JP3861173B2 - Idle air control system for multiple throttle bodies - Google Patents

Idle air control system for multiple throttle bodies Download PDF

Info

Publication number
JP3861173B2
JP3861173B2 JP28202698A JP28202698A JP3861173B2 JP 3861173 B2 JP3861173 B2 JP 3861173B2 JP 28202698 A JP28202698 A JP 28202698A JP 28202698 A JP28202698 A JP 28202698A JP 3861173 B2 JP3861173 B2 JP 3861173B2
Authority
JP
Japan
Prior art keywords
air control
control valve
air
lever
throttle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28202698A
Other languages
Japanese (ja)
Other versions
JP2000097133A (en
Inventor
祐一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP28202698A priority Critical patent/JP3861173B2/en
Publication of JP2000097133A publication Critical patent/JP2000097133A/en
Application granted granted Critical
Publication of JP3861173B2 publication Critical patent/JP3861173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、燃料ポンプによって昇圧された燃料を、燃料噴射弁を介して機関へ噴射供給する燃料噴射装置に関し、そのうち特に複数の吸気路が側方に配置されるとともに各吸気路には大気と絞り弁より下流側吸気路とを連絡するバイパス空気通路を備える多連スロットルボデーにおけるアイドル空気制御装置に関する。
【0002】
【従来の技術】
従来の多連スロットルボデーにおけるアイドル空気制御装置は実開平2−67058号公報に示される。これによると、複数の吸気路を有し、各吸気路には、大気と絞り弁より下流側の吸気路とを連絡するバイパス空気通路が設けられ、このバイパス空気通路内に空気制御弁が配置される。
又、スロットルボデーの側方には空気制御弁操作軸が回転自在に支承配置される。この空気制御弁操作軸には、主動レバーと複数の従動レバーとが固定配置され主動レバーと従動レバーとは空気制御弁操作軸と同期的に回転する。
そして前記主動レバーには感熱応動部材の出力杆が係合配置され、複数の従動レバーには、各空気制御弁の首部が係合配置される。
而して感熱応動部材の熱膨縮材料が膨張、収縮することによって出力杆が伸縮すると、主動レバーは前記出力杆の伸縮に応じて時計方向及び反時計方向へ回転するもので、これによって空気制御弁操作軸もまたこれと同期して回転する。
そして、前記空気制御弁操作軸の回転によると、それと同期して複数の従動レバーもまた同期的に回転するもので、この従動レバーの回転によって空気制御弁は各バイパス空気通路内を流れるアイドル空気量を制御する。
【0003】
【発明が解決しようとする課題】
かかる従来の多連スロットルボデーにおけるアイドル空気制御装置によると、各バイパス空気通路から各吸気路の絞り弁より下流側の吸気路内へ供給されるアイドル空気量を正確に均一に供給することが困難である。
すなわち、各空気制御弁は、それに対応する従動レバーと単に首部をもって固定して係合配置されるものであり、何等の調整手段を有するものでない。
以上によれば、空気制御弁、従動レバー、等の部品の製作誤差、あるいは組付け誤差が生じた際において何等の調整を行なうことができないもので各吸気路内における均一なアイドル空気量の制御が困難である。
【0004】
本発明になる多連スロットルボデーにおけるアイドル空気制御装置は前記課題に鑑み成されたもので、各バイパス空気通路から各絞り弁より下流側の吸気路内へ供給されるアイドル空気量を、極めて簡単な構造をもって正確に且つ均一に供給し、良好な機関のアイドリング運転を得ることを目的とする。
【0005】
【課題を解決する為の手段】
本発明になる多連スロットルボデーにおけるアイドル空気制御装置は前記課題を達成する為に、複数の吸気路が側方に配置され、該吸気路が絞り弁によって同期的に開閉制御される多連スロットルボデーと、
各吸気路の絞り弁より下流側吸気路と大気とを連絡する複数のバイパス空気通路と、
各バイパス空気通路に配置され、バイパス空気通路内を流れる空気量を制御する複数の空気制御弁と、
多連スロットルボデーに回転自在に支承される空気制御弁操作軸と、
空気制御弁操作軸に固定配置され、感熱応動部材のストローク変化を受けて空気制御弁操作軸に回転力を付与する単一の主動レバーと、
空気制御弁操作軸に固定配置され、各バイパス空気通路に設けられる各空気制御弁に対し開閉操作力を付与する複数の操作レバーと、を備え、
前記複数の操作レバーの内のいずれか一つの操作レバーとそれに対応する空気制御弁とを、単一の操作レバーの二又状の上面を空気制御弁の鍔部の下面に当接して固定係合配置し、残余の操作レバーとそれに対応する空気制御弁とを、空気制御弁の杆部に螺着されたナット、及び杆部に遊嵌された遊嵌部材に向けて残余の操作レバーの二又状の上面を当接して可変係合配置したことを第1の特徴とする。
【0006】
又、本発明は、前記第1の特徴に加え、前記、感熱応動部材を構成する筐体を多連スロットルボデーに固定配置するとともに前記筐体にネジ部材を螺着配置し、前記ネジ部材の端部を空気制御弁操作軸に固定配置される主動レバーの第1腕部に当接配置するとともに感熱応動部材の出力端部を主動レバーの第2腕部に連結配置したことを第2の特徴とする。
【0007】
【作用】
前記第1の特徴によれば、単一の操作レバーとそれに対応配置される空気制御とが固定係合され、前記単一の空気制御弁にて制御されるバイパス空気が基準アイドル空気量として設定され、それに対応する絞り弁より下流側の吸気路内へ供給される。
残余の操作レバーとそれに対応配置される残余の空気制御弁とが可変係合され、前記残余の空気制御弁を可変調整することによって、各バイパス空気通路より基準アイドル空気量に正確に合致した均一なアイドル空気量を供給することができる。
【0008】
又、第2の特徴によると、感熱応動部材の筐体がスロットルボデーに固定配置され、且つ主動レバーに当接するネジ部材が筐体に螺着されるので、その取付けが簡略化され、製造コストを低減する上で好ましい。
【0009】
【実施例】
以下、本発明になる多連スロットルボデーにおけるアイドル空気制御装置の一実施例について図により説明する。
図1は上部平面図、図2は図1のA−A線における縦断面図、図3は図1のB−B線における縦断面図、図4は図1のC−C線における縦断面図である。
尚、本図においては説明を容易にする為、主要部のみの記載としたもので例えば燃料分配管、燃料噴射弁等の構成を省略した。
T1は第1スロットルボデーであって上端から下端に向けて第1吸気路1と第2吸気路2とが夫々独立して穿設される。
3は前記第1吸気路と第2吸気路2とを横断して第1スロットルボデーT1に回転自在に支承された第1絞り弁軸であり、この第1絞り弁軸3には第1吸気路1を開閉制御する第1絞り弁4と第2吸気路2を開閉制御する第2絞り弁5が取着される。
而して前記第1吸気路1は第1絞り弁4より下流に、絞り弁より下流側吸気路1Aが形成され、第2吸気路2は、第2絞り弁5より下流に、絞り弁より下流側吸気路2Aが形成される。
T2は、前記第1スロットルボデーT1の右側方に配置される第2スロットルボデーであり、第1のスロットルボデーT1と同一構造をなす。尚、第2スロットルボデーT2に配置される絞り弁軸を第2絞り弁軸6と呼ぶ。又吸気路及び絞り弁については、同一符号を使用する。
そして、前記第1及び第2スロットルボデーT1,T2は図示されぬ、連結ステー、連結ボルト、等の連結手段をもって連結されるもので、このとき、第1絞り弁軸3と第2絞り弁軸6とはその対向端部において、連結同調装置7にて連結され、これによって第1絞り弁軸3と第2絞り弁軸6とは同期的に回転し、各絞り弁4,5が各吸気路1,2を同期的に開閉制御する。本例では2バレル型のスロットルボデーを2個設けたが単一の吸気路を有する単一のスロットルボデーを複数個用いてもよい。
【0010】
8は前記スロットルボデーT1,T2に沿って配置されるとともにスロットルボデーT1,T2に回転自在に支承された空気制御弁操作軸である。
又、バイパス空気通路は各吸気路に臨んで形成されるもので、第1バイパス空気通路9は第1スロットルボデーT1の第1吸気路1に臨んで形成される。
この第1バイパス空気通路9の上流は制御孔9Aを介して第1スロットルボデーT1の上端に形成せる空気室凹部10内に開口し、下流は第1絞り弁4より下流側の第1吸気路1A内に開口する。
又、第1バイパス空気通路9内には制御孔9Aの開口面積を可変制御する円筒状の第1空気制御弁11が移動自在に配置されるもので、この第1空気制御弁11は図3において左方へ突出する杆部11Aを有するとともにその端部にオネジ11Bが形成される。
尚、12は第1空気制御弁11を右方に押圧し、制御孔9Aの開口が減少する側に付勢するスプリングである。
【0011】
第2バイパス空気通路13は第1スロットルボデーT1の第2吸気路2に臨んで形成される。
この第2バイパス空気通路13の上流は制御孔13Aを介して第1スロットルボデーT1の上端に形成せる空気室凹部10内に開口し、下流は第2絞り弁5より下流側の第2吸気路2A内に開口する。
又、第2バイパス空気通路13内には制御孔13Aの開口面積を可変制御する円筒状の第2空気制御弁14が移動自在に配置されるもので、この第2空気制御弁14は図2において左方へ突出する杆部14Aを有するとともにその端部に鍔部14Bを有する。
尚、12は第2空気制御弁14を右方に押圧し、制御孔13Aの開口が減少する側に付勢するスプリングである。
【0012】
第3バイパス空気通路15は第2スロットルボデーT2の第1吸気路1に臨んで形成される。
この第3バイパス空気通路15の上流は制御孔15Aを介して第2スロットルボデーT2の上端に形成せる空気室凹部10内に開口し、下流は第1絞り弁4より下流側の第1吸気路1A内に開口する。
又、第3バイパス空気通路15内には制御孔15Aの開口面積を可変制御する円筒状の第3空気制御弁16が移動自在に配置されるもので、この第3空気制御弁16は左方へ突出する杆部16Aを有するとともにその端部にオネジ16Bが形成される。
第3空気制御弁16を右方に押圧し、制御孔15Aの開口が減少する側に付勢するスプリング12は図示されない。
【0013】
第4バイパス空気通路17は第2スロットルボデーT2の第2吸気路2に臨んで形成される。
この第4バイパス空気通路17の上流は制御孔17Aを介して第2スロットルボデーT2の上端に形成せる空気室凹部10内に開口し、下流は第2絞り弁5より下流側の第2吸気路2A内に開口する。
又、第4バイパス空気通路17内には制御孔17Aの開口面積を可変制御する円筒状の第4空気制御弁18が移動自在に配置されるもので、この第4空気制御弁18は左方へ突出する杆部18Aを有するとともにその端部にオネジ18Bが形成される。
第4空気制御弁18を右方に押圧し、制御孔17Aの開口が減少する側に付勢するスプリング12は図示されない。
【0014】
以上の如く、第1空気制御弁11、第3空気制御弁16、第4空気制御弁18は同一形状を成し、杆部の端部にオネジを有する。
第2空気制御弁14の杆部14Aの端部には鍔部14Bを有する。
【0015】
そして、前記空気制御弁操作軸8には二又状の第1〜第4操作レバーが固着配置される。
第1操作レバーL1の二又状L1aには第1空気制御弁11の杆部11Aが挿入配置されるとともに二又状L1aの上面L1b上に杆部11Aに遊嵌される遊嵌部材19が移動自在に配置され、さらに遊嵌部材19上にオネジ11Bに螺着されるナットNが配置される。
これは図3に示される。
【0016】
第2操作レバーL2の二又状L2aには、第2空気制御弁14の杆部14Aが挿入配置されるとともに二又状L2aの上面L2bは鍔部14Bの下面に当接して配置される。
これは図2によく示される。
【0017】
第3操作レバーL3の二又状L3aには第3空気制御弁16の杆部16Aが挿入配置されるとともに二又状L3aの上面L3b上に杆部16Aに遊嵌される遊嵌部材19が移動自在に配置され、さらに遊嵌部材19上にオネジ16Bに螺着されるナットNが配置される。
【0018】
第4操作レバーL4の二又状L4aには第4空気制御弁18の杆部18Aが挿入配置されるとともに二又状L4aの上面L4b上に杆部18Aに遊嵌される遊嵌部材19が移動自在に配置され、さらに遊嵌部材19上にオネジ18Bに螺着されるナットNが配置される。
【0019】
又、空気制御弁操作軸8には、主動レバー19が固定配置される。この主動レバー19には空気制御弁操作軸8の一側に第1腕部8Aが形成され、他側に第2腕部8Bが形成される。
【0020】
Pは内部にオレフィン、パラフィン等の熱膨縮材料が封入された感熱応動部材であり、感熱応動部材P内における体積変化は出力杆20のストローク変化として外部へ出力される。
すなわち、感熱応動部材Pが暖められて内部の熱膨縮材料が膨張して体積が増加すると出力杆20は大きく外方に向かって突出し、一方感熱応動部材Pが冷却されて内部の熱膨縮材料が収縮して体積が減少すると出力杆20の突出は減少する。図4で説明すれば熱膨縮材料が膨張すると、出力杆20は右斜め上方へ突出する。
そして、前記感熱応動部材Pは、筐体21とそれをおおうカバー22内に収納配置されるものであり、前記筐体がビス23によってスロットルボデーT2に取着されることにより感熱応動部材PがスロットルボデーT2に固定配置される。
又、感熱応動部材Pの出力杆20の端部20Aは、第2腕部8Bに立設された支持軸8C内に挿入配置されるとともに端部20Aにナット25を螺着することによって出力杆20と主動レバー19とが接続される。
24は筐体21に螺着されたネジ部材であり、その先端は主動レバー19の第1腕部8Aに当接配置される。
【0021】
ここで、感熱応動部材Pの熱膨縮材料が膨張して出力杆20の突寸法が増加すると、出力杆20の突出方向変位が支持軸8Cを介して主動レバー19に伝達され、図4において主動レバー19を時計方向へ回転させ、これによって空気制御弁操作軸8を時計方向へ回転させる。
一方、感熱応動部材Pの熱膨縮材料が収縮して出力杆20の突寸法が減少すると、出力杆20の突出方向変位が支持軸8Cを介して主動レバー19に伝達され、図4において主動レバー19を反時計方向へ回転させ、これによって空気制御弁操作軸8を反時計方向へ回転させる。
又、ネジ部材24を締めこんで、ネジ部材24の突寸法を増加すると、第1腕部8Aはネジ部材24の先端にて押圧され、主動レバー19を図4において反時計方向へ回転させ、空気制御弁操作軸8を反時計方向へ回転させる。
【0022】
以上の構成になる多連スロットルボデーにおけるアイドル空気制御装置において、アイドル空気量の調整について説明する。
感熱応動部材Pが一定の温度状態において、出力杆20の端部20Aに螺着されるナット25と支持軸8Cとは非当接状態に配置され、かかる状態においてネジ部材24を螺動調整する。
以上によると主動レバー19にあっては、出力杆20の端部20Aに螺着されるナット25と支持軸8Cとが自由状態にあることから空気制御弁操作軸8を自由に回転する。
すなわち、ネジ部材24をネジ込むことにより、ネジ部材24の突寸法を増加すると、ネジ部材24は主動レバー19の第1腕部8Aを反時計方向に回転させて、主動レバー19を反時計方向へ回転させる。
一方、ネジ部材24をユルメることにより、ネジ部材24の突寸法を減少すると、ネジ部材24は主動レバー19の第1腕部8Aを時計方向に回転させて、主動レバー19を時計方向へ回転させる。
【0023】
ここで第2操作レバーL2と第2空気制御弁14との係止状態について着目すると、第2操作レバーL2の上面L2bと第2空気制御弁14の鍔部14Bとは常に当接した固定係止状態にある。
従って、前述の如くネジ部材24を螺動することによって主動レバー19を介して空気制御弁操作軸8を回転調整すると、ネジ部材24の調整に応じて第2操作レバーL2が第2空気制御弁14を移動させて制御孔13Aの開口を制御することができるもので、第2バイパス空気通路13から第2絞り弁5より下流側吸気路2A内に向かって流れるバイパス空気量を所望の量に正確に制御できる。
そして、前述の如きネジ部材24の調整完了状態において、出力杆20に螺着されるナット25を螺動してナット25を支持軸8Cに当接して係止させる。
以上によれば、第2バイパス空気通路13にあっては一定なる温度状態において、所望の一定量のバイパス空気を第2絞り弁5より下流側吸気路2A内に供給することができる。
【0024】
他方、第1操作レバーL1と第1空気制御弁11との係止状態について着目すると、第1操作レバーL1の二又部Laの上面L1bと、ナットNとは遊嵌部材19を介して可変係合状態にある。
従って、前記において第2空気制御弁14が調整された状態において、第1空気制御弁11に配置されるナットNを螺動調整し、遊嵌部材19を介して第1操作レバーL1を調整することによって、第1空気制御弁11による制御孔9Aの開口を調整すれば、基準となる第2バイパス空気通路13を流れるバイパス空気と同量なるバイパス空気を第1バイパス空気通路9を介して第1絞り弁4より下流側吸気路1A内へ供給することができる。
【0025】
又、第3空気制御弁16及び第4空気制御弁18にあっても、それらに対応して配置されるナットNを螺動調整し、遊嵌部材19を介して第3,第4空気制御弁16,18によって制御孔15A,17Aの開口を調整すれば、基準となる第2バイパス空気通路13を流れるバイパス空気と同量なるバイパス空気を、第3バイパス空気通路15を介して第2スロットルボデーT2の第1絞り弁4より下流側吸気路1A内へ供給することができるとともに第4バイパス空気通路17を介して第2スロットルボデーT2の第2絞り弁5より下流側吸気路2A内へ供給することができる。
【0026】
而して、基準となる第2バイパス空気通路13を流れるバイパス空気と同量なるバイパス空気を、第1バイパス空気通路9、第3バイパス空気通路15、第4バイパス空気通路17、を介してそれに対応する吸気路内へ正確にして且つ均一に供給することができ、もってアイドリング運転性の著しい向上を達成できたものである。
【0027】
尚、空気制御弁の形状及び制御孔の形状は実施例に限定されるものでなく、空気制御弁の先端にテーパー計量部を配置してもよい。
【0028】
又、本実施例に示す如く、感熱応動部材Pを構成する筐体21を直接的にスロットルボデーT2にネジ締め固定したこと。及びネジ部材24を筐体21に螺着したこと。によると、格別な取付け部材を用意する必要がなく、又感熱応動部材Pの組付け状態においてネジ部材24をサブ取付けできるので、部品点数の削減と組付け工数を削減でき、製造コストを低減する上で好ましい。
【0029】
【発明の効果】
以上の如く、本発明になる多連スロットルボデーにおけるアイドル空気制御装置によると、多連スロットルボデーに回転自在に支承される空気制御弁操作軸と、空気制御弁操作軸に固定配置され、感熱応動部材のストローク変化を受けて空気制御弁操作軸に回転力を付与する主動レバーと、空気制御弁操作軸に固定配置され、各バイパス空気通路に設けられる各空気制御弁に対し開閉操作力を付与する複数の操作レバーと、を備え、単一の操作レバーとそれに対応する空気制御弁とを固定係合配置し、残余の操作レバーとそれに対応する空気制御弁とを可変係合配置したので各バイパス空気通路内を流れるバイパス空気量を、正確にして且つ均一に調整することができ、これによって機関のアイドリング運転をより一層良好に行なうことができる。
又、感熱応動部材を構成する筐体を多連スロットルボデーに固定配置するとともに前記筐体にネジ部材を螺着配置したことによると、感熱応動体及びメネジ部材を固定する為の格別な取付け部材を用意する必要がなく、その製造コストを低減する上で効果的である。
【図面の簡単な説明】
【図1】 本発明になる多連スロットルボデーにおけるアイドル空気制御装置の一実施例を示す上部平面図。
【図2】 図1のA−A線における縦断面図。
【図3】 図1のB−B線における縦断面図。
【図4】 図1のC−C線における縦断面図。
【符号の説明】
T1 第1スロットルボデー
T2 第2スロットルボデー
1 第1吸気路
2 第2吸気路
4 第1絞り弁
5 第2絞り弁
9 第1バイパス空気通路
11 第1空気制御弁
13 第2バイパス空気通路
14 第2空気制御弁
15 第3バイパス空気通路
16 第3空気制御弁
17 第4バイパス空気通路
18 第4空気制御弁
L1 第1操作レバー
L2 第2操作レバー
L3 第3操作レバー
L4 第4操作レバー
[0001]
[Industrial application fields]
The present invention relates to a fuel injection device that injects fuel boosted by a fuel pump to an engine via a fuel injection valve, and in particular, a plurality of intake passages are arranged laterally and each intake passage has an atmosphere and air. The present invention relates to an idle air control device in a multiple throttle body having a bypass air passage communicating with an intake passage downstream from a throttle valve.
[0002]
[Prior art]
A conventional idle air control device for a multiple throttle body is disclosed in Japanese Utility Model Publication No. 2-67058. According to this, there are a plurality of intake passages, and each intake passage is provided with a bypass air passage that communicates the atmosphere and the intake passage downstream of the throttle valve, and an air control valve is disposed in the bypass air passage. Is done.
An air control valve operating shaft is rotatably supported on the side of the throttle body. A main drive lever and a plurality of driven levers are fixedly disposed on the air control valve operation shaft, and the main drive lever and the driven lever rotate synchronously with the air control valve operation shaft.
An output rod of a heat sensitive member is engaged with the main drive lever, and necks of the air control valves are engaged with the plurality of driven levers.
Thus, when the output rod expands and contracts due to expansion and contraction of the thermal expansion / contraction material of the heat sensitive member, the main drive lever rotates in the clockwise and counterclockwise directions according to the expansion and contraction of the output rod. The control valve operating shaft also rotates in synchronization therewith.
According to the rotation of the air control valve operating shaft, the plurality of driven levers also rotate synchronously with the rotation of the driven lever, and the idle control air flows through the bypass air passages by the rotation of the driven lever. Control the amount.
[0003]
[Problems to be solved by the invention]
According to such an idle air control device in a conventional multiple throttle body, it is difficult to accurately and uniformly supply the amount of idle air supplied from each bypass air passage to the intake passage downstream from the throttle valve of each intake passage. It is.
That is, each air control valve is fixedly engaged with the corresponding driven lever with a neck portion and does not have any adjusting means.
According to the above, even when there is a manufacturing error or assembly error of parts such as the air control valve, driven lever, etc., no adjustment can be made. Is difficult.
[0004]
The idle air control device for a multiple throttle body according to the present invention has been made in view of the above problems, and the amount of idle air supplied from each bypass air passage to the intake passage downstream from each throttle valve can be extremely simply set. It is an object to obtain a good engine idling operation by accurately and uniformly supplying with a simple structure.
[0005]
[Means for solving the problems]
In order to achieve the above object, the idle air control device for a multiple throttle body according to the present invention has a plurality of intake passages arranged laterally, and the intake passages are controlled to be opened and closed synchronously by a throttle valve. Body,
A plurality of bypass air passages connecting the intake passages downstream of the throttle valves of each intake passage and the atmosphere;
A plurality of air control valves arranged in each bypass air passage and controlling the amount of air flowing in the bypass air passage;
An air control valve operating shaft that is rotatably supported by a multiple throttle body;
A single main drive lever that is fixedly disposed on the air control valve operation shaft and that receives a change in stroke of the heat-sensitive member and applies a rotational force to the air control valve operation shaft;
A plurality of operation levers that are fixedly disposed on the air control valve operation shaft and that apply an opening / closing operation force to each air control valve provided in each bypass air passage;
One of the plurality of operation levers and the corresponding air control valve are fixed to each other by contacting the bifurcated upper surface of the single operation lever with the lower surface of the flange of the air control valve. The remaining control lever and the corresponding air control valve are placed on the nuts screwed onto the flange of the air control valve, and the remaining control lever of the remaining control lever toward the loose fitting member loosely fitted on the flange. The first feature is that the two-pronged upper surface is abutted to be variably engaged.
[0006]
According to the present invention, in addition to the first feature, the casing constituting the heat-sensitive member is fixedly disposed on the multiple throttle body, and a screw member is screwed to the casing. The second portion is that the end portion is disposed in contact with the first arm portion of the main driving lever fixedly disposed on the air control valve operating shaft and the output end portion of the heat sensitive member is connected to the second arm portion of the main driving lever. Features.
[0007]
[Action]
According to the first feature setting, and an air control that is associated arranged thereto and a single operating lever is engaged fixed engagement, as the single reference idling air amount of bypass air that is controlled by the air control valve Then, the air is supplied into the intake passage downstream from the corresponding throttle valve.
The remaining control lever and the remaining air control valve arranged corresponding thereto are variably engaged, and the remaining air control valve is variably adjusted, so that the uniform idle air amount is precisely matched to the reference idle air amount from each bypass air passage. It is possible to supply a sufficient amount of idle air.
[0008]
In addition, according to the second feature, since the housing of the heat sensitive member is fixedly disposed on the throttle body and the screw member that contacts the main driving lever is screwed to the housing, the mounting is simplified and the manufacturing cost is reduced. It is preferable in reducing the amount.
[0009]
【Example】
Hereinafter, an embodiment of an idle air control device for a multiple throttle body according to the present invention will be described with reference to the drawings.
1 is a top plan view, FIG. 2 is a longitudinal sectional view taken along line AA in FIG. 1, FIG. 3 is a longitudinal sectional view taken along line BB in FIG. 1, and FIG. 4 is a longitudinal sectional view taken along line CC in FIG. FIG.
In the drawing, only the main part is shown for ease of explanation, and for example, the configuration of a fuel distribution pipe, a fuel injection valve, and the like is omitted.
T1 is a first throttle body, and the first intake passage 1 and the second intake passage 2 are formed independently from the upper end toward the lower end.
Reference numeral 3 denotes a first throttle valve shaft rotatably supported by the first throttle body T1 across the first intake path and the second intake path 2, and the first throttle valve shaft 3 includes a first intake valve shaft. A first throttle valve 4 that controls opening and closing of the passage 1 and a second throttle valve 5 that controls opening and closing of the second intake passage 2 are attached.
Thus, the first intake passage 1 is formed downstream of the first throttle valve 4 and the downstream intake passage 1A from the throttle valve, and the second intake passage 2 is downstream of the second throttle valve 5 and from the throttle valve. A downstream intake passage 2A is formed.
T2 is a second throttle body arranged on the right side of the first throttle body T1, and has the same structure as the first throttle body T1. The throttle valve shaft disposed in the second throttle body T2 is referred to as a second throttle valve shaft 6. The same reference numerals are used for the intake passage and the throttle valve.
The first and second throttle bodies T1, T2 are connected by connecting means such as a connecting stay, a connecting bolt, etc. (not shown). At this time, the first throttle valve shaft 3 and the second throttle valve shaft are connected. 6 is connected at its opposite end by a connection tuning device 7, whereby the first throttle valve shaft 3 and the second throttle valve shaft 6 rotate synchronously, and the throttle valves 4, 5 are each inhaled. The paths 1 and 2 are controlled to open and close synchronously. In this example, two 2-barrel type throttle bodies are provided, but a plurality of single throttle bodies having a single intake passage may be used.
[0010]
An air control valve operating shaft 8 is disposed along the throttle bodies T1 and T2 and is rotatably supported by the throttle bodies T1 and T2.
The bypass air passage is formed facing each intake passage, and the first bypass air passage 9 is formed facing the first intake passage 1 of the first throttle body T1.
The upstream side of the first bypass air passage 9 opens into an air chamber recess 10 formed at the upper end of the first throttle body T1 via the control hole 9A, and the downstream side is a first intake passage downstream of the first throttle valve 4. Open in 1A.
Further, a cylindrical first air control valve 11 for variably controlling the opening area of the control hole 9A is movably disposed in the first bypass air passage 9, and this first air control valve 11 is shown in FIG. And has a flange 11A protruding leftward, and a male screw 11B is formed at the end thereof.
Reference numeral 12 denotes a spring that presses the first air control valve 11 to the right and biases it toward the side where the opening of the control hole 9A decreases.
[0011]
The second bypass air passage 13 is formed facing the second intake passage 2 of the first throttle body T1.
The upstream side of the second bypass air passage 13 opens into the air chamber recess 10 formed at the upper end of the first throttle body T1 via the control hole 13A, and the downstream side is a second intake passage on the downstream side of the second throttle valve 5. Open in 2A.
In addition, a cylindrical second air control valve 14 that variably controls the opening area of the control hole 13A is movably disposed in the second bypass air passage 13, and this second air control valve 14 is shown in FIG. And has a flange portion 14B projecting leftward and an end portion of the flange portion 14B.
Reference numeral 12 denotes a spring that presses the second air control valve 14 to the right and biases it toward the side where the opening of the control hole 13A decreases.
[0012]
The third bypass air passage 15 is formed facing the first intake passage 1 of the second throttle body T2.
The upstream side of the third bypass air passage 15 opens into an air chamber recess 10 formed at the upper end of the second throttle body T2 via the control hole 15A, and the downstream side is a first intake passage downstream of the first throttle valve 4. Open in 1A.
A cylindrical third air control valve 16 that variably controls the opening area of the control hole 15A is movably disposed in the third bypass air passage 15, and the third air control valve 16 is located on the left side. A male thread 16B is formed at the end of the flange 16A.
The spring 12 that presses the third air control valve 16 to the right and biases it toward the side where the opening of the control hole 15A decreases is not shown.
[0013]
The fourth bypass air passage 17 is formed facing the second intake passage 2 of the second throttle body T2.
The upstream side of the fourth bypass air passage 17 opens into the air chamber recess 10 formed at the upper end of the second throttle body T2 via the control hole 17A, and the downstream side is a second intake passage on the downstream side of the second throttle valve 5. Open in 2A.
In addition, a cylindrical fourth air control valve 18 that variably controls the opening area of the control hole 17A is movably disposed in the fourth bypass air passage 17, and the fourth air control valve 18 is located on the left side. There is a flange 18A projecting toward the end and a male screw 18B is formed at the end thereof.
The spring 12 that presses the fourth air control valve 18 to the right and biases it toward the side where the opening of the control hole 17A decreases is not shown.
[0014]
As mentioned above, the 1st air control valve 11, the 3rd air control valve 16, and the 4th air control valve 18 comprise the same shape, and have an external thread in the edge part of a collar part.
The end portion of the flange portion 14A of the second air control valve 14 has a flange portion 14B.
[0015]
A bifurcated first to fourth operation lever is fixedly disposed on the air control valve operation shaft 8.
A flange portion 11A of the first air control valve 11 is inserted and disposed in the bifurcated shape L1a of the first operation lever L1, and a loose fitting member 19 that is loosely fitted in the flange portion 11A on the upper surface L1b of the bifurcated shape L1a. A nut N that is movably arranged and is screwed onto the male screw 11B on the loose fitting member 19 is arranged.
This is shown in FIG.
[0016]
The flange portion 14A of the second air control valve 14 is inserted into the bifurcated shape L2a of the second operation lever L2, and the upper surface L2b of the bifurcated shape L2a is disposed in contact with the lower surface of the flange portion 14B.
This is best shown in FIG.
[0017]
A flange portion 16A of the third air control valve 16 is inserted into the bifurcated shape L3a of the third operating lever L3, and a loose fitting member 19 that is loosely fitted to the flange portion 16A on the upper surface L3b of the bifurcated shape L3a. A nut N that is movably disposed and is screwed onto the male screw 16B on the loose fitting member 19 is disposed.
[0018]
A flange portion 18A of the fourth air control valve 18 is inserted into the bifurcated shape L4a of the fourth operating lever L4, and a loose fitting member 19 that is loosely fitted to the flange portion 18A on the upper surface L4b of the bifurcated shape L4a. A nut N that is movably disposed and is screwed onto the male screw 18B on the loose fitting member 19 is disposed.
[0019]
A main drive lever 19 is fixedly disposed on the air control valve operating shaft 8. The main lever 19 has a first arm portion 8A formed on one side of the air control valve operating shaft 8 and a second arm portion 8B formed on the other side.
[0020]
P is a heat sensitive member in which a thermal expansion / contraction material such as olefin or paraffin is enclosed, and a volume change in the heat sensitive member P is output to the outside as a stroke change of the output rod 20.
That is, when the heat-sensitive member P is warmed and the internal thermal expansion / contraction material expands to increase its volume, the output rod 20 protrudes greatly outward, while the heat-sensitive member P is cooled and the internal thermal expansion / contraction is cooled. As the material shrinks and the volume decreases, the protrusion of the output rod 20 decreases. As illustrated in FIG. 4, when the thermal expansion / contraction material expands, the output rod 20 protrudes obliquely upward to the right.
The heat sensitive member P is housed in the housing 21 and the cover 22 covering the housing 21. The heat sensitive member P is attached to the throttle body T2 by screws 23. Fixed to the throttle body T2.
Further, the end portion 20A of the output rod 20 of the heat-sensitive member P is inserted and arranged in the support shaft 8C erected on the second arm portion 8B, and the nut 25 is screwed to the end portion 20A to screw the output rod 20A. 20 and the main drive lever 19 are connected.
Reference numeral 24 denotes a screw member that is screwed to the housing 21, and a tip of the screw member is disposed in contact with the first arm portion 8 </ b> A of the main drive lever 19.
[0021]
Here, when the thermal expansion / contraction material of the heat-sensitive response member P expands and the protrusion size of the output rod 20 increases, the displacement in the protruding direction of the output rod 20 is transmitted to the main drive lever 19 via the support shaft 8C. The main drive lever 19 is rotated in the clockwise direction, whereby the air control valve operating shaft 8 is rotated in the clockwise direction.
On the other hand, when the thermal expansion / contraction material of the heat-sensitive member P contracts and the projecting dimension of the output rod 20 decreases, the displacement in the projecting direction of the output rod 20 is transmitted to the main drive lever 19 through the support shaft 8C. The lever 19 is rotated counterclockwise, whereby the air control valve operating shaft 8 is rotated counterclockwise.
When the screw member 24 is tightened to increase the projecting dimension of the screw member 24, the first arm portion 8A is pressed at the tip of the screw member 24, and the main lever 19 is rotated counterclockwise in FIG. The air control valve operating shaft 8 is rotated counterclockwise.
[0022]
The adjustment of the idle air amount in the idle air control device in the multiple throttle body configured as described above will be described.
When the heat sensitive member P is at a constant temperature, the nut 25 screwed to the end 20A of the output rod 20 and the support shaft 8C are arranged in a non-contact state, and the screw member 24 is adjusted by screwing in this state. .
According to the above, in the main drive lever 19, since the nut 25 screwed to the end 20A of the output rod 20 and the support shaft 8C are in a free state, the air control valve operation shaft 8 is freely rotated.
That is, when the projecting dimension of the screw member 24 is increased by screwing the screw member 24, the screw member 24 rotates the first arm portion 8A of the main drive lever 19 counterclockwise, and the main drive lever 19 is counterclockwise. Rotate to
On the other hand, when the projecting dimension of the screw member 24 is reduced by screwing the screw member 24, the screw member 24 rotates the first arm portion 8A of the main drive lever 19 in the clockwise direction and the main drive lever 19 in the clockwise direction. Let
[0023]
Here, paying attention to the locked state of the second operating lever L2 and the second air control valve 14, the upper surface L2b of the second operating lever L2 and the flange 14B of the second air control valve 14 are always in contact with each other. It is in a stopped state.
Accordingly, when the air control valve operating shaft 8 is rotationally adjusted via the main drive lever 19 by screwing the screw member 24 as described above, the second operation lever L2 is moved to the second air control valve in accordance with the adjustment of the screw member 24. 14, the opening of the control hole 13A can be controlled, and the amount of bypass air flowing from the second bypass air passage 13 toward the downstream intake passage 2A from the second throttle valve 5 to a desired amount It can be controlled accurately.
Then, in the adjustment completion state of the screw member 24 as described above, the nut 25 screwed to the output rod 20 is screwed to abut the nut 25 on the support shaft 8C to be locked.
According to the above, in the second bypass air passage 13, a desired fixed amount of bypass air can be supplied into the downstream intake passage 2 </ b> A from the second throttle valve 5 in a constant temperature state.
[0024]
On the other hand, when attention is paid to the locking state between the first operating lever L1 and the first air control valve 11, the upper surface L1b of the bifurcated portion La of the first operating lever L1 and the nut N are variable via the loose fitting member 19. In the engaged state.
Therefore, in the state where the second air control valve 14 is adjusted as described above, the nut N disposed in the first air control valve 11 is adjusted by screwing, and the first operation lever L1 is adjusted via the loose fitting member 19. Thus, if the opening of the control hole 9A by the first air control valve 11 is adjusted, the bypass air having the same amount as the bypass air flowing through the second bypass air passage 13 serving as a reference is passed through the first bypass air passage 9 to the second. 1 throttle valve 4 can be supplied into the downstream intake passage 1A.
[0025]
Further, even in the third air control valve 16 and the fourth air control valve 18, the nuts N arranged corresponding to them are adjusted by screwing, and the third and fourth air controls are provided via the loose fitting members 19. If the openings of the control holes 15A, 17A are adjusted by the valves 16, 18, the bypass air having the same amount as the bypass air flowing through the second bypass air passage 13 serving as a reference is passed through the third bypass air passage 15 to the second throttle. The air can be supplied into the downstream intake passage 1A from the first throttle valve 4 of the body T2, and through the fourth bypass air passage 17 into the downstream intake passage 2A from the second throttle valve 5 of the second throttle body T2. Can be supplied.
[0026]
Thus, the bypass air having the same amount as the bypass air flowing through the second bypass air passage 13 serving as a reference is passed through the first bypass air passage 9, the third bypass air passage 15, and the fourth bypass air passage 17. It was possible to accurately and evenly supply the air into the corresponding intake passage, thereby achieving a significant improvement in idling drivability.
[0027]
In addition, the shape of the air control valve and the shape of the control hole are not limited to those in the embodiment, and a taper measuring unit may be disposed at the tip of the air control valve.
[0028]
Further, as shown in the present embodiment, the casing 21 constituting the heat sensitive member P is directly screwed and fixed to the throttle body T2. The screw member 24 is screwed to the casing 21. According to the present invention, it is not necessary to prepare a special mounting member, and the screw member 24 can be sub-mounted in the assembled state of the heat-sensitive member P. Therefore, the number of parts can be reduced, the number of assembling steps can be reduced, and the manufacturing cost can be reduced. Preferred above.
[0029]
【The invention's effect】
As described above, according to the idle air control device for a multiple throttle body according to the present invention, the air control valve operating shaft that is rotatably supported by the multiple throttle body, and the air control valve operating shaft are fixedly disposed, and are thermally responsive. A main drive lever that applies rotational force to the air control valve operation shaft in response to a change in the stroke of the member, and an open / close operation force applied to each air control valve that is fixed to the air control valve operation shaft and provided in each bypass air passage A plurality of operating levers, a single operating lever and a corresponding air control valve are fixedly engaged, and the remaining operating lever and the corresponding air control valve are variably engaged. The amount of bypass air flowing in the bypass air passage can be adjusted accurately and uniformly, thereby making it possible to perform idling operation of the engine even better. That.
In addition, the housing constituting the heat sensitive member is fixedly disposed on the multiple throttle body, and the screw member is screwed to the housing. This is effective in reducing the manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a top plan view showing an embodiment of an idle air control device in a multiple throttle body according to the present invention.
FIG. 2 is a longitudinal sectional view taken along line AA in FIG.
FIG. 3 is a longitudinal sectional view taken along line BB in FIG.
4 is a longitudinal sectional view taken along line CC in FIG. 1. FIG.
[Explanation of symbols]
T1 1st throttle body T2 2nd throttle body 1 1st intake passage 2 2nd intake passage 4 1st throttle valve 5 2nd throttle valve 9 1st bypass air passage 11 1st air control valve 13 2nd bypass air passage 14 1st 2 Air control valve 15 3rd bypass air passage 16 3rd air control valve 17 4th bypass air passage 18 4th air control valve L1 1st operation lever L2 2nd operation lever L3 3rd operation lever L4 4th operation lever

Claims (2)

複数の吸気路が側方に配置され、該吸気路が絞り弁によって同期的に開閉制御される多連スロットルボデーと、
各吸気路の絞り弁より下流側吸気路と大気とを連絡する複数のバイパス空気通路と、
各バイパス空気通路に配置され、バイパス空気通路内を流れる空気量を制御する複数の空気制御弁と、
多連スロットルボデーに回転自在に支承される空気制御弁操作軸と、
空気制御弁操作軸に固定配置され、感熱応動部材のストローク変化を受けて空気制御弁操作軸に回転力を付与する単一の主動レバーと、
空気制御弁操作軸に固定配置され、各バイパス空気通路に設けられる各空気制御弁に対し開閉操作力を付与する複数の操作レバーと、を備え、
前記複数の操作レバーの内のいずれか一つの操作レバーとそれに対応する空気制御弁とを、単一の操作レバーの二又状の上面を空気制御弁の鍔部の下面に当接して固定係合配置し、
残余の操作レバーとそれに対応する空気制御弁とを、空気制御弁の杆部に螺着されたナット、及び杆部に遊嵌された遊嵌部材に向けて残余の操作レバーの二又状の上面を当接して可変係合配置したことを特徴とする多連スロットルボデーにおけるアイドル空気制御装置。
A multiple throttle body in which a plurality of intake passages are arranged on the sides, and the intake passages are controlled to be opened and closed synchronously by a throttle valve;
A plurality of bypass air passages connecting the intake passages downstream of the throttle valves of each intake passage and the atmosphere;
A plurality of air control valves arranged in each bypass air passage and controlling the amount of air flowing in the bypass air passage;
An air control valve operating shaft that is rotatably supported by a multiple throttle body;
A single main drive lever that is fixedly disposed on the air control valve operation shaft and that receives a change in stroke of the heat-sensitive member to apply a rotational force to the air control valve operation shaft;
A plurality of operation levers that are fixedly disposed on the air control valve operation shaft and that apply an opening / closing operation force to each air control valve provided in each bypass air passage
One of the plurality of operation levers and the corresponding air control valve are fixed to each other by contacting the bifurcated upper surface of the single operation lever with the lower surface of the flange of the air control valve. Align,
The remaining control lever and the corresponding air control valve are connected to the nut screwed into the flange of the air control valve and the loosely-fitted member of the remaining control lever toward the loose fitting member. An idle air control device in a multiple throttle body, wherein the upper surface is in contact with the variable engagement arrangement .
前記、感熱応動部材を構成する筐体を多連スロットルボデーに固定配置するとともに前記筐体にネジ部材を螺着配置し、前記ネジ部材の端部を空気制御弁操作軸に固定配置される主動レバーの第1腕部に当接配置するとともに感熱応動部材の出力端部を主動レバーの第2腕部に連結配置したことを特徴とする請求項1記載の多連スロットルボデーにおけるアイドル空気制御装置。  The housing that constitutes the thermosensitive member is fixedly disposed on the multiple throttle body, the screw member is screwed to the housing, and the end of the screw member is fixedly disposed on the air control valve operating shaft. 2. The idle air control device for a multiple throttle body according to claim 1, wherein the lever is arranged in contact with the first arm portion and the output end portion of the heat-sensitive member is connected to the second arm portion of the main drive lever. .
JP28202698A 1998-09-16 1998-09-16 Idle air control system for multiple throttle bodies Expired - Fee Related JP3861173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28202698A JP3861173B2 (en) 1998-09-16 1998-09-16 Idle air control system for multiple throttle bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28202698A JP3861173B2 (en) 1998-09-16 1998-09-16 Idle air control system for multiple throttle bodies

Publications (2)

Publication Number Publication Date
JP2000097133A JP2000097133A (en) 2000-04-04
JP3861173B2 true JP3861173B2 (en) 2006-12-20

Family

ID=17647210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28202698A Expired - Fee Related JP3861173B2 (en) 1998-09-16 1998-09-16 Idle air control system for multiple throttle bodies

Country Status (1)

Country Link
JP (1) JP3861173B2 (en)

Also Published As

Publication number Publication date
JP2000097133A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US8240639B2 (en) Carburetor and automatic choke assembly for an engine
US6129071A (en) Throttle valve system
EP0650555B1 (en) Carburetor assembly for an internal combustion gas engine
JPS6035137A (en) Air-fuel control apparatus
US4759883A (en) Temperature compensated fluid flow metering system
US6343573B1 (en) Thermostat device
JPS6128028Y2 (en)
JP3861173B2 (en) Idle air control system for multiple throttle bodies
JP4042534B2 (en) Idle speed control device for throttle body
KR20010072105A (en) Port system, especially an induction manifold for an internal combustion engine
JPH094546A (en) Control device of auxiliary air volume of internal combustion engine
JP3925305B2 (en) Intake control device for internal combustion engine
EP0628710B1 (en) A throttle mechanism
JP3255935B2 (en) Idling adjustment device for warm-up of multi-cylinder engine
EP0628712B1 (en) A throttle mechanism
JP2911372B2 (en) Gas engine regulator insulation
JPH0523829Y2 (en)
EP0628711B1 (en) A throttle mechanism
JPH0631178Y2 (en) Auxiliary air control device for internal combustion engine
JP2524464Y2 (en) Idle rotation speed control device
JP2524813Y2 (en) Flow control device
JPH0734187Y2 (en) Throttle valve device
JP2582698Y2 (en) Idle speed control device for internal combustion engine
JP2881162B2 (en) Engine idle speed control device
JPS5918125Y2 (en) Engine auxiliary air control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees