JP3859759B2 - Combined water heater - Google Patents

Combined water heater Download PDF

Info

Publication number
JP3859759B2
JP3859759B2 JP04835596A JP4835596A JP3859759B2 JP 3859759 B2 JP3859759 B2 JP 3859759B2 JP 04835596 A JP04835596 A JP 04835596A JP 4835596 A JP4835596 A JP 4835596A JP 3859759 B2 JP3859759 B2 JP 3859759B2
Authority
JP
Japan
Prior art keywords
combustion
hot water
bath
burner
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04835596A
Other languages
Japanese (ja)
Other versions
JPH09217960A (en
Inventor
武雄 山口
喜久雄 岡本
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP04835596A priority Critical patent/JP3859759B2/en
Publication of JPH09217960A publication Critical patent/JPH09217960A/en
Application granted granted Critical
Publication of JP3859759B2 publication Critical patent/JP3859759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯バーナと風呂バーナを備えた複合給湯器に関するものである。
【0002】
【従来の技術】
図7には複合給湯器(器具)のシステム構成の一例が示されている。同図において、器具1内には仕切り部2を介して、給湯燃焼室3と、風呂燃焼室4とに区画されており、給湯燃焼室3には給湯バーナ5が設けられ、風呂燃焼室4には風呂バーナ6が設けられている。
【0003】
前記給湯バーナ5と風呂バーナ6は仕切り部2を介して並設されており、各バーナ5,6のガス導入口側には、ガスノズルを対向させてガスノズルホルダ12,13がそれぞれ配置され、ガスノズルホルダ12,13に通じるガス供給通路36には、元電磁弁37と比例弁38が設けられており、比例弁38の下流側のガス供給通路36を分岐させてそれぞれ給湯側ガス開閉弁39、風呂側ガス開閉弁40を介してガスノズルホルダ12,13に燃料であるガスが導かれる。給湯バーナ5と風呂バーナ6の下方側は共通の空気チャンバ(空気室)7となっており、この空気チャンバ7の底面側には給排気用の燃焼ファン8が連設されている。この燃焼ファン8にはファン回転数を検出するファン回転数検出センサ17が設けられている。
【0004】
前記給湯燃焼室3には、給湯バーナ5の上方側に給湯熱交換器15が設置されており、この給湯熱交換器15は、水道等の水供給源から給水通路19を介して導入される水を、給湯バーナ5の燃焼火炎によって加熱して設定温度の湯を作り出し、この湯を、給湯熱交換器15の出側に接続される給湯通路20を介して台所や浴室等の所望の給湯場所に導き出湯を行う。なお、図中、30は入水温度センサ、31は出湯温度センサを示しており、これらのセンサによって給湯熱交換器15への入水温度と給湯熱交換器15からの出湯温度とがそれぞれ検出される。また、41は水供給源から給湯熱交換器15に供給される水の流量を検出する流量センサを示している。
【0005】
前記風呂燃焼室4には前記風呂バーナ6の上方側に追い焚き熱交換器16が設置されており、この追い焚き熱交換器16の入口側には管路22の一端側が接続され、管路22の他端側は循環ポンプ23の吐出側に接続されている。この管路22には追い焚き熱交換器16の入側の通水温度を検出するサーミスタ等の風呂温度センサ(入側温度センサ)24が設けられている。
【0006】
循環ポンプ23の吸込側には戻り管26が接続されており、戻り管26の戻り口側(入口側)は浴槽21の側壁に循環金具27を介して接続されている。この戻り管26には通水を検知してオン信号を出力するフローセンサや流水スイッチ等で構成される流水検出センサ28が設けられている。追い焚き熱交換器16の出口側には往管29の入口側が接続されており、往管29の出口側は循環金具27を介して浴槽21の側壁に接続されている。前記戻り管26と管路22と追い焚き熱交換器16と往管29は循環金具27を介して浴槽21の湯水の循環を行う追い焚き循環路25を構成し、追い焚き熱交換器16は、浴槽からの循環湯水を導入して風呂バーナ6の燃焼火炎によって加熱し、この加熱した湯を浴槽21に戻すことで、風呂の追い焚きを行う。風呂燃焼室4および前記給湯燃焼室3は、共に、共通の排気口42に連通しており、給湯バーナ5の排気ガスと風呂バーナ6の排気ガスとが共通の排気口42から排出されるようになっている。
【0007】
前記給湯通路20には湯張り用管32が分岐されて管路22と接続されており、この湯張り用管32には、注湯制御弁としての注湯弁35と、浴槽水位を検出する水位検出センサとしての圧力センサ34とが設けられている。
【0008】
なお、図中、点線で示されているものは必要に応じ設けられるもので、44は追い焚き熱交換器16の出側湯温を検出する出側温度センサ、45は燃焼ファン8のファン風量を検出するファン風量検出センサを示している。
【0009】
この種の複合給湯器には、給湯バーナ燃焼および風呂バーナ燃焼等の制御を行う制御装置56が設けられており、制御装置56には、リモコン55が接続されている。この制御装置56には、前記流量センサ41等の様々なセンサからの信号が加えられるようになっており、例えば、給湯通路20が導かれている台所等の給湯場所に設けられた給湯栓(図示せず)が開かれ、水道等の水供給源から給水通路19に水が導入されると、制御装置56は流量センサ41から入水信号を受けたときに燃焼ファン8を回転し、ガス供給通路36の元電磁弁37と比例弁38と給湯側ガス開閉弁39を開き、その状態で給湯バーナ5の点着火を行い、炎を検知した以降に、出湯温度センサ31で検出される出湯温度がリモコン55で設定される設定温度となるように給湯モードでの給湯運転を制御する。
【0010】
この給湯運転の制御に際し、前記制御装置56には、予め、給湯燃焼の最小燃焼時の燃焼能力(最小燃焼能力)と最大燃焼時の燃焼能力(最大燃焼能力)とが与えられており、制御装置56は、前記最小燃焼能力から最大燃焼能力までの範囲内で給湯バーナ燃焼が行われるように、ガス供給通路36から給湯バーナ5への供給ガス量、つまり、比例弁38の開弁量(比例弁電流量)と、燃焼ファン8から給湯バーナ5への供給空気量を制御し、これらの制御により、安定した設定温度の湯が給湯熱交換器15から給湯通路20を経て所望の給湯場所に供給されるようにしている。
【0011】
前記制御装置56は、電磁弁等の注湯弁35を開けることにより、給湯熱交換器15側で作り出した湯を追い焚き循環路25を介して浴槽21内に落とし込んで湯張りを行う湯張りモードの運転動作機能を備えている。この自動湯張り動作はリモコン55等の指令により行われ、圧力センサ34により湯張りの水位がリモコン55等で設定される設定水位に達したときに注湯弁35が閉じられて湯張りの停止が行われ、次に循環ポンプ23を起動して追い焚きモードでの運転が行われるものである。
【0012】
この追い焚き運転に際して、制御装置56は、まず、追い焚き循環路25の循環ポンプ23を回転させて、浴槽21内の湯水を追い焚き循環路25を介して循環させる。そして、流水検出センサ28が湯水の流れを検知したときに、制御装置56は燃焼ファン8を回転し、風呂側ガス開閉弁40を開き、点着火により風呂バーナ6を燃焼させて追い焚き熱交換器16を通る循環湯水を加熱して浴槽21内の湯水の追い焚きを行う。
【0013】
なお、この追い焚き単独運転制御に際し、通常、制御装置56には最大燃焼能力の値が与えられており、この最大燃焼能力に対応させたファン回転数で燃焼ファン8の回転を行い、風呂バーナ6のバーナ燃焼を行って、できるだけ早く追い焚きが行われるようにする。そして、風呂温度センサ24で検出される風呂温度がリモコン55によって設定される風呂設定温度(沸き上がり温度)に達したときに追い焚き運転を停止する。
【0014】
この種の複合給湯器においては、追い焚き運転の終了時から所定の時間(例えば4時間)にかけて保温モードに移り、この保温モードでは、例えば30分等の時間間隔で循環ポンプ23を起動して浴槽湯水を追い焚き循環路25を通して循環し、このとき風呂温度センサ24で検出される浴槽湯水の温度が風呂設定温度に対し、所定の温度を越えて低下したときには、風呂バーナ6を燃焼して浴槽湯水の温度を設定温度に高める等の動作を行って浴槽湯水の保温を行う。この保温動作において、水位保持機能を備えた風呂装置のものにあっては、保温モードの期間中、常に、圧力センサ34の水位検出信号によって浴槽水位を監視し、浴槽水位が設定水位から許容範囲を越えて低下したときには、注湯弁35を開けて設定水位までの不足分の水量を給湯熱交換器15側から足し湯し、浴槽水位を設定水位に保持する保水モードでの動作を行う。
【0015】
【発明が解決しようとする課題】
図7に示すように、給湯バーナ5と風呂バーナ6を備え、給湯バーナ5と風呂バーナ6に対して共通の燃焼ファン8と共通の比例弁38が設けられている複合給湯器においては、通常、台所やシャワー等へ給湯を行うための給湯バーナ燃焼と風呂の追い焚きや保温を行うための風呂バーナ燃焼が共に行われる場合には、給湯側を優先させて比例弁38の開弁量(比例弁電流量)制御と燃焼ファン8の回転制御が行われ、高温の湯が台所やシャワー等へ出湯するのを防止して湯の利用者の体に火傷を負わせる危険を回避している。
【0016】
上記のように、給湯バーナ燃焼と風呂バーナ燃焼が給湯側優先の制御により行われているときに、例えば、給湯バーナ5の燃焼能力が低下する方向に比例弁38の開弁量が絞られると、必然的に風呂バーナ6の燃焼能力も低下する。このように風呂バーナ6の燃焼能力が低下しても、追い焚き熱交換器16には風呂バーナ6の最大燃焼時と変わらぬ一定の通水量の湯水が循環ポンプ23の駆動により流れているために、風呂バーナ6は追い焚き熱交換器16の通水を十分に加熱することができなくなり、追い焚き熱交換器16の通水は温度が上昇しにくくなって追い焚き熱交換器16の水管表面の温度が低下し、風呂バーナ6の燃焼により発生した水蒸気成分が追い焚き熱交換器16の水管表面に結露し易くなる。このような追い焚き熱交換器16の結露現象が繰り返し発生すると、追い焚き熱交換器16が腐蝕する等の弊害が発生する。
【0017】
上記追い焚き熱交換器16の結露発生を防止するために、実開平2−124442号公報には、風呂バーナ6の燃焼能力が設定値以下となったときに循環ポンプ23の駆動量(能力)を減少させて追い焚き熱交換器16の通水量を一定量減少させて、追い焚き熱交換器16の出側湯温(追い焚き熱交換器16の水管表面)を上昇させ、追い焚き熱交換器16の結露発生を防止する手段が提案されている。
【0018】
しかしながら、周知のように、循環ポンプ23はトライアック等を用いた位相角制御手法等により駆動制御が行われており、このような位相角等のポンプ駆動制御手法を用いて循環ポンプ23の連続流量を可変制御する回路構成は複雑になるという問題がある。また、循環ポンプ23には能力によって分けられる複数の種類があり、上記のように循環ポンプ23の連続流量を可変制御するためには、循環ポンプ23の種類(能力)毎にそれぞれ対応する複雑な連続流量可変制御回路を作製しなければならず、このため、回路のコストが高くなるという問題もある。
【0019】
本発明は上記課題を解決するためになされたものであり、その目的は、風呂バーナの燃焼能力が低下したとき、つまり、風呂バーナの燃焼動作が追い焚き熱交換器の結露発生動作状態となったときに、追い焚き循環用のポンプの連続流量を可変制御せずに、追い焚き熱交換器の結露発生を防止することが可能であり、かつ、制御回路の回路構成の簡易化が可能な追い焚き熱交換器の結露防止機能を備えた複合給湯器を提供することにある。
【0020】
【課題を解決するための手段】
上記目的を達成するために本発明は次のような構成をもって前記課題を解決する手段としている。第1の発明は、給湯熱交換器の加熱燃焼を行う給湯バーナと、追い焚き熱交換器の加熱燃焼を行う風呂バーナと、前記給湯バーナと風呂バーナへ供給する燃料量を開弁量によって制御する共通の比例弁と、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う共通の燃焼ファンと、風呂バーナ燃焼を行う追い焚き時に風呂の湯水を追い焚き熱交換器を通し循環させるポンプと、前記比例弁の開弁量制御や燃焼ファンの回転制御やポンプ駆動の制御を行う制御装置とを備え複合給湯器において、制御装置には給湯バーナの燃焼停止中に風呂バーナの燃焼が行なわれたときには燃焼ファンの回転低下制御を行って給湯熱交換器の通風冷却を抑制して給湯の再出湯湯温を安定化する再出湯湯温安定化モードの動作を行うQ機能動作部が設けられ、再出湯湯温安定化モードの動作中における給湯バーナ燃焼停止中は風呂バーナ燃焼動作が結露発生動作状態であるとしてポンプのオン・オフ間欠運転を行うポンプ間欠運転制御部を有する構成をもって前記課題を解決する手段としている。
【0031】
の発明は、給湯熱交換器の加熱燃焼を行う給湯バーナと、追い焚き熱交換器の加熱燃焼を行う風呂バーナと、前記給湯バーナと風呂バーナへ供給する燃料量を開弁量によって制御する共通の比例弁と、風呂バーナ燃焼を行う追い焚き時に風呂の湯水を追い焚き熱交換器を通し循環させるポンプと、前記比例弁の開弁量制御や燃焼ファンの回転制御やポンプ駆動の制御を行う制御装置と、ポンプ駆動による追い焚き熱交換器の流水を検出する流水検出センサと、該流水検出センサが流水オフを検出したときに風呂バーナの燃焼を停止させる風呂バーナ燃焼停止部とを備え、通常の給湯バーナ燃焼と風呂バーナ燃焼が共に行われるときには給湯側を優先させ比例弁の開弁量制御を行う複合給湯器において、この複合給湯器の動作状態の情報を収集検出する動作状態検出部と、複合給湯器の動作状態の情報を用いて予め作成された追い焚き熱交換器の結露発生条件データを格納するデータ格納部と、前記動作状態検出部により収集検出された情報に基づき追い焚き熱交換器の結露発生可否状況を前記データ格納部の結露発生条件データと比較して判断する結露発生状況判断部と、この結露発生状況判断部により結露発生動作状態と判断されたときには前記ポンプのオン・オフ間欠運転を行うポンプ間欠運転制御部とを有し、さらに、ポンプ間欠運転制御部によるポンプ間欠運転のオフ時に前記流水検出センサが流水オフを検出しても前記風呂バーナ燃焼停止部の風呂バーナ燃焼停止動作を阻止する燃焼停止動作阻止部を設けた構成をもって前記課題を解決する手段としている。
【0034】
【発明の実施の形態】
以下に、本発明に係る実施の形態例を図面に基づいて説明する。なお、以下に説明する各実施の形態例の複合給湯器は、図7に示したシステム構成の複合給湯器を対象にしている。また、以下に説明する各実施の形態例の説明において、前に説明した各実施の形態例の構成部分と同一構成部分には同一符号を付し、その後の実施の形態例における重複説明は省略する。
【0035】
図1には第1の実施の形態例において特徴的な追い焚き交換器結露防止機能を行うための制御装置56の構成が示されており、この制御装置56は、比例弁駆動部46と、風呂燃焼制御部47と、給湯燃焼制御部48と、ポンプ間欠運転制御部50と、動作状態検出部51と、データ格納部52と、結露発生状況判断部53とを有して構成されている。
【0036】
上記動作状態検出部51は、ファン回転数検出センサ17や、風呂温度センサ(入側温度センサ)24や、追い焚き熱交換器16の出側湯温を検出する出側温度センサ44や、燃焼ファン8の風量を検出するファン風量検出センサ45等の器具の動作状態を検出するために設けられた様々なセンサの出力や、比例弁38の開弁量を制御する比例弁駆動部46の比例弁電流等の器具の動作状態の情報を器具の運転中に繰り返し収集検出する構成を有している。
【0037】
風呂燃焼制御部47は、リモコン55の情報や上記動作状態検出部51の収集検出情報に基づいて、追い焚きモードや保温モードの風呂側の動作制御を行うものであり、その制御構成は従来例と同様であるのでその説明は省略する。また、給湯燃焼制御部48は、リモコン55の情報や前記動作状態検出部51の収集検出情報に基づいて、給湯モードや湯張りモードや保温モード等の給湯側の動作制御を行うものであり、その制御構成は従来例と同様であるのでその説明は省略する。なお、従来例で述べたように、風呂バーナ燃焼と給湯バーナ燃焼が共に行われるときには、給湯燃焼制御部48が優先的にガス供給量、つまり、比例弁38の開弁量(比例弁電流量)の制御と、燃焼ファン8の回転制御とを行うように構成されている。
【0038】
データ格納部52は記憶装置(メモリ)で構成されており、このデータ格納部52には結露発生条件データが実験や演算等により予め求め与えられている。本実施の形態例では、上記結露発生条件データは風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態であるか否かを判断する結露発生値Sのデータで構成されており、比例弁電流の結露発生値(例えば最小燃焼時の比例弁電流値を0%として最大燃焼時に向けて%値が増加し、最大燃焼時の比例弁電流値を100 %ととしたときの比例弁電流を%で表した結露発生値(例えば50%))と、風呂温度(追い焚き熱交換器16の入側水温)の結露発生値(例えば25℃)と、追い焚き熱交換器16の出側湯温の結露発生値(例えば40℃)と、燃焼ファン8の回転数の結露発生値とファン風量の結露発生値のうち、いずれか1つの結露発生値により結露発生条件データが形成されている。
【0039】
上記比例弁電流は風呂バーナ燃焼能力に対応するもので、比例弁電流値が低下すると風呂バーナ6の燃焼能力も低下したことを示し、風呂バーナ6の燃焼能力が低下すると、前記の如く、追い焚き熱交換器16の通水温が上昇しにくくなって追い焚き熱交換器16の水管表面の温度が低下し追い焚き熱交換器16の水管表面に結露が発生し易くなる。また、風呂温度センサ24で検出される風呂温度が低いとその分追い焚き熱交換器16の通水温も低くなり、追い焚き熱交換器16の水管表面温度が低くなって結露が発生し易くなる。さらに、追い焚き熱交換器16の出側湯温が低いと上記同様に追い焚き熱交換器16の水管表面温度が低く結露が発生し易くなる。さらに、風呂バーナ6の燃焼能力にマッチングするように風呂バーナ6への風量が制御されるので、燃焼ファン8の回転数やファン風量は風呂バーナ6の燃焼能力に対応するものとなり、燃焼ファン8の回転数やファン風量が低下すると風呂バーナ6の燃焼能力が低下したことを示し、前記の如く、追い焚き熱交換器16の水管表面温度が低くなり結露が発生し易くなる。上記のような理由により、この実施の形態例では、比例弁電流と風呂温度と追い焚き熱交換器出側温度と燃焼ファンの回転数あるいはファン風量のいずれか1つの結露発生値を結露発生条件データとして採用している。
【0040】
結露発生状況判断部53は、前記動作状態検出部51が収集検出した器具動作状態情報や風呂燃焼制御部47の制御情報に基づき風呂バーナ6の燃焼が確認されたときに、前記データ格納部52の結露発生条件データを読み出し、また、一方で、前記動作状態検出部51から結露発生条件データに対応する収集検出値K(例えば、結露発生条件データとして比例弁電流の結露発生値が与えられている場合には比例弁電流の収集検出値)を読み出し、前記結露発生条件データの結露発生値Sと動作状態検出部51の収集検出値Kを比較し、収集検出値Kが結露発生値S以下であるときには、風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態にあると判断して結露発生信号をポンプ間欠運転制御部50へ出力する。
【0041】
上記結露発生状況判断部53の結露発生可否状況判断動作は風呂バーナ燃焼中繰り返し行われ、風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態となったときには、結露発生状況判断部53は、最初に結露発生動作状態と判断してから非結露発生動作状態と判断するまで結露発生信号を連続的にポンプ間欠運転制御部50へ出力する。
【0042】
ポンプ間欠運転制御部50は、前記結露発生状況判断部53の結露発生信号を受けている間、循環ポンプ(ポンプ)23を設定の周期(オン・オフ間欠時間)でオン・オフさせる(例えば10秒間オンと10秒間オフを繰り返し行わせる)ためのポンプオン・オフ信号を循環ポンプ23へ出力する回路構成を有し、循環ポンプ23は前記ポンプオン・オフ信号に従ってポンプ間欠運転を行いポンプ間欠運転モードの動作を行う。
【0043】
なお、上記ポンプのオン・オフ間欠時間は風呂バーナ6側の燃焼動作が結露発生動作状態となったときに追い焚き熱交換器16の結露防止ができるように予め実験等により求められ、ポンプ間欠運転制御部50の内蔵メモリに格納されている。
【0044】
以下に、上記構成の追い焚き熱交換器結露防止機能の動作例を図2のフローチャートに基づいて簡単に説明する。風呂バーナ6の燃焼中に、ステップ101 で、動作状態検出部51が、比例弁38の比例弁電流値や、風呂温度センサ24の検出風呂温度や、出側温度センサ44の検出追い焚き熱交換器出側湯温や、ファン回転数検出センサ17の検出回転数や、ファン風量検出センサ45の検出ファン風量等の器具動作状態情報を収集検出する。ステップ102 で、結露発生状況判断部53は、データ格納部52から読み出した結露発生条件データ(結露発生値S)と該結露発生値Sに対応する前記器具動作状態情報である動作状態検出部51の収集検出値Kを比較し、収集検出値Kが結露発生値S以下(K≦S)であるときには、風呂バーナ6側の燃焼動作が結露発生状態であると判断し、ステップ103 で、結露発生信号をポンプ間欠運転制御部50へ出力し、ポンプ間欠運転制御部50は、結露発生信号を受けて循環ポンプ23にポンプオン・オフ信号を出力し循環ポンプ23にポンプ間欠運転モードのポンプ間欠運転を行わせる。
【0045】
ステップ105 で、風呂燃焼制御部47が、動作状態検出部51の収集検出風呂温度T1 とリモコン55で設定されている風呂の沸き上がり温度TS を比較し、風呂温度T1 が沸き上がり温度TS に達していない(T1 <TS )のときには、再び、前記ステップ101 以降の動作を行い、結露発生状況判断部53により結露発生状態(K≦S)であると判断されたときには、結露発生信号の出力を継続して行い、循環ポンプ23にポンプ間欠運転モードの動作を続行させる。
【0046】
また、前記ステップ102 で、収集検出値Kが結露発生値Sよりも大きいと判断されたときには、風呂バーナ6側の燃焼動作が追い焚き熱交換器16の非結露発生動作状態に移行したと判断し、ステップ104 で、結露発生状況判断部53は結露発生信号の出力を停止し、ポンプ間欠運転制御部50のポンプオン・オフ信号の出力を停止させ、循環ポンプ23は通常の連続運転モードの運転を行う。そして、前記ステップ105 で、収集検出風呂温度T1 が沸き上がり温度TS に達していないときには前記ステップ101 以降の動作を繰り返し行い、収集検出風呂温度T1 が沸き上がり温度TS に達したときには、ステップ106 で、風呂燃焼制御部47が循環ポンプ23のポンプ駆動を停止させ風呂バーナ6の燃焼を停止させる。
【0047】
この実施の形態例によれば、風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生状態となったときに循環ポンプ23をオン・オフさせてポンプ間欠運転を行わせるように構成したので、循環ポンプ23の間欠運転を行うことによって、湯水が追い焚き熱交換器16の入口から出口に至るのに要する時間(通水の追い焚き熱交換器滞在時間)がポンプ連続運転時に比べて長くなり、風呂バーナ6は燃焼熱量が小さくなっても、又は通水温度が低くても追い焚き熱交換器16の通水を十分に加熱することが可能となり、追い焚き熱交換器16の水管表面の温度低下が抑えられ、追い焚き熱交換器16の結露を防止することができる。
【0048】
その上、上記の如く、循環ポンプ23のポンプ間欠運転を行うことによって、風呂バーナ6により加熱された高温の湯が緩やかに浴槽へ流れることになるので、追い焚き中に入浴者がいる場合には、追い焚きによる高温の湯が勢いよく噴出し入浴者に不快感を与えるという問題を回避することができる。
【0049】
また、上記の如く、追い焚き熱交換器16の結露を防止するために、循環ポンプ23を設定の周期(オン・オフ間欠時間)でオン・オフさせるだけでよく、その循環ポンプ23のオン・オフ制御は簡単であるので、循環ポンプ23のオン・オフ間欠運転を制御するポンプ間欠運転制御部50の回路構成を簡易化することが可能である。さらに、循環ポンプ23の能力毎にそれぞれ対応するポンプ間欠運転制御部50の回路を用意する必要がなく、上記ポンプのオン・オフ間欠時間をポンプ間欠運転制御部50の内蔵メモリに入力するだけで、適宜のポンプ間欠運転を行うことができるので、複数能力種のポンプ毎にポンプ間欠運転制御部50の回路を製造しなくて済み、回路のコストを低く抑えることが可能である。
【0050】
以下に第2の実施の形態例を説明する。第2の実施の形態例が前記第1の実施の形態例と異なる特徴的なことは、データ格納部52の結露発生条件データを比例弁電流の結露発生値と風呂温度の結露発生値と追い焚き熱交換器出側湯温の結露発生値とファン回転数あるいはファン風量の結露発生値のうちの2個以上の結露発生値で構成し、風呂バーナ6側の結露発生動作状況(追い焚き熱交換器16の結露発生可否状況)をより正確に判断する構成としたことである。それ以外の構成は前記第1の実施の形態例と同様であり、その重複説明は省略する。
【0051】
データ格納部52に格納されている結露発生条件データは、前記の如く、比例弁38の比例弁電流の結露発生値と風呂温度の結露発生値と追い焚き熱交換器出側湯温の結露発生値とファン回転数あるいはファン風量の結露発生値のうち2個以上の結露発生値で構成されている。
【0052】
結露発生状況判断部53は、風呂バーナ燃焼中に、読み出した上記データ格納部52の結露発生条件データ(複数個の結露発生値)と該結露発生値にそれぞれ対応する器具動作状態情報である動作状態検出部51の収集検出値をそれぞれ比較し、比較した複数の収集検出値のうちの少なくとも1個が対応する結露発生値以下であるとき、あるいは、比較した全ての収集検出値が対応する結露発生値以下であるとき等、予め定めた収集検出値が対応する結露発生値以下であるときには、風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態にあると判断し、前記第1の実施の形態例同様に結露発生信号をポンプ間欠運転制御部50へ出力する回路構成を有し、風呂バーナ6側の燃焼動作が結露発生動作状態であるときに、前記第1の実施の形態例同様にポンプ間欠運転制御部50によりポンプ間欠運転モードで循環ポンプ23の運転を行わせる。
【0053】
この実施の形態例によれば、互いに異なる動作状態を示す複数の結露発生値で結露発生条件データを構成し、それら複数の結露発生値とそれら結露発生値にそれぞれ対応する器具動作状態情報に基づいて風呂バーナ6側が結露発生動作状態であるか否かを判断する構成としたので、より正確に追い焚き熱交換器16の結露発生可否状況を判断することができる。追い焚き熱交換器16に結露が発生し易い状態、つまり、風呂バーナ燃焼動作が結露発生動作状態と判断されたときには、前記第1の実施の形態例同様に循環ポンプ23の間欠運転を行うことによって、追い焚き熱交換器16の結露を防止することができる。
【0054】
以下に第3の実施の形態例を説明する。第3の実施の形態例において特徴的なことは、結露発生条件データが比例弁電流と風呂温度と追い焚き熱交換器出側湯温とファン回転数又はファン風量のうち、少なくとも2個以上の組み合わせにより結露発生領域と非結露発生領域を区分する組み合わせデータで構成され、風呂バーナ6側の結露発生動作状態をより一層正確に判断する構成としたことである。それ以外の構成は前記第1の実施の形態例と同様であり、その説明は省略する。
【0055】
データ格納部52に格納されている結露発生条件データは、前記の如く、比例弁電流と風呂温度と追い焚き熱交換器出側湯温とファン回転数あるいはファン風量のうち、少なくとも2個以上の組み合わせデータで構成されている。
【0056】
図3には結露発生条件データの一例として比例弁電流と風呂温度の2個の組み合わせデータが実線Aにより示されている。この実線Aは追い焚き熱交換器の結露発生領域と非結露発生領域を区分するための比例弁電流と風呂温度の関係を示すもので、同図に示すように、実線Aよりも上側の領域は非結露発生領域、実線A以下の領域は結露発生領域というように実線Aにより区分されており、比例弁電流と風呂温度の関係値(比例弁電流と風呂温度のグラフ上の交点座標値)が実線Aよりも上側の非結露発生領域に入っているときには、追い焚き熱交換器16に結露は発生しないと判断され、比例弁電流と風呂温度の関係値が実線A以下の結露発生領域に入っているときには、追い焚き熱交換器16に結露が発生し易いと判断されることになる。
【0057】
なお、図3のグラフにおける横軸のα値は予め定められている最小燃焼能力に対応する比例弁電流値を示し、β値は予め定められている最大燃焼能力に対応する比例弁電流値を示すものである。
【0058】
図3では結露発生条件データの一例として比例弁電流と風呂温度の2個の組み合わせであるグラフデータを示したが、結露発生条件データは、図3に示すようなグラフデータだけとは限らず、演算式データや表データで構成してもよい。また、上記2個の組み合わせだけとは限らず、比例弁電流と風呂温度と追い焚き熱交換器出側湯温と燃焼ファンの回転数あるいはファン風量のうちの任意の2個の組み合わせにより構成してもよいし、任意の3個の組み合わせにより構成してもよい。もちろん、上記4個全てを組み合わせてもよく、次に、上記4個を組み合わせた結露発生条件データの一例である演算式データを下式(1)に示す。
【0059】
A・(T2 −T1 )+B・I+C・N=X・・・・・(1)
【0060】
上記演算式の左辺に示すA,B,Cは予め実験や演算等により求められる定数であり、T1 は風呂温度(追い焚き熱交換器の入側水温)、T2 は追い焚き熱交換器の出側湯温、Iは比例弁電流値、Nは燃焼ファンのファン回転数あるいはファン風量をそれぞれ示すものであり、Xは演算式の算出値を示す。
【0061】
上式(1)の演算算出値Xが設定の境界(例えば“1”)以下のときには風呂バーナ6側の燃焼動作が追い焚き熱交換器の結露発生動作状態(結露発生領域)にあることを示し、算出値Xが境界値よりも大きいときには風呂バーナ6側の動作状態が非結露発生動作状態(非結露発生領域)にあることを示すという如く、結露発生領域と非結露発生領域が区分される。
【0062】
結露発生状況判断部53は、風呂バーナ燃焼中に、読み出した上記データ格納部52の結露発生条件データと該結露発生条件データに対応する風呂バーナ動作状態情報である動作状態検出部51の収集検出値を比較する。
【0063】
例えば、結露発生条件データが図3に示す実線Aのように、比例弁電流と風呂温度の関係を示すグラフデータで構成されている場合には、動作状態検出部51の検出値(図3の例では比例弁電流値と検出風呂温度)に基づく関係値をグラフデータに照合し、その関係値が結露発生領域に入っているか否かを判断する。また、結露発生条件データが前式(1)に示す演算式データで構成されている場合には、動作状態検出部51の検出比例弁電流値I、検出風呂温度T1 、追い焚き熱交換器の検出出側湯温T2 、燃焼ファンの検出ファン回転数あるいは検出ファン風量Nを前式(1)の演算式(A・(T2 −T1 )+B・I+C・N)に代入・演算し、その算出値Xと境界値(例えば“1”)を比較し、結露発生領域に入っているか否かを判断する。
【0064】
そして、結露発生条件データと動作状態検出部51の収集検出値に基づき、風呂バーナ6側の燃焼動作が結露発生領域に入っていると判断されたときには、前記第1の実施の形態例同様に、結露発生信号をポンプ間欠運転制御部50へ出力し、ポンプ間欠運転制御部50の制御動作により循環ポンプ23に間欠運転を行わせ、追い焚き熱交換器16の結露発生を防止する。
【0065】
この実施の形態例によれば、結露発生条件データを比例弁電流、風呂温度、追い焚き熱交換器の出側湯温、燃焼ファンの回転数あるいはファン風量のうちの2個以上の組み合わせデータで構成し、その組み合わせデータと該組み合わせデータに対応する風呂バーナ動作状態情報に基づいて、風呂バーナ6側の燃焼動作が結露発生動作状態であるか否かを判断する構成としたので、風呂バーナ6側の動作状態が結露発生動作状態であるか否かを前記第1、第2の実施の形態例よりもより正確に判断することが可能となり、結露発生動作状態と判断されたときには、前記第1の実施の形態例同様に循環ポンプ23の間欠運転を行うことによって、追い焚き熱交換器16の結露発生を確実に防止することができる。
【0066】
以下に第4の実施の形態例を説明する。第4の実施の形態例において特徴的なことは、図1に示すデータ格納部52に格納される結露発生条件データが結露発生条件の軽重に応じて2段階以上に区分され、風呂バーナ6側の燃焼動作がどの区分の結露発生動作状態に該当するかを結露発生状況判断部53が判断し、その判断結果に基づき循環ポンプ23のオン・オフ間欠時間を前記区分が重くなるに従って循環ポンプ23の駆動エネルギーを低減する方向に可変制御する構成としたことである。それ以外の構成は前記第1の実施の形態例と同様であり、その重複説明は省略する。
【0067】
データ格納部52に格納される結露発生条件データは、前記の如く、結露発生条件の軽重に応じて2段階以上に区分されている。例えば、結露発生条件データが風呂温度のデータだけで構成される場合には、表1に示すように、風呂温度T1 が25℃よりも高い領域を非結露発生領域、風呂温度T1 が25℃以下の領域を結露発生領域とし、さらに、風呂温度T1 が25℃以下、かつ、20℃よりも高い領域を、結露発生領域のうちの結露発生条件が軽いaゾーンとし、風呂温度T1 が20℃以下の領域を結露発生条件が重いbゾーンとするという如く結露発生領域が2つに区分される。
【0068】
【表1】

Figure 0003859759
【0069】
また、結露発生条件データが図3に示す風呂温度と比例弁電流の関係グラフデータで構成される場合には、実線Aよりも上側の領域を非結露発生領域とし、実線Aと実線Bに挟まれた領域(実線Aを含む)を結露発生条件が軽い結露発生領域のaゾーンとし、実線B以下の領域を結露発生条件が重い結露発生領域のbゾーンとするという如く結露発生領域が2つに区分される。さらに、結露発生条件データが前式(1)に示すような演算式データで構成される場合には表2に示すように設定の境界値(例えば、結露発生領域と非結露発生領域を区分する“1”、結露発生領域のaゾーンとbゾーンを区分する“0”、bゾーンとb′ゾーンを区分する“−1”)によって結露発生領域が3つに区分される。
【0070】
【表2】
Figure 0003859759
【0071】
結露発生状況判断部53は、風呂バーナ6の燃焼中、データ格納部52から読み出した結露発生条件データと該結露発生条件データに対応する風呂バーナ動作状態情報である動作状態検出部51の収集検出値に基づいて、風呂バーナ動作状態が前記結露発生条件データのどの領域(ゾーン)にあるかを判断し、風呂バーナ燃焼動作が結露発生領域に入っているときには、結露発生条件の軽重区分を判断し、その判断結果に応じた結露発生信号をポンプ間欠運転制御部50へ出力する。
【0072】
ポンプ間欠運転制御部50は、前記結露発生状況判断部53の結露発生信号を受けている間、その結露発生信号が示す結露発生条件の軽重区分に対応するポンプオン・オフ信号を循環ポンプ23へ出力し、結露発生条件の区分が重くなるに従って循環ポンプ23の駆動エネルギーを低減する方向に循環ポンプ23のオン・オフの間欠時間を可変制御する構成を有している。上記循環ポンプ23のオン・オフの間欠時間可変制御の一例を次に示す。
【0073】
例えば、風呂バーナ燃焼動作が結露発生条件が軽いaゾーンであるときには、aゾーンに対して予め定められた循環ポンプ23のオン・オフ間欠時間(例えばオン期間10秒・オフ期間10秒)で間欠運転を行わせるポンプオン・オフ信号を循環ポンプ23へ出力し、風呂バーナ動作が結露発生条件が重いbゾーンになったときには、前記結露発生条件が軽いaゾーン時のオン・オフ間欠時間のオン期間よりもオン期間が短い、あるいは、aゾーン時のオフ期間よりもオフ期間が長い、あるいは、aゾーン時のオン期間よりもオン期間が短く、かつ、aゾーン時のオフ期間よりもオフ期間が長い(循環ポンプ23の駆動エネルギーを低減させた)bゾーンに対して予め定めた循環ポンプ23のオン・オフ間欠時間(例えばオン期間5秒・オフ期間20秒)で間欠運転を行わせるポンプオン・オフ信号を循環ポンプ23へ出力するという如く、結露発生条件の区分が重くなるに従って循環ポンプ23の駆動エネルギーを低減する方向に循環ポンプ23のオン・オフの間欠時間を可変制御するポンプオン・オフ信号を循環ポンプ23へ出力し、循環ポンプ23のオン・オフ間欠時間可変制御を行う。
【0074】
なお、上記結露発生条件の軽重の区分にそれぞれ対応するポンプオン・オフ間欠時間は、結露発生条件の各区分になった状態で結露が発生しないようなオン・オフの間欠時間を予め演算や実験等により求め、前記各実施の形態例同様に、ポンプ間欠運転制御部50の内蔵メモリに格納されている。
【0075】
この実施の形態例によれば、結露発生条件の区分が重くなるに従って、循環ポンプ23の駆動エネルギーが低減する方向に循環ポンプ23のオン・オフの間欠時間の可変制御を行う構成としたので、結露発生条件の区分が重くなるに従って、湯水が追い焚き熱交換器16へ入ってから出口に至るまでに要する追い焚き熱交換器滞在時間が長くなり、結露発生条件が重くなっても、追い焚き熱交換器の通水は十分に加熱されるために、追い焚き熱交換器16の結露発生をより確実に防止することができる。
【0076】
また、前記第1〜第3の各実施の形態例のように、結露発生条件の軽重に関係なく、一定の間欠時間で循環ポンプ23の間欠運転が行われているときには、確実に結露防止を行うために結露発生条件が重い状態に合わせて結露防止が達成されるように循環ポンプ23の間欠時間が設定されることになるので、結露発生条件が軽いときでも結露発生条件が重い場合の間欠時間で間欠運転が行われ、風呂が沸き上がるのに要する時間が多くかかり、間欠運転に無駄があるが、この実施の形態例のように、軽重の区分に応じて間欠時間を可変することで、間欠運転の無駄が減少し、結露発生条件が軽いときには結露発生条件が重いときよりも風呂を早く沸かすことができる。
【0077】
なお、この実施の形態例では、結露発生条件データが結露発生条件の軽重に応じて2段階又は3段階に区分されている例を示したが、もちろん、それ以上に細かく区分してもよく、結露発生条件データを細かく区分することにより、追い焚き熱交換器16の結露発生状況をより的確に求めることが可能となり、結露発生の防止を正確に行うことができる上に、より間欠運転の無駄を減少させることができる。
【0078】
以下に第5の実施の形態例を図4に基づき説明する。第5の実施の形態例は、給湯の再出湯湯温安定化を行うためのQ機能動作部57が制御装置56に設けられている複合給湯器に適用するもので、図4に追い焚き熱交換器16の結露防止を行う手段の一例を示す。図4に示すように、制御装置56はポンプ間欠運転制御部50とQ機能動作部57を有して構成されている。なお、制御装置56は上記以外に図1に示す比例弁駆動部46と風呂燃焼制御部47と給湯燃焼制御部48と動作状態検出部51等も有しているが、それらの構成は前記第1の実施の形態例と同様であるため、図4では図示を省略し、また、その説明も省略する。
【0079】
前記Q機能動作部57は台所等への給湯が停止すると再出湯湯温安定化モード(以下、Q機能モードと記す)の動作を開始し再出湯に備え、給湯が停止してから最長待機時間(例えば5分間)を経過しないうちに再出湯が行われるときには再出湯湯温の安定化動作を行い、また、再出湯が行われないまま最長待機時間を経過してしまった場合にはコールドスタートとなるためにQ機能モードの動作を停止する構成を有している。
【0080】
上記Q機能モードの動作とは、例えば、再出湯に備えている給湯バーナ5の燃焼停止中に、風呂バーナ6の燃焼運転により燃焼ファン8を回転駆動させると、燃焼ファン8の回転駆動による通風で給湯熱交換器15の冷却が促進し再出湯時に再出湯湯温が設定湯温よりも大きく下がってしまう。これを防止するために、燃焼ファン8の回転低下制御を行って給湯熱交換器15の通風冷却を抑制し、再出湯湯温の安定化を行うという如く、再出湯湯温の安定化を行うための動作である。なお、周知のように、Q機能モードの動作方式は、再出湯時にガスの立ち上げ量を増加させたり、給湯の流量を変化させる等の様々な動作方式が提案されており、上記の如く、Q機能モードの動作中における給湯バーナ5の燃焼停止中に燃焼ファン8の回転低下制御を行う動作方式であれば、Q機能動作部57は様々な提案方式のいずれのQ機能モードの動作を行う構成にしても構わない。また、上記Q機能動作部57の構成は周知であるのでその説明は省略する。
【0081】
ポンプ間欠運転制御部50は、風呂バーナ6の燃焼中に、上記Q機能動作部57の動作状態情報を取り込んで、Q機能動作部57がQ機能モードの動作を開始したときに予め実験や演算等により求め定められたポンプオン・オフ間欠時間(例えば、オン時間10秒、オフ時間10秒)で循環ポンプ23の間欠運転を行わせるためのポンプオン・オフ信号の出力を開始し、Q機能モードの動作が停止するまで上記ポンプオン・オフ信号を循環ポンプ23へ出力する回路構成を有し、Q機能モード動作運転中における給湯バーナ燃焼停止中に燃焼ファン8の回転低下制御が行われ、この燃焼ファン8のファン風量にマッチングするように風呂バーナ6の燃焼能力が制御されて風呂バーナ6の燃焼能力が低下し、このとき、風呂バーナ6側の燃焼動作が結露発生動作状態になったと推定されるときに循環ポンプ23の間欠運転を行わせ、追い焚き熱交換器16の結露発生を防止する。
【0082】
この実施の形態例によれば、Q機能モードの動作を行うQ機能動作部57が設けられている器具の制御装置56に、該Q機能動作に基づく結露発生を防止する機能を備えたポンプ間欠運転制御部50を設けたので、風呂バーナ6が燃焼する一方で、給湯側がQ機能モード動作中の給湯バーナ燃焼停止中であるとき、つまり、給湯が停止し再出湯に備え、再出湯湯温の安定化のために燃焼ファン8の回転低下制御が行われ、必然的に風呂バーナ6の燃焼熱量低下制御が行われて風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態となったときに、ポンプ間欠運転制御部50が循環ポンプ23の間欠運転を行わせることで、前記各実施の形態例同様に追い焚き熱交換器16の結露発生を回避することができる。
【0083】
なお、この実施の形態例では、Q機能モード動作運転中における給湯バーナ燃焼停止中だけ追い焚き熱交換器結露防止のために循環ポンプ23の間欠運転を行わせるようにしたが、図4の点線で示すように前記第1〜第4の各実施の形態例に示したような結露発生状況判断部53や、データ格納部52を設け、データ格納部52に結露発生条件データを与えて、Q機能モード動作中における給湯バーナ燃焼停止中だけでなく、結露発生状況判断部53の結露発生可否状況の判断に基づいて循環ポンプ23の間欠運転を行わせるようにしてもよい。
【0084】
以下に、本発明に関連する参考例を説明する。この参考例は、追い焚き動作中に、リモコン55で設定された風呂の沸き上がり温度よりも予め定めた値だけ低めの湯温まで風呂温度が上昇したときに風呂バーナ6の燃焼能力を低下させるマイルド追い焚き機能を備えた器具に適用するもので、図5に追い焚き熱交換器16の結露防止手段の一例を示す。なお、上記マイルド追い焚き機能は、上記の如く、風呂温度が沸き上がり温度に近づいたときに風呂バーナ6の燃焼能力を低下させることによって、風呂に高温(例えば50℃以上)の湯が噴出して入浴中の人に不快感を与えてしまうのを防止する機能である。
【0085】
図5に示すように、本参考例では、制御装置56はポンプ間欠運転制御部50とマイルド追い焚き機能動作部58を有して構成されている。
【0086】
マイルド追い焚き機能動作部58はメモリおよび演算回路(図示せず)を内蔵し、マイルド追い焚きモードの動作を行う回路構成を有しており、内蔵のメモリにはマイルド追い焚きモードの動作を開始させるマイルド追い焚き開始温度を算出するための演算定数(例えば2℃)が予め与えられている。マイルド追い焚き機能動作部58は次のようにマイルド追い焚きモードの動作を行う。例えば、追い焚き中に、リモコン55に設定されている風呂の沸き上がり温度を読み出し、この沸き上がり温度から前記内蔵メモリの演算定数を差し引いてマイルド追い焚き開始温度を算出し、風呂温度センサ(風呂温度検出センサ)24の検出風呂温度が前記マイルド追い焚き開始温度まで上昇したときに、風呂バーナ6の燃焼能力を設定の燃焼能力まで低下させるマイルド追い焚き機能の動作を行う。このマイルド追い焚き機能の動作は風呂が沸き上がるまで続けられる。
【0087】
ポンプ間欠運転制御部50は、風呂の追い焚き中(風呂バーナ燃焼中)に上記マイルド追い焚き機能動作部58の動作状態情報を取り込んでマイルド追い焚き機能動作が開始されたのを検出すると、風呂バーナ6の燃焼能力が低下し風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態となったと判断し、循環ポンプ23を設定のオン・オフ間欠時間で間欠運転させるためのポンプオン・オフ信号の出力を開始し、マイルド追い焚き機能が終了するまでポンプオン・オフ信号を循環ポンプ23へ出力し、循環ポンプ23の間欠運転を行わせ、追い焚き熱交換器16の結露発生を防止する。
【0088】
この参考例によれば、マイルド追い焚き機能を備えた器具の制御装置56にポンプ間欠運転制御部50を設けたので、追い焚き中に、風呂温度が沸き上がり温度に近づきマイルド追い焚き機能が動作して風呂バーナ6の燃焼能力が低下し、風呂バーナ6の燃焼動作が追い焚き熱交換器16の結露発生動作状態となっても、ポンプ間欠運転制御部50による循環ポンプ23の間欠運転が行われるために、追い焚き熱交換器16の結露発生を防止することができる。
【0089】
なお、この参考例では、マイルド追い焚き機能の動作中だけ追い焚き熱交換器結露防止のために循環ポンプ23の間欠運転を行わせるようにしたが、前記第1〜第4の各実施の形態例に示したような結露発生状況判断部53やデータ格納部52を設け、データ格納部52に結露発生条件データを与えて、マイルド追い焚き機能の動作中だけでなく、結露発生状況判断部53の結露発生可否状況の判断に基づいて循環ポンプ23の間欠運転を行わせるようにした実施の形態例としてもよいし、前記第5の実施の形態例で示したようなQ機能動作部57が設けられているときにはこの参考例に第5の実施の形態例のQ機能動作に伴う循環ポンプ23の間欠運転の構成を組み合わせてQ機能モード動作中における給湯バーナ燃焼停止中にも循環ポンプ23の間欠運転を行わせるようにした実施の形態例としてもよい。
【0090】
また、この参考例では、マイルド追い焚き機能動作部58は、リモコン55に設定された風呂の沸き上がり温度から内蔵のメモリの演算定数(例えば2℃)を差し引きマイルド追い焚き開始温度を算出して、風呂温度センサ24で検出される風呂温度が上記マイルド追い焚き開始温度まで上昇したときに風呂バーナ6の燃焼能力を低下させるマイルド追い焚き機能の動作を開始させていたが、予めマイルド追い焚き開始温度(例えば38℃)を内蔵メモリに与えておき、マイルド追い焚き開始温度を求めるための演算を行わずに、つまり、リモコン55の沸き上がり温度の設定値に関係なく、風呂温度センサ24の検出風呂温度が設定のマイルド追い焚き開始温度まで上昇したときにマイルド追い焚き機能の動作を開始させるように構成してもよい。このようなマイルド追い焚き機能動作部58が設けられている器具においても、上記実施の形態例同様のポンプ間欠運転制御部50を設けて、マイルド追い焚き機能の動作中に循環ポンプ23の間欠運転を行うことによって、風呂バーナ6の燃焼能力低下制御による追い焚き熱交換器16の結露発生を防止することができる。
【0091】
以下に、第の実施の形態例を説明する。第の実施の形態例は、風呂の追い焚き中に、追い焚き循環路25の流水検出センサ28が流水を検出しなくなったときに風呂バーナ6の燃焼を停止させて空焚きを防止する空焚き防止機能を備えた器具に適用するものである。上記空焚き防止機能を備えた器具で前記第1〜第の各実施の形態例のように追い焚き熱交換器16の結露防止のためのポンプ間欠運転を行わせようとすると、間欠運転のオフ時に流水検出センサ28が流水を検出しなくなり、空焚き防止機能が動作して風呂バーナ6の燃焼が停止してしまい、循環ポンプ23の間欠運転を円滑に行うことができない。そこで、この実施の形態例では、上記空焚き防止機能を備えた器具でも循環ポンプ23の間欠運転を円滑に行わせるための制御装置を設けたことを特徴とし、その制御装置56の一例を図6に示す。この制御装置56はポンプ間欠運転制御部50と風呂バーナ燃焼停止部60と燃焼停止動作阻止部61を有して構成されている。
【0092】
風呂バーナ燃焼停止部60は、風呂の追い焚き中(風呂バーナ6の燃焼中)に、流水検出センサ28の流水オン信号の出力が停止したとき、つまり、流水検出センサ28が流水オフを検出したときには、風呂側ガス開閉弁40あるいは元電磁弁37を閉弁させ風呂バーナ6へのガス供給をストップさせて風呂バーナ6の燃焼を停止させる回路構成を有し、空焚きを防止している。
【0093】
ポンプ間欠運転制御部50は、前記第1〜第の各実施の形態例で示したように、風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態となったと判断されたときに、循環ポンプ23の間欠運転を行わせるためのポンプオン・オフ信号を循環ポンプ23へ出力し、循環ポンプ23に間欠運転を行わせると共に、ポンプ間欠運転信号を燃焼停止動作阻止部61へ出力する構成を有している。
【0094】
なお、上記風呂バーナ6側の燃焼動作が追い焚き熱交換器16の結露発生動作状態であるか否かの判断構成や、ポンプオン・オフ信号の出力構成は前記第1〜第の各実施の形態例で示した構成のうち、どの構成で形成してもよく、その説明は省略する。
【0095】
燃焼停止動作阻止部61は、前記ポンプ間欠運転制御部50のポンプ間欠運転信号を受けている間、前記ポンプ間欠運転制御部50による循環ポンプ23の間欠運転を円滑に行わせるために、風呂バーナ燃焼停止部60の風呂バーナ6の燃焼停止動作を阻止する。
【0096】
この実施の形態例によれば、風呂の追い焚き中に追い焚き循環路25の流水検出センサ28が流水オフを検出したときに風呂バーナ6の燃焼を停止させる空焚き防止機能を備えた器具にポンプ間欠運転制御部50を設け、このポンプ間欠運転制御部50による循環ポンプ23の間欠運転により追い焚き熱交換器16の結露発生を防止すると共に、燃焼停止動作阻止部61を設けて循環ポンプ23の間欠運転のオフ時に風呂バーナ6の燃焼停止動作を阻止する構成としたので、循環ポンプ23の間欠運転が行われているときには、前記間欠運転のオフ時に流水検出センサ28が流水オフを検出しても、風呂バーナ6の燃焼は停止せず、循環ポンプ23の間欠運転を円滑に行うことができる。
【0097】
なお、本発明は上記各実施の形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記各実施の形態例に示した動作状態検出部51は、最小燃焼時の比例弁電流値を0%とし、最大燃焼に向けて%値が増加し、最大燃焼時に比例弁電流値を100 %とするという如く、燃焼能力に対応させた%値で表された値を比例弁電流値として検出していたが、実測された比例弁電流値をそのまま検出してもよい。この場合には結露発生条件データを構成する比例弁電流のデータは電流値により与えられることになる。
【0098】
また、上記第4の実施の形態例では、結露発生条件データが結露発生条件の軽重に応じて段階的に区分されている例を示したが、結露発生条件データは結露発生条件の軽重の度合を連続的に表すデータで構成するようにしてもよい。例えば、結露発生条件データを前式(1)に示す演算式データ(A・(T2 −T1 )+B・I+C・N=X)で構成し、結露発生条件が重くなるに従って算出値Xが小さくなるように構成する。そして、風呂バーナ燃焼動作の検出値を用いて上記演算式データに基づいた演算を行うことにより、算出値Xに基づいて、次のように、結露発生条件の度合が重くなるに従って循環ポンプ23の駆動エネルギーを低減する方向に循環ポンプ23の間欠時間の可変制御が行われる。
【0099】
例えば、循環ポンプ23の間欠時間のオン時間をtON、オフ時間をtOFF としたとき、間欠時間を算出するための演算式を下式(2)とする。
【0100】
(tON−tOFF )/tON=X・・・・・(2)
【0101】
上記式(2)より、tONに対するtOFF の比を次式(3)に示すように整理することができる。
【0102】
ON:tOFF =1:(1−X)・・・・・(3)
【0103】
ただし、Xが1以上であるときには非結露発生領域であるとしてポンプ連続運転が行われる。
【0104】
例えば、tON+tOFF =10秒と一定にし、X=0.5 と算出されたときには、上式(3)より、tON:tOFF =1:(1/2)=2:1となり、
【0105】
ON=10×(2/3)≒6.7 秒
【0106】
OFF =10×(1/3)≒3.3 秒
【0107】
と、間欠時間を求めることができ、この求めた間欠時間に応じた循環ポンプ23の間欠運転が行われる。
【0108】
上記の如く、結露発生条件の軽重の度合に応じて連続した循環ポンプ23の間欠時間の可変制御が行われることにより、追い焚き熱交換器16の結露発生状況に合った循環ポンプ23の間欠運転が行われ、間欠運転の無駄なく、追い焚き熱交換器16の結露を確実に防止することができる。
【0109】
上記のように結露発生条件の軽重の度合を連続的に表すデータは前式(1)に示す演算式データだけとは限らず、例えば、風呂温度が下がるに従って結露発生条件の度合が重くなるというような風呂温度と結露発生条件の度合の関係を示したグラフデータや演算式データ等、比例弁電流と風呂温度と追い焚き熱交換器出側湯温と燃焼ファン8の回転数あるいはファン風量のいずれか1つと結露発生条件の度合との関係データで結露発生条件データを構成してもよいし、また、比例弁電流が下がり、かつ、風呂温度が下がるに従って結露発生条件の度合が重くなるというような比例弁電流と風呂温度の組み合わせにより結露発生条件の度合を表すデータのように、比例弁電流と風呂温度と追い焚き熱交換器出側湯温と燃焼ファン8の回転数あるいはファン風量のうち、少なくとも2個以上の組み合わせにより結露発生条件の度合を連続的に表すデータで結露発生条件を構成してもよく、結露発生条件の度合を連続的に表すデータであれば、前式(1)に示す演算式データ以外の様々なデータ構成で結露発生条件データを構成してもよい。
【0110】
上記のような結露発生条件データに基づいて結露発生条件の軽重の度合を求めて、結露発生条件の度合が重くなる方向に従って循環ポンプ23の駆動エネルギーを低減する方向に、つまり、結露発生条件の度合が重くなるに従ってオン時間を短くする、あるいは、オフ時間を長くする、あるいは、オン時間を短くし、かつ、オフ時間を長くする方向に、循環ポンプ23の間欠時間の可変制御を行うことによって、上記同様の追い焚き熱交換器16の結露防止効果を奏することができる。
【0111】
さらに、上記第1〜第の実施の形態例は図7に示す複合給湯器を例にして説明したが、本発明は給湯バーナ5と風呂バーナ6を有し、給湯バーナ5と風呂バーナ6に対して共通の比例弁38と燃焼ファン8を備えた複合給湯器であればよく、図7に示した構成の複合給湯器に限定されるものではない。
【0112】
【発明の効果】
この発明によれば、風呂バーナ燃焼動作が追い焚き熱交換器の結露発生動作状態となったときに、ポンプに間欠運転を行わせる構成としたので、風呂バーナ燃焼動作が結露発生動作状態となったときにポンプの間欠運転を行わせることによって、湯水が追い焚き熱交換器の入口から出口に至るまでの時間がポンプの連続運転時よりも長くなり、停滞時間が長くなることで風呂バーナの燃焼熱量が低くても追い焚き熱交換器の通水が十分に加熱され、追い焚き熱交換器の水管表面温度の低下が抑えられて追い焚き熱交換器の結露発生を防止することができる。
【0113】
その上、ポンプの間欠運転を行うことによって、風呂バーナにより加熱された高温の湯が緩やかに浴槽へ流れ出ることになるので、追い焚き中に入浴者がいる場合には、追い焚きによる高温の湯が勢いよく噴出し入浴者に不快感を与えるという問題を回避することができる。
【0115】
さらに、上記の如く、この発明は、ポンプの間欠運転を行って、追い焚き熱交換器の結露発生を防止する構成を有しており、上記ポンプの間欠運転を行うためのポンプのオン・オフ制御は簡単に行うことができることから、ポンプ間欠運転制御部の回路構成を簡易化することが可能である。さらに、ポンプの能力毎にそれぞれ対応するポンプ間欠運転制御部の回路を用意する必要がなく、結露を防止することができる所望のポンプのオン・オフ間欠時間をメモリ等に入力するだけで、所望のポンプ間欠時間でポンプ間欠運転を行わせることができるので、複数の能力種のポンプ毎にポンプ間欠運転制御部の回路を製造しなくて済み、回路のコストを低く抑えることができる。
【0116】
さらに、流水検出センサが風呂の追い焚き流水のオフを検出したときに風呂バーナの燃焼を停止させる風呂バーナ燃焼停止部を有した複合給湯器において、ポンプ間欠運転制御部と風呂バーナ燃焼停止動作阻止部を設けたものにあっては、ポンプ間欠運転制御部によるポンプ間欠運転のオフ時に流水検出センサが流水オフを検出しても風呂バーナ燃焼停止動作阻止部が風呂バーナ燃焼停止部の風呂バーナ燃焼停止動作を阻止するので、風呂バーナの燃焼が停止してしまうことなく、ポンプの間欠運転を円滑に行うことができ、追い焚き熱交換器の結露を防止することができる。
【図面の簡単な説明】
【図1】追い焚き熱交換器の結露防止機能を備えた複合給湯器の制御装置の一構成例を示すブロック図である。
【図2】図1に示す制御装置における追い焚き熱交換器の結露防止動作の一例を示すフローチャートである。
【図3】結露発生条件データの組み合わせデータの一例を示すグラフである。
【図4】再出湯湯温の安定化機能を備えた複合給湯器に追い焚き熱交換器の結露防止動作を行わせる制御装置の一構成例を示すブロック図である。
【図5】 風呂のマイルド追い焚き機能を備えた複合給湯器に追い焚き熱交換器の結露防止動作を行わせる制御装置の一参考例を示すブロック図である。
【図6】空焚き防止機能を備えた複合給湯器にポンプの間欠運転を行わせる制御装置の一構成例を示すブロック図である。
【図7】給湯バーナと風呂バーナに共通の比例弁と燃焼ファンが設けられている複合給湯器の一例を示す説明図である。
【符号の説明】
1 器具
5 給湯バーナ
6 風呂バーナ
8 燃焼ファン
16 追い焚き熱交換器
17 ファン回転数検出センサ
23 循環ポンプ
24 風呂温度センサ
28 流水検出センサ
38 比例弁
44 出側温度センサ
45 ファン風量検出センサ
50 ポンプ間欠運転制御部
51 動作状態検出部
52 データ格納部
53 結露発生状況判断部
56 制御装置
57 Q機能動作部
58 マイルド追い焚き機能動作部
60 風呂バーナ燃焼停止部
61 燃焼停止動作阻止部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite water heater provided with a hot water burner and a bath burner.
[0002]
[Prior art]
FIG. 7 shows an example of a system configuration of a composite water heater (appliance). In the figure, the appliance 1 is divided into a hot water combustion chamber 3 and a bath combustion chamber 4 via a partition 2, and the hot water combustion chamber 3 is provided with a hot water burner 5. Is provided with a bath burner 6.
[0003]
The hot water supply burner 5 and the bath burner 6 are juxtaposed with each other through the partition portion 2, and gas nozzle holders 12, 13 are arranged on the gas inlet side of each burner 5, 6 with the gas nozzles facing each other. The gas supply passage 36 leading to the holders 12 and 13 is provided with an original solenoid valve 37 and a proportional valve 38. The gas supply passage 36 on the downstream side of the proportional valve 38 is branched to supply a hot water supply side gas on-off valve 39, Gas as fuel is guided to the gas nozzle holders 12 and 13 through the bath side gas on-off valve 40. A lower side of the hot water supply burner 5 and the bath burner 6 is a common air chamber (air chamber) 7, and a combustion fan 8 for supplying and exhausting air is connected to the bottom surface side of the air chamber 7. The combustion fan 8 is provided with a fan speed detection sensor 17 for detecting the fan speed.
[0004]
A hot water supply heat exchanger 15 is installed in the hot water supply combustion chamber 3 above the hot water supply burner 5, and the hot water supply heat exchanger 15 is introduced from a water supply source such as a water supply via a water supply passage 19. Water is heated by the combustion flame of the hot water supply burner 5 to produce hot water of a set temperature, and this hot water is supplied to a desired hot water supply such as a kitchen or bathroom via a hot water supply passage 20 connected to the outlet side of the hot water supply heat exchanger 15. Lead to the place and do hot water. In the figure, reference numeral 30 denotes an incoming water temperature sensor, and 31 denotes a hot water temperature sensor. These sensors detect the incoming water temperature to the hot water supply heat exchanger 15 and the outgoing hot water temperature from the hot water supply heat exchanger 15, respectively. . Reference numeral 41 denotes a flow rate sensor for detecting the flow rate of water supplied from the water supply source to the hot water supply heat exchanger 15.
[0005]
In the bath combustion chamber 4, a reheating heat exchanger 16 is installed on the upper side of the bath burner 6, and one end side of a pipe line 22 is connected to the inlet side of the reheating heat exchanger 16. The other end side of 22 is connected to the discharge side of the circulation pump 23. This pipe line 22 is provided with a bath temperature sensor (inlet temperature sensor) 24 such as a thermistor for detecting the inlet water temperature of the reheating heat exchanger 16.
[0006]
A return pipe 26 is connected to the suction side of the circulation pump 23, and the return port side (inlet side) of the return pipe 26 is connected to the side wall of the bathtub 21 via a circulation fitting 27. The return pipe 26 is provided with a flowing water detection sensor 28 configured by a flow sensor, a flowing water switch, or the like that detects water flow and outputs an ON signal. An outlet side of the outgoing pipe 29 is connected to the outlet side of the reheating heat exchanger 16, and the outlet side of the outgoing pipe 29 is connected to the side wall of the bathtub 21 via the circulation fitting 27. The return pipe 26, the pipe line 22, the reheating heat exchanger 16 and the outgoing pipe 29 constitute a recirculation circulation path 25 for circulating hot water in the bathtub 21 via the circulation fitting 27, and the reheating heat exchanger 16 is Then, circulating hot water from the bathtub is introduced and heated by the combustion flame of the bath burner 6, and the heated hot water is returned to the bathtub 21, thereby replenishing the bath. Both the bath combustion chamber 4 and the hot water supply combustion chamber 3 communicate with a common exhaust port 42 so that the exhaust gas of the hot water burner 5 and the exhaust gas of the bath burner 6 are discharged from the common exhaust port 42. It has become.
[0007]
A hot water filling pipe 32 is branched into the hot water supply passage 20 and is connected to a pipe 22. The hot water filling pipe 32 detects a hot water filling valve 35 as a hot water pouring control valve and a bathtub water level. A pressure sensor 34 is provided as a water level detection sensor.
[0008]
In the figure, what is indicated by a dotted line is provided if necessary, 44 is an outlet side temperature sensor for detecting the outlet side hot water temperature of the reheating heat exchanger 16, and 45 is the fan air volume of the combustion fan 8. The fan air volume detection sensor which detects is shown.
[0009]
This type of composite water heater is provided with a control device 56 that controls hot water burner combustion, bath burner combustion, and the like, and a remote controller 55 is connected to the control device 56. Signals from various sensors such as the flow rate sensor 41 are applied to the control device 56. For example, a hot water tap provided in a hot water supply place such as a kitchen where the hot water supply passage 20 is guided ( (Not shown) is opened, and when water is introduced into the water supply passage 19 from a water supply source such as a water supply, the control device 56 rotates the combustion fan 8 when receiving a water incoming signal from the flow rate sensor 41 to supply gas. The original solenoid valve 37, the proportional valve 38, and the hot water supply side gas on-off valve 39 of the passage 36 are opened, the hot water supply burner 5 is ignited in that state, and the flame is detected, and the hot water temperature detected by the hot water temperature sensor 31 is detected. The hot water supply operation in the hot water supply mode is controlled so that becomes the set temperature set by the remote controller 55.
[0010]
When controlling the hot water supply operation, the control device 56 is given in advance a combustion capacity at the time of minimum combustion (minimum combustion capacity) and combustion capacity at the time of maximum combustion (maximum combustion capacity). The apparatus 56 supplies the amount of gas supplied from the gas supply passage 36 to the hot water supply burner 5, that is, the valve opening amount of the proportional valve 38 so that the hot water supply burner combustion is performed within the range from the minimum combustion capacity to the maximum combustion capacity. The proportional valve current amount) and the amount of air supplied from the combustion fan 8 to the hot water supply burner 5 are controlled. By these controls, hot water having a stable set temperature passes from the hot water heat exchanger 15 through the hot water supply passage 20 to a desired hot water supply location. To be supplied to.
[0011]
The control device 56 opens the pouring valve 35 such as a solenoid valve, replenishes hot water produced on the hot water supply heat exchanger 15 side, drops it into the bathtub 21 via the circulation path 25, and fills the hot water. It has a mode operation function. This automatic hot water filling operation is performed by a command from the remote controller 55 or the like, and when the hot water level reaches the set water level set by the remote controller 55 etc. by the pressure sensor 34, the hot water filling valve 35 is closed and the hot water filling is stopped. Then, the circulation pump 23 is started and the operation in the reheating mode is performed.
[0012]
In this reheating operation, the control device 56 first rotates the circulation pump 23 in the recirculation circuit 25 to circulate hot water in the bathtub 21 through the recirculation circuit 25. When the flowing water detection sensor 28 detects the flow of hot water, the control device 56 rotates the combustion fan 8, opens the bath side gas on-off valve 40, burns the bath burner 6 by spot ignition, and reheats the heat exchange. The circulating hot water passing through the vessel 16 is heated to replenish the hot water in the bathtub 21.
[0013]
Note that, in this reheating independent operation control, the maximum combustion capacity value is usually given to the control device 56, and the combustion fan 8 is rotated at the fan rotation speed corresponding to the maximum combustion capacity, so that the bath burner is operated. 6 Burner combustion is performed so that the reheating is performed as soon as possible. When the bath temperature detected by the bath temperature sensor 24 reaches the bath set temperature (boiling temperature) set by the remote controller 55, the chasing operation is stopped.
[0014]
In this type of combined water heater, the heat transfer mode is shifted from the end of the reheating operation to a predetermined time (for example, 4 hours), and the circulation pump 23 is activated at a time interval of, for example, 30 minutes. The bath water is recirculated through the circulation path 25, and when the bath water temperature detected by the bath temperature sensor 24 falls below a predetermined temperature with respect to the bath set temperature, the bath burner 6 is burned. The bath hot water is kept warm by performing an operation such as raising the temperature of the bath hot water to the set temperature. In this warming operation, in the case of a bath apparatus having a water level maintaining function, the bath water level is always monitored by the water level detection signal of the pressure sensor 34 during the warming mode, and the bath water level is within the allowable range from the set water level. When the temperature drops below the upper limit, the hot water supply valve 35 is opened, and the amount of water that is insufficient up to the set water level is added from the hot water supply heat exchanger 15 side, and the operation in the water retention mode is performed to keep the bathtub water level at the set water level.
[0015]
[Problems to be solved by the invention]
As shown in FIG. 7, in a combined water heater provided with a hot water burner 5 and a bath burner 6 and provided with a common combustion fan 8 and a common proportional valve 38 for the hot water burner 5 and the bath burner 6, When the hot water burner combustion for supplying hot water to the kitchen or shower and the bath burner combustion for reheating and keeping warm of the bath are performed together, the opening amount of the proportional valve 38 is given priority over the hot water supply side ( Proportional valve current amount) control and rotation control of the combustion fan 8 are performed to prevent hot water from flowing out into the kitchen or shower, etc., thereby avoiding the risk of causing burns to the user's body. .
[0016]
As described above, when the hot water supply burner combustion and the bath burner combustion are performed by the hot water supply side priority control, for example, when the valve opening amount of the proportional valve 38 is reduced in the direction in which the combustion capacity of the hot water supply burner 5 decreases. Naturally, the combustion capability of the bath burner 6 also decreases. Thus, even if the combustion capacity of the bath burner 6 is reduced, a constant amount of hot water flowing in the reheating heat exchanger 16 is flowing through the driving of the circulation pump 23, which is the same as at the time of maximum combustion of the bath burner 6. In addition, the bath burner 6 cannot sufficiently heat the water flow of the reheating heat exchanger 16, and the water flow of the reheating heat exchanger 16 becomes difficult to rise in temperature, and the water pipe of the reheating heat exchanger 16 The temperature of the surface decreases, and the water vapor component generated by the combustion of the bath burner 6 tends to dew condensation on the surface of the water tube of the heat exchanger 16. When such a dew condensation phenomenon of the reheating heat exchanger 16 is repeatedly generated, adverse effects such as corrosion of the reheating heat exchanger 16 occur.
[0017]
In order to prevent the occurrence of dew condensation in the reheating heat exchanger 16, Japanese Utility Model Laid-Open No. 2-124442 discloses that the driving amount (capacity) of the circulation pump 23 when the combustion capacity of the bath burner 6 becomes a set value or less. By reducing the amount of water flow through the reheating heat exchanger 16 by a certain amount, the outlet hot water temperature of the reheating heat exchanger 16 (the surface of the water pipe of the reheating heat exchanger 16) is raised and reheating heat exchange. Means have been proposed to prevent the occurrence of condensation in the vessel 16.
[0018]
However, as is well known, the circulation pump 23 is driven and controlled by a phase angle control method using a triac or the like, and the continuous flow rate of the circulation pump 23 using a pump drive control method such as such a phase angle is used. There is a problem in that the circuit configuration for variably controlling is complicated. In addition, there are a plurality of types of circulation pumps 23 that are classified according to their capacities, and in order to variably control the continuous flow rate of the circulation pump 23 as described above, complicated types corresponding to each type (capacity) of the circulation pump 23 are provided. There is a problem that the continuous flow variable control circuit has to be manufactured, which increases the cost of the circuit.
[0019]
The present invention has been made in order to solve the above-described problems, and the object of the present invention is to reduce the combustion capacity of the bath burner, that is, the combustion operation of the bath burner becomes the operation state for generating condensation in the reheating heat exchanger. It is possible to prevent dew condensation in the reheating heat exchanger without variably controlling the continuous flow rate of the recirculation pump, and to simplify the circuit configuration of the control circuit. An object of the present invention is to provide a composite water heater having a dew condensation prevention function for a reheating heat exchanger.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the above problems. 1st invention controls the hot water supply burner which performs heating combustion of the hot water supply heat exchanger, the bath burner which performs heating combustion of the reheating heat exchanger, and the amount of fuel supplied to the hot water supply burner and the bath burner by the valve opening amount A common proportional valve that A common combustion fan for supplying and exhausting the hot water supply burner combustion and the bath burner combustion; A pump that recirculates hot water in the bath and recirculates it through the heat exchanger when reheating the bath burner, and a control device that controls the opening amount of the proportional valve, the rotation of the combustion fan, and the pump drive The In the combined water heater, The control device controls the reduction of the rotation of the combustion fan when the combustion of the bath burner is performed while the hot water supply burner is stopped, and suppresses the cooling of the hot water supply heat exchanger to stabilize the hot water temperature of the hot water. A Q function operation unit is provided for performing the operation in the re-heated hot water temperature stabilization mode, and it is assumed that the bath burner combustion operation is in the dew generation operation state while the hot water supply burner combustion is stopped during the operation in the re-heated hot water temperature stabilization mode. Configuration with intermittent pump operation controller that performs intermittent on / off operation It is a means to solve the problem.
[0031]
First 2 The invention of the present invention includes a hot water supply burner that performs heating and combustion of a hot water supply heat exchanger, a bath burner that performs heating and combustion of a reheating heat exchanger, and a common control that controls the amount of fuel supplied to the hot water supply burner and the bath burner by the valve opening amount Proportional valve, pump that recirculates hot water from the bath and recirculates it through the heat exchanger when reheating the bath burner, and controls the amount of opening of the proportional valve, rotation control of the combustion fan, and pump drive A control device, a running water detection sensor that detects running water of a reheating heat exchanger driven by a pump, and a bath burner combustion stop unit that stops combustion of the bath burner when the running water detection sensor detects that the running water is off, Collects information on the operating status of this combined water heater in a combined water heater that controls the amount of valve opening by giving priority to the hot water supply side when both normal hot water burner combustion and bath burner combustion are performed. An operation state detection unit to be output, a data storage unit for storing dew generation condition data of the reheating heat exchanger created in advance using information on the operation state of the combined water heater, and the operation state detection unit. Based on the information obtained, the dew generation status determination unit that determines whether or not the dew generation possibility of the reheating heat exchanger is compared with the dew generation condition data in the data storage unit, and the dew generation occurrence status determination unit determines that the dew generation occurs. And a pump intermittent operation control unit that performs intermittent on / off operation of the pump, and even if the flowing water detection sensor detects that the flowing water is off when the pump intermittent operation is turned off by the pump intermittent operation control unit, A configuration provided with a combustion stop operation blocking unit for blocking the bath burner combustion stop operation of the bath burner combustion stop unit is used as means for solving the above-mentioned problems.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below with reference to the drawings. In addition, the composite water heater of each embodiment described below is intended for the composite water heater having the system configuration shown in FIG. Further, in the description of each embodiment described below, the same reference numerals are given to the same components as the components of each embodiment described previously, and duplicate descriptions in the subsequent embodiments are omitted. To do.
[0035]
FIG. 1 shows a characteristic rebound in the first embodiment. heat A configuration of a control device 56 for performing an exchanger dew condensation prevention function is shown. The control device 56 includes a proportional valve drive unit 46, a bath combustion control unit 47, a hot water supply combustion control unit 48, and an intermittent pump operation. The controller 50 includes an operation state detection unit 51, a data storage unit 52, and a dew condensation occurrence state determination unit 53.
[0036]
The operating state detection unit 51 includes the fan rotation speed detection sensor 17, the bath temperature sensor (inlet temperature sensor) 24, the outlet temperature sensor 44 that detects the outlet hot water temperature of the reheating heat exchanger 16, and the combustion The proportional valve drive 46 controls the output of various sensors provided to detect the operating state of a device such as the fan air volume detection sensor 45 that detects the air volume of the fan 8 and the valve opening amount of the proportional valve 38. It has a configuration that repeatedly collects and detects information on the operating state of the instrument such as a valve current during the operation of the instrument.
[0037]
The bath combustion control unit 47 performs operation control on the bath side in the reheating mode and the heat retention mode based on the information of the remote controller 55 and the collected detection information of the operation state detection unit 51, and the control configuration is a conventional example. Since it is the same as that, its description is omitted. The hot water supply combustion control unit 48 performs hot water supply side operation control such as a hot water supply mode, a hot water filling mode, and a heat retention mode based on the information of the remote controller 55 and the collected detection information of the operation state detection unit 51. Since the control configuration is the same as that of the conventional example, the description thereof is omitted. As described in the conventional example, when both the bath burner combustion and the hot water burner combustion are performed, the hot water combustion control unit 48 preferentially supplies the gas supply amount, that is, the valve opening amount of the proportional valve 38 (proportional valve current amount). ) And the rotation control of the combustion fan 8.
[0038]
The data storage unit 52 is configured by a storage device (memory), and the data storage unit 52 is preliminarily obtained and given dew condensation occurrence condition data by experiments or calculations. In the present embodiment, the dew generation condition data is composed of dew generation value S data for determining whether or not the combustion operation on the bath burner 6 side is the dew generation operation state of the reheating heat exchanger 16. Condensation occurrence value of proportional valve current (for example, when the proportional valve current value at the minimum combustion is 0%, the% value increases toward the maximum combustion, and the proportional valve current value at the maximum combustion is 100%. Condensation occurrence value (%, for example, 50%) of proportional valve current in%, bath temperature (inlet water temperature of reheating heat exchanger 16) condensation occurrence value (for example, 25 ° C), reheating heat exchanger 16 Condensation occurrence condition data is formed by any one of the condensation occurrence values of the temperature of the outlet side hot water (for example, 40 ° C.), the condensation occurrence value of the rotation speed of the combustion fan 8 and the condensation generation value of the fan airflow. Has been.
[0039]
The proportional valve current corresponds to the combustion capacity of the bath burner. When the proportional valve current value decreases, the combustion capacity of the bath burner 6 also decreases. The water flow temperature of the soaking heat exchanger 16 is unlikely to rise, the temperature of the surface of the water pipe of the reheating heat exchanger 16 is lowered, and condensation tends to occur on the surface of the water pipe of the reheating heat exchanger 16. In addition, if the bath temperature detected by the bath temperature sensor 24 is low, the water flow temperature of the reheating heat exchanger 16 is correspondingly lowered, and the surface temperature of the water pipe of the reheating heat exchanger 16 is lowered, so that condensation is likely to occur. . Furthermore, if the outlet side hot water temperature of the reheating heat exchanger 16 is low, the water pipe surface temperature of the reheating heat exchanger 16 is low and condensation is likely to occur as described above. Further, since the air volume to the bath burner 6 is controlled so as to match the combustion capacity of the bath burner 6, the rotation speed and fan air volume of the combustion fan 8 correspond to the combustion capacity of the bath burner 6. When the rotational speed and the fan air volume are reduced, it indicates that the combustion capability of the bath burner 6 is reduced. As described above, the surface temperature of the water pipe of the reheating heat exchanger 16 is lowered and condensation is likely to occur. For the reasons described above, in this embodiment, the condensation valve generation value, the bath temperature, the reheating heat exchanger outlet temperature, the rotation speed of the combustion fan, or the fan air volume is set as the condensation generation condition. Adopted as data.
[0040]
The dew condensation occurrence state determination unit 53 is configured to store the data storage unit 52 when the combustion of the bath burner 6 is confirmed based on the appliance operation state information collected and detected by the operation state detection unit 51 and the control information of the bath combustion control unit 47. On the other hand, the collected detection value K corresponding to the dew generation condition data (for example, the dew generation value of the proportional valve current is given as the dew generation condition data) from the operation state detector 51. The collected detection value of the proportional valve current), the condensation generation value S of the condensation generation condition data is compared with the collection detection value K of the operation state detection unit 51, and the collection detection value K is equal to or less than the condensation generation value S. If it is, it is determined that the combustion operation on the side of the bath burner 6 is in the dew generation operation state of the reheating heat exchanger 16, and a dew generation signal is output to the intermittent pump operation control unit 50.
[0041]
The operation of determining whether or not condensation occurs in the above-described dew generation state determination unit 53 is repeatedly performed during the combustion of the bath burner, and when the combustion operation on the side of the bath burner 6 reaches the dew generation operation state of the reheating heat exchanger 16, the dew generation occurrence state The determination unit 53 continuously outputs a dew condensation generation signal to the intermittent pump operation control unit 50 until it is determined that the dew condensation generation operation state is first determined to be a non-condensation generation operation state.
[0042]
The pump intermittent operation control unit 50 turns the circulation pump (pump) 23 on and off at a set cycle (on / off intermittent time) while receiving the dew condensation generation signal from the dew condensation occurrence state determination unit 53 (for example, 10 The circuit is configured to output a pump on / off signal to the circulation pump 23 to repeatedly turn on and off for 10 seconds), and the circulation pump 23 performs intermittent pump operation according to the pump on / off signal. Perform the action.
[0043]
The intermittent on / off time of the pump is obtained in advance by experiments or the like so that the reheating heat exchanger 16 can prevent dew condensation when the combustion operation on the bath burner 6 side is in a dew generation operation state. It is stored in the built-in memory of the operation control unit 50.
[0044]
Hereinafter, an operation example of the reheating heat exchanger dew condensation prevention function having the above-described configuration will be briefly described based on the flowchart of FIG. During the combustion of the bath burner 6, in step 101, the operation state detection unit 51 performs the reheating heat exchange of the proportional valve current value of the proportional valve 38, the detected bath temperature of the bath temperature sensor 24, and the detection of the outlet temperature sensor 44. It collects and detects appliance operation state information such as the temperature at the outlet side, the detected rotational speed of the fan rotational speed detection sensor 17, and the detected fan air volume of the fan air volume detection sensor 45. In step 102, the dew condensation occurrence status determination unit 53 is the operation state detection unit 51 which is the dew generation condition data (condensation occurrence value S) read from the data storage unit 52 and the appliance operation state information corresponding to the condensation occurrence value S. When the collected detection value K is equal to or less than the condensation occurrence value S (K ≦ S), it is determined that the combustion operation on the bath burner 6 side is in the condensation occurrence state. The generated signal is output to the pump intermittent operation control unit 50. The pump intermittent operation control unit 50 receives the dew condensation generation signal and outputs a pump on / off signal to the circulation pump 23, and the pump intermittent operation in the pump intermittent operation mode to the circulation pump 23. To do.
[0045]
In step 105, the bath combustion control unit 47 determines that the collected detection bath temperature T of the operation state detection unit 51. 1 And the bath boiling temperature T set with the remote control 55 S Compare bath temperature T 1 Boiling temperature T S Not reached (T 1 <T S ), The operation after step 101 is performed again, and when the dew condensation occurrence state determination unit 53 determines that the dew condensation has occurred (K ≦ S), the dew condensation occurrence signal is continuously output to circulate. The pump 23 is allowed to continue the operation in the intermittent pump operation mode.
[0046]
If it is determined in step 102 that the collected detection value K is greater than the dew condensation generation value S, it is determined that the combustion operation on the side of the bath burner 6 has shifted to the non-condensation generation operation state of the reheating heat exchanger 16. In step 104, the dew condensation occurrence state determination unit 53 stops the output of the dew condensation generation signal, stops the pump on / off signal output of the pump intermittent operation control unit 50, and the circulation pump 23 operates in the normal continuous operation mode. I do. In step 105, the collected detection bath temperature T 1 Boiling temperature T S When the temperature does not reach, the operation after step 101 is repeated, and the collected detection bath temperature T 1 Boiling temperature T S In step 106, the bath combustion control unit 47 stops the pump drive of the circulation pump 23 and stops the combustion of the bath burner 6.
[0047]
According to this embodiment, when the combustion operation on the side of the bath burner 6 reaches a state where condensation occurs in the reheating heat exchanger 16, the circulation pump 23 is turned on / off to perform intermittent pump operation. Therefore, by performing intermittent operation of the circulation pump 23, the time required for hot water to reheat from the inlet to the outlet of the heat exchanger 16 (the time for staying in the water recirculation heat exchanger) is longer than that during continuous pump operation. The bath burner 6 can sufficiently heat the water flow of the reheating heat exchanger 16 even when the combustion heat amount is low or the water flow temperature is low. The temperature drop on the surface of the water tube is suppressed, and condensation of the reheating heat exchanger 16 can be prevented.
[0048]
In addition, as described above, by performing intermittent pump operation of the circulation pump 23, the hot water heated by the bath burner 6 gently flows into the bathtub, so that there is a bather while chasing. Can avoid the problem that high-temperature hot water caused by chasing spurts out and gives an uncomfortable feeling to the bather.
[0049]
Further, as described above, in order to prevent dew condensation in the reheating heat exchanger 16, it is only necessary to turn the circulation pump 23 on and off at a set cycle (on / off intermittent time). Since the off control is simple, it is possible to simplify the circuit configuration of the pump intermittent operation control unit 50 that controls the on / off intermittent operation of the circulation pump 23. Furthermore, it is not necessary to prepare a circuit for the pump intermittent operation control unit 50 corresponding to each capacity of the circulation pump 23, and only by inputting the pump on / off intermittent time to the internal memory of the pump intermittent operation control unit 50. Since appropriate pump intermittent operation can be performed, it is not necessary to manufacture the circuit of the pump intermittent operation control unit 50 for each of the plurality of types of pumps, and the cost of the circuit can be kept low.
[0050]
The second embodiment will be described below. The second embodiment is different from the first embodiment in that the dew generation condition data in the data storage unit 52 is added to the dew generation value of the proportional valve current and the dew generation value of the bath temperature. Condensation occurrence value of the hot water exchanger outlet side hot water temperature and the condensation generation value of two or more of the fan rotation speed or the fan airflow condensation value. This is a configuration for more accurately determining whether or not the exchanger 16 has dew condensation. The other configuration is the same as that of the first embodiment, and a duplicate description thereof is omitted.
[0051]
As described above, the condensation generation condition data stored in the data storage unit 52 are the condensation generation value of the proportional valve current of the proportional valve 38, the condensation generation value of the bath temperature, and the condensation generation of the reheating heat exchanger outlet hot water temperature. The value is composed of two or more condensation occurrence values among the condensation occurrence values of the fan speed and the fan air flow rate.
[0052]
Condensation occurrence state determination unit 53 is an operation that is the appliance operation state information corresponding to the dew condensation occurrence condition data (a plurality of dew condensation occurrence values) and the dew condensation occurrence value of the data storage unit 52 read during bath burner combustion. The collected detection values of the state detection unit 51 are respectively compared, and when at least one of the compared collection detection values is equal to or less than the corresponding condensation occurrence value, or all the compared collection detection values correspond When the predetermined collected detection value is equal to or less than the corresponding condensation generation value, such as when it is less than the generation value, it is determined that the combustion operation on the bath burner 6 side is in the condensation generation operation state of the reheating heat exchanger 16; Similar to the first embodiment, it has a circuit configuration for outputting a dew generation signal to the intermittent pump operation control unit 50, and when the combustion operation on the bath burner 6 side is in the dew generation operation state, Implementation form Similarly to the embodiment, the pump intermittent operation control unit 50 causes the circulation pump 23 to operate in the pump intermittent operation mode.
[0053]
According to this embodiment, the dew condensation occurrence condition data is composed of a plurality of dew condensation occurrence values indicating different operation states, and the plurality of dew condensation occurrence values and the appliance operation state information respectively corresponding to these dew condensation occurrence values are used. Since the bath burner 6 side is configured to determine whether or not the dew generation operation state is present, it is possible to more accurately determine whether or not dew generation occurs in the reheating heat exchanger 16. When it is determined that dew condensation is likely to occur in the reheating heat exchanger 16, that is, when the bath burner combustion operation is determined to be the dew generation operation state, the circulation pump 23 is intermittently operated as in the first embodiment. Thus, condensation of the reheating heat exchanger 16 can be prevented.
[0054]
The third embodiment will be described below. What is characteristic in the third embodiment is that the dew generation condition data includes at least two of proportional valve current, bath temperature, reheating heat exchanger outlet hot water temperature, fan rotation speed or fan air volume. This is composed of combination data that divides the dew condensation generation region and the non-condensation generation region by the combination, and is configured to more accurately determine the dew generation operation state on the bath burner 6 side. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
[0055]
As described above, the dew generation condition data stored in the data storage unit 52 includes at least two of the proportional valve current, the bath temperature, the reheating heat exchanger outlet hot water temperature, the fan rotation speed, and the fan air volume. It consists of combination data.
[0056]
In FIG. 3, two combinations of proportional valve current and bath temperature are shown by a solid line A as an example of dew generation condition data. This solid line A shows the relationship between the proportional valve current and the bath temperature for distinguishing the dew condensation generation region and the non-condensation generation region of the reheating heat exchanger. As shown in the figure, the region above the solid line A Is the non-condensation generation area, and the area below the solid line A is the condensation generation area, and is divided by the solid line A. The relationship value between the proportional valve current and the bath temperature (intersection coordinate value on the proportional valve current and bath temperature graph) Is in the non-condensation generation region above the solid line A, it is determined that no condensation occurs in the reheating heat exchanger 16, and the relationship value between the proportional valve current and the bath temperature is in the condensation generation region below the solid line A. When it is on, it is determined that condensation tends to occur in the reheating heat exchanger 16.
[0057]
In the graph of FIG. 3, the α value on the horizontal axis indicates a proportional valve current value corresponding to a predetermined minimum combustion capacity, and the β value indicates a proportional valve current value corresponding to a predetermined maximum combustion capacity. It is shown.
[0058]
In FIG. 3, graph data that is a combination of two proportional valve currents and bath temperature is shown as an example of dew generation condition data. However, dew generation condition data is not limited to the graph data as shown in FIG. You may comprise with arithmetic formula data and table | surface data. Moreover, it is not limited to the above two combinations, and is composed of any combination of proportional valve current, bath temperature, reheating heat exchanger outlet hot water temperature, combustion fan rotation speed or fan air volume. It may be configured by any three combinations. Of course, all four may be combined. Next, arithmetic expression data, which is an example of the dew generation condition data combining the four, is shown in the following expression (1).
[0059]
A ・ (T 2 -T 1 ) + B · I + C · N = X (1)
[0060]
A, B, and C shown on the left side of the above arithmetic expression are constants obtained in advance by experiment, calculation, etc. 1 Is the bath temperature (water temperature on the inlet side of the reheating heat exchanger), T 2 Is the outlet hot water temperature of the reheating heat exchanger, I is the proportional valve current value, N is the fan rotation speed or fan air volume of the combustion fan, and X is the calculated value of the arithmetic expression.
[0061]
Calculation calculation value X of the above formula (1) is the boundary of setting value (For example, “1”) or less indicates that the combustion operation on the side of the bath burner 6 is in a dew generation operation state (condensation generation region) of the reheating heat exchanger, and when the calculated value X is larger than the boundary value, the bath burner The dew condensation generation region and the non-condensation generation region are divided so as to indicate that the operation state on the 6th side is the non-condensation generation operation state (non-condensation generation region).
[0062]
Condensation occurrence status determination unit 53 collects and detects the dew generation condition data of the data storage unit 52 read out and the operation state detection unit 51 which is the bath burner operation state information corresponding to the dew generation condition data during bath burner combustion. Compare values.
[0063]
For example, when the dew generation condition data is composed of graph data indicating the relationship between the proportional valve current and the bath temperature as indicated by the solid line A in FIG. 3, the detected value (in FIG. In the example, the relation value based on the proportional valve current value and the detected bath temperature is collated with the graph data, and it is determined whether or not the relation value is in the dew condensation generation region. Further, when the dew condensation occurrence condition data is composed of the arithmetic expression data shown in the previous expression (1), the detected proportional valve current value I of the operation state detector 51, the detected bath temperature T 1 , Detection outlet water temperature T of reheating heat exchanger 2 , The detected fan speed of the combustion fan or the detected fan air volume N is calculated from the equation (A · (T 2 -T 1 ) + B · I + C · N), and the calculated value X is compared with a boundary value (for example, “1”) to determine whether or not it is in the dew condensation generation region.
[0064]
When it is determined that the combustion operation on the bath burner 6 side is in the dew condensation generation region based on the dew condensation occurrence condition data and the collected detection value of the operation state detection unit 51, the same as in the first embodiment. The condensation generation signal is output to the intermittent pump operation control unit 50, and the intermittent operation of the circulating pump 23 is performed by the control operation of the intermittent pump operation control unit 50, thereby preventing the occurrence of condensation in the reheating heat exchanger 16.
[0065]
According to this embodiment, the dew generation condition data is a combination data of two or more of proportional valve current, bath temperature, outlet side hot water temperature of the reheating heat exchanger, rotation speed of the combustion fan, or fan air volume. The bath burner 6 is configured to determine whether or not the combustion operation on the side of the bath burner 6 is in the dew generation operation state based on the combination data and the bath burner operation state information corresponding to the combination data. It is possible to more accurately determine whether or not the operation state on the side is the dew generation operation state than in the first and second embodiments, and when the dew generation operation state is determined, By performing intermittent operation of the circulation pump 23 as in the first embodiment, it is possible to reliably prevent dew condensation in the reheating heat exchanger 16.
[0066]
The fourth embodiment will be described below. The characteristic feature of the fourth embodiment is that the dew generation condition data stored in the data storage unit 52 shown in FIG. 1 is divided into two or more stages according to the dew generation condition, and the bath burner 6 side The dew generation occurrence state determination unit 53 determines in which condensate generation operation state corresponds to the combustion operation state of the current, and based on the determination result, the on / off intermittent time of the circulation pump 23 is increased as the above-mentioned section becomes heavier. This is a configuration in which the driving energy is variably controlled in a direction to reduce the driving energy. The other configuration is the same as that of the first embodiment, and a duplicate description thereof is omitted.
[0067]
As described above, the condensation generation condition data stored in the data storage unit 52 is divided into two or more stages according to the weight of the condensation generation condition. For example, when the condensation generation condition data is composed only of bath temperature data, as shown in Table 1, the bath temperature T 1 The region where the temperature is higher than 25 ° C is the non-condensing region, the bath temperature T 1 The region where the temperature is 25 ° C or less is the condensation generation region, and the bath temperature T 1 The region where the temperature is 25 ° C or lower and higher than 20 ° C is defined as a zone where the dew condensation occurrence condition is light in the dew condensation occurrence region, and the bath temperature T 1 The region where the temperature is 20 ° C. or less is divided into two regions, such as the b zone where the conditions for generating condensation are heavy.
[0068]
[Table 1]
Figure 0003859759
[0069]
In addition, when the dew generation condition data is composed of the relationship graph data between the bath temperature and the proportional valve current shown in FIG. 3, the area above the solid line A is set as the non-condensation generation area and is sandwiched between the solid line A and the solid line B. Two areas of dew condensation are generated, such as the a zone of the condensation generation area where the dew generation condition is light and the area below the solid line B as the b zone of the dew generation area where the dew generation condition is heavy. It is divided into. Furthermore, when the dew condensation generation condition data is composed of arithmetic expression data as shown in the previous equation (1), the set boundary value (for example, the dew condensation generation region and the non-condensation generation region are classified as shown in Table 2). “1”, “0” that separates the a zone and b zone of the dew condensation generation region, and “−1” that separates the b zone and b ′ zone) divide the dew condensation generation region into three.
[0070]
[Table 2]
Figure 0003859759
[0071]
The dew condensation occurrence status determination unit 53 collects and detects the dew generation condition data read from the data storage unit 52 during combustion of the bath burner 6 and the operation state detection unit 51 which is bath burner operation state information corresponding to the dew generation condition data. Based on the value, it is determined in which area (zone) the bath burner operating condition is in the condensation generation condition data. When the bath burner combustion operation is in the condensation generation area, the light weight classification of the condensation generation condition is determined. Then, a condensation generation signal corresponding to the determination result is output to the pump intermittent operation control unit 50.
[0072]
While receiving the dew condensation generation signal from the dew condensation occurrence status determination unit 53, the intermittent pump operation control unit 50 outputs a pump on / off signal corresponding to the light weight classification of the dew generation condition indicated by the dew condensation generation signal to the circulation pump 23. The intermittent pump ON / OFF time is variably controlled in such a direction that the drive energy of the circulation pump 23 is reduced as the dew condensation occurrence condition becomes heavier. An example of the intermittent time variable control for turning on / off the circulation pump 23 will be described below.
[0073]
For example, when the bath burner combustion operation is in the a zone where the dew condensation generation condition is light, intermittent on / off intermittent time (for example, the on period of 10 seconds and the off period of 10 seconds) of the circulation pump 23 for the a zone. A pump on / off signal for performing operation is output to the circulation pump 23, and when the bath burner operation is in the b zone where the dew condensation occurrence condition is heavy, the on period of the on / off intermittent time in the a zone when the dew condensation occurrence condition is light The on period is shorter than the off period in the a zone, the off period is longer than the off period in the a zone, the on period is shorter than the on period in the a zone, and the off period is shorter than the off period in the a zone. Intermittent on / off intermittent time (for example, ON period 5 seconds / OFF period 20 seconds) of circulation pump 23 for a long (reduced driving energy of circulation pump 23) b zone The intermittent on / off time of the circulating pump 23 can be varied in the direction of reducing the driving energy of the circulating pump 23 as the dew condensation generation condition becomes heavier, such as outputting a pump on / off signal to the circulating pump 23. The pump on / off signal to be controlled is output to the circulation pump 23, and the on / off intermittent time variable control of the circulation pump 23 is performed.
[0074]
In addition, the pump on / off intermittent time corresponding to each light weight category of the above-mentioned condensation generation conditions is calculated in advance, experimented, etc. so that condensation does not occur in each state of the condensation generation conditions And stored in the built-in memory of the intermittent pump operation control unit 50 as in the above embodiments.
[0075]
According to this embodiment, as the dew condensation occurrence condition becomes heavier, it is configured to perform variable control of the on / off intermittent time of the circulation pump 23 in the direction in which the drive energy of the circulation pump 23 is reduced. As the dew condensation generation conditions become heavier, the time required for the reheating heat exchanger to stay from the hot water entering the heat exchanger 16 to the outlet becomes longer, and even if the dew generation conditions become heavier Since the water passing through the heat exchanger is sufficiently heated, it is possible to more reliably prevent the condensation of the reheating heat exchanger 16.
[0076]
In addition, as in the first to third embodiments, when the circulation pump 23 is intermittently operated in a certain intermittent time regardless of the dew generation condition, the dew condensation is surely prevented. Therefore, since the intermittent time of the circulation pump 23 is set so that the prevention of condensation is achieved in accordance with the heavy condensation generation condition, the intermittent operation when the condensation generation condition is heavy even when the condensation generation condition is light. Intermittent operation is performed in time, it takes a lot of time to boil the bath, and there is waste in intermittent operation, but by varying the intermittent time according to the light weight division like this embodiment, The waste of intermittent operation is reduced, and the bath can be boiled faster when the dew condensation generation condition is lighter than when the dew condensation generation condition is heavy.
[0077]
In this embodiment, the condensation generation condition data is shown as being divided into two or three stages according to the lightness of the condensation generation condition. Of course, the condensation generation condition data may be divided more finely, By finely classifying the dew condensation condition data, it is possible to more accurately determine the dew condensation occurrence status of the reheating heat exchanger 16, and it is possible to accurately prevent dew generation and more wasteful intermittent operation. Can be reduced.
[0078]
Hereinafter, a fifth embodiment will be described with reference to FIG. The fifth embodiment is applied to a combined water heater in which a Q function operating unit 57 for stabilizing the re-hot water temperature of hot water is provided in the controller 56. FIG. An example of means for preventing condensation of the exchanger 16 is shown. As shown in FIG. 4, the control device 56 includes a pump intermittent operation control unit 50 and a Q function operation unit 57. In addition to the above, the control device 56 also has a proportional valve drive unit 46, a bath combustion control unit 47, a hot water combustion control unit 48, an operation state detection unit 51, etc., as shown in FIG. 4 is omitted in FIG. 4, and the description thereof is also omitted.
[0079]
When the hot water supply to the kitchen or the like stops, the Q function operating unit 57 starts the operation of the re-heated hot water temperature stabilization mode (hereinafter referred to as the Q function mode) to prepare for the re-heated hot water, and the longest standby time after the hot water supply stops When re-bathing is performed before (for example, 5 minutes) elapses, the re-bath temperature is stabilized, and when the longest standby time has elapsed without re-bathing, a cold start is performed. Therefore, the operation of the Q function mode is stopped.
[0080]
The operation in the Q function mode is, for example, when the combustion fan 8 is rotationally driven by the combustion operation of the bath burner 6 while the combustion of the hot water supply burner 5 provided for re-heating is stopped, the ventilation by the rotational drive of the combustion fan 8 As a result, the cooling of the hot water supply heat exchanger 15 is promoted, and the temperature of the re-drained hot water is greatly lowered from the set hot water temperature when re-draining. In order to prevent this, the temperature of the reheated hot water is stabilized such that the rotation reduction control of the combustion fan 8 is performed to suppress the cooling of the hot water supply heat exchanger 15 and the temperature of the reheated hot water is stabilized. It is an operation for. As is well known, as the operation method in the Q function mode, various operation methods such as increasing the gas startup amount at the time of re-heating and changing the flow rate of hot water supply have been proposed. If the operation method is to perform rotation reduction control of the combustion fan 8 while the combustion of the hot water supply burner 5 is stopped during the operation in the Q function mode, the Q function operation unit 57 operates in any Q function mode of various proposed methods. You may make it a structure. Further, since the configuration of the Q function operating unit 57 is well known, its description is omitted.
[0081]
The intermittent pump operation control unit 50 captures the operation state information of the Q function operation unit 57 during combustion of the bath burner 6 and performs experiments and calculations in advance when the Q function operation unit 57 starts operation in the Q function mode. The pump on / off signal output for intermittent operation of the circulating pump 23 is started in the intermittent pump on / off time (for example, on time 10 seconds, off time 10 seconds) determined by The circuit has a circuit configuration for outputting the pump on / off signal to the circulation pump 23 until the operation stops, and the rotation reduction control of the combustion fan 8 is performed during the hot water burner combustion stop during the Q function mode operation operation. The combustion capacity of the bath burner 6 is controlled so as to match the fan air volume of 8, and the combustion capacity of the bath burner 6 is reduced. To perform the intermittent operation of the circulation pump 23 when it is estimated to have turned, to prevent the occurrence of dew condensation Reheating heat exchanger 16.
[0082]
According to this embodiment, the intermittent control of the pump provided with the function for preventing the occurrence of dew condensation based on the Q function operation is performed in the appliance control device 56 provided with the Q function operation unit 57 for performing the operation in the Q function mode. Since the operation control unit 50 is provided, the bath burner 6 is combusted, while the hot water supply burner is stopped in the Q function mode operation, that is, the hot water supply is stopped and the reheated hot water temperature is prepared. The rotation reduction control of the combustion fan 8 is performed to stabilize the temperature, and the combustion heat amount decrease control of the bath burner 6 is inevitably performed. When the state is reached, the pump intermittent operation control unit 50 causes the circulation pump 23 to intermittently operate, so that it is possible to avoid the occurrence of condensation in the reheating heat exchanger 16 as in the above embodiments.
[0083]
In this embodiment, the intermittent operation of the circulation pump 23 is performed only in the hot water burner combustion stop during the Q function mode operation operation to prevent condensation of the heat exchanger, but the dotted line in FIG. As shown in the first to fourth embodiments, the dew condensation occurrence state determination unit 53 and the data storage unit 52 are provided, and the dew generation condition data is given to the data storage unit 52, and Q Not only when hot water supply burner combustion is stopped during the function mode operation, but also the intermittent operation of the circulation pump 23 may be performed based on the determination of whether or not the dew generation occurrence state determination unit 53 determines the occurrence of dew condensation.
[0084]
less than, Related to the present invention A reference example will be described. This reference An example is a mild chase that reduces the burning ability of the bath burner 6 when the bath temperature rises to a hot water temperature lower than the bath boiling temperature set by the remote controller 55 during the chasing operation. FIG. 5 shows an example of the dew condensation preventing means of the reheating heat exchanger 16, which is applied to an appliance having a burning function. The mild chasing function, as described above, causes hot water (for example, 50 ° C. or more) to be ejected into the bath by reducing the combustion ability of the bath burner 6 when the bath temperature approaches the boiling temperature. This function prevents discomfort for the person taking a bath.
[0085]
As shown in FIG. reference In the example, the control device 56 is configured to include the intermittent pump operation control unit 50 and the mild chasing function operation unit 58.
[0086]
The mild chasing function operation unit 58 has a memory and an arithmetic circuit (not shown) built-in, and has a circuit configuration for operating in the mild chasing mode, and the built-in memory starts operation in the mild chasing mode. An arithmetic constant (for example, 2 ° C.) for calculating the mild chasing start temperature is given in advance. The mild chasing function operation unit 58 operates in the mild chasing mode as follows. For example, during the reheating, the bath boiling temperature set in the remote controller 55 is read out, and the mild reheating start temperature is calculated by subtracting the calculation constant of the built-in memory from the boiling temperature, and the bath temperature sensor (bath When the bath temperature detected by the temperature detection sensor 24 rises to the mild reheating start temperature, the mild reheating function is performed to reduce the combustion capability of the bath burner 6 to the set combustion capability. This mild chasing function continues until the bath boils.
[0087]
When the pump intermittent operation control unit 50 detects that the mild reheating function operation is started by taking in the operation state information of the mild reheating function operation unit 58 during reheating of the bath (combustion of the bath burner), It is determined that the combustion capacity of the burner 6 has declined and the combustion operation on the side of the bath burner 6 has been replenished and the dew generation operation state of the heat exchanger 16 has been reached, and the circulation pump 23 is operated intermittently for the set on / off intermittent time. The pump on / off signal is output, and the pump on / off signal is output to the circulation pump 23 until the mild reheating function is completed, causing the circulation pump 23 to be intermittently operated, and condensation on the reheating heat exchanger 16 is generated. To prevent.
[0088]
this reference According to the example, since the pump intermittent operation control unit 50 is provided in the control device 56 of the appliance having the mild chasing function, the bathing temperature approaches the boiling temperature and the mild chasing function is activated during chasing. Even if the combustion capability of the bath burner 6 is reduced and the combustion operation of the bath burner 6 is replenished and the dew generation operation state of the heat exchanger 16 is reached, the intermittent operation of the circulation pump 23 by the pump intermittent operation control unit 50 is performed. In addition, the occurrence of dew condensation in the reheating heat exchanger 16 can be prevented.
[0089]
In addition, this reference In the example, the circulation pump 23 is intermittently operated only during the operation of the mild reheating function in order to prevent dew condensation in the reheating heat exchanger. However, as shown in the first to fourth embodiments. The dew generation occurrence state determination unit 53 and the data storage unit 52 are provided, and the dew generation occurrence condition data is given to the data storage unit 52 so that the dew generation occurrence state determination unit 53 determines whether or not dew generation occurs. Based on the judgment of the situation, the circulating pump 23 is operated intermittently. As an example of the embodiment Alternatively, when the Q function operation unit 57 as shown in the fifth embodiment is provided, reference For example, the intermittent operation of the circulation pump 23 associated with the Q function operation of the fifth embodiment is combined to cause the circulation pump 23 to be intermittently operated even during the hot water burner combustion stop during the Q function mode operation. As an example of the embodiment May be.
[0090]
Also this reference In the example, the mild chasing function operation unit 58 calculates the mild chasing start temperature by subtracting the operation constant (for example, 2 ° C.) of the built-in memory from the boiling temperature of the bath set in the remote controller 55, and the bath temperature sensor. When the bath temperature detected at 24 rises to the mild reheating start temperature, the operation of the mild reheating function for reducing the combustion ability of the bath burner 6 is started. ° C) is given to the built-in memory, and the bath temperature sensor 24 detects the bath temperature without performing the calculation for obtaining the mild chase start temperature, that is, regardless of the set value of the boiling temperature of the remote controller 55. The operation of the mild chasing function may be started when the temperature rises to the mild chasing start temperature. Even in the appliance provided with such a mild chase function operation unit 58, an intermittent pump operation control unit 50 similar to the above embodiment is provided, and the intermittent operation of the circulation pump 23 is performed during the operation of the mild chase function. By performing this, it is possible to prevent the occurrence of condensation in the reheating heat exchanger 16 due to the combustion capacity reduction control of the bath burner 6.
[0091]
The following 6 An embodiment of the present invention will be described. First 6 In this embodiment, during the reheating of the bath, when the flowing water detection sensor 28 of the reheating circuit 25 stops detecting the flowing water, the combustion of the bath burner 6 is stopped to prevent the emptying. Applies to instruments with functions. The instrument having the air blow prevention function is the first to the first. 5 If the pump intermittent operation for preventing dew condensation of the reheating heat exchanger 16 is to be performed as in each of the above embodiments, the flowing water detection sensor 28 does not detect flowing water when the intermittent operation is turned off, thereby preventing the emptying The function is activated and the combustion of the bath burner 6 stops, and the intermittent operation of the circulation pump 23 cannot be performed smoothly. Therefore, this embodiment is characterized in that a control device for smoothly performing the intermittent operation of the circulation pump 23 is provided even in the appliance having the above-mentioned airing prevention function, and an example of the control device 56 is illustrated. It is shown in FIG. The control device 56 includes a pump intermittent operation control unit 50, a bath burner combustion stop unit 60, and a combustion stop operation prevention unit 61.
[0092]
The bath burner combustion stop unit 60 detects that the flowing water detection sensor 28 detects that the flowing water is off when the flowing water detection sensor 28 stops outputting the flowing water on signal while the bath is being reheated (when the bath burner 6 is burning). In some cases, the circuit is configured to stop the combustion of the bath burner 6 by closing the bath-side gas on-off valve 40 or the original solenoid valve 37 and stopping the gas supply to the bath burner 6 to prevent the air-burning.
[0093]
The pump intermittent operation control unit 50 includes the first to first pumps. 5 As shown in each of the embodiments, in order to cause the intermittent operation of the circulation pump 23 when it is determined that the combustion operation on the side of the bath burner 6 has reached the dew generation operation state of the reheating heat exchanger 16. The pump on / off signal is output to the circulation pump 23 to cause the circulation pump 23 to perform intermittent operation, and the pump intermittent operation signal is output to the combustion stop operation preventing unit 61.
[0094]
It should be noted that the determination configuration as to whether or not the combustion operation on the side of the bath burner 6 is a dew generation operation state of the reheating heat exchanger 16 and the output configuration of the pump on / off signal are the first to the second. 5 Any of the configurations shown in the embodiments may be formed, and the description thereof is omitted.
[0095]
While receiving the pump intermittent operation signal from the pump intermittent operation control unit 50, the combustion stop operation preventing unit 61 is provided with a bath burner to smoothly perform the intermittent operation of the circulation pump 23 by the pump intermittent operation control unit 50. The combustion stop operation of the bath burner 6 of the combustion stop unit 60 is prevented.
[0096]
According to this embodiment, when the flowing water detection sensor 28 of the recirculation circuit 25 detects that the flowing water is turned off during the reheating of the bath, the device having an air blowing preventing function for stopping the combustion of the bath burner 6 is provided. A pump intermittent operation control unit 50 is provided, and the intermittent operation of the circulation pump 23 by the pump intermittent operation control unit 50 prevents condensation from occurring in the reheating heat exchanger 16, and a combustion stop operation prevention unit 61 is provided to provide the circulation pump 23. Since the combustion stop operation of the bath burner 6 is prevented when the intermittent operation is turned off, when the intermittent operation of the circulation pump 23 is performed, the running water detection sensor 28 detects the running water off when the intermittent operation is turned off. However, the combustion of the bath burner 6 does not stop, and the intermittent operation of the circulation pump 23 can be performed smoothly.
[0097]
The present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, the operation state detection unit 51 shown in each of the above embodiments sets the proportional valve current value at the minimum combustion to 0%, the% value increases toward the maximum combustion, and the proportional valve current value at the maximum combustion. Although the value represented by the% value corresponding to the combustion capacity is detected as the proportional valve current value such as 100%, the actually measured proportional valve current value may be detected as it is. In this case, the proportional valve current data constituting the dew condensation occurrence condition data is given by the current value.
[0098]
In the fourth embodiment, the condensation generation condition data is classified stepwise according to the lightness of the condensation generation condition. However, the condensation generation condition data indicates the degree of lightness of the condensation generation condition. May be constituted by data that continuously represents. For example, the dew generation condition data is expressed by the equation data (A · (T 2 -T 1 ) + B · I + C · N = X), and the calculated value X becomes smaller as the dew condensation occurrence condition becomes heavier. Then, by performing a calculation based on the calculation formula data using the detection value of the bath burner combustion operation, the circulation pump 23 increases as the degree of the dew generation condition increases as follows based on the calculated value X. Variable control of the intermittent time of the circulation pump 23 is performed in the direction of reducing the driving energy.
[0099]
For example, the on time of the intermittent time of the circulation pump 23 is t ON , T OFF In this case, an arithmetic expression for calculating the intermittent time is represented by the following expression (2).
[0100]
(T ON -T OFF ) / T ON = X (2)
[0101]
From the above equation (2), t ON For t OFF Can be arranged as shown in the following equation (3).
[0102]
t ON : T OFF = 1: (1-X) (3)
[0103]
However, when X is 1 or more, the pump continuous operation is performed as a non-condensation occurrence region.
[0104]
For example, t ON + T OFF = 10 seconds, and when X = 0.5 is calculated, t ON : T OFF = 1: (1/2) = 2: 1
[0105]
t ON = 10 × (2/3) ≒ 6.7 seconds
[0106]
t OFF = 10 × (1/3) ≒ 3.3 seconds
[0107]
The intermittent time can be obtained, and the intermittent operation of the circulation pump 23 is performed according to the obtained intermittent time.
[0108]
As described above, the intermittent operation of the circulation pump 23 according to the dew generation condition of the reheating heat exchanger 16 is performed by performing variable control of the intermittent time of the circulation pump 23 according to the degree of lightness of the dew generation condition. Therefore, the condensation of the reheating heat exchanger 16 can be reliably prevented without waste of intermittent operation.
[0109]
As described above, the data that continuously represents the degree of lightness of the condensation generation condition is not limited to the arithmetic expression data shown in the previous equation (1). For example, the degree of the condensation generation condition increases as the bath temperature decreases. Such as graph data and calculation formula data showing the relationship between the bath temperature and the degree of dew generation, such as proportional valve current, bath temperature, reheating heat exchanger outlet hot water temperature, combustion fan 8 rotation speed or fan air volume Condensation occurrence condition data may be configured with relational data between any one and the degree of condensation occurrence condition, and the degree of condensation occurrence condition increases as the proportional valve current decreases and the bath temperature decreases. Like the data representing the degree of dew generation conditions by the combination of the proportional valve current and the bath temperature, the proportional valve current, the bath temperature, the reheating heat exchanger outlet hot water temperature, and the rotation speed of the combustion fan 8 are present. May constitute the dew generation condition by continuously expressing the degree of the dew generation condition by a combination of at least two of the fan airflows, and if the data continuously represents the degree of the dew generation condition, Condensation occurrence condition data may be composed of various data configurations other than the arithmetic expression data shown in the previous formula (1).
[0110]
The degree of lightness of the condensation generation condition is obtained based on the above condensation generation condition data, and the drive energy of the circulating pump 23 is reduced in accordance with the direction in which the degree of condensation generation condition increases, that is, By varying the intermittent time of the circulation pump 23 in a direction that shortens the on-time, lengthens the off-time, shortens the on-time, and lengthens the off-time as the degree increases. The dew condensation preventing effect of the reheating heat exchanger 16 similar to the above can be exhibited.
[0111]
Furthermore, the first to the above-mentioned 6 Although the embodiment of the present invention has been described by taking the composite water heater shown in FIG. 7 as an example, the present invention has a hot water burner 5 and a bath burner 6, and is a proportional valve 38 common to the hot water burner 5 and the bath burner 6. As long as it is a composite water heater provided with the combustion fan 8, it is not limited to the composite water heater having the configuration shown in FIG.
[0112]
【The invention's effect】
According to the present invention, the bath burner combustion operation becomes the dew generation operation state because the pump is intermittently operated when the bath burner combustion operation becomes the dew generation operation state of the reheating heat exchanger. When the pump is operated intermittently, the time from the hot water to the heat exchanger inlet to the outlet becomes longer than the continuous operation of the pump, and the stagnation time is longer. Even if the amount of heat of combustion is low, the water flow through the reheating heat exchanger is sufficiently heated, and a decrease in the surface temperature of the water pipe of the reheating heat exchanger can be suppressed, so that dew condensation in the reheating heat exchanger can be prevented.
[0113]
In addition, by performing intermittent operation of the pump, the hot water heated by the bath burner will slowly flow out to the bathtub. However, it is possible to avoid the problem of unpleasant sensation for the bather.
[0115]
Furthermore, as described above, the present invention has a configuration in which the intermittent operation of the pump is performed to prevent the occurrence of condensation in the reheating heat exchanger, and the pump for performing the intermittent operation of the pump is turned on / off. Since the control can be easily performed, the circuit configuration of the pump intermittent operation control unit can be simplified. Furthermore, it is not necessary to prepare a circuit for the intermittent operation control unit corresponding to each pump capacity, and the desired pump ON / OFF intermittent time that can prevent condensation can be input to a memory or the like. Since the pump intermittent operation can be performed in the pump intermittent time, it is not necessary to manufacture the circuit of the pump intermittent operation control unit for each pump of a plurality of capacity types, and the cost of the circuit can be kept low.
[0116]
Furthermore, in the combined water heater having a bath burner combustion stop unit that stops the combustion of the bath burner when the flowing water detection sensor detects that the bath reheating water is turned off, the pump intermittent operation control unit and the bath burner combustion stop operation prevention If the pump intermittent operation control unit turns off the pump intermittent operation, the bath burner combustion stop operation blocking unit is the bath burner combustion of the bath burner combustion stop unit even if the flowing water detection sensor detects that the flowing water is off. Since the stop operation is prevented, the intermittent operation of the pump can be performed smoothly without stopping the combustion of the bath burner, and condensation of the reheating heat exchanger can be prevented.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration example of a control device for a composite water heater having a dew condensation prevention function for a reheating heat exchanger.
FIG. 2 is a flowchart showing an example of a dew condensation preventing operation of the reheating heat exchanger in the control device shown in FIG.
FIG. 3 is a graph showing an example of combination data of condensation generation condition data.
FIG. 4 is a block diagram showing a configuration example of a control device that causes a combined water heater having a function of stabilizing the re-hot water temperature to perform a dew condensation preventing operation of the reheating heat exchanger.
FIG. 5 is one example of a control device that causes a combined water heater having a mild reheating function for a bath to perform a dew condensation preventing operation of the reheating heat exchanger. reference It is a block diagram which shows an example.
FIG. 6 is a block diagram illustrating a configuration example of a control device that causes a composite water heater having an air-spreading prevention function to perform intermittent operation of a pump.
FIG. 7 is an explanatory diagram showing an example of a composite water heater in which a proportional valve and a combustion fan are provided in common to a hot water burner and a bath burner.
[Explanation of symbols]
1 appliance
5 Hot water burner
6 Bath burner
8 Combustion fan
16 Reheating heat exchanger
17 Fan speed detection sensor
23 Circulation pump
24 Bath temperature sensor
28 Flowing water detection sensor
38 Proportional valve
44 Outlet temperature sensor
45 Fan air volume detection sensor
50 Pump intermittent operation controller
51 Operation status detector
52 Data storage
53 Condensation occurrence status determination section
56 Control unit
57 Q function operation unit
58 Mild chasing function
60 Bath burner combustion stop
61 Combustion stop operation prevention unit

Claims (2)

給湯熱交換器の加熱燃焼を行う給湯バーナと、追い焚き熱交換器の加熱燃焼を行う風呂バーナと、前記給湯バーナと風呂バーナへ供給する燃料量を開弁量によって制御する共通の比例弁と、前記給湯バーナ燃焼と風呂バーナ燃焼の給排気を行う共通の燃焼ファンと、風呂バーナ燃焼を行う追い焚き時に風呂の湯水を追い焚き熱交換器を通し循環させるポンプと、前記比例弁の開弁量制御や燃焼ファンの回転制御やポンプ駆動の制御を行う制御装置とを備えた複合給湯器において、制御装置には給湯バーナの燃焼停止中に風呂バーナの燃焼が行なわれたときには燃焼ファンの回転低下制御を行って給湯熱交換器の通風冷却を抑制して給湯の再出湯湯温を安定化する再出湯湯温安定化モードの動作を行うQ機能動作部が設けられ、再出湯湯温安定化モードの動作中における給湯バーナ燃焼停止中は風呂バーナ燃焼動作が結露発生動作状態であるとしてポンプのオン・オフ間欠運転を行うポンプ間欠運転制御部を有する複合給湯器。  A hot water supply burner that performs heating and combustion of the hot water supply heat exchanger, a bath burner that performs heating and combustion of the reheating heat exchanger, and a common proportional valve that controls the amount of fuel supplied to the hot water supply burner and the bath burner by the valve opening amount A common combustion fan for supplying and exhausting the hot water supply burner combustion and the bath burner combustion, a pump for replenishing the hot water in the bath and recirculating it through the heat exchanger when regenerating the bath burner, and opening the proportional valve In a combined water heater having a control device for controlling the amount, rotation of the combustion fan, and pump drive, the control device includes a rotation of the combustion fan when the combustion of the bath burner is performed while the combustion of the hot water supply burner is stopped. A Q function operation unit is provided to control the re-heated water temperature stabilization mode, which controls the cooling of the hot water heat exchanger and stabilizes the re-heated water temperature of the hot water supply by stabilizing the re-heated water temperature. Composite water heater having a pump intermittent operation control unit that performs on-off intermittent operation of the pump as a water heater burner during combustion stopped bath burner combustion operation is a condensation occurrence operating state during operation mode. 給湯熱交換器の加熱燃焼を行う給湯バーナと、追い焚き熱交換器の加熱燃焼を行う風呂バーナと、前記給湯バーナと風呂バーナへ供給する燃料量を開弁量によって制御する共通の比例弁と、風呂バーナ燃焼を行う追い焚き時に風呂の湯水を追い焚き熱交換器を通し循環させるポンプと、前記比例弁の開弁量制御や燃焼ファンの回転制御やポンプ駆動の制御を行う制御装置と、ポンプ駆動による追い焚き熱交換器の流水を検出する流水検出センサと、該流水検出センサが流水オフを検出したときに風呂バーナの燃焼を停止させる風呂バーナ燃焼停止部とを備え、通常の給湯バーナ燃焼と風呂バーナ燃焼が共に行われるときには給湯側を優先させ比例弁の開弁量制御を行う複合給湯器において、この複合給湯器の動作状態の情報を収集検出する動作状態検出部と、複合給湯器の動作状態の情報を用いて予め作成された追い焚き熱交換器の結露発生条件データを格納するデータ格納部と、前記動作状態検出部により収集検出された情報に基づき追い焚き熱交換器の結露発生可否状況を前記データ格納部の結露発生条件データと比較して判断する結露発生状況判断部と、この結露発生状況判断部により結露発生動作状態と判断されたときには前記ポンプのオン・オフ間欠運転を行うポンプ間欠運転制御部とを有し、さらに、ポンプ間欠運転制御部によるポンプ間欠運転のオフ時に前記流水検出センサが流水オフを検出しても前記風呂バーナ燃焼停止部の風呂バーナ燃焼停止動作を阻止する燃焼停止動作阻止部を設けたことを特徴とする複合給湯器。  A hot water supply burner that performs heating and combustion of the hot water supply heat exchanger, a bath burner that performs heating and combustion of the reheating heat exchanger, and a common proportional valve that controls the amount of fuel supplied to the hot water supply burner and the bath burner by the valve opening amount A pump that recirculates hot water in the bath and recirculates it through a heat exchanger when reheating the bath burner, a control device that controls the valve opening amount control of the proportional valve, the rotation control of the combustion fan, and the pump drive, A normal hot water burner comprising: a running water detection sensor for detecting running water of a reheating heat exchanger driven by a pump; and a bath burner combustion stop unit for stopping combustion of the bath burner when the running water detection sensor detects that the running water is off. When both combustion and bath burner combustion are performed, in a combined water heater that prioritizes the hot water supply side and controls the opening of the proportional valve, it collects and detects information on the operating state of the combined water heater. A state detection unit, a data storage unit for storing dew generation condition data of a reheating heat exchanger created in advance using information on the operation state of the composite water heater, and information collected and detected by the operation state detection unit A condensate occurrence status determination unit for determining whether or not the condensation heat generation status of the reheating heat exchanger is compared with the dew generation condition data in the data storage unit, and when the dew generation occurrence status determination unit A pump intermittent operation control unit that performs intermittent on / off operation of the pump, and further, the bath burner combustion even when the flowing water detection sensor detects that the flowing water is off when the pump intermittent operation is turned off by the pump intermittent operation control unit A composite water heater, characterized in that a combustion stop operation blocking unit for blocking a bath burner combustion stop operation of the stop unit is provided.
JP04835596A 1996-02-09 1996-02-09 Combined water heater Expired - Fee Related JP3859759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04835596A JP3859759B2 (en) 1996-02-09 1996-02-09 Combined water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04835596A JP3859759B2 (en) 1996-02-09 1996-02-09 Combined water heater

Publications (2)

Publication Number Publication Date
JPH09217960A JPH09217960A (en) 1997-08-19
JP3859759B2 true JP3859759B2 (en) 2006-12-20

Family

ID=12801061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04835596A Expired - Fee Related JP3859759B2 (en) 1996-02-09 1996-02-09 Combined water heater

Country Status (1)

Country Link
JP (1) JP3859759B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122533A (en) * 2016-01-06 2017-07-13 株式会社ガスター Bath water heater
JP2017122535A (en) * 2016-01-06 2017-07-13 株式会社ガスター Bath water heater
JP6605962B2 (en) * 2016-01-06 2019-11-13 株式会社ガスター Bath water heater
JP6758063B2 (en) * 2016-03-29 2020-09-23 大阪瓦斯株式会社 Heating device
JP2018204862A (en) * 2017-06-02 2018-12-27 株式会社パロマ Bath water heater

Also Published As

Publication number Publication date
JPH09217960A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
JP4023139B2 (en) Hybrid water heater
JP3859759B2 (en) Combined water heater
JP3683400B2 (en) Combined water heater
JP5385649B2 (en) Bathroom heating equipment
JP3776981B2 (en) Combined water heater
JP3754474B2 (en) Combined water heater
JP3622568B2 (en) 1 can 2 water channel water heater
JP3834423B2 (en) One can multi-channel combustion equipment
JP3748681B2 (en) One can two water bath hot water heater
JPH11257736A (en) Hot-water supply device
JP3880126B2 (en) Combustion equipment
JP3859785B2 (en) One can two water channel water heater
JP2004232899A (en) Water heater
JP3801339B2 (en) Water heater
JP3748611B2 (en) Combustion equipment
JP3834352B2 (en) Combined water heater
JP4029249B2 (en) Circulating water heating control method and circulating water heating control device
JP2920619B2 (en) Hot water controller
JPH11159862A (en) Single boiler/two water feed pipe water heater
JPH11211227A (en) Single body double water path combustor
JP2022067720A (en) Bathroom system
JP2004144476A (en) Hot water supply device
JP2001324138A (en) Combustion controller of storage type water heater
JP3848756B2 (en) One can two water heater
JPH0730924B2 (en) Hot water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees