JP3861148B2 - Method and apparatus for measuring peel strength of inorganic film - Google Patents

Method and apparatus for measuring peel strength of inorganic film Download PDF

Info

Publication number
JP3861148B2
JP3861148B2 JP2002334441A JP2002334441A JP3861148B2 JP 3861148 B2 JP3861148 B2 JP 3861148B2 JP 2002334441 A JP2002334441 A JP 2002334441A JP 2002334441 A JP2002334441 A JP 2002334441A JP 3861148 B2 JP3861148 B2 JP 3861148B2
Authority
JP
Japan
Prior art keywords
load
indenter
film
inorganic
inorganic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002334441A
Other languages
Japanese (ja)
Other versions
JP2004170160A (en
Inventor
淑雄 秋宗
龍男 杉山
潤子 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002334441A priority Critical patent/JP3861148B2/en
Publication of JP2004170160A publication Critical patent/JP2004170160A/en
Application granted granted Critical
Publication of JP3861148B2 publication Critical patent/JP3861148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧膜無機材料を基板に設けてなる半導体素子上の絶縁コートや耐熱コーティング材料の剥離力を測定する方法及び装置に関し、特に、球状圧子による負荷を利用した無機質膜の剥離力測定方法及び装置に関する。
【0002】
【従来の技術】
従来の圧膜の接着強度の測定装置においてはコート材料にフィルムを接着し、上方に引き抜く試験(特許文献1)、積層材を直接持ち上げるピール試験(特許文献2)、接触ツールで導体を水平方向に押すことで押圧力を測定する試験(特許文献3)等が提案されている。
【0003】
【特許文献1】
特開平5−249026号公報
【特許文献2】
WO96/00891
【特許文献3】
特開2000ー321196号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来のピール試験、引っ張り試験、押圧力測定試験等の剥離強度測定装置における測定方法では、荷重を瞬時に負荷したり、また強制的に導体を剥ぎ取ったりするため、測定データは接着界面の剥離やフィルムの破壊、接着面の破壊、及びピール試験材の変形、破壊等を含んだ結果になってしまい正確な剥離強度を判定することが困難であった。
【0005】
したがって本発明は、上記従来の剥離強度測定装置の問題点を解決するため、無機質膜表面に大領域の変形等を生じることなく、無機質膜の剥離力を測定することができるようにした無機質膜の剥離力測定装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は次に述べるような基本的技術思想により上記課題を解決するものである。即ち、基板上に設けられた無機質の薄膜に球状の圧子にて所定の荷重まで負荷し、その負荷を除荷する。このときに負荷と圧子の厚入距離を測定し、降伏接触圧が弾性反発の推進力となり膜の剥離をもたらす力となりうることに着目して、剥離推進力として剥離に係る降伏接触圧を求めるものである。特にこの方法は、金属基板の上に設けられた脆性のある無機質の材料の接着力を測定する際に有効である。
【0007】
本発明は上記の思想に基づき、基盤表面上の無機質材料膜に球状圧子を押圧する負荷と、該負荷を除去する除荷を繰り返しつつ負荷を増大し、各負荷の荷重と該各荷重に対応する球状圧子による無機材料膜の圧入深さを測定して該圧入深さと圧入荷重の関係曲線を求め、理論式により応力と歪みの関係曲線を算出し、前記応力と歪みの関係曲線により降伏圧力を求め、前記降伏圧力により前記無機材料膜の剥離力を求める無機質膜の剥離力測定方法としたものである。
【0008】
また、基盤表面上の無機質材料膜に球状圧子を押圧する負荷と、該負荷を除去する除荷を繰り返しつつ負荷を増大する荷重負荷・除荷装置と、前記球状圧子を負荷した際に生じる無機質材料膜上の圧子圧入深さを計測する深さ計測装置と、各負荷の荷重と該各荷重に対応する球状圧子による無機材料膜の圧入深さの測定値により該圧入深さと圧入荷重の関係曲線を求め、理論式により応力と歪みの関係曲線を算出し、前記応力と歪みの関係曲線により降伏圧力を求め、前記降伏圧力により前記無機材料膜の剥離力を求める演算手段とを備えた無機質膜の剥離力測定装置としたものである。
【0009】
更に前記無機質膜の剥離力測定装置において、前記荷重負荷・除荷装置はWC製の圧子を用い、該圧子に50N以上5KN以下の荷重を負荷するものであり、また、圧子の直径は2mm以上8mm未満とし、また、前記荷重負荷装置は5KNまでの間において5N/秒以上20N/秒以下で負荷と除荷を行うものであり、また、前記深さ計測手段は1ミクロン以下の精度を備えたレーザ変位計を用い、また、降伏接触圧が4GPa未満となることにより剥離を評価するようにしたものである。
【0010】
【発明の実施の形態】
本発明による無機質膜の剥離力の測定に際しては、例えば図1に示す装置により測定することができる。この測定装置においては、固定フレーム7に上下動自在に支持された可動フレーム8に圧子固定部材5を設け、この圧子固定部材5の下端部に圧子1を固定しており、この圧子1の下方の支持台9上には試験片4を固定している。それにより、可動フレーム8を図中下方に移動させると、圧子固定部材5を介して圧子1が下方に移動し、試験片4の表面11に圧子1を押圧することができるようにしている。
【0011】
圧子1はタングステンカーバイト(WC)製の球体であり、その圧子1に対して荷重負荷・除荷試験装置2により50Nから5KNまでの加重を負荷できる。図示の例では支持台9に変位計3を固定し、圧子固定部材5に固定したアーム6の下面に光学式変位計の光を照射し、可動フレーム8の降下量、即ち圧子1の降下量を計測することができるようにし、特に試験片4の表面11に圧子1が接触してから、試験片4内に圧子1が圧入した深さを正確に計測することができるようにしている。
【0012】
WC製の球状圧子の直径は2mmから8mm程度のものを使用し、荷重負荷・除荷装置2は50Nから2KNまでの荷重を30分以上加えて除荷できるものを使用する。このときの圧入深さを計測する変位計3は、精度1ミクロン以下のレーザ変位計を使用する。
【0013】
上記のような装置を使用し、金属基盤7に無機質膜8としてのセラミック薄膜を設けた試験片4の表面11にWC製圧子1を荷重負荷・除荷装置2にて押しつけ、進入深さと荷重を計算し、以下の式で最大圧入荷重を計算する。なお、このときの演算は、基盤表面上の無機質膜8に球状圧子1を押圧する負荷と、この負荷を除去する除荷を繰り返しながら次第に負荷を増大させ、各負荷の荷重と該各荷重に対応する球状圧子1による無機質膜の圧入深さhを測定して、図2(a)に示すような圧入深さhと圧入荷重Pの関係曲線を求め、下記の理論式により応力と歪みの関係曲線を算出し、図2(b)に示すような前記応力と歪みの関係曲線により降伏圧力を求め、前記降伏圧力により前記無機材料膜の剥離力を求める演算を行うものである。
【0014】
実際に無機質材料膜の剥離力を求めるに際しては、降伏接触圧や初期の傾きから、縦軸に圧入荷重、横軸に圧入深さhの1.5乗を取ったグラフから傾き(ke)と降伏点(降伏荷重:Py)を求める。なお、これらの演算は演算装置10に各データを直接入力し、或いは別途入力することにより容易に行うことができる。
【数1】

Figure 0003861148
:弾性体の圧子圧入の関係式
【数2】
Figure 0003861148
:ヘルツの弾性解の定数部
【数3】
Figure 0003861148
【数4】
Figure 0003861148
P:圧入荷重
h:圧入深さ
E:試料(セラミックス膜)の弾性率
:圧子の弾性率(WC:534GPa)
ν:試料(セラミックス膜)のポアソン比
ν:圧子のポアソン比(WCで0.28)
R:圧子径
σ :弾性反発力(降伏接触圧)
【0015】
σ と(h/R)0.5の図表から最大Pyを求めることができる。この降伏接触圧が圧子除荷時の弾性反発力となり剥離を起こさせる原動力となるため、σ はできるだけ大きな値であることが望ましい。
【0016】
本装置で圧子圧入時の最大弾性反発力を測定することにより剥離の原動力がわかる。この値は球と素材の弾性率やポアソン比、圧子の径、膜の厚さを考慮しており、圧縮された素材が除荷時に元に戻ろうとする動きをするためその力が界面剥離を生み出すことになる。そのため最大弾性反発力はできるだけ大きな材料になっていることが望ましい。
【0017】
WC製の球状圧子を使う理由は金属・非金属系材料では最も剛性が高く実用に耐えうる材料であるためである。WC製の球状圧子の直径は2mmから8mmとすることが好ましく、2mm未満では薄膜及び基材の塑性変形を起こしやすくなり反発力が生じない。また8mm以上では素材の凹凸の影響を受けやすくなることと過度な荷重を必要とし薄膜を破壊してしまう。
【0018】
荷重付加装置では5KNまでの間において5N/秒以上、20N/秒以下で加圧/除荷することが好ましいく、この範囲に設定することにより基材と薄膜に適度な残留応力を付与することができ、早すぎると衝撃的な応力が伝わり破壊を起こし、遅すぎると塑性変形を起こすためである。どちらでも残留応力による歪みエネルギーを消費するため剥離力にならない。圧入深さを計測する装置は精度1ミクロン以下のレーザー変位計を用いることが好ましく、試験される薄膜の厚みは通常0.2から数ミクロンであるため、渦電流式では圧子に渦電流を起こさせる過大な金属板を取り付けねばならず精度も下がり現実的ではないためである。
【0019】
(実施例)
薄膜プロセスとしては耐熱コーティング用に活用されている溶射法を用い、試料は基材として50mm×50mm×3mmのインコネル600、溶射材料として8wt%安定化ジルコニア(METCO204NS−G)、中間ボンドコートとしてNiCoCrAlY材(AMDRY365−1)を選択した。溶射方法については大気と200kPaのAr加圧方法を用い、厚さ200ミクロンのジルコニア膜を形成した。
【0020】
圧入試験片は10mm×10mmに切断し表面を研磨後、室温で圧入試験を行った。直径4mmの球形圧子を一定速度で圧入及び除荷したときの荷重(P)と圧入深さ(h)を測定した後、インデンテーション法による、圧入深さと荷重曲線を測定後、理論式を用いて応力−歪み曲線を算出し、Pyを求めた。
【0021】
圧入試験後は圧痕中央で切断し断面をコロイダルシリカで研磨し基材の塑性変形と剥離を確認した。実施例記載の1から6では剥離が観測できPyは4GPa以上であったが、比較例1−2ではPyは4GPa超であり、剥離は観測できなかった。
【0022】
【発明の効果】
上記のような本発明により、無機質膜表面に大領域の変形、破壊等を生じることなく、特に脆性材料である無機質膜の剥離力を正確に測定することができる。
【図面の簡単な説明】
【図1】 本発明による無機質膜の剥離力測定方法を実施する測定装置の概要図である。
【図2】本発明における無機質膜の剥離力測定方法及び測定装置で得られる圧入深さ−荷重曲線、及び応力−歪み曲線である。
【図3】本発明の実施例及び比較例を示す表である。
【符号の説明】
1 圧子
2 荷重負荷試験装置
3 変位計
4 試験片
5 圧子固定部材
6 アーム
7 固定フレーム
8 可動フレーム
9 支持台
10 演算装置
11 表面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring the peeling force of an insulating coating or heat-resistant coating material on a semiconductor element provided with a pressure membrane inorganic material on a substrate, and in particular, measuring the peeling force of an inorganic film using a load from a spherical indenter. The present invention relates to a method and an apparatus.
[0002]
[Prior art]
In a conventional pressure film adhesive strength measuring device, a film is adhered to a coating material and pulled upward (Patent Document 1), a peel test for directly lifting a laminated material (Patent Document 2), and a conductor with a contact tool in the horizontal direction A test (Patent Document 3) and the like for measuring a pressing force by pushing the pin is proposed.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-249026 [Patent Document 2]
WO96 / 00891
[Patent Document 3]
JP 2000-321196 A [0004]
[Problems to be solved by the invention]
However, in the conventional methods for measuring peel strength such as peel test, tensile test, and pressing force measurement test, the load data is applied instantaneously or the conductor is forcibly peeled off. As a result, it was difficult to determine the exact peel strength, including the peeling of the film, the destruction of the film, the destruction of the adhesive surface, and the deformation and destruction of the peel test material.
[0005]
Accordingly, the present invention solves the problems of the conventional peel strength measuring apparatus described above, and can measure the peel strength of the inorganic film without causing deformation of the large area on the surface of the inorganic film. An object of the present invention is to provide a peeling force measuring device.
[0006]
[Means for Solving the Problems]
The present invention solves the above problems by the basic technical concept described below. That is, a predetermined load is applied to the inorganic thin film provided on the substrate with a spherical indenter, and the load is removed. At this time, the thickness and the indentation distance between the load and the indenter are measured, and attention is paid to the fact that the yield contact pressure can be a force for elastic repulsion and can cause the film to peel. Is. This method is particularly effective when measuring the adhesive strength of a brittle inorganic material provided on a metal substrate.
[0007]
Based on the above concept, the present invention increases the load while repeating the load for pressing the spherical indenter against the inorganic material film on the substrate surface and the unloading for removing the load, and responds to the load of each load and each load. Measure the indentation depth of the inorganic material film with a spherical indenter to obtain the relationship curve between the indentation depth and the indentation load, calculate the stress-strain relationship curve by the theoretical formula, and calculate the yield pressure by the stress-strain relationship curve. And the peel strength measuring method of the inorganic film to obtain the peel strength of the inorganic material film by the yield pressure.
[0008]
Also, a load that presses the spherical indenter onto the inorganic material film on the substrate surface, a load loading / unloading device that increases the load while repeating unloading to remove the load, and an inorganic material that is generated when the spherical indenter is loaded Depth measuring device for measuring the indentation depth on the material film, and the relationship between the indentation depth and the indentation load according to the load of each load and the measured value of the indentation depth of the inorganic material film by the spherical indenter corresponding to each load An inorganic substance provided with a calculation means for obtaining a curve, calculating a stress-strain relationship curve by a theoretical formula, obtaining a yield pressure by the stress-strain relationship curve, and obtaining a peeling force of the inorganic material film by the yield pressure This is a film peeling force measuring device.
[0009]
Further, in the apparatus for measuring the peeling force of the inorganic film, the load loading / unloading device uses a WC indenter, and a load of 50 N or more and 5 KN or less is applied to the indenter, and the diameter of the indenter is 2 mm or more. The load loading device loads and unloads at 5 N / sec or more and 20 N / sec or less up to 5 KN, and the depth measuring means has an accuracy of 1 micron or less. In addition, the laser displacement meter is used, and the peeling is evaluated when the yield contact pressure is less than 4 GPa.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
When measuring the peeling force of the inorganic film according to the present invention, it can be measured, for example, by the apparatus shown in FIG. In this measuring apparatus, an indenter fixing member 5 is provided on a movable frame 8 supported by a fixed frame 7 so as to be movable up and down, and an indenter 1 is fixed to a lower end portion of the indenter fixing member 5. The test piece 4 is fixed on the support base 9. Thus, when the movable frame 8 is moved downward in the figure, the indenter 1 moves downward via the indenter fixing member 5 so that the indenter 1 can be pressed against the surface 11 of the test piece 4.
[0011]
The indenter 1 is a tungsten carbide (WC) sphere, and a load of 50 N to 5 KN can be applied to the indenter 1 by the load loading / unloading test apparatus 2. In the example shown in the figure, the displacement meter 3 is fixed to the support base 9, and the lower surface of the arm 6 fixed to the indenter fixing member 5 is irradiated with light from the optical displacement meter, so that the movable frame 8 descends, that is, the indenter 1 descends. In particular, the depth at which the indenter 1 is pressed into the test piece 4 after the indenter 1 contacts the surface 11 of the test piece 4 can be accurately measured.
[0012]
The diameter of the WC spherical indenter is about 2 mm to 8 mm, and the load / unloading device 2 is one that can be unloaded by applying a load from 50 N to 2 KN for 30 minutes or more. As the displacement meter 3 for measuring the press-fitting depth at this time, a laser displacement meter having an accuracy of 1 micron or less is used.
[0013]
Using the apparatus as described above, the WC indenter 1 is pressed against the surface 11 of the test piece 4 provided with the ceramic thin film as the inorganic film 8 on the metal substrate 7 by the load loading / unloading apparatus 2, and the penetration depth and load And calculate the maximum press-fit load using the following formula. The calculation at this time is performed by increasing the load gradually while repeating the load that presses the spherical indenter 1 against the inorganic film 8 on the substrate surface and the unloading that removes this load. The indentation depth h of the inorganic film by the corresponding spherical indenter 1 is measured to obtain a relationship curve between the indentation depth h and the indentation load P as shown in FIG. A relational curve is calculated, a yield pressure is obtained from the stress-strain relational curve as shown in FIG. 2B, and a calculation is performed to obtain the peel force of the inorganic material film by the yield pressure.
[0014]
When actually determining the peel strength of the inorganic material film, the slope (ke) is obtained from a graph in which the vertical axis represents the press-fit load and the horizontal axis represents the press-fit depth h to the power of 1.5 from the yield contact pressure and initial slope. A yield point (yield load: Py) is obtained. Note that these calculations can be easily performed by directly inputting each data into the calculation device 10 or by inputting them separately.
[Expression 1]
Figure 0003861148
: Relational expression for indentation of elastic body [Equation 2]
Figure 0003861148
: Constant part of Hertz's elastic solution
Figure 0003861148
[Expression 4]
Figure 0003861148
P: Press-fit load h: Press-fit depth E: Elastic modulus of sample (ceramic film) E i : Elastic modulus of indenter (WC: 534 GPa)
ν: Poisson's ratio of sample (ceramic film) ν i : Poisson's ratio of indenter (0.28 in WC)
R: Indenter diameter
σ m : elastic repulsion force (yield contact pressure)
[0015]
The maximum Py can be obtained from the chart of σ m and (h / R) 0.5 . Since this yield contact pressure becomes an elastic repulsion force at the time of unloading the indenter and becomes a driving force for causing separation, σ m is desirably as large as possible.
[0016]
By measuring the maximum elastic repulsion force at the time of indenter press-fitting with this device, the driving force for separation can be determined. This value takes into account the elastic modulus and Poisson's ratio of the sphere and material, the diameter of the indenter, and the thickness of the membrane, and since the compressed material moves to return to its original state during unloading, the force causes interfacial debonding. Will produce. Therefore, it is desirable that the maximum elastic repulsion force be made as large as possible.
[0017]
The reason for using a WC spherical indenter is that it is the most rigid metal / non-metallic material that can withstand practical use. The diameter of the spherical indenter made of WC is preferably 2 mm to 8 mm, and if it is less than 2 mm, the thin film and the substrate are likely to be plastically deformed and no repulsive force is generated. On the other hand, if the thickness is 8 mm or more, it becomes easy to be affected by the unevenness of the material, and an excessive load is required and the thin film is destroyed.
[0018]
In the load application device, it is preferable to pressurize / unload at a rate of 5 N / sec or more and 20 N / sec or less between 5 KN, and by setting this range, an appropriate residual stress is applied to the substrate and the thin film. This is because, if it is too early, impact stress is transmitted to cause destruction, and if it is too late, plastic deformation occurs. In either case, the strain energy due to the residual stress is consumed, so the peeling force is not obtained. It is preferable to use a laser displacement meter with an accuracy of 1 micron or less as the device for measuring the indentation depth. Since the thickness of the thin film to be tested is usually 0.2 to several microns, the eddy current type causes an eddy current in the indenter. This is because an excessively large metal plate must be attached, and the accuracy is lowered, which is not realistic.
[0019]
(Example)
As the thin film process, the thermal spraying method utilized for heat-resistant coating is used, the sample is Inconel 600 of 50 mm × 50 mm × 3 mm as the base material, 8 wt% stabilized zirconia (METCO204NS-G) as the thermal spray material, and NiCoCrAlY as the intermediate bond coat A material (AMDRY365-1) was selected. As for the thermal spraying method, a 200-micron-thick zirconia film was formed by using atmospheric pressure and an Ar pressure method of 200 kPa.
[0020]
The press-fitting test piece was cut into 10 mm × 10 mm and the surface was polished, and then a press-fitting test was performed at room temperature. After measuring the load (P) and depth (h) when a 4 mm diameter spherical indenter is pressed and unloaded at a constant speed, the indentation method is used to measure the press-in depth and load curve, and then use the theoretical formula. Thus, a stress-strain curve was calculated to obtain Py.
[0021]
After the indentation test, it was cut at the center of the indentation and the cross section was polished with colloidal silica to confirm plastic deformation and peeling of the substrate. In Examples 1 to 6, peeling was observed and Py was 4 GPa or more, but in Comparative Example 1-2, Py was over 4 GPa, and peeling was not observed.
[0022]
【The invention's effect】
According to the present invention as described above, the peeling force of an inorganic film, which is a brittle material, can be accurately measured without causing a large area of deformation or destruction on the surface of the inorganic film.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a measuring apparatus for carrying out a method for measuring the peel strength of an inorganic film according to the present invention.
FIG. 2 is a press-fit depth-load curve and a stress-strain curve obtained by the method and apparatus for measuring the peel strength of an inorganic film in the present invention.
FIG. 3 is a table showing examples and comparative examples of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Indenter 2 Load test apparatus 3 Displacement meter 4 Test piece 5 Indenter fixing member 6 Arm 7 Fixed frame 8 Movable frame 9 Support base 10 Arithmetic unit 11 Surface

Claims (4)

基盤表面上の無機質材料膜に球状圧子を押圧する負荷と、該負荷を除去する除荷を繰り返しつつ負荷を増大し、
各負荷の荷重と該各荷重に対応する球状圧子による無機材料膜の圧入深さを測定して該圧入深さと圧入荷重の関係曲線を求め、
ヘルツの弾性理論式により応力と歪みの関係曲線を算出し、
前記応力と歪みの関係曲線により降伏圧力を求め、
前記降伏圧力により前記無機材料膜の剥離力を求めることを特徴とする無機質膜の剥離力測定方法。
Increase the load while repeating the load to press the spherical indenter against the inorganic material film on the substrate surface and the unloading to remove the load,
Measure the indentation depth of the inorganic material film with a spherical indenter corresponding to each load and obtain a relationship curve between the indentation depth and the indentation load,
Calculate the stress-strain relationship curve by Hertz's theory of elasticity ,
Obtain the yield pressure from the stress-strain relationship curve,
A method for measuring the peel strength of an inorganic film, wherein the peel strength of the inorganic material film is obtained from the yield pressure.
基盤表面上の無機質材料膜に球状圧子を押圧する負荷と、該負荷を除去する除荷を繰り返しつつ負荷を増大する荷重負荷・除荷装置と、
前記球状圧子を負荷した際に生じる無機質材料膜上の圧子圧入深さを計測する深さ計測装置と、
各負荷の荷重と該各荷重に対応する球状圧子による無機材料膜の圧入深さの測定値により該圧入深さと圧入荷重の関係曲線を求め、ヘルツの弾性理論式により応力と歪みの関係曲線を算出し、前記応力と歪みの関係曲線により降伏圧力を求め、前記降伏圧力により前記無機材料膜の剥離力を求める演算手段とを備えたことを特徴とする無機質膜の剥離力測定装置。
A load that presses the spherical indenter against the inorganic material film on the substrate surface, and a load load / unloading device that increases the load while repeating unloading to remove the load,
A depth measuring device that measures the indentation depth on the inorganic material film generated when the spherical indenter is loaded; and
A relationship curve between the indentation depth and the indentation load is obtained from the measured value of the indentation depth of the inorganic material film by the load of each load and the spherical indenter corresponding to each load, and the relationship curve of stress and strain is obtained by Hertz's elastic theory formula. An inorganic film peeling force measuring apparatus comprising: a calculating means for calculating and obtaining a yield pressure from the stress-strain relationship curve, and obtaining a peeling force of the inorganic material film from the yield pressure.
前記荷重負荷・除荷装置は、WC製の圧子を用い、該圧子に50N以上5KN以下の荷重を負荷するものであることを特徴とする請求項2記載の無機質膜の剥離力測定装置。  3. The inorganic film peeling force measuring device according to claim 2, wherein the load loading / unloading device uses a WC indenter and applies a load of 50 N or more and 5 KN or less to the indenter. 圧子の直径は2mm以上8mm未満であることを特徴とする請求項2記載の無機質膜の剥離力測定装置。  The inorganic film peeling force measuring device according to claim 2, wherein the indenter has a diameter of 2 mm or more and less than 8 mm.
JP2002334441A 2002-11-19 2002-11-19 Method and apparatus for measuring peel strength of inorganic film Expired - Lifetime JP3861148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334441A JP3861148B2 (en) 2002-11-19 2002-11-19 Method and apparatus for measuring peel strength of inorganic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334441A JP3861148B2 (en) 2002-11-19 2002-11-19 Method and apparatus for measuring peel strength of inorganic film

Publications (2)

Publication Number Publication Date
JP2004170160A JP2004170160A (en) 2004-06-17
JP3861148B2 true JP3861148B2 (en) 2006-12-20

Family

ID=32698814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334441A Expired - Lifetime JP3861148B2 (en) 2002-11-19 2002-11-19 Method and apparatus for measuring peel strength of inorganic film

Country Status (1)

Country Link
JP (1) JP3861148B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126139A (en) * 2004-11-01 2006-05-18 Furukawa Alflex Corp Apparatus and method for measuring film adhesive force
JP2006194605A (en) * 2005-01-11 2006-07-27 Matsushita Electric Works Ltd Mechanical characteristic calculating program and mechanical characteristic measuring instrument
JP2010091409A (en) * 2008-10-08 2010-04-22 Hitachi Chem Co Ltd Method for evaluating resin film
JP5283227B2 (en) * 2009-06-05 2013-09-04 学校法人日本大学 Intervertebral disk hardness measurement device
JP5546651B1 (en) * 2013-01-28 2014-07-09 株式会社エリオニクス Surface force measuring method and surface force measuring apparatus
KR101489464B1 (en) 2013-02-15 2015-02-05 한국표준과학연구원 Method for measuring adhesion of solar cell by Using scratch testing machine
CN110864581B (en) * 2019-10-16 2020-11-17 杭州力诺机械设备有限公司 Preparation process of fin for efficient heat exchanger

Also Published As

Publication number Publication date
JP2004170160A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
Long et al. Strain rate shift for constitutive behaviour of sintered silver nanoparticles under nanoindentation
Majidi et al. High friction from a stiff polymer using microfiber arrays
Cao et al. An experimental study of the fracture resistance of bimaterial interfaces
Tsau et al. Fabrication of wafer-level thermocompression bonds
Kanchanomai et al. Low cycle fatigue test for solders using non-contact digital image measurement system
Seker et al. The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures
JP3861148B2 (en) Method and apparatus for measuring peel strength of inorganic film
Fitzgerald et al. Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon
CN102879259A (en) Tensile test device and method for testing deposits on electronic substrates
JP4684502B2 (en) Conductive connection method and release sheet used therefor
JP2012030922A (en) Adhesive tape attaching device and adhesive tape attaching method
JP2016169411A (en) Porous silver-made sheet and metallic member conjugate using the porous silver-made sheet
De Boer et al. Investigation of a new fracture mechanics specimen for thin film adhesion measurement
Ostrowicki et al. Magnetically actuated peel test for thin films
Zulkifli et al. Effect of surface roughness and hardness of leadframe on the bondability of gold wedge bonds
KR101258073B1 (en) Interfacial delaminating apparatus by introducing a substrate through-thickness crack
JP2002310866A (en) Paper impact compression testing device and testing method using device
Fahim et al. Nanomechanical Characterization of Various Materials within PBGA Packages Subjected to Thermal Cycling Loading
KR101309046B1 (en) Measuring method for interfacial adhesion strength of film
JPH0611435A (en) Method and device for tackiness test
Jeong et al. Variational principle of thin film adhesion
JPH0643954B2 (en) Method and apparatus for evaluating adhesion strength of film
JPH07146230A (en) Adhesive property evaluating method for hard thin film and adhesive property evaluation tester
JPH1164211A (en) Method for evaluating adhesion of coat
Emery et al. Tensile behavior of free-standing gold films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3861148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term