部材1の場合、点線で示すように、溝12の他の部位よりも断面積が小さな部分を、外側平坦面13に形成して実施することができる。
また、溝12を、上記の通り内側から外側へ向けて漸次断面積を小さくするように形成し、溝12の第研磨部材1の外周に達した部分(終端)を、最も断面積が小さいものとすればよい(図示せず)。但し、動圧を効果的に発生させる上で、図3、図5乃至図7に示すように、溝12は、第1研磨部材1の外周面側に突き抜けないほうが好ましい。
【0044】
上記の各実施の形態では、第1研磨部材1のみが回転し、第2研磨部材2は、回転しないものとした。この他、第1研磨部材1のみならず、第2研磨部材2も回転するものとしても実施可能である。この場合、第2研磨部材2は、第1研磨部材1の回転方向rに対し、逆方向に回転するものとする。
このような磨砕機として、例えば、図8に示すように、既述の駆動部5とは別個の、シャフト50aを備えた駆動部5aを設けて、ハウジング6と独立して形成された第2ホルダ21を回転させればよい。この場合、駆動部5aのシャフト50aを中空として、このシャフト50内部を導入部7とする。
図8に示す磨砕機では、図1及び図2に示す磨砕機と同様、フローティング機構は、第2ホルダ21が備えるものである。この他、第2ホルダ21に代え或いは第2ホルダ21と共に第1ホルダ11もフローティング機構を備えるものとしても実施可能である。
【0045】
最後に、本願発明について、総括する。
本願発明に係る磨砕機は、耗外周部に平坦磨砕面を有する回転砥石と同じく外周部に平坦磨砕面を有する固定砥石とをそれらの平坦磨砕面で同心的に相対向させ、同回転砥石の回転下に固定砥石の開口部より被粉砕原料を供給しながら両砥石の対向平面磨砕面間より該被粉砕原料を磨砕、粉砕して処理する磨砕機において機械的にクリアランスを調整するのではなく、回転砥石に増圧機構を設けてその圧力発生によりクリアランスを保持しかつ機械的クリアランス調整では、不可能であった1〜6μmの微小クリアランスを可能とし磨砕、粉砕能力が著しく向上出来たものである。
即ち、本願発明は、回転砥石と固定砥石がその外周部に平坦磨砕面を有しその平坦磨砕面において、面上の密封機能を有することで流体静力学的(ハイドロスタティック)一流体動力学的(ハイドロダイナミック)な力、或いは、エアロスタティック−エアロダイナミックな力を発生させる高速回転式の磨砕機を提供しようとするものである。上記の力は、上記密封面間に僅かな間隙を発生させ、また非接触で機械的に安全で高度な磨砕機能を有した磨砕装置を提供することができる。この僅かな隙間が形成されうる要因は、一つは、回転砥石の回転速度によるものであり、もう一つは、被粉砕原料の投入側と排出側の圧力差によるものである。投入側に圧力付与機構が付設されている場合は、本願の出願人が先に行った特願2002−207533で有益な発明を報告しているが、投入側に圧力付与機構が付設されていない場合即ち大気圧下で被粉砕原料を投入される場合、圧力差が無いわけであるから回転砥石の回転速度だけで密封面間の分離を生じさせる必要がある。これは、ハイドロダイナミックもしくはエアロダイナミック力として知られている。
【0046】
【発明の効果】
本願第1乃至第4の発明は、被粉砕原料を流体とし、或いは被粉砕原料を流体中に投入する場合において、上下二枚の砥石(研磨部材)のクリアランスを15μm以下にすることを実現した磨砕を提供し得たものである。即ち、最近のナノテクノロジーに関する開発に絶対的に必要とされる超微粉砕を実現したものである。さらに、本願の第5の発明は、かかる磨砕機を用いて、超微粉砕を可能にする被処理物の処理方法を提供し得たものである。
【図面の簡単な説明】
【図1】本願発明の一実施の形態に係る磨砕機の一部切欠縦断面図である。
【図2】上記の磨砕機の、第1研磨部材1及び第1ホルダ11を中心とする要部略縦断面図である。
【図3】(A)は上記磨砕機の第1研磨部材1の平面図であり、(B)はその要部縦断面図である。
【図4】(A)は上記磨砕機の第1及び第2研磨部材1,2の要部縦断面図であり、(B)は微小間隔が開けられた上記第1及び第2研磨部材1,2の要部縦断面図である。
【図5】(A)は第1研磨部材1の他の実施の形態の平面図であり、(B)はその要部略縦断面図である。
【図6】(A)は第1研磨部材1の、更に他の実施の形態の平面図であり、(B)はその要部略縦断面図である。
【図7】(A)は第1研磨部材1のまた更に他の実施の形態の平面図であり、(B)は第1研磨部材1の更にまた他の実施の形態の平面図である。
【図8】磨砕機の他の実施の形態を示す一部切欠略縦断面図である。
【符号の説明】
1 第1研磨部材
2 第2研磨部材
3 付勢機構
4 動圧発生機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grinder.
[0002]
[Prior art]
The grinding machine that uses the grinding mill principle has two upper and lower grinding wheels that can adjust the distance between each other, and generates strong centrifugal force, impact grinding force, and shear between the fixed grinding wheel and the grinding wheel that rotates at high speed. And pulverization is performed by their combined action. As such a rotating grindstone, a fixed grindstone, and a grinding apparatus using the same, those shown in Patent Documents 1 to 5 below can be cited.
[0003]
[Patent Document 1]
Design Registration No. 655304
[0004]
[Patent Document 2]
Design Registration No. 845632
[0005]
[Patent Document 3]
Japanese Examined Patent Publication No. 62-51658
[0006]
[Patent Document 4]
Japanese Patent Publication No. 3-1061
[0007]
[Patent Document 5]
Japanese Patent Publication No. 4-55830
[0008]
Here, the rotating grindstone and the fixed grindstone are generally called grinders, and the particle sizes thereof are usually about 16 #, 24 # to 120 #, and 240 #. Although these grinders have different particle sizes, they have irregularities formed on the surface. When the hardness of the object to be crushed is high, the protrusions are peeled off and worn, and there is a problem of foreign matter contamination.
[0009]
On the other hand, in the grinding device shown in the following Patent Document 6, it has been reported that the sprayed fuel, soybean milk, etc. are ground into fine particles of about 1 to 5 μm, but at present, ultrafine particles of 1 μm or less are used. Can not get.
[0010]
[Patent Document 6]
JP-B 62-51658
[0011]
Moreover, in the thing shown by the following patent document 7, in the fine grinding | pulverization of the substance containing many high lipid, high water | moisture content, high protein, saccharide | sugar, and a special enzyme, the characteristic physical property which those to-be-ground materials have has. For this reason, it was impossible to commercialize powder as a result of changes in physical properties due to stickiness, stickiness, scorching, film formation, etc. due to frictional heat, but suddenly when the peripheral speed of the rotating stone exceeded a certain line It has been reported that the grinding ability improves and the temperature rise due to frictional heat decreases. However, at the peripheral speed of 3422 m / min, it has been simultaneously reported that there are problems in machine cost and mechanical safety.
[0012]
[Patent Document 7]
JP 7-185372 A
[0013]
Further, in the following Patent Document 8, a method for automatically controlling the clearance between the rotating grindstone and the fixed grindstone is reported. However, in this method, mechanical heat is generated by high-speed rotation, and thermal expansion of the drive shaft and the core of the rotating grindstone are performed. Since there is no shock absorber such as runout, the minimum clearance becomes several tens of μm or more.
[0014]
[Patent Document 8]
JP-A-8-1020
[0015]
Next, in Patent Document 9 below, an invention useful for a fluid to be treated, particularly wet (liquid) pulverization / dispersion / emulsification, has been reported. This is a fluid that applies a predetermined pressure to a fluid to be treated. A pressure applying mechanism and a water head pressure are required.
[0016]
[Patent Document 9]
Japanese Patent Application No. 2002-207533
[0017]
After all, in the conventional apparatuses described above, when the raw material to be crushed is charged under atmospheric pressure, it is not possible to achieve a clearance of 15 μm or less between the upper and lower grindstones (polishing members). In other words, the above-described minute clearance suitable for fine grinding and pulverization cannot be secured between the grindstones by conventional mechanical means. On the other hand, when milling and grinding using a mill, foreign matter (foreign matter generated by contact between mills and the mill and other parts) is mixed in, and high speed that can be rotated at high speed to ensure safety. There were no high-performance pulverizers.
[0018]
[Problems to be solved by the invention]
The present invention has been made on the basis of the above circumstances, and provides a grinding machine that realizes ultrafine grinding that is absolutely necessary for the development of recent nanotechnology. In other words, it is a grinding machine that can be finely pulverized with high accuracy, has no foreign matter, has a simple structure, is highly safe, and can be manufactured at low cost. The above problem is solved by providing a grinding machine that enables fine pulverization of micron or less, and further, adaptability and physical properties of the material to be crushed.
[0019]
[Means for Solving the Problems]
  The first invention of the present application isProvided with at least two polishing members that are disposed so as to face each other and perform grinding and pulverization by rotating at least one relative to the other, both polishing from the center side of the rotation In a grinding machine that conveys a workpiece or supplies a fluid to be processed itself between members, and discharges the fluid to the outside of the first and second polishing members.
The first and second polishing members are arranged such that at least one of them is close to or away from the other,
An urging mechanism that acts in a direction in which the two polishing members are at least close to each other;
Said 1st and 2nd polishing member is equipped with the dynamic pressure generation mechanism which makes the force which fluid tries to pass between both polishing members act in the direction which separates both polishing members,
By maintaining a balance between the dynamic pressure generated by the dynamic pressure generating mechanism and the biasing force by the biasing mechanism, the distance between the first and second polishing members is maintained at a minute distance of 0.1 to 10 μm. A grinding machine characterized by the above is provided.
  Here, the fluid includes liquid, gas, liquid containing solid, and gas containing solid. Further, this fluid includes both a case where it is a processing object and a case where it is not a processing object.
  The attritor includes an apparatus for performing emulsification and dispersion, and an atomizer (atomizer) in addition to an apparatus for performing attrition and pulverization.
[0020]
  According to a second invention of the present application, in the attritor according to the first invention, both the first and second polishing members include a flat portion subjected to mirror polishing, and one of the polishing members is flat. A groove is provided in the portion, and the groove extends from the center side of the polishing member toward the outside of the polishing member, passes through the groove, and passes through the groove from the center of the polishing member to the outside of the polishing member. A flow path limiting portion is provided for limiting the flow path, and the flow path limiting portion gradually reduces the cross-sectional area of the groove from the center of rotation toward the outside of the polishing member. Provides the above-described dynamic pressure generating mechanism.
[0021]
  According to a third invention of the present application, in the attritor according to the first or second invention, at least one of the first and second polishing members includes a floating mechanism, and the floating mechanism includes both polishing. Provided is one that enables the above-described approaching / separation between members, and that at least the other of both polishing members absorbs the eccentric behavior generated in at least one of both polishing members by rotation.
[0022]
  According to a fourth invention of the present application, in the attritor according to any one of the first to third inventions, the urging mechanism uses an urging means using fluid pressure such as air, and the fluid. The biasing force is adjusted by the pressure, and the distance between the first and second polishing members is determined by balancing the dynamic pressure generated by the dynamic pressure generating mechanism and the biasing force by the biasing mechanism. , 0.1 to 10 [mu] m minute intervals are maintained.
[0023]
  5th invention of this application conveys a to-be-processed object between both said 1st and 2nd grinding | polishing members using the grinder which concerns on one of said 1st-4th invention, or The fluid to be processed itself is supplied, and the balance between the dynamic pressure generated by the dynamic pressure generating mechanism and the urging force by the urging mechanism is set to the interval between the first and second polishing members, An object of the present invention is to provide a processing method for an object to be processed, characterized in that grinding and pulverization are performed while maintaining a minute interval of 0.1 to 10 μm.
[0024]
In the grinding machine according to the first to fifth inventions of the present application, the dynamic pressure generating mechanism 4 moves between the two polishing members 1 and 2 of the fluid against the biasing of the biasing mechanism 3 by adopting the above configuration. A separation force between the polishing members 1 and 2 is generated using a force to pass through, and at least between the polishing members 1 and 2 due to the balance between the urging force of the urging mechanism 3 and the separation force. It was possible to secure a minute interval necessary for processing, which was impossible with conventional mechanical methods.
[0025]
  In particular, the grinder according to the second invention of the present application can provide a more preferable means for the dynamic pressure generating mechanism 4 described above. That is, in the grinding machine according to the second invention of the present application, both of the polishing members 1 and 2 are provided with a flat portion by mirror polishing, and on one of the flat portions from the center side of the polishing member to the outside of the polishing member. A groove is provided to provide a path for the fluid to move, and the groove is defined as a space surrounded by both mirror-polished flat portions and the flow path restriction portion. For this reason, the fluid that tries to pass through the groove loses its place by the flow path restricting portion, enters at least between the two flat portions pressed together by the urging mechanism 3, and between the two flat portions (between the two polishing members 1 and 2). ) To ensure a fine interval suitable for grinding and pulverization, which was impossible with conventional mechanical methods.Moreover, the flow path restricting portion gradually receives a force to try to pass through the fluid by gradually reducing the cross-sectional area of the groove from the center side of rotation toward the outside of the polishing member, so that the smoother It was possible to secure a minute interval.
[0026]
  Further, in the grinding machine according to the third invention of the present application, the polishing members 1 and 2 are generated not only in the proximity and separation between the two polishing members but also in at least one of the two polishing members 1 and 2 by rotation by the floating mechanism. At least the other of the polishing members 1 and 2 absorbs the eccentric behavior. For this reason, the deformation of the polishing member due to rotation or generated heat corrects the imbalance in the distance between the flat portions (between both polishing members 1 and 2), and between the flat portions (both polishing members 1 and 1). The gap at each position (between 2) is fixed, and more reliable and uniform processing is possible. That is, the floating mechanism can absorb the runout of the rotation shaft, the shaft expansion, the surface shake and vibration of the first polishing member 1 in the above rotation, and the above-described effects can be achieved.
[0027]
  The grinder according to the fourth invention of the present application is:While using an urging means using fluid pressure such as air, the urging force is adjusted by this fluid pressure.Under the floating mechanism, the balance between the force generated in the urging mechanism and the dynamic pressure generating mechanism is set so that the distance between both polishing members is 0.1 to 10 μm. Grinding was realized.
[0028]
  The processing method of the to-be-processed object based on this invention 5 adjusts the urging | biasing force by a fluid pressure, and the dynamic pressure which generate | occur | produces by said dynamic pressure generation mechanism, and the urging | biasing force by said urging mechanism The balance between the first and second polishing members was maintained at a minute distance of 0.1 to 10 μm in a balanced manner, thereby realizing minute grinding and pulverization that were impossible in the past.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show an embodiment of the present invention. FIG. 1 is a schematic longitudinal sectional view of a grinding machine according to an embodiment of the present invention. FIG. 2 is a schematic vertical sectional view showing a part of the notch. FIG. 3 is a plan view of the first polishing member 1 provided in the attritor shown in FIG. FIG. 4 is a schematic vertical cross-sectional view of a part of the first and second polishing members 1 and 2 of the above-described grinder.
For convenience of explanation, U indicates the upper side and S indicates the lower side.
[0030]
The grinder shown in FIGS. 1 to 4 is one in which a fluid to be subjected to grinding or pulverization processing or a fluid for conveying an object to be processed is introduced under atmospheric pressure.
As shown in FIG. 1, this grinding machine includes a first polishing member 1 that is a rotating grindstone, a first holder 11 that holds the polishing member 1, a second polishing member 2 that is a fixed grindstone, and the second polishing. The second holder 21 to which the member 2 is fixed, the biasing mechanism 3, the dynamic pressure generating mechanism 4, the drive unit 5 that rotates the first polishing member 1 together with the first holder 11, the housing 6, and the fluid are supplied. It includes an introduction unit 7 (to input) and a discharge unit 8 that discharges the fluid to the outside of the grinder.
Hereinafter, the configuration of each unit will be described in detail.
[0031]
Each of the first polishing member 1 and the second polishing member 2 is an annular body having a shape obtained by hollowing out the center of a cylinder. Both the polishing members 1 and 2 are grindstones having the polishing surfaces 10 and 20 as one bottom surface of a cylinder exhibited by each of the polishing members 1 and 2.
The polishing surfaces 10 and 20 have flat portions that are mirror-polished. In this embodiment, the polishing surface 20 of the second polishing member 2 is a flat surface in which the entire surface is mirror-polished. Further, the polishing surface 10 of the first polishing member 1 has the same flat surface as the second polishing member 2, but has a plurality of grooves 12 ... 12 in the flat surface as shown in FIG. . The grooves 12... 12 extend radially in the outer circumferential direction of the cylinder with the center of the cylinder exhibited by the first polishing member 1 as the center.
The mirror polishing of the polishing surfaces 10 and 20 of the first and second polishing members 1 and 2 is preferably a surface roughness Ra of 0.01 to 1.0 μm. The mirror polishing is more preferably Ra 0.03 to 0.3 μm.
The material of the polishing members 1 and 2 is a hard material that can be mirror polished. The hardness of the polishing members 1 and 2 is at least Vickers hardness 1500 or more, preferably Vickers hardness 1800 or more. Moreover, it is preferable to employ a material having a small linear expansion coefficient. This is because a large difference in expansion coefficient between the portion that generates heat and other portions in the grinding treatment causes distortion and affects the securing of an appropriate clearance.
As materials for such polishing members 1 and 2, in particular, SIC (silicon carbide / Vickers hardness 2000-2500), SIC coated with DLC (diamond-like carbon / Vickers hardness 3000-4000) on the surface, It is preferable to employ WC (tungsten carbide / Vickers hardness 1800), WC having a DLC coating on the surface, boron-based ceramics (Vickers hardness 4000 to 5000) typified by ZrB2 and BTC, B4 C, and the like. .
[0032]
The housing 6 is a bottomed cylindrical body, and the upper part is covered with the second holder 21. As for the 2nd holder 21, the said 2nd grinding | polishing part 2 is being fixed to the lower surface, and the said introduction part 7 is provided upwards. The introduction unit 7 includes a hopper 70 for introducing a fluid and an object to be processed from the outside.
The drive unit 5 includes a power source (not shown) such as an electric motor, and a shaft 50 that rotates upon receiving power from the power source.
The rotation is 20,000 rotations per minute when the diameter of the first polishing member 1 is 100 mm, 10,000 rotations per minute when the diameter of the first polishing member 1 is 200 mm, and the diameter of the first polishing member 1 is 400 mm. 5,000 revolutions per minute. That is, from the viewpoint of the peripheral speed during rotation of the first polishing member 1, it is about 6300 meters per minute, which is possible because dry contact between the polishing surface 10 and the polishing surface 20 can be prevented. is there.
As shown in FIG. 1, the shaft 50 is arranged inside the housing 6 and extends vertically. The first holder 11 is provided at the upper end of the shaft 50. The first holder 11 holds the first polishing member 1 and is provided on the shaft 50 as described above, whereby the polishing surface 10 of the first polishing member 1 is changed to the polishing surface 20 of the second polishing member 2. To correspond to.
[0033]
The first holder 11 is a cylindrical body, and the first polishing member 1 is fixed at the center of the upper surface. The first polishing member 1 is fixed so as to be integrated with the first holder 11 and does not change its position with respect to the first holder 11.
On the other hand, a receiving recess 24 for receiving the second polishing member 2 is formed in the center of the upper surface of the second holder 21.
The receiving recess 24 has an annular cross section. The second polishing member 2 is accommodated in the cylindrical receiving recess 24 so as to be concentric with the receiving recess 24.
[0034]
Specifically, in the receiving recess 24, the second polishing member 2 and a separate annular body 23 are accommodated. A protrusion 27 (pin) is provided on the bottom surface (the top portion 24 a) of the receiving recess 24. On the surface (upper surface) of the annular body 23 facing the top portion 24a, a concave portion 26 capable of accommodating the protrusion 27 is provided. The protrusion 27 is a detent for the annular body 23 relative to the second holder 21. The protrusion 27 is accommodated in the recess 26 so as to have a margin (play).
The second polishing member 2 is accommodated on the annular body 23 on the opposite side (downward) from the top 24 a of the receiving recess 24. Projections 25 (pins) are provided on the surface (lower surface) of the annular body 23 opposite to the top 24a. On the surface opposite to the polishing surface 20 of the second polishing member 2, a recess 22 for accommodating the protrusion 25 is provided. The protrusion 25 is a rotation stopper of the second polishing member 2 with respect to the annular body 23. The protrusion 25 is accommodated in the recess 22 so as to have a margin (play).
[0035]
The second holder 21 includes the urging mechanism 3 described above. The urging mechanism 3 preferably uses an elastic body such as a rubber O-ring or a spring. Specifically, in this embodiment, the annular body 23 is provided with a plurality of through holes 31... 31 between the (upper and lower) both end faces, and the through holes 31. A plurality of springs 30... Thus, the second polishing member 2 is placed between the upper surface of the second polishing member 2 (the surface opposite to the polishing surface 20) and the bottom of the receiving recess 24 (the top surface 24a). An urging mechanism 3 is urged toward the end. That is, the springs 30 ... 30 press the surface (bottom surface) opposite to the polishing surface 20 of the second polishing member 2 and urge the second polishing member 2 toward the first polishing member 1 (downward). The springs 30 ... 30 are distributed evenly on the bottom 24a of the receiving recess 24.
When a spring is employed for the urging mechanism 3, instead of preparing a plurality of springs as described above, it is larger than the inner diameter of the inner peripheral surface of the second polishing member 2 and smaller than the outer diameter of the second polishing member 2. It can also be implemented by preparing one spring having a diameter. The urging mechanism 3 may apply a uniform urging force to each part of the surface of the second polishing member 2 opposite to the polishing surface 20 (the upper surface of the second polishing member 2 in FIGS. 1 and 2) without deviation. What is possible is not limited to the spring described above.
That is, in the above description, the urging mechanism 3 is configured only by the spring 31. In addition to this, the urging mechanism 3 is replaced with the spring 31 or together with the spring 31, a fluid pressure such as air. It is also possible to carry out using an urging means using.
Specifically, as shown in FIG. 1, as a part of the urging mechanism 3, a high-pressure air introduction port 32 may be provided to adjust the urging force. In this case, the urging mechanism 3 may be constituted only by the high-pressure air inlet 32, and is constituted by the spring 31 and the high-pressure air inlet 32 as shown in FIG. Also good.
[0036]
On the other hand, the inner diameter of the receiving recess 24 is larger than the outer diameter of the second polishing member 2, so that when arranged concentrically as described above, the inner surface of the outer peripheral surface 2 b of the second polishing member 2 and the receiving recess 24. As shown in FIG. 2, a gap t1 is set between the peripheral surface.
Similarly, a gap t2 is set between the inner peripheral surface 2a of the second polishing member 2 and the outer peripheral surface of the central portion of the receiving recess 24 as shown in FIG.
Each of the gaps t1 and t2 is for absorbing vibrations and eccentric behavior, and is set to a size that can ensure the operating dimension or more and can be sealed. For example, when the diameter of the first polishing member 1 is 100 mm to 400 mm, each of the gaps t1 and t2 is preferably 0.1 to 0.3 mm.
The first holder 11 together with the inner holder 15 is integrally fixed to the shaft 50 and rotates together with the shaft 50. Further, the second polishing member 2 does not rotate with respect to the second holder 21 by the protrusions 25 and 27 even through the annular body 23. However, in order to secure a fine space t (clearance / see FIG. 4B) necessary for processing such as grinding between the polishing surfaces 10 and 20, the receiving recess 24 A gap t3 is provided between the bottom surface (top portion 24a) and the surface (upper surface) of the annular body 23 facing the top portion 24a. The gap t3 is set in consideration of the deflection and elongation of the shaft 50 together with the clearance.
[0037]
As described above, by setting the gaps t1 to t3, the first polishing member 1 is not only variable in the direction approaching / separating from the second polishing member 1, but also the center and orientation of the polishing surface 10 thereof. (Regarding directions z1 and z2) is also variable.
That is, in this embodiment, the urging mechanism 3 and the gaps t1 to t3 constitute a floating mechanism, and this floating mechanism allows at least the center and inclination of the second polishing member 2 to be several microns to several millimeters. A slight amount of the amount is variable. This absorbs the runout and axial expansion of the rotating shaft, the surface runout and vibration of the first polishing member 1.
In addition, the operation of the floating mechanism of the second polishing member 2 is ensured by play between the protrusion 25 and the recess 22 and between the protrusion 27 and the recess 26. The operation is not hindered.
[0038]
The groove 12 provided on the polishing surface 10 of the first polishing member 1 will be described in more detail. The rear end of the groove 12 reaches the inner peripheral surface 1 a of the first polishing member 1, and its front end extends toward the outer side y (outer peripheral surface side) of the first polishing member 1. As shown in FIG. 3A, the groove 12 has a cross-sectional area from the center x side of the annular first polishing member 1 toward the outer side y (outer peripheral surface side) of the first polishing member 1. It is supposed to gradually decrease.
The distance w1 between the left and right side surfaces 12a, 12b of the groove 12 decreases from the center x side of the first polishing member 1 toward the outer side y (outer peripheral surface side) of the first polishing member 1. Further, the depth w2 of the groove 12 decreases from the center x side of the first polishing member 1 toward the outer side y (outer peripheral surface side) of the first polishing member 1, as shown in FIG. . That is, the bottom 12 c of the groove 12 becomes shallower from the center x side of the first polishing member 1 toward the outer side y (outer peripheral surface side) of the first polishing member 1.
Thus, both the width and the depth of the groove 12 are gradually decreased toward the outer side y (outer peripheral surface side), and the cross-sectional area is gradually decreased toward the outer side y. And the front-end | tip (y side) of the groove | channel 12 is a dead end. That is, the front end (y side) of the groove 12 does not reach the outer peripheral surface 1b of the first polishing member 1, and the outer flat surface 13 is interposed between the front end of the groove 12 and the outer peripheral surface 1b (this). The outer flat surface 13 is a part of the polishing surface 10).
In this embodiment, the left and right side surfaces 12a and 12b and the bottom 12c of the groove 12 constitute a flow path restricting portion. The flow path restricting portion, the flat portion around the groove 12 of the first polishing member 1, and the flat portion of the second polishing member 2 constitute a dynamic pressure generating mechanism 4.
However, only one of the width and the depth of the groove 12 may be configured to reduce the cross-sectional area by adopting the above configuration. In that case, the left and right side surfaces 12a, 12b or the bottom 12c, which do not adopt the above-described configuration, do not serve as a flow path restricting portion and do not serve as a component of the dynamic pressure generating mechanism 4.
The dynamic pressure generating mechanism 4 secures a desired minute interval between the polishing members 1 and 2 by a fluid that tries to pass between the polishing members 1 and 2 when the first polishing member 1 rotates. It is possible to generate a force that works in the direction of separating the two polishing members 1 and 2. By generating such a dynamic pressure, a minute interval of 0.1 to 10 μm can be generated between the polishing surfaces 10 and 20. Such a minute interval may be adjusted and selected according to the object of processing, but is preferably 1 to 6 μm, and more preferably 1 to 2 μm. In this attritor, unprecedented attrition and pulverization can be performed with the above-mentioned minute intervals.
[0039]
Each of the grooves 12... 12 can be implemented even if it extends straight from the center x side to the outer side y. However, in this embodiment, as shown in FIG. 3A, with respect to the rotation direction r of the first polishing member 1, the center x side of the groove 12 precedes the outer side y of the groove 12 (frontward). It is assumed that the groove 12 is curved and extends.
In this way, the grooves 12... 12 are curved and extended, so that the separation force can be generated more effectively by the dynamic pressure generating mechanism 4.
[0040]
Next, the operation of this attritor will be described.
The fluid R, which is an object to be processed, introduced from the introduction portion 7 (hopper 70) passes through the hollow portion (center) of the annular second polishing member 2 and receives centrifugal force due to the rotation of the first polishing member 1. The fluid enters between the polishing members 1 and 2 and is subjected to grinding and pulverization between the rotating polishing surface 10 of the first polishing member 1 and the polishing surface 20 of the second polishing member 2. After that, it goes outside the polishing members 1 and 2 and is discharged from the discharge portion 8.
In the above, the fluid R that has entered the hollow portion of the annular second polishing member 2 first enters the groove 12 of the rotating first polishing member 1 as shown in FIG. On the other hand, both polishing surfaces 10 and 20 that have been mirror-polished (flat portions) are kept airtight even through a gas such as air or nitrogen. Accordingly, even if the centrifugal force due to the rotation is received, the fluid cannot enter the groove 12 between the polishing surfaces 10 and 20 pressed together by the biasing mechanism 3 as it is. However, the fluid R gradually strikes the side surfaces 12a and 12b and the bottom 12c of the groove 12 formed as the flow path restricting portion, and generates a dynamic pressure that works in a direction that separates both the polishing surfaces 10 and 20. As a result, the fluid R oozes out from the groove 12 to the flat surface, and a fine gap (clearance) can be secured between the polishing surfaces 10 and 20. Then, a fine grinding and pulverizing process is performed between the mirror-polished flat surfaces. Further, the above-described curvature of the groove 12 causes the centrifugal force to act on the fluid more reliably, and makes the generation of the dynamic pressure more effective.
Thus, this grinding machine can secure a fine gap (clearance) between both mirror surfaces (polishing surfaces 10 and 20) by balancing the dynamic pressure and the urging force by the urging mechanism 3. It was. And by said structure, the said fine space | interval can be made into the ultra fine thing of 1 micrometer or less.
In addition, the use of the floating mechanism enables automatic adjustment of the alignment between the polishing surfaces 10 and 20, and each physical relationship between the polishing surfaces 10 and 20 against physical deformation of each part due to rotation or generated heat. The variation in the clearance at the position is suppressed, and the above-described small interval at each position can be maintained.
[0041]
In the above embodiment, the floating mechanism is a mechanism provided only in the second holder 21. In addition, instead of the second holder 21 or together with the second holder 21, a floating mechanism can be provided also in the second holder 21.
[0042]
5 to 7 show other embodiments of the groove 12 described above.
As shown in FIGS. 5A and 5B, the groove 12 can be implemented as having a flat wall surface 12d at the tip as part of the flow path restricting portion. In the embodiment shown in FIG. 5, a step 12e is provided on the bottom 12c between the first wall surface 12d and the inner peripheral surface 1a, and this step 12e also forms a part of the flow path restricting portion. Constitute.
As shown in FIGS. 6 (A) and 6 (B), the groove 12 is provided with branch portions 12f... 12f that branch into a plurality of portions, and each branch portion 12f is provided with a flow path restriction portion by narrowing its width. Can also be implemented.
Also in the embodiment of FIGS. 5 and 6, the configuration other than that specifically shown is the same as that of the embodiment shown in FIGS. 1 to 4.
[0043]
Further, in each of the above-described embodiments, the flow path restriction portion is formed by gradually reducing the size of at least one of the width and the depth of the groove 12 from the inside to the outside of the first polishing member 1. It was supposed to constitute. In addition, as shown in FIGS. 7A and 7B, by providing the end surface 12f in the groove 12 without changing the width and depth of the groove 12, the end surface of such a groove 12 is provided. 12f can be used as a flow path restriction part. As shown in the embodiment shown in FIGS. 3, 5, and 6, the dynamic pressure is generated by changing the width and depth of the groove 12 as described above so that the bottom and both side surfaces of the groove 12 are inclined surfaces. By doing so, this inclined surface became a pressure receiving portion for the fluid, and dynamic pressure was generated. On the other hand, in the embodiment shown in FIGS. 7A and 7B, the end surface of the groove 12 becomes a pressure receiving portion for the fluid to generate dynamic pressure.
Further, in the case shown in FIGS. 7A and 7B, it is also possible to gradually reduce at least one of the width and depth of the groove 12 at the same time.
Note that the configuration of the groove 12 is not limited to that shown in FIGS. 3 and 5 to 7 described above, and can be implemented as having a channel restricting portion of another shape.
For example, in the case shown in FIGS. 3 and 5 to 7, the groove 12 does not penetrate to the outside of the first polishing member 1. That is, the outer flat surface 13 was present between the outer peripheral surface of the first polishing member 1 and the groove 12. However, the present invention is not limited to such an embodiment, and the groove 12 may reach the outer peripheral surface side of the first polishing member 1 as long as the above-described dynamic pressure can be generated. It can be implemented.
For example, in the case of the first polishing member 1 shown in FIG. 7B, as shown by a dotted line, a portion having a smaller cross-sectional area than other portions of the groove 12 may be formed on the outer flat surface 13. it can.
Further, the groove 12 is formed so as to gradually decrease the cross-sectional area from the inside to the outside as described above, and the portion (terminal) of the groove 12 reaching the outer periphery of the first polishing member 1 has the smallest cross-sectional area. (Not shown). However, in order to effectively generate the dynamic pressure, it is preferable that the groove 12 does not penetrate to the outer peripheral surface side of the first polishing member 1 as shown in FIGS. 3 and 5 to 7.
[0044]
In each of the above embodiments, only the first polishing member 1 rotates, and the second polishing member 2 does not rotate. In addition to this, not only the first polishing member 1 but also the second polishing member 2 can be rotated. In this case, the second polishing member 2 is rotated in the opposite direction to the rotation direction r of the first polishing member 1.
As such a grinder, for example, as shown in FIG. 8, a second drive unit 5 a provided with a shaft 50 a, which is separate from the drive unit 5 described above, is provided independently of the housing 6. The holder 21 may be rotated. In this case, the shaft 50 a of the drive unit 5 a is hollow, and the inside of the shaft 50 is used as the introduction unit 7.
In the grinding machine shown in FIG. 8, the floating mechanism is provided in the second holder 21 as in the grinding machine shown in FIGS. 1 and 2. In addition, the first holder 11 may be provided with a floating mechanism instead of the second holder 21 or together with the second holder 21.
[0045]
Finally, the present invention will be summarized.
The grinding machine according to the present invention concentrically opposes a rotating grindstone having a flat grinding surface on a wear outer periphery and a fixed grindstone having a flat grinding surface on the outer circumference, with the flat grinding surface. While supplying the material to be crushed through the opening of the fixed grindstone under the rotation of the rotating grindstone, the grinding material is ground and ground between the opposing flat grinding surfaces of the two grindstones, and mechanical clearance is provided in the grinding machine. Rather than adjusting, a rotating wheel is provided with a pressure increasing mechanism to maintain the clearance by generating the pressure, and fine clearance of 1-6 μm, which was impossible with mechanical clearance adjustment, is possible. This is a significant improvement.
That is, in the present invention, the rotating grindstone and the fixed grindstone have a flat grinding surface on the outer peripheral portion thereof, and the flat grinding surface has a sealing function on the surface, so that hydrostatic one hydrodynamic power It is an object of the present invention to provide a high-speed rotary attritor that generates a dynamic (hydrodynamic) force or an aerostatic-aerodynamic force. The above force can generate a slight gap between the sealing surfaces, and can provide a grinding device that is non-contact, mechanically safe, and has a high grinding function. One of the factors that can form this slight gap is due to the rotational speed of the rotating grindstone, and the other is due to the pressure difference between the raw material input side and the discharge side. In the case where the pressure application mechanism is attached to the input side, the applicant of the present application has reported a useful invention in Japanese Patent Application No. 2002-207533 filed earlier, but the pressure application mechanism is not attached to the input side. In this case, that is, when the raw material to be pulverized is introduced under atmospheric pressure, there is no pressure difference, and therefore it is necessary to cause separation between the sealing surfaces only by the rotational speed of the rotating grindstone. This is known as hydrodynamic or aerodynamic force.
[0046]
【The invention's effect】
  In the first to fourth inventions of the present application, when the raw material to be pulverized is a fluid or the raw material to be pulverized is put into the fluid, the clearance between the upper and lower two grindstones (abrasive members) is 15 μm or less. It was possible to provide grinding. In other words, ultra-fine grinding that is absolutely necessary for recent developments in nanotechnology has been realized. Furthermore, 5th invention of this application can provide the processing method of the to-be-processed object which enables superfine grinding | pulverization using this grinder.
[Brief description of the drawings]
FIG. 1 is a partially cutaway longitudinal sectional view of a grinding machine according to an embodiment of the present invention.
FIG. 2 is a schematic vertical sectional view of an essential part of the above-mentioned grinding machine, centering on a first polishing member 1 and a first holder 11.
FIG. 3A is a plan view of the first polishing member 1 of the grinding machine, and FIG. 3B is a longitudinal sectional view of an essential part thereof.
FIG. 4A is a longitudinal sectional view of a main part of the first and second polishing members 1 and 2 of the grinding machine, and FIG. 4B is the first and second polishing member 1 with a minute gap therebetween. , 2 is a longitudinal sectional view of an essential part of FIG.
5A is a plan view of another embodiment of the first polishing member 1, and FIG. 5B is a schematic vertical sectional view of an essential part thereof.
6A is a plan view of still another embodiment of the first polishing member 1, and FIG. 6B is a schematic vertical sectional view of an essential part thereof.
7A is a plan view of still another embodiment of the first polishing member 1, and FIG. 7B is a plan view of still another embodiment of the first polishing member 1. FIG.
FIG. 8 is a partially cutaway schematic longitudinal sectional view showing another embodiment of a grinding machine.
[Explanation of symbols]
1 First polishing member
2 Second polishing member
3 Energizing mechanism
4 Dynamic pressure generation mechanism

Claims (5)

互いに対向するように配設され少なくとも一方が他方に対して回転することにより磨砕や粉砕の処理を行う、第1及び第2の少なくとも2つの研磨部材を備え、上記回転の中心側から両研磨部材の間に、被処理物を搬送する或いは被処理物自身となる流体を供給し、当該流体を上記第1及び第2の研磨部材の外側に排出する磨砕機において、
上記の第1及び第2の両研磨部材は、少なくともその一方が他方に対して、近接・離反可能に配設され、
両研磨部材を少なくとも近接させる方向に作用する付勢機構を備え、
上記の第1及び第2の研磨部材は、流体が両研磨部材間を通過しようとする力を両研磨部材の離反する方向に作用させる、動圧発生機構を備え、
この動圧発生機構により発生する動圧と上記の付勢機構による付勢力との均衡にて、第1及び第2の研磨部材間の間隔を、0.1〜15μmの微小間隔に維持するようにしたことを特徴とする磨砕機。
Provided with at least two polishing members that are disposed so as to face each other and perform grinding and pulverization by rotating at least one relative to the other, both polishing from the center side of the rotation In a grinding machine that conveys a workpiece or supplies a fluid to be processed itself between members, and discharges the fluid to the outside of the first and second polishing members.
The first and second polishing members are arranged such that at least one of them is close to or away from the other,
An urging mechanism that acts in a direction in which the two polishing members are at least close to each other;
Said 1st and 2nd polishing member is equipped with the dynamic pressure generation mechanism which makes the force which fluid tries to pass between both polishing members act in the direction which separates both polishing members,
By maintaining a balance between the dynamic pressure generated by the dynamic pressure generating mechanism and the biasing force by the biasing mechanism, the distance between the first and second polishing members is maintained at a minute distance of 0.1 to 15 μm. A grinder characterized by the fact that
上記第1及び第2の両研磨部材は、鏡面研磨が施された平坦部を備え、研磨部材の一方は、平坦部に溝を備え、
上記の溝は、研磨部材の中心側から研磨部材の外側に向かって伸びると共に、当該溝内を通って、研磨部材の中心から研磨部材の外側に通り抜けようとする流体の流路を制限する、流路制限部を備え、この流路制限部は、回転の中心側から研磨部材の外側に向けて漸次溝の断面積を小さくするものであり、この平坦部と溝とが上記の動圧発生機構を構成すること特徴とする請求項1記載の磨砕機。
Both the first and second polishing members include a flat portion subjected to mirror polishing, and one of the polishing members includes a groove in the flat portion,
The groove extends from the center side of the polishing member toward the outside of the polishing member, and restricts the flow path of fluid that passes through the groove from the center of the polishing member to the outside of the polishing member. A flow path limiting portion is provided , and this flow path limiting portion gradually reduces the cross-sectional area of the groove from the center of rotation toward the outside of the polishing member. The flat portion and the groove generate the dynamic pressure described above. The attritor according to claim 1, which constitutes a mechanism .
上記の第1及び第2の研磨部材の少なくとも一方が、フローティング機構を備え、このフローティング機構は、両研磨部材間の上記近接・離反を可能とすると共に、回転により両研磨部材の少なくとも一方に生じた偏心挙動を、両研磨部材の少なくとも他方が吸収するものであることを特徴とする請求項1又は2に記載の磨砕機。At least one of the first and second polishing members includes a floating mechanism. The floating mechanism enables the approach and separation between the two polishing members, and is generated in at least one of the two polishing members by rotation. The attrition behavior according to claim 1 or 2, wherein at least the other of the two polishing members absorbs the eccentric behavior. 上記の付勢機構は、空気などの流体圧を利用した付勢手段を用いると共に、この流体圧による付勢力の調整を行うものであり、
上記の動圧発生機構により発生する動圧と上記の付勢機構による付勢力との均衡にて、第1及び第2の研磨部材間の間隔を、0.1〜10μmの微小間隔に維持するようにしたことを特徴とする請求項1乃至3の何れかに記載の磨砕機。
The urging mechanism uses an urging means that utilizes fluid pressure such as air and adjusts the urging force by the fluid pressure.
By maintaining a balance between the dynamic pressure generated by the dynamic pressure generating mechanism and the biasing force by the biasing mechanism, the distance between the first and second polishing members is maintained at a minute distance of 0.1 to 10 μm. The attritor according to any one of claims 1 to 3, wherein the attritor is configured as described above .
上記の第1〜第4のいずれかの発明に係る磨砕機を用いて、上記の第1及び第2の両研磨部材の間に、被処理物を搬送する或いは被処理物自身となる流体を供給し、上記の動圧発生機構により発生する動圧と上記の付勢機構による付勢力との均衡にて、第1及び第2の研磨部材間の間隔を、0.1〜10μmの微小間隔に維持しつつ、磨砕や粉砕の処理を行うようにしたことを特徴とする被処理物の処理方法。Using the grinding machine according to any one of the first to fourth inventions described above, the fluid to be processed is conveyed between the first and second polishing members, or the fluid to be processed itself. The balance between the dynamic pressure generated by the dynamic pressure generating mechanism and the urging force by the urging mechanism is set so that the interval between the first and second polishing members is a minute interval of 0.1 to 10 μm. The processing method of the to-be-processed object characterized by performing grinding | pulverization and a grinding | pulverization process, maintaining it.
JP2002321018A 2002-07-16 2002-11-05 Grinder Expired - Lifetime JP3864131B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002321018A JP3864131B2 (en) 2002-11-05 2002-11-05 Grinder
US10/619,479 US7131604B2 (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid, and deaerator therewith
DE60307741T DE60307741T2 (en) 2002-07-16 2003-07-16 Process and processing device for liquids
CN2009101513812A CN101612533B (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid, and deaerator therewith
CN031784186A CN1483515B (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid, and deaerator with mecronizing device
EP03254461A EP1382380B1 (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid
AT03254461T ATE337085T1 (en) 2002-07-16 2003-07-16 METHOD AND APPARATUS FOR LIQUIDS
US11/499,755 US7278592B2 (en) 2002-07-16 2006-08-07 Processing apparatus and method for fluid, and deaerator therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321018A JP3864131B2 (en) 2002-11-05 2002-11-05 Grinder

Publications (2)

Publication Number Publication Date
JP2004154635A JP2004154635A (en) 2004-06-03
JP3864131B2 true JP3864131B2 (en) 2006-12-27

Family

ID=32801697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321018A Expired - Lifetime JP3864131B2 (en) 2002-07-16 2002-11-05 Grinder

Country Status (1)

Country Link
JP (1) JP3864131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064827A (en) * 2006-09-05 2008-03-21 M Technique Co Ltd Method for producing resin particles

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336566B2 (en) * 2002-11-08 2009-09-30 キヤノン株式会社 Method for producing toner particles
JP4185806B2 (en) * 2003-04-28 2008-11-26 キヤノン株式会社 Toner particle manufacturing method and toner manufacturing method
JP4336621B2 (en) * 2004-05-24 2009-09-30 キヤノン株式会社 Method for producing polymerized toner
JP5196937B2 (en) * 2006-11-28 2013-05-15 京セラ株式会社 Ceramic material production equipment
US8183299B2 (en) 2007-07-06 2012-05-22 M. Technique Co., Ltd. Method for producing ceramic nanoparticles
KR101482057B1 (en) 2007-07-06 2015-01-13 엠. 테크닉 가부시키가이샤 Liquid treating apparatus, and treating method
JP4335968B2 (en) 2007-07-06 2009-09-30 エム・テクニック株式会社 Method for producing metal fine particles and metal colloid solution containing the metal fine particles
JP2009082902A (en) 2007-07-06 2009-04-23 M Technique Co Ltd Nanoparticle production method using forced ultrathin film rotating treatment method
US8911545B2 (en) 2007-07-06 2014-12-16 M. Technique Co., Ltd. Method for producing pigment nanoparticles by forced ultrathin film rotary reaction method, pigment nanoparticles, and inkjet ink using the same
CN102847538B (en) * 2007-07-06 2016-07-06 M技术株式会社 The manufacture method of the crystallization formed by fullerenes and manufacture device
EP2177210B1 (en) 2007-07-06 2018-08-22 M Technique Co., Ltd. Method of producing microparticles to be ingested into the body, microparticles to be ingested into the body and dispersion and medicinal composition containing the same
JP6362336B2 (en) * 2014-01-21 2018-07-25 新日鐵住金株式会社 Sinter ore crusher
JP7437128B2 (en) * 2018-10-25 2024-02-22 昭和産業株式会社 Pulverizer for producing flour and method for producing flour using the same
CN114308314B (en) * 2021-12-30 2023-05-12 浙江威肯特智能机械有限公司 Adjustable colloid mill grinding mechanism
CN115283076B (en) * 2022-07-12 2023-05-09 黄淮学院 Food nutrient component decomposition device and decomposition method thereof
CN116422438B (en) * 2023-04-25 2023-09-08 连云港班庄水泥有限责任公司 Device and method for preparing highway subgrade retarding cement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839159Y2 (en) * 1978-09-05 1983-09-03 日立マクセル株式会社 Electric grain “ten” crusher
JPS5631451A (en) * 1979-08-20 1981-03-30 Shiyoosee Shiyokuhin Yuugen Grinding grind stone
JPS60122052A (en) * 1983-12-03 1985-06-29 増田 恒男 Grind stone consisting of zirconia ceramics material
JPS6191337U (en) * 1984-11-21 1986-06-13
US5279463A (en) * 1992-08-26 1994-01-18 Holl Richard A Methods and apparatus for treating materials in liquids
JP3671086B2 (en) * 1996-05-16 2005-07-13 日本高圧電気株式会社 Crusher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064827A (en) * 2006-09-05 2008-03-21 M Technique Co Ltd Method for producing resin particles
JP4565068B2 (en) * 2006-09-05 2010-10-20 エム・テクニック株式会社 Method for producing resin particles

Also Published As

Publication number Publication date
JP2004154635A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3864131B2 (en) Grinder
CN101612533B (en) Processing apparatus and method for fluid, and deaerator therewith
TWI418438B (en) Oscillating grinding machine
US20060266847A1 (en) Processing apparatus and method for fluid, and deaerator therewith
JPH08195365A (en) Wafer grind machine with fluid bearing and driving device
CN102350658A (en) Ultra-precise processing method for circular conical surface of fluid static pressure sealing ring for nuclear primary pump
CN110125731A (en) The method for grinding of retaining surface
KR20110125568A (en) Diamond dish-shaped grind stone and grinding method for spherical lens
KR101688911B1 (en) Centerless grinding machine comprising a dressing function
US5235959A (en) Arrangement and method for regenerating rotating precision grinding tools
CN100455411C (en) Viscoelastic polisher and polishing method using the same
KR19990023059A (en) Ultrasonic Vibration Compound Tool
WO2022071190A1 (en) Roller grinding device and carrier
JP2503158B2 (en) Cup-shaped grindstone
KR100734025B1 (en) Internal grinder apparatus for glass article
JPS62152674A (en) Blinding preventing device for grindstone
US5993300A (en) Ultrasonic vibration composite processing tool
US5472373A (en) Disk-grinding apparatus
JP5523438B2 (en) Bearing body and grinding device
US20020055327A1 (en) Grinding machine
JP3176954U (en) Eccentric roller crusher
JP2005271160A (en) Grinding wheel for surface grinding
JP2003291069A (en) Grinding wheel for grinder and grinding method using grinding wheel
JPH0551430B2 (en)
JP3224619B2 (en) Offline roll mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Ref document number: 3864131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161006

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term