JP3862244B2 - Antibacterial agent - Google Patents

Antibacterial agent Download PDF

Info

Publication number
JP3862244B2
JP3862244B2 JP28098596A JP28098596A JP3862244B2 JP 3862244 B2 JP3862244 B2 JP 3862244B2 JP 28098596 A JP28098596 A JP 28098596A JP 28098596 A JP28098596 A JP 28098596A JP 3862244 B2 JP3862244 B2 JP 3862244B2
Authority
JP
Japan
Prior art keywords
antibacterial agent
silver
inorganic powder
antibacterial
layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28098596A
Other languages
Japanese (ja)
Other versions
JPH10120518A (en
Inventor
眞志 内田
靖夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinanen Zeomic Co Ltd
Original Assignee
Sinanen Zeomic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinanen Zeomic Co Ltd filed Critical Sinanen Zeomic Co Ltd
Priority to JP28098596A priority Critical patent/JP3862244B2/en
Publication of JPH10120518A publication Critical patent/JPH10120518A/en
Application granted granted Critical
Publication of JP3862244B2 publication Critical patent/JP3862244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、飲料水処理や高分子成形材料に添加して抗菌性を付与する等に用いる抗菌剤であって、光、熱、圧力、化学物質等による影響を受けにくい安定性の高い抗菌剤に関する。
【0002】
【従来の技術】
各種の高分子成形材料に抗菌剤を添加して抗菌性を有する成形品を得る試みが行われており、このための抗菌剤も多く開発されている。このうち結晶性アルミノケイ酸塩であるゼオライトに抗菌性金属イオンである銀イオンを担持させた抗菌性ゼオライト(特開昭60−181002号)やリン酸ジルコニウムに銀イオンを担持させた抗菌剤(特開平3−83905号)が提案されており、安全性や抗菌持続性の点で優れていることが知られている。
抗菌剤は、種々の加工を受ける際に、また最終用途において、光、熱、圧力、化学物質等による影響を受けることがあり、これらの影響を受けた場合には、抗菌作用や外観上の着色、変色や機械的強度などの物性が低下することがあった。特に、銀イオンを含む抗菌剤はその抗菌性能は極めて高いが、光、熱、圧力、化学物質に対して影響を受けやすいという欠点があった。
【0003】
【発明が解決しようとする課題】
従って、本発明の目的は、種々の加工の際に、または最終用途において、光、熱、圧力、化学物質等による、抗菌作用の低下、外観上の着色、変色、機械的強度などの物性の低下のない、または少ない抗菌剤を提供することである。
【0004】
【課題を解決するための手段】
本発明者等は上記課題を解決するために種々検討した結果、粒子径が10nm以下の金属銀微粒子が化学的に非常に安定であり、抗菌性能も銀イオンを担持したものに匹敵することを見出し、本発明を完成するに至った。
本発明は、粒子径が10nm以下の金属銀微粒子を含有する無機粉体であることを特徴とする抗菌剤を提供するものである。
銀粒子は物理化学的に安定で、光、熱、圧力等の物理的影響を受けにくく、また化学物質に対しても安定である。しかしながら、銀粒子の一般的な粒子径である0.5μmでは、抗菌作用がほとんどなく、実用的な抗菌剤としては不適当である。
【0005】
【発明の実施の形態】
以下本発明について詳細に説明する。
金属銀粒子を微粉砕して10nmの均一な粒子を多量に得ることは非常に困難である。このため、本発明に使用される粒子径10nm以下の金属銀微粒子を含有する無機粉体を調製するには、包接格子を有する無機粉体を用いることが望ましい。包接格子とは、原子や分子が入り込む程度の隙間で、この包接格子を有する無機粉体は微小な層状やかご状空洞を有する構造の部分に分子をとじ込める性質を持っており、この性質を利用して均一で非常に微細な金属銀粒子を製造することができる。
本発明において使用される、包接格子を有する無機粉体としては、ゼオライト、層状リン酸塩、層状粘土鉱物、遷移金属カルコゲン化物、黒鉛、遷移金属酸化物、及び層状酸素酸塩からなる群から選ばれた少なくとも1種を挙げることができる。
【0006】
ゼオライトとしては、合成ゼオライトおよび天然ゼオライト、例えばA−型ゼオライト、X−型ゼオライト、Y−型ゼオライト、T−型ゼオライト、高シリカゼオライト、ソーダライト、モルデナイト、アナルサイム、クリノプチロライト、チャバサイト、エリオナイト等を挙げることができる。
層状リン酸塩としては、リン酸ジルコニウム、リン酸チタン等を挙げることができる。
層状粘土鉱物としては、モンモリロナイト、バーミキュライト、カオリナイト、バイデライト、セピオライト等を挙げることができる。
遷移金属カルコゲン化物としては、チタン、ジルコニウム、ハフニウム、モリブデン、タングステン、ニオブ、タンタル、バナジウム、マンガン、ニッケル等の遷移金属と、イオウ、セレン、テルル等のカルコゲン元素を含む化合物、例えば、TaS2 、TaSe2 、NbS2 、VPS3 、MnPS3 、NiPSe3 等を挙げることができる。
【0007】
遷移金属酸化物としては、酸化タングステン、酸化レニウム、酸化ルテニウム、酸化バナジウム等を挙げることができる。
層状酸素酸塩としては、チタン酸、ウラン酸、ニオブ酸、タングステン酸、モリブデン酸、バナジン酸のアルカリ金属塩およびアルカリ土類金属塩、例えば、チタン酸ナトリウム、ウラン酸ナトリウム、ウラン酸カリウム、ニオブ酸カリウム、タングステン酸ナトリウム、モリブデン酸マグネシウム、モリブデン酸カルシウム、バナジン酸カリウム等を挙げることができる。
その他銀粒子を担持する無機粉体としてはシリカゲル、アルミナゲル、活性炭、ガラス等を挙げることができる。
【0008】
本発明において無機粉体の粒子径は、種々の加工において対応しやすい観点から0.1〜20μmの粒度範囲に含まれるものが好ましい。また、無機粉体の平均粒子径は0.3〜12μm、好ましくは0.5〜4μmが適当である。
本発明において無機粉体の比表面積は、金属銀の微粒子を多く含有できるとの観点から80m2 /g以上であることが好ましく、その上限は特に限定されないが、通常は900m2 /g以下である。
【0009】
本発明において無機粉体上に生成する粒子径10nm以下の金属銀微粒子は、例えば、銀塩化合物の溶液を無機粉体粒子に接触付着させて、これを還元させることにより調製できる。
本発明において抗菌剤調製に使用する銀化合物としては、水溶性の銀化合物が好ましく、例えば、硝酸銀、硫酸銀、酢酸銀、塩素酸銀、過塩素酸銀、ヘキサフルオロリン酸銀、テトラフルオロホウ酸銀、ジアンミン銀硫酸塩等を挙げることができる。
無機粉体上に接触付着させた銀塩を還元する方法としては、熱分解法と還元剤反応法がある。熱分解法は、銀化合物の熱分解温度以上の温度で加熱する方法である。例えば、硝酸銀の熱分解温度は444℃、酢酸銀の熱分解温度は240℃、テトラフルオロホウ酸銀の熱分解温度は200℃である。還元剤反応法は銀化合物に種々の還元剤を作用させてこれを還元して金属銀にする方法である。使用できる還元剤としては、糖類、アルデヒド類、ハイドロキノン、ギ酸、シュウ酸、アスコルビン酸、亜硝酸塩類、2価クロム塩類、2価鉄塩類、1価銅塩類、4価ウラニウム塩類、2価バナジウム塩類、亜硫酸ガス、亜硝酸ガス、一酸化炭素等を挙げることができる。
【0010】
本発明において抗菌剤中の銀粒子は10nm以下のものが全銀粒子の60重量%以上、さらに好ましくは80重量%以上を占めていることが好ましい。なおこの銀粒子の粒径は、点分解能0.5nm以下の電子顕微鏡(明石製作所・EM−002A他)で測定できる。
また本発明において抗菌剤中の銀粒子の平均粒子径は、1〜10nm、好ましくは4〜10nmが適当である。
本発明の無機粉体からなる抗菌剤は、銀粒子を抗菌剤重量の0.7重量%以上、さらに好ましくは1.4重量%以上含有することが抗菌性能の点から好ましい。
本発明の抗菌剤は、抗菌作用が要望される種々の分野で使用できる。例えば飲料水処理分野、食品包装分野、医療製品分野、業務用家庭用調理製品分野、浴室関連分野、トイレ関連分野等に使用できる。
【0011】
【発明の効果】
本発明の抗菌剤は、光、熱、圧力、化学物質等による影響を受けにくく、安定性の高い抗菌作用を長期間に渡って発揮できる。
【0012】
【実施例】
実施例1〜5
無機粉体としてA−型ゼオライト粉体(Na2O・Al2O3 ・1.9 SiO2・xH2O:平均粒径1.5μm、比表面積720m2/g)、リン酸ジルコニウム粉末(平均粒径0.6μm、比表面積240m2/g)、セピオライト(平均粒径80mesh、比表面積110m2/g)及びチタン酸ナトリウム(平均粒径3.7μm、比表面積85m2/g)を、銀化合物として酢酸銀を用い、熱分解法にて抗菌剤粉体を調製した。調製は所定量の無機粉体と酢酸銀微粉体に少量の水分を加えて混合した後、280〜300℃で1時間加熱した。処方量と調製した抗菌剤粉体の銀含有量、その他の測定値を表1に示す。
【0013】
実施例6及び7
無機粉体としてY−型ゼオライト粉体(Na2O・Al2O3 ・2.4 SiO2・xH2O:平均粒径0.5μm、比表面積840m2/g)、モンモリロナイト粉体(平均粒径100mesh、比表面積280m2/g)を使用し、これを硝酸銀水溶液に浸漬し表面に銀イオンを付着させた。これを水洗後、10%アスコルビン酸水溶液を加えて、銀イオンを金属塩に還元した。濾過し、100℃で乾燥して抗菌剤を調製した。調製した抗菌剤粉体の銀含有量、その他の測定値を表2に示す。
【0014】
比較例1〜3
比較例として、銀粒子を含まないリン酸ジルコニウム粉末(平均粒径0.6μm、比較例1)、銀イオン置換リン酸ジルコニウム粉末(銀イオン含有量:3.1%、平均粒径0.6μm、比較例2)、及び平均粒径が10μmの銀粒子(比較例3)を用意した。
【0015】
試験例1(抗菌力試験)
実施例、比較例で得た粒子の抗菌力を、日本化学療法学会標準法による最小発育阻止濃度(MIC)、最小死滅濃度(MBC)を、黄色ブドウ球菌と緑膿菌のそれぞれの菌種について測定することにより評価した。結果を表3に示す。
試験例2(光、熱、化学物質に対する耐久性試験)
実施例、比較例で得た粒子について種々の耐久性を評価するため、下記の処理を行った後、日本化学療法学会標準法による最小発育阻止濃度(MIC)、最小死滅濃度(MBC)を黄色ブドウ球菌について測定した。結果を表4、表5に示す。
処理A:紫外線ランプ(20W)2本を距離10cmにて1000時間照射した。
処理B:窒素雰囲気中で800℃で96時間加熱した。
処理C:1規定濃度水酸化ナトリウム水溶液に20℃で96時間浸漬後、水洗した。
処理D:1規定濃度次亜塩素酸ナトリウム水溶液に20℃で96時間浸漬後、水洗した。
【0016】
【表1】

Figure 0003862244
【0017】
【表2】
Figure 0003862244
【0018】
【表3】
Figure 0003862244
【0019】
【表4】
Figure 0003862244
【0020】
【表5】
Figure 0003862244
[0001]
BACKGROUND OF THE INVENTION
The present invention is an antibacterial agent used to add antibacterial properties by being added to drinking water treatment or polymer molding materials, and has high stability and is not easily affected by light, heat, pressure, chemical substances, etc. About.
[0002]
[Prior art]
Attempts have been made to obtain molded articles having antibacterial properties by adding antibacterial agents to various polymer molding materials, and many antibacterial agents for this purpose have been developed. Of these, an antibacterial zeolite (Japanese Patent Laid-Open No. 60-181002) in which silver ions as an antibacterial metal ion are supported on a zeolite that is a crystalline aluminosilicate, and an antibacterial agent in which silver ions are supported on a zirconium phosphate (special Kaihei 3-83905) has been proposed, and is known to be excellent in terms of safety and antibacterial durability.
Antibacterial agents may be affected by light, heat, pressure, chemical substances, etc. when subjected to various processing and in end uses. Physical properties such as coloring, discoloration, and mechanical strength may be reduced. In particular, the antibacterial agent containing silver ions has an extremely high antibacterial performance, but has a drawback of being easily affected by light, heat, pressure, and chemical substances.
[0003]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to reduce the antibacterial action, coloration, discoloration, mechanical strength, etc. due to light, heat, pressure, chemical substances, etc. during various processing or in end use. To provide an antibacterial agent with little or no reduction.
[0004]
[Means for Solving the Problems]
As a result of various studies to solve the above problems, the present inventors have found that metal silver fine particles having a particle size of 10 nm or less are chemically very stable, and antibacterial performance is comparable to that carrying silver ions. The headline and the present invention were completed.
The present invention provides an antibacterial agent characterized by being an inorganic powder containing metallic silver fine particles having a particle diameter of 10 nm or less.
Silver particles are physicochemically stable, are not easily affected by physical effects such as light, heat, and pressure, and are stable to chemical substances. However, the general particle diameter of 0.5 μm of silver particles has almost no antibacterial action and is not suitable as a practical antibacterial agent.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
It is very difficult to pulverize metallic silver particles to obtain a large amount of 10 nm uniform particles. Therefore, in order to prepare an inorganic powder containing metal silver fine particles having a particle diameter of 10 nm or less used in the present invention, it is desirable to use an inorganic powder having an inclusion lattice. The inclusion lattice is a gap that allows atoms and molecules to enter, and the inorganic powder that has this inclusion lattice has the property of trapping molecules in the part of the structure with minute layered or cage-like cavities. Using the properties, uniform and very fine metallic silver particles can be produced.
The inorganic powder having an inclusion lattice used in the present invention is selected from the group consisting of zeolite, layered phosphate, layered clay mineral, transition metal chalcogenide, graphite, transition metal oxide, and layered oxyacid salt. There may be mentioned at least one selected.
[0006]
As zeolites, synthetic zeolites and natural zeolites such as A-type zeolites, X-type zeolites, Y-type zeolites, T-type zeolites, high silica zeolites, sodalite, mordenite, analcime, clinoptilolite, chabasite, Examples include erionite.
Examples of the layered phosphate include zirconium phosphate and titanium phosphate.
Examples of the layered clay mineral include montmorillonite, vermiculite, kaolinite, beidellite and sepiolite.
Transition metal chalcogenides include compounds containing transition metals such as titanium, zirconium, hafnium, molybdenum, tungsten, niobium, tantalum, vanadium, manganese, nickel, and chalcogen elements such as sulfur, selenium, tellurium, such as TaS 2 , TaSe 2, NbS 2, can be cited VPS 3, MnPS 3, NiPSe 3 like.
[0007]
Examples of the transition metal oxide include tungsten oxide, rhenium oxide, ruthenium oxide, vanadium oxide, and the like.
Layered oxygenates include titanic acid, uranic acid, niobic acid, tungstic acid, molybdic acid, vanadic acid alkali metal salts and alkaline earth metal salts such as sodium titanate, sodium uranate, potassium uranate, niobium Examples include potassium acid, sodium tungstate, magnesium molybdate, calcium molybdate, and potassium vanadate.
In addition, examples of inorganic powder supporting silver particles include silica gel, alumina gel, activated carbon, and glass.
[0008]
In the present invention, the particle diameter of the inorganic powder is preferably within a particle size range of 0.1 to 20 μm from the viewpoint of being easily applicable in various processes. The average particle size of the inorganic powder is 0.3 to 12 μm, preferably 0.5 to 4 μm.
In the present invention, the specific surface area of the inorganic powder is preferably 80 m 2 / g or more from the viewpoint that it can contain a large amount of fine particles of metal silver, and the upper limit is not particularly limited, but is usually 900 m 2 / g or less. is there.
[0009]
In the present invention, the metallic silver fine particles having a particle diameter of 10 nm or less formed on the inorganic powder can be prepared, for example, by bringing a solution of a silver salt compound into contact with the inorganic powder particles and reducing it.
As the silver compound used for the preparation of the antibacterial agent in the present invention, a water-soluble silver compound is preferable. For example, silver nitrate, silver sulfate, silver acetate, silver chlorate, silver perchlorate, silver hexafluorophosphate, tetrafluoroborate Examples thereof include acid silver and diammine silver sulfate.
Methods for reducing the silver salt contacted and deposited on the inorganic powder include a thermal decomposition method and a reducing agent reaction method. The thermal decomposition method is a method of heating at a temperature equal to or higher than the thermal decomposition temperature of the silver compound. For example, the thermal decomposition temperature of silver nitrate is 444 ° C., the thermal decomposition temperature of silver acetate is 240 ° C., and the thermal decomposition temperature of silver tetrafluoroborate is 200 ° C. The reducing agent reaction method is a method in which various reducing agents are allowed to act on silver compounds to reduce them to form metallic silver. Usable reducing agents include sugars, aldehydes, hydroquinone, formic acid, oxalic acid, ascorbic acid, nitrites, divalent chromium salts, divalent iron salts, monovalent copper salts, tetravalent uranium salts, divalent vanadium salts. , Sulfurous acid gas, nitrous acid gas, carbon monoxide and the like.
[0010]
In the present invention, the silver particles in the antibacterial agent preferably have a particle size of 10 nm or less, accounting for 60% by weight or more, more preferably 80% by weight or more of the total silver particles. The particle diameter of the silver particles can be measured with an electron microscope (Akashi Seisakusho, EM-002A, etc.) having a point resolution of 0.5 nm or less.
In the present invention, the average particle size of silver particles in the antibacterial agent is 1 to 10 nm, preferably 4 to 10 nm.
The antibacterial agent comprising the inorganic powder of the present invention preferably contains silver particles in an amount of 0.7% by weight or more, more preferably 1.4% by weight or more of the weight of the antibacterial agent from the viewpoint of antibacterial performance.
The antibacterial agent of the present invention can be used in various fields where antibacterial action is desired. For example, it can be used in the drinking water treatment field, food packaging field, medical product field, commercial household cooking product field, bathroom-related field, toilet-related field, and the like.
[0011]
【The invention's effect】
The antibacterial agent of the present invention is hardly affected by light, heat, pressure, chemical substances, etc., and can exhibit a highly stable antibacterial action over a long period of time.
[0012]
【Example】
Examples 1-5
A-type zeolite powder (Na 2 O · Al 2 O 3 · 1.9 SiO 2 · xH 2 O: average particle size 1.5 μm, specific surface area 720 m 2 / g) as inorganic powder, zirconium phosphate powder (average particle size) Diameter 0.6 μm, specific surface area 240 m 2 / g), sepiolite (average particle diameter 80 mesh, specific surface area 110 m 2 / g) and sodium titanate (average particle diameter 3.7 μm, specific surface area 85 m 2 / g) Antibacterial powder was prepared by a thermal decomposition method using silver acetate. In the preparation, a small amount of water was added to and mixed with a predetermined amount of inorganic powder and silver acetate fine powder, and then heated at 280 to 300 ° C. for 1 hour. Table 1 shows the prescription amount, the silver content of the prepared antibacterial agent powder, and other measured values.
[0013]
Examples 6 and 7
Y-type zeolite powder (Na 2 O · Al 2 O 3 · 2.4 SiO 2 · xH 2 O: average particle size 0.5 μm, specific surface area 840 m 2 / g), montmorillonite powder (average particle size) 100 mesh and a specific surface area of 280 m 2 / g) were used and immersed in an aqueous silver nitrate solution to attach silver ions to the surface. After washing with water, a 10% aqueous ascorbic acid solution was added to reduce silver ions to a metal salt. The antibacterial agent was prepared by filtering and drying at 100 ° C. Table 2 shows the silver content and other measured values of the prepared antibacterial powder.
[0014]
Comparative Examples 1-3
As comparative examples, zirconium phosphate powder containing no silver particles (average particle size 0.6 μm, comparative example 1), silver ion-substituted zirconium phosphate powder (silver ion content: 3.1%, average particle size 0.6 μm) Comparative Example 2) and silver particles having an average particle diameter of 10 μm (Comparative Example 3) were prepared.
[0015]
Test example 1 (antibacterial activity test)
The antibacterial activity of the particles obtained in Examples and Comparative Examples is the minimum inhibitory concentration (MIC) and the minimum killing concentration (MBC) according to the standard method of the Japanese Society of Chemotherapy, for each strain of Staphylococcus aureus and Pseudomonas aeruginosa. Evaluation was made by measuring. The results are shown in Table 3.
Test Example 2 (Durability test for light, heat, and chemical substances)
In order to evaluate various durability of the particles obtained in Examples and Comparative Examples, the following treatment was performed, and the minimum inhibitory concentration (MIC) and the minimum killing concentration (MBC) according to the standard method of the Japanese Chemotherapy Society were yellow. Measured for staphylococci. The results are shown in Tables 4 and 5.
Process A: Two ultraviolet lamps (20 W) were irradiated for 1000 hours at a distance of 10 cm.
Process B: Heated at 800 ° C. for 96 hours in a nitrogen atmosphere.
Process C: It was immersed in a 20% aqueous sodium hydroxide solution at 20 ° C. for 96 hours and then washed with water.
Treatment D: After immersing in a normal sodium hypochlorite aqueous solution at 20 ° C. for 96 hours, it was washed with water.
[0016]
[Table 1]
Figure 0003862244
[0017]
[Table 2]
Figure 0003862244
[0018]
[Table 3]
Figure 0003862244
[0019]
[Table 4]
Figure 0003862244
[0020]
[Table 5]
Figure 0003862244

Claims (5)

粒子径が10nm以下の金属銀微粒子を含有する無機粉体であることを特徴とする抗菌剤であって、該無機粉体が、包接格子を有し、かつ80m 2 /g以上の比表面積を有するものであること、全銀粒子の60重量%以上が10nm以下の粒子径を有するものであることを特徴とする抗菌剤An antibacterial agent comprising an inorganic powder containing metal silver fine particles having a particle diameter of 10 nm or less , wherein the inorganic powder has an inclusion lattice and has a specific surface area of 80 m 2 / g or more. An antibacterial agent characterized in that 60% by weight or more of all silver particles have a particle size of 10 nm or less . 無機粉体が、包接格子を有する、ゼオライト、層状リン酸塩、層状粘鉱物、遷移金属カルコゲン化物、黒鉛、遷移金属酸化物、及び層状酸素酸塩からなる群から選ばれた少なくとも1種である請求項1記載の抗菌剤。Inorganic powder has a clathrate lattice, zeolites, layered phosphate, the layered clay mineral, transition metal chalcogenides, graphite, transition metal oxides, and at least one selected from the group consisting of lamellar oxygen acid salt The antibacterial agent according to claim 1. 無機粉体が、包接格子を有する、ゼオライト、層状リン酸塩、層状粘土鉱物、及び層状酸素酸塩からなる群から選ばれた少なくとも1種である請求項1記載の抗菌剤。The antibacterial agent according to claim 1, wherein the inorganic powder is at least one selected from the group consisting of zeolite, layered phosphate, layered clay mineral, and layered oxyacid salt having an inclusion lattice. 無機粉体が、0.1〜20μmの粒子径を有する請求項1〜3のいずれか1項記載の抗菌剤。The antibacterial agent according to any one of claims 1 to 3, wherein the inorganic powder has a particle diameter of 0.1 to 20 µm. 金属銀微粒子が、1〜10nmの平均粒子径を有する請求項1〜4のいずれか1項記載の抗菌剤。The antibacterial agent according to any one of claims 1 to 4, wherein the metal silver fine particles have an average particle diameter of 1 to 10 nm.
JP28098596A 1996-10-23 1996-10-23 Antibacterial agent Expired - Fee Related JP3862244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28098596A JP3862244B2 (en) 1996-10-23 1996-10-23 Antibacterial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28098596A JP3862244B2 (en) 1996-10-23 1996-10-23 Antibacterial agent

Publications (2)

Publication Number Publication Date
JPH10120518A JPH10120518A (en) 1998-05-12
JP3862244B2 true JP3862244B2 (en) 2006-12-27

Family

ID=17632656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28098596A Expired - Fee Related JP3862244B2 (en) 1996-10-23 1996-10-23 Antibacterial agent

Country Status (1)

Country Link
JP (1) JP3862244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304974B2 (en) 2017-04-10 2022-04-19 Laboratorios Enosan, S.L. Nanosystems comprising silver and antibiotics and their use for the treatment of bacterial infections
KR102271622B1 (en) * 2019-08-21 2021-07-01 주식회사 씨피알에스앤티 Packaging container with antimicrobial and antifungal activity and method for manufacturing the same

Also Published As

Publication number Publication date
JPH10120518A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
CA2167030C (en) An antimicrobial polymer composition
JPH0640829A (en) Production of antimicrobial agent
JP5354852B2 (en) Deodorant antibacterial composition
US4935393A (en) Process for catalytic reduction of nitrogen oxides
JPS6270221A (en) Amorphous aluminosilicate having antimicrobial and/or germicidal action
JP3862244B2 (en) Antibacterial agent
JP4355835B2 (en) Photocatalytic material
JPS60202162A (en) Antiseptic and mildewproofing paint composition
TW305775B (en)
JPH11246212A (en) Antibacterial zeolite
JPH06239713A (en) Antimicrobial zeolite and its production
JP3371460B2 (en) Antibacterial agent and antibacterial resin composition
JPS63250309A (en) Antibacterial agent
JPH08175843A (en) Antimicrobial agent having durability
CA2105593C (en) Silver-containing tobermorite
JP4619075B2 (en) Method for producing antibacterial and deodorant titanium oxide colloidal solution
JPH09227319A (en) Antimicrobial powder and production thereof
JPH10273322A (en) Antifungal composite titanate and manufacture of the same
CA1333793C (en) Pyridine base synthesis process and catalyst for same
DE1926039C3 (en)
JPH02111709A (en) Powdery antibacterial and antimycotic agent and production thereof
JPH05148116A (en) Antibacterial mildew-proofing composition and its production
CN112938925B (en) Novel antibacterial silver compound titanium oxide silver phosphate and preparation method thereof
JPH03218765A (en) Antimicrobial ceramics material
JP3541201B2 (en) Silver-containing zonotolite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees