JP3858427B2 - 1 can 2 circuit heat source device - Google Patents

1 can 2 circuit heat source device Download PDF

Info

Publication number
JP3858427B2
JP3858427B2 JP03557298A JP3557298A JP3858427B2 JP 3858427 B2 JP3858427 B2 JP 3858427B2 JP 03557298 A JP03557298 A JP 03557298A JP 3557298 A JP3557298 A JP 3557298A JP 3858427 B2 JP3858427 B2 JP 3858427B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat
circulating
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03557298A
Other languages
Japanese (ja)
Other versions
JPH11230620A (en
Inventor
英夫 富田
孝文 菊谷
正満 近藤
茂岐 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03557298A priority Critical patent/JP3858427B2/en
Publication of JPH11230620A publication Critical patent/JPH11230620A/en
Application granted granted Critical
Publication of JP3858427B2 publication Critical patent/JP3858427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯と暖房、または給湯と風呂に用いられる1缶2回路式熱源装置に関するものである。
【0002】
【従来の技術】
従来、この種の1缶2回路式熱源装置は特開昭63−38852号公報に記載されているようなものが一般的であった。この装置は図11と図12に示されているように循環給湯兼用燃焼部1と給湯用燃焼部2、3とを備え、ガス導管4を分岐して夫々にガス遮断弁5、6及びガス導管4の入口側部分にガス比例弁7が設けられている。循環伝熱管8と給湯伝熱管9とは循環給湯兼用燃焼部1と給湯用燃焼部2、3との各下流側を横断し一体構成にし、かつ、千鳥状に設けている。また、循環伝熱管8は給湯伝熱管9の下流側に位置している。受熱フィン10は循環伝熱管8と給湯伝熱管9に貫通されている。燃焼ファン11は循環給湯兼用燃焼部1と給湯用燃焼部2、3に連通している。
【0003】
次に、給湯単独運転について説明する。カラン等が開けられて給湯伝熱管9に通水された場合、燃焼ファン11が駆動し、同時にガス比例弁7が開き循環給湯兼用燃焼部1が燃焼を開始する。そして、燃焼熱が受熱フィン10から給湯伝熱管9に伝わり、温水が給湯伝熱管9から出湯する。その際、要求された給湯温度になるようにガス比例弁7が燃焼量を調整する。また、大きな給湯能力が必要な場合、ガス遮断弁5,6を開いて給湯用燃焼部2、3が燃焼を開始し、さらにガス比例弁7が燃焼量を調整する。(約38〜60℃)次に、循環伝熱管8の残留水の熱収支を考える。第1に、循環伝熱管8自身と受熱フィン10が循環給湯兼用燃焼部1や給湯用燃焼部2、3に形成した火炎や排ガスに直接加熱される。第2に、循環伝熱管8と給湯伝熱管9との接触部を介し循環伝熱管8の残留水から給湯伝熱管9内を流れている温水への熱伝導による放熱がある。特に、第1の吸熱では、循環給湯兼用燃焼部1や給湯用燃焼部2、3から発生した燃焼熱の大部分は受熱フィン10から給湯伝熱管9に奪われるので、循環伝熱管8の吸熱量は比較的少なく、循環伝熱管8の残留水が沸騰する直前で熱収支が平衡する。
【0004】
続いて、給湯・循環同時運転について説明する。カラン等が開けられて給湯伝熱管9に通水され、かつ循環ポンプ(図示せず)により循環伝熱管8に循環温水が吸引された場合、給湯単独運転と同様に要求された給湯温度になるように循環給湯兼用燃焼部1や給湯用燃焼部2、3が燃焼し、ガス比例弁7が燃焼量を調整する(給湯優先制御)。そして、燃焼熱が受熱フィン10から給湯伝熱管9に伝わるので、要求された温度の温水が給湯伝熱管9から出湯する。また、残りの燃焼熱が受熱フィン10から循環伝熱管8に伝わり、なりゆきではあるが、温度上昇した循環温水が循環伝熱管8から熱負荷へ循環する(温度上昇約40〜60deg)。
【0005】
【発明が解決しようとする課題】
従来の前記する1缶2回路式熱源装置では、循環(風呂)単独運転を要求された場合、ガス比例弁7が開き循環給湯兼用燃焼部1が燃焼を開始する。その際、ガス比例弁7が燃焼量を一定量に調整する。次に、燃焼熱が受熱フィン10から循環伝熱管8に伝わるので、温度上昇した循環温水が循環伝熱管8から浴槽(図示せず)へ循環する。また、一般に風呂(暖房)などの要求循環能力は要求給湯能力に比べて小さいので、給湯用燃焼部2、3を追加運転する必要はない。次に、給湯伝熱管9の残留水の熱収支を考える。
【0006】
第1に、循環給湯兼用燃焼部1の下流側の給湯伝熱管9自身と受熱フィン10が循環給湯兼用燃焼部1に形成した火炎や排ガスに加熱される。第2に、循環伝熱管8と給湯伝熱管9との接触部を介し給湯伝熱管9の残留水から循環伝熱管8内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部2、3の下流側の給湯伝熱管9と受熱フィン10は燃焼ファン11から供給される空気により冷却される。特に、第1の吸熱では、循環給湯兼用燃焼部1から発生した火炎や排ガスが給湯伝熱管9自身や受熱フィン10を加熱するので、給湯伝熱管9の吸熱量が多く、第2、第3の放熱があるにもかかわらず、熱収支が平衡するまでに給湯伝熱管9の残留水が温度上昇し、ついには沸騰するという課題を有していた。なお、暖房単独運転の場合、要求された循環温水温度になるようにガス比例弁7が燃焼量を調整する。
【0007】
また、循環給湯同時運転を要求された場合、当然1缶2水式の構成上、循環伝熱管8と給湯伝熱管9との吸熱分配は流量や温度の影響を受けるが、ほぼ一定の比率(例えば循環:給湯=1:5)になる。また、給湯は優先的に制御され、他方循環はなりゆきである。したがって、要求された給湯能力が小さい場合、循環能力も非常に小さくなり循環温水はほとんど温度上昇しないという課題を有していた。逆に、要求された給湯能力が大きい場合、循環能力も非常に大きくなり循環温水は高温になるという課題を有していた。
【0008】
そこで、本発明は前記するこれらの課題を解決して、循環単独運転時でも沸騰せず、熱効率がよい1缶2回路式熱源装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するために循環給湯兼用燃焼部と給湯用燃焼部の各下流側を横断して配置し上下方向に一体構成とした給湯伝熱管と循環伝熱管と、循環給湯兼用燃焼部の下流側の給湯伝熱管と循環伝熱管に貫通固定し循環伝熱管側の受熱面積を大きく形成し逆に給湯伝熱管側の受熱面積を小さく形成した循環給湯兼用受熱フィンと、給湯用燃焼部の下流側の給湯伝熱管と循環伝熱管に貫通固定し循環伝熱管側の受熱面積を小さく形成し逆に給湯伝熱管側の受熱面積を大きく形成した給湯用受熱フィンとを備えたものである。そして、循環単独運転を要求された場合、循環給湯兼用受熱フィンの循環伝熱管側の受熱面積を大きく形成しているので、循環給湯兼用燃焼部から発生した燃焼熱が効率よく循環伝熱管に伝わり、循環温水が温度上昇し循環伝熱管から熱負荷へ循環する。
【0010】
次に、給湯伝熱管の残留水の熱収支を考える。第1に、循環給湯兼用燃焼部の下流側の給湯伝熱管自身と循環給湯兼用受熱フィンが循環給湯兼用燃焼部に形成した火炎や排ガスに加熱される。しかし、循環給湯兼用受熱フィンの給湯伝熱管側の受熱面積を小さく形成したので、循環給湯兼用受熱フィンを介した熱伝導が小さく、給湯伝熱管の吸熱量は少なくなる。第2に、循環伝熱管と給湯伝熱管との接触部を介し給湯伝熱管の残留水から循環伝熱管内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部の下流側の給湯伝熱管自身と給湯用受熱フィンが給湯用燃焼部から噴出した空気により空冷される。特に、給湯用受熱フィンは給湯伝熱管側の受熱面積を大きく形成したので、給湯伝熱管の放熱量は多くなる。
【0011】
したがって、第3の放熱が改善され、第1の吸熱が抑えられるので、給湯伝熱管の残留水が低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管の残留水は循環している循環温水よりも少し高い温度に維持されるので、給湯伝熱管の残留水は沸騰することはない。他方、給湯用受熱フィンは循環伝熱管側の受熱面積を小さく形成しので、循環伝熱管の放熱量は少ない。したがって、循環給湯兼用燃焼部に加熱され温度上昇した循環温水はあまり空冷されないので、循環熱効率の向上が図れる。
【0012】
【発明の実施の形態】
本発明は各請求項に記載する形態で実施できるものであり、請求項1記載のように、循環給湯兼用燃焼部と給湯用燃焼部の各下流側を横断して配置し上下方向に一体構成とした給湯伝熱管と循環伝熱管と、循環給湯兼用燃焼部の下流側の給湯伝熱管と循環伝熱管に貫通固定し循環伝熱管側の受熱面積を大きく形成し逆に給湯伝熱管側の受熱面積を小さく形成した循環給湯兼用受熱フィンと、給湯用燃焼部の下流側の給湯伝熱管と循環伝熱管に貫通固定し循環伝熱管側の受熱面積を小さく形成し逆に給湯伝熱管側の受熱面積を大きく形成した給湯用受熱フィンとを備えたものである。そして、循環単独運転を要求された場合、循環給湯兼用受熱フィンの循環伝熱管側の受熱面積を大きく形成しているので、循環給湯兼用燃焼部から発生した燃焼熱が効率よく循環伝熱管に伝わり、循環温水が温度上昇し循環伝熱管から熱負荷へ循環する。
【0013】
次に、給湯伝熱管の残留水の熱収支を考える。第1に、循環給湯兼用燃焼部の下流側の給湯伝熱管自身と循環給湯兼用受熱フィンが循環給湯兼用燃焼部に形成した火炎や排ガスに加熱される。しかし、循環給湯兼用受熱フィンの給湯伝熱管側の受熱面積を小さく形成したので、循環給湯兼用受熱フィンを介した熱伝導が小さく、給湯伝熱管の吸熱量は少なくなる。第2に、循環伝熱管と給湯伝熱管との接触部を介し給湯伝熱管の残留水から循環伝熱管内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部の下流側の給湯伝熱管自身と循環給湯兼用受熱フィンが給湯用燃焼部から噴出した空気により空冷される。したがって、第2、第3の放熱を改善できないが、第1の吸熱を抑えられるので、給湯伝熱管の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管の残留水は循環している循環温水よりも少し高い温度に維持されるので、給湯伝熱管の残留水は沸騰することはない。
【0014】
また、請求項2記載のように循環給湯兼用燃焼部と給湯用燃焼部との下流側を横断し一体構成にして設けた給湯伝熱管と循環伝熱管と、給湯用燃焼部側に比べて循環給湯兼用燃焼部側を疎になるように給湯伝熱管と循環伝熱管に貫通固定した受熱フィンとを有するものである。そして、循環単独運転を要求された場合における給湯伝熱管の残留水の熱収支を考える。第1に、給湯用燃焼部側に比べて循環給湯兼用燃焼部側を疎になるように受熱フィンを配置したので、循環給湯兼用燃焼部側の循環伝熱管単位長さ当たりの吸熱量が減少する。第2に、循環伝熱管と給湯伝熱管との接触部を介し給湯伝熱管の残留水から循環伝熱管内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部側の下流側の受熱フィンと給湯伝熱管自身が給湯用燃焼部から噴出した空気により空冷される。したがって、第2、第3の放熱を改善できないが、第1の吸熱を抑えられるので、給湯伝熱管の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管の残留水は循環している循環温水よりも高い温度に維持されるので、給湯伝熱管の残留水の沸騰は抑制できる。
【0015】
また、請求項3記載のように循環給湯兼用燃焼部と給湯用燃焼部との下流側を横断し一体構成にして設けた給湯伝熱管と循環伝熱管と、給湯用燃焼部側に比べて循環給湯兼用燃焼部側の肉厚を薄くし給湯伝熱管と循環伝熱管に貫通固定した受熱フィンとを有するものである。そして、循環を要求され場合における給湯伝熱管の残留水の熱収支を考える。第1に、受熱フィンの肉厚を給湯用燃焼部側に比べて循環給湯兼用燃焼部側を薄くしたので、循環給湯兼用燃焼部側の循環伝熱管単位長さ当たりの吸熱量が減少する。第2に、循環伝熱管と給湯伝熱管との接触部を介し給湯伝熱管の残留水から循環伝熱管内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部側の下流側の受熱フィンと給湯伝熱管自身が給湯用燃焼部から噴出した空気により空冷される。したがって、第2、第3の放熱を改善できないが、第1の吸熱を抑えられるので、給湯伝熱管の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管の残留水は循環している循環温水よりも高い温度に維持されるので、給湯伝熱管の残留水の沸騰は抑制できる。
【0016】
また、請求項4記載のように循環給湯兼用燃焼部と給湯用燃焼部との下流側を横断し一体構成にして格子状に設けた給湯伝熱管と循環伝熱管と、前記循環給湯兼用燃焼部の下流側の前記給湯伝熱管と前記循環伝熱管に貫通固定し前記循環伝熱管側の受熱面積を大きく形成し逆に前記給湯伝熱管側の受熱面積を小さく形成した循環給湯兼用受熱フィンと、給湯用燃焼部の下流側の給湯伝熱管と循環伝熱管に貫通固定し循環給湯兼用受熱フィンと同形状で上下方向に反転させ、循環伝熱管側の受熱面積を小さく形成し逆に給湯伝熱管側の受熱面積を大きく形成した給湯用受熱フィンとを有するものである。そして、一体構成した給湯伝熱管と循環伝熱管とを格子状に設けたので、循環給湯兼用受熱フィンと給湯用受熱フィンは同一形状で上下方向に反転することにより使い分けできる。すなわち、金型の共通化が図れる。なお、一体構成にして設けた給湯伝熱管と循環伝熱管は格子状でなく一段でも同様の効果が得られる。
【0017】
また、請求項5記載のように給湯単独運転を要求された時に、給湯用燃焼部の運転を優先的に開始させ、または循環単独運転を要求された時に、循環給湯兼用燃焼部を運転させる単独運転制御部を有するものである。そして、給湯単独運転を要求された時に、燃焼制御部が給湯用燃焼部の運転を優先的に開始させ、要求された給湯温度になるようにガス比例弁が燃焼量を調整する。したがって、給湯用受熱フィンの給湯伝熱管側の受熱面積を大きく形成しているので、給湯用燃焼部から発生した燃焼熱が効率よく給湯伝熱管を加熱でき、給湯効率が向上する。次に、循環伝熱管の残留水の熱収支を考える。第1に、給湯用燃焼部の下流側の循環伝熱管自身と給湯用受熱フィンが給湯用燃焼部に形成した火炎や排ガスに加熱される。しかし、給湯用受熱フィンの循環伝熱管側の受熱面積を小さく形成したので、給湯用受熱フィンを介した熱伝導が小さく、循環伝熱管の吸熱量は少なくなる。第2に、循環伝熱管と給湯伝熱管との接触部を介し循環伝熱管の残留水から給湯伝熱管内を流れている温水への熱伝導による放熱がある。第3に、循環給湯兼用燃焼部の下流側の循環伝熱管自身と循環給湯兼用受熱フィンが循環給湯兼用燃焼部から噴出した空気により空冷される。したがって、第2、第3の放熱を改善できないが、第1の吸熱を抑えられるので、循環伝熱管の残留水が低い温度で熱収支が平衡することができる。言い換えると、循環伝熱管の残留水は給湯伝熱管を流れる温水よりも少し高い温度に維持されるので、循環伝熱管の残留水は沸騰することはない。
【0018】
続いて、循環単独運転を要求された場合における給湯伝熱管の残留水の熱収支を考える。第1に、循環給湯兼用燃焼部の下流側の給湯伝熱管自身と循環給湯兼用受熱フィンが循環給湯兼用燃焼部に形成した火炎や排ガスに加熱される。しかし、循環給湯兼用受熱フィンの給湯伝熱管側の受熱面積を小さく形成したので、循環給湯兼用受熱フィンを介した熱伝導が小さく、給湯伝熱管の吸熱量は少なくなる。第2に、循環伝熱管と給湯伝熱管との接触部を介し給湯伝熱管の残留水から循環伝熱管内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部の下流側の給湯伝熱管自身と循環給湯兼用受熱フィンが給湯用燃焼部から噴出した空気により空冷される。したがって、第2、第3の放熱を改善できないが、第1の吸熱を抑えられるので、給湯伝熱管の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管の残留水は循環している循環温水よりも少し高い温度に維持されるので、給湯伝熱管の残留水は沸騰することはない。
【0019】
また、請求項6記載のように循環給湯同時運転を要求された時に、給湯の要求能力が小さく、逆に循環の要求能力が大きい場合には、循環給湯兼用燃焼部の運転を優先的に開始させる同時運転制御部を有するものである。そして、要求された給湯温度になるように給湯用燃焼部が燃焼し、ガス比例弁が燃焼量を調整する。その際、実循環能力が要求値(循環温水の温度上昇値)より小さい場合、燃焼制御部が給湯用燃焼部の運転を停止して循環給湯兼用燃焼部の運転を優先的に開始させる。そして、循環給湯兼用受熱フィンの循環伝熱管側の受熱面積を大きく形成しているので、循環給湯兼用燃焼部から発生した燃焼熱が効率よく循環伝熱管に伝わり、循環温水がさらに温度上昇し循環伝熱管から熱負荷へ循環する。逆に、循環給湯兼用受熱フィンの給湯伝熱管側の受熱面積を小さく形成しているので、給湯伝熱管の吸熱量が抑えられ、給湯温度を要求温度に維持するためにガス比例弁が燃焼量を増加させる。(給湯優先制御)これらの結果、循環能力が改善されて循環温水の温度が上昇し目標温度に近づく。
【0020】
また、請求項7記載のように循環給湯同時運転を要求された時に、給湯の要求能力が大きく、逆に循環の要求能力が小さい場合には、給湯用燃焼部の運転を優先的に開始させる同時運転制御部を有するものである。そして、要求された温水温度になるように循環給湯兼用燃焼部が燃焼し、ガス比例弁が燃焼量を調整する。その際、実循環能力が要求値(循環温水の温度上昇値)より大きい場合、燃焼制御部が循環給湯用燃焼部の運転を停止して給湯用燃焼部の運転を優先的に開始させる。したがって、給湯用受熱フィンの給湯伝熱管側の受熱面積を大きく形成しているので、給湯用燃焼部から発生した燃焼熱が効率よく給湯伝熱管を加熱する。逆に、循環給湯兼用受熱フィンの循環伝熱管側の受熱面積を小さく形成しているので、循環伝熱管の吸熱量が少なくなる。すなわち、給湯温度を要求温度に維持するために燃焼量が減少する。(給湯優先制御)この結果、給湯能力が改善されて(循環能力が低下)循環温水の温度が抑えられ目標温度に近づく。
【0021】
なお、請求項1から4記載において、給湯伝熱管同士や循環伝熱管同士で一体構成にしても効果は変わらない。
【0022】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0023】
(実施例1)
図1は本発明における実施例1の1缶2回路式熱源装置の部分断面正面図である。図2と図3は同装置の部分断面側面図である。図において、12は循環給湯兼用燃焼部であり、循環給湯兼用燃焼部12の両側には給湯用燃焼部13、14が設けられている。また、15、16は分岐したガス導管17に設けたガス遮断弁である。18はガス導管17の入口側に設けたガス比例弁である。19は循環伝熱管である。20は給湯伝熱管である。循環伝熱管19の上流側に給湯伝熱管20を配置し、夫々をロー付けして一体構成にしている。この一体構成にした循環伝熱管19と給湯伝熱管20は循環給湯兼用燃焼部12と給湯用燃焼部13、14の各下流側を横断して千鳥状に設けている。21は下段と上段の循環伝熱管19側の受熱面積を大きく形成し、逆に下段の給湯伝熱管20側の受熱面積を小さく形成し、さらに上段の給湯伝熱管20側に切り欠き22を設けた循環給湯兼用受熱フィンであり、循環給湯兼用燃焼部14の下流側の循環伝熱管19と給湯伝熱管20に貫通固定(ロー付け)している。23は下段の循環伝熱管19側に切り欠き24を設け、さらに上段の循環伝熱管19側の受熱面積を小さく形成し、逆に給湯伝熱管20側の受熱面積を大きく形成した給湯用受熱フィンであり、給湯伝熱管20の下流側の循環伝熱管19と給湯伝熱管20に貫通固定(ロー付け)している。燃焼ファン25は循環給湯兼用燃焼部12と給湯用燃焼部13、14とに連通している。
【0024】
次に、循環(風呂)単独運転について説明する。風呂循環ポンプ(図示せず)により循環伝熱管19に循環温水が吸引された場合、燃焼ファン25が駆動し、同時にガス比例弁18が開き循環給湯兼用燃焼部12が燃焼を開始する。その後、ガス比例弁18が燃焼量を一定量に調整する(循環温水の温度はなりゆき)。そして、循環給湯兼用受熱フィン21の循環伝熱管19側の受熱面積を大きく形成しているので、循環給湯兼用燃焼部12から発生した燃焼熱が効率よく循環伝熱管19に伝わり、循環温水が温度上昇し循環伝熱管19から浴槽(図示せず)へ循環する。次に、給湯伝熱管20の残留水の熱収支を考える。第1に、循環給湯兼用燃焼部12の下流側の給湯伝熱管20自身と循環給湯兼用受熱フィン21が循環給湯兼用燃焼部12に形成した火炎や排ガスに加熱される。
【0025】
しかし、循環給湯兼用受熱フィン21の下段の給湯伝熱管20側受熱面積を小さく形成し、さらに上段の給湯伝熱管20側に切り欠き22を設けたので、循環給湯兼用受熱フィン21を介した熱伝導が小さく、給湯伝熱管19の吸熱量は少なくなる。第2に、循環伝熱管19と給湯伝熱管20との接触部(ロー材)を介し給湯伝熱管20の残留水から循環伝熱管19内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部13,14の下流側の給湯伝熱管20自身と給湯用受熱フィン23が燃焼ファン25から送風され給湯用燃焼部13,14から噴出する空気により空冷される。特に、給湯用受熱フィン23を給湯伝熱管20側の受熱面積を大きく形成したので、給湯伝熱管20の放熱量は多くなる。この結果、循環給湯兼用燃焼部12の下流側の給湯伝熱管20も間接的ではあるが強く空冷される。したがって、第3の放熱が改善され、第1の吸熱が抑えられるので、給湯伝熱管20の残留水が低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管20の残留水は循環している循環温水よりも少し高い温度に維持されるので、給湯伝熱管20の残留水は沸騰することはない。なお、循環(暖房)単独運転の場合、循環温水が要求された温度になるようにガス比例弁18が燃焼量を調整する。他方、給湯用受熱フィン23は下段の循環伝熱管19側に切り欠き24を設け、さらに上段の循環伝熱管19側の受熱面積を小さく形成しているので、空冷による循環伝熱管19の放熱量は少ない。したがって、循環給湯兼用燃焼部12に加熱され温度上昇した循環温水はあまり空冷されないので、循環熱効率が向上できる。
【0026】
次に、給湯単独運転について説明する。カラン等が開けられて給湯伝熱管20に通水された場合、燃焼ファン25が駆動し、同時にガス比例弁25が開き循環給湯兼用燃焼部12が燃焼を開始する。そして、燃焼熱が受熱フィン21から給湯伝熱管20に伝わり、温水が給湯伝熱管20から出湯する。その際、要求された給湯温度になるようにガス比例弁18が燃焼量を調整する。また、大きな給湯能力が必要な場合、ガス遮断弁15,16を開いて給湯用燃焼部13、14が燃焼を開始し、さらにガス比例弁18が燃焼量を調整する(約38〜60℃)。
【0027】
次に、循環伝熱管19の熱収支を考えると、給湯用受熱フィン23は下段の循環伝熱管19側に切り欠き24を設け、さらに上段の循環伝熱管19側の受熱面積を小さく形成し、逆に下段と上段の給湯伝熱管20側の受熱面積を大きく形成したので、給湯効率はよく、また、循環伝熱管19の吸熱量が少なく、循環伝熱管19の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、循環伝熱管19の残留水は給湯温度よりも少し高い温度に維持されるので、循環伝熱管19の残留水は沸騰することはない。続いて、給湯伝熱管20の熱収支を考えると、循環給湯兼用受熱フィン21は下段の給湯伝熱管20側の受熱面積を小さく形成し、さらに上段の給湯伝熱管20側に切り欠き22を設けたので、給湯熱効率が悪化するのは避けられない。なお、循環給湯同時運転を要求された場合も、給湯単独運転と同様に給湯熱効率が悪化するのは避けられない。
【0028】
(実施例2)
図4は本発明において実施例2の1缶2回路式熱源装置の部分断面正面図である。実施例1と異なる点は給湯用燃焼部26、27側に比べて循環給湯兼用燃焼部28側を疎になるように循環伝熱管29と給湯伝熱管30に貫通固定した受熱フィン31を構成したことである。なお実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0029】
次に、循環(風呂)単独運転について説明する。風呂循環ポンプ(図示せず)により循環伝熱管29に循環温水が吸引された場合、燃焼ファン25が駆動し、同時にガス比例弁18が開き循環給湯兼用燃焼部28が燃焼を開始する。その後、ガス比例弁18が燃焼量を一定量に調整する。そして、受熱フィン31を給湯用燃焼部26、27側に比べて循環給湯兼用燃焼部28側を疎になるように配置したので、循環伝熱管29の吸熱量が減少し、循環温水の温度上昇が抑えられる。
【0030】
次に、給湯伝熱管30の残留水の熱収支を考える。第1に、先に説明したように給湯用燃焼部26,27側に比べて循環給湯兼用燃焼部28側の循環伝熱管29単位長さ当たりの受熱フィン31枚数を少なくしたので、循環給湯兼用燃焼部28側の循環伝熱管29単位長さ当たりの吸熱量が減少する。第2に、循環伝熱管29と給湯伝熱管30との接触部を介し給湯伝熱管30の残留水から循環伝熱管29内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部26,27側の下流側の受熱フィン31と給湯伝熱管30自身が給湯用燃焼部26,27から噴出した空気により空冷される。
【0031】
すなわち、循環給湯兼用燃焼部28の下流側の給湯伝熱管20も間接的ではあるが空冷されている。したがって、第2、第3の放熱が改善できないが、第1の吸熱が抑えられるので、給湯伝熱管30の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管30の残留水は循環している循環温水よりも高い温度に維持されるので、給湯伝熱管30の残留水の沸騰は抑制できる。なお、循環給湯兼用燃焼部28側の循環伝熱管29単位長さ当たりの受熱フィン31枚数を間引いた分を補うために、循環給湯兼用燃焼部28側の循環伝熱管29長さを長くしなければならない。すなわち、循環能力を維持するためには、1缶2回路式熱源装置は少し大きくなる。
【0032】
次に、給湯単独運転について説明する。カラン等が開けられて給湯伝熱管29に通水された場合、燃焼ファン25が駆動し、同時にガス比例弁18が開き循環給湯兼用燃焼部28が燃焼を開始する。そして、燃焼熱が受熱フィン31から給湯伝熱管30に伝わり、温水が給湯伝熱管30から出湯する。その際、要求された給湯温度になるようにガス比例弁18が燃焼量を調整する。また、大きな給湯能力が必要な場合、ガス遮断弁15,16を開いて給湯用燃焼部26、27が燃焼を開始し、さらにガス比例弁18が燃焼量を調整する(約38〜60℃)。
【0033】
次に、給湯伝熱管30の熱収支を考えると、循環給湯兼用燃焼部28側の循環伝熱管29単位長さ当たりの受熱フィン31枚数を少なくしたので、給湯熱効率が悪化するのは避けられない。なお、循環給湯同時運転を要求された場合も、給湯単独運転と同様に給湯熱効率が悪化するのは避けられない。
【0034】
(実施例3)
図5は本発明において実施例3の1缶2回路式熱源装置の部分断面正面図である。実施例1と異なる点は給湯用燃焼部32、33側の受熱フィン34に比べて循環給湯兼用燃焼部35側の受熱フィン36の肉厚を薄くし循環伝熱管37と給湯伝熱管38とに貫通固定したことである。なお実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0035】
次に、循環(風呂)単独運転について説明する。風呂循環ポンプ(図示せず)により循環伝熱管37に循環温水が吸引された場合、燃焼ファン25が駆動し、同時にガス比例弁18が開き循環給湯兼用燃焼部35が燃焼を開始する。その後、ガス比例弁18が燃焼量を一定量に調整する。
【0036】
次に、循環を要求され場合における給湯伝熱管38の残留水の熱収支を考える。第1に、受熱フィン34に比べて受熱フィン36の肉厚を薄くしたので、受熱フィン36のフィン効率が悪く循環給湯兼用燃焼部35側の循環伝熱管37単位長さ当たりの吸熱量が減少する。また、受熱フィン34、36の金型は共通化できる。第2に、循環伝熱管37と給湯伝熱管38との接触部を介し給湯伝熱管38の残留水から循環伝熱管37内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部32,33側の下流側の給湯伝熱管38自身と受熱フィン34とが給湯用燃焼部32,33から噴出した空気により空冷される。
【0037】
すなわち、循環給湯兼用燃焼部35の下流側の給湯伝熱管38も間接的ではあるが空冷されている。したがって、第2、第3の放熱を改善できないが、第1の吸熱を抑えられるので、給湯伝熱管38の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管38の残留水は循環している循環温水よりも高い温度に維持されるので、給湯伝熱管38の残留水の沸騰は抑制できる。
【0038】
次に、給湯単独運転について説明する。カラン等が開けられて給湯伝熱管38に通水された場合、燃焼ファン25が駆動し、同時にガス比例弁18が開き循環給湯兼用燃焼部28が燃焼を開始する。そして、燃焼熱が受熱フィン36から給湯伝熱管38に伝わり、温水が給湯伝熱管38から出湯する。その際、要求された給湯温度になるようにガス比例弁18が燃焼量を調整する。また、大きな給湯能力が必要な場合、ガス遮断弁15,16を開いて給湯用燃焼部32,33が燃焼を開始し、さらにガス比例弁18が燃焼量を調整する(約38〜60℃)。
【0039】
次に、給湯伝熱管38の熱収支を考えると、受熱フィン34に比べて受熱フィン36の肉厚を薄くしたので、給湯熱効率が悪化するのは避けられない。なお、循環給湯同時運転を要求された場合も、給湯単独運転と同様に給湯熱効率が悪化するのは避けられない。
【0040】
(実施例4)
図6と図7は本発明において実施例4の1缶2回路式熱源装置の部分断面側面図である。図8は本発明において実施例4の1缶2回路式熱源装置の部分断面正面図である。実施例1と異なる点は循環伝熱管39と給湯伝熱管40とを循環給湯兼用燃焼部41と給湯用燃焼部42、43との下流側を横断し一体構成にして、かつ格子状に設けたことである。また、循環給湯兼用受熱フィン44は循環給湯兼用燃焼部41の下流側の給湯伝熱管40と循環伝熱管39に貫通固定し上段の循環伝熱管39側の受熱面積を大きく形成し逆に下段の給湯伝熱管40側の受熱面積を小さく形成し、かつ、下段の循環伝熱管39と上段の給湯伝熱管40近傍に熱伝導を阻害する切り欠き45、46を設けている。さらに、給湯用受熱フィン47は給湯用燃焼部42の下流側の給湯伝熱管40と循環伝熱管39に貫通固定し循環給湯兼用受熱フィン44と同形状で反転させたものである。循環給湯兼用受熱フィン44と給湯用受熱フィン47とには、排気ガスを循環伝熱管39と給湯伝熱管40に沿って流れるようにするために、段押し部48を設けている。また、循環給湯兼用受熱フィン44と給湯用受熱フィン47の下流側には、整流板49が設けられ、特に、給湯用受熱フィン47の下流側の整流板49には通気口50が開口している。なお実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0041】
次に、循環(風呂)単独運転について説明する。風呂循環ポンプ(図示せず)により循環伝熱管39に循環温水が吸引された場合、燃焼ファン25が駆動し、同時にガス比例弁18が開き循環給湯兼用燃焼部41が燃焼を開始する。この循環給湯兼用燃焼部41から発生した火炎や排ガスは段押し部48や整流板49により給湯伝熱管40と循環伝熱管39近傍を流れる。その後、ガス比例弁18が燃焼量を一定量に調整する。(循環温水の温度はなりゆき)そして、循環給湯兼用受熱フィン44の循環伝熱管39側の受熱面積を大きく形成しているので、循環給湯兼用燃焼部41から発生した燃焼熱が効率よく循環伝熱管39に伝わり、循環温水が温度上昇し循環伝熱管39から浴槽(図示せず)へ循環する。次に、給湯伝熱管39の残留水の熱収支を考える。第1に、循環給湯兼用燃焼部41の下流側の給湯伝熱管40自身と循環給湯兼用受熱フィン44が循環給湯兼用燃焼部41に形成した火炎や排ガスに加熱される。
【0042】
しかし、循環給湯兼用受熱フィン44の下段の給湯伝熱管40側受熱面積を小さく形成し、さらに上段の給湯伝熱管40側に切り欠き45を設けたので、給湯伝熱管40の吸熱量は少ない。第2に、循環伝熱管39と給湯伝熱管40との接触部(ロー材)を介し給湯伝熱管40の残留水から循環伝熱管39内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部42、43の下流側の給湯伝熱管40自身と給湯用受熱フィン47が給湯用燃焼部42,43から噴出する空気により空冷される。特に、給湯用受熱フィン47を給湯伝熱管40側の受熱面積を大きく形成したので、給湯伝熱管40の放熱量は多くなる。したがって、第3の放熱が改善でき、第1の吸熱が抑えられるので、給湯伝熱管40の残留水が低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管40の残留水は循環している循環温水よりも少し高い温度に維持されるので、給湯伝熱管40の残留水は沸騰することはない。
【0043】
次に、循環給湯兼用燃焼部41と給湯用燃焼部42、43が燃焼する給湯単独運転について説明する。この給湯用燃焼部42,43から発生した火炎や排ガスは段押し部48や整流板49により給湯伝熱管40と下段の循環伝熱管39近傍を流れるが、その後、排ガスは上段の循環伝熱管39近傍を流れずに通気口50へ向かって流れる。
【0044】
したがって、上段の循環伝熱管39の吸熱量を抑えられるので、上段の循環伝熱管39の残水温度もさらに低くできる。循環給湯兼用受熱フィン21は下段の給湯伝熱管40側の受熱面積を小さく形成し、さらに上段の給湯伝熱管40側に切り欠き45を設け、かつ給湯用受熱フィン47は上段の給湯伝熱管40側に切り欠き44を設けたので、給湯熱効率が悪化するのは避けられない。
【0045】
また、循環給湯同時運転を要求された場合も、給湯単独運転と同様に給湯熱効率が悪化するのは避けられない。ただし、一体構成した循環伝熱管39と給湯伝熱管40とを格子状に設けたので、循環給湯兼用受熱フィン44と給湯用受熱フィン47は同一形状で反転することにより使い分けできる。すなわたち、金型の共通化が図れる。
【0046】
(実施例5)
図9は本発明において実施例5の1缶2回路式熱源装置の部分断面正面図である。実施例1と異なる点は循環伝熱管51と給湯伝熱管52の入口にそれぞれ流水検知器53、54を設け、循環給湯兼用燃焼部55と給湯用燃焼部56、57に対応するようにガス導管58にガス遮断弁59〜61を設けることである。単独運転制御部62は循環給湯兼用燃焼部55と給湯用燃焼部56、57を使い分けるために流水検知器53、54のON/OFF信号によりガス遮断弁59〜61を開閉するものである。なお実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0047】
次に、給湯単独運転ついて説明する。カラン等が開けられて給湯伝熱管52に通水された場合、流水検出器52がON信号を発信しガス比例弁18とガス遮断弁59が同時に開き循環給湯兼用燃焼部55が燃焼を開始する。単独運転制御部62はガス遮断弁60を開き給湯用燃焼部56が燃焼を開始する。その際、ガス比例弁18が燃焼量を一定に制御する。そして、火炎検出器(図示せず)が火炎を検出した場合、ガス遮断弁59を閉止して給湯用燃焼部56のみが燃焼を継続する。その後、要求された給湯温度になるようにガス比例弁18が燃焼量を調整する。また、大きな給湯能力が必要な場合、ガス遮断弁61を開けて給湯用燃焼部57も燃焼を開始する。
【0048】
したがって、給湯用受熱フィン23の給湯伝熱管52側の受熱面積を大きく形成しているので、給湯用燃焼部56、57から発生した燃焼熱が効率よく給湯伝熱管52を加熱でき、給湯効率が向上する。次に、循環伝熱管51の残留水の熱収支を考える。第1に、給湯用燃焼部56、57の下流側の循環伝熱管51自身と給湯用受熱フィン23が給湯用燃焼部56、57に形成した火炎や排ガスに加熱される。しかし、給湯用受熱フィン23の循環伝熱管51側の受熱面積を小さく形成したので、循環伝熱管51の吸熱量は少なくなる。第2に、循環伝熱管51と給湯伝熱管52との接触部を介し循環伝熱管51の残留水から給湯伝熱管52内を流れている温水への熱伝導による放熱がある。第3に、循環給湯兼用燃焼部55の下流側の循環伝熱管51自身と循環給湯兼用受熱フィン21が循環給湯兼用燃焼部55から噴出した空気により空冷される。
【0049】
特に、給湯用受熱フィン23を給湯伝熱管52側の受熱面積を大きく形成したので、給湯伝熱管52の放熱量は多くなる。したがって、第3の放熱が改善でき、第1の吸熱が抑えられるので、循環伝熱管51の残留水が低い温度で熱収支が平衡することができる。言い換えると、循環伝熱管51の残留水は給湯伝熱管52を流れる温水よりも少し高い温度に維持されるので、循環伝熱管51の残留水は沸騰することはない。ただし、最大給湯能力が必要な時に、さらにガス遮断弁59を開けて全て循環給湯兼用燃焼部55と給湯用燃焼部56、57が燃焼を開始する場合、循環給湯兼用受熱フィン21が使われる分、給湯効率が低下し、かつ循環伝熱管51の残留水が比較的高い温度で熱収支が平衡してしまう。
【0050】
続いて、循環単独運転を要求された場合における給湯伝熱管52の残留水の熱収支を考える。第1に、循環給湯兼用燃焼部55の下流側の給湯伝熱管52自身と循環給湯兼用受熱フィン21が循環給湯兼用燃焼部55に形成した火炎や排ガスに加熱される。しかし、循環給湯兼用受熱フィン21の給湯伝熱管52側の受熱面積を小さく形成したので、循環給湯兼用受熱フィン21を介した熱伝導が小さく、給湯伝熱管52の吸熱量は少なくなる。第2に、循環伝熱管51と給湯伝熱管52との接触部を介し給湯伝熱管52の残留水から循環伝熱管51内を流れている循環温水への熱伝導による放熱がある。第3に、給湯用燃焼部56、57の下流側の給湯伝熱管52自身と循環給湯兼用受熱フィン21が給湯用燃焼部56、57から噴出した空気により空冷される。したがって、第2、第3の放熱を改善できないが、第1の吸熱を抑えられるので、給湯伝熱管52の残留水が比較的低い温度で熱収支が平衡することができる。言い換えると、給湯伝熱管52の残留水は循環している循環温水よりも少し高い温度に維持されるので、給湯伝熱管52の残留水は沸騰することはない。
【0051】
(実施例6)
図10は本発明において実施例6の1缶2回路式熱源装置の部分断面正面図である。実施例5と異なる点は循環伝熱管63と給湯伝熱管64の出口にそれぞれ温度検出器65、66を設けていることである。また、循環給湯同時運転を要求され、流水検知器67、68が共にON信号を発信した時に、同時運転制御部69は温度検出器65が検出した循環温水温度が目標温度に達していなければガス遮断弁70、71を閉止すると共にガス遮断弁72を開き循環給湯兼用燃焼部73の運転を優先的に開始させる。なお実施例5と同一符号のものは同一構造を有し、説明は省略する。
【0052】
そして、給湯単独運転から給湯・循環同時運転への移行についてを説明する。給湯用燃焼部53、54が燃焼している時に、循環ポンプ(図示せず)により循環伝熱管63に循環温水が吸引された場合、流水検知器67、68は共にON信号を発信し、温度検出器66が検出した給湯温度が目標温度になるようにガス比例弁18が燃焼量を調整する。そして、温度検出器65が検出した循環温水温度が目標温度に達しなければ、ガス遮断弁72を開き循環給湯兼用燃焼部73が燃焼を開始する。その直後に、ガス遮断弁70を閉止して給湯用燃焼部53の燃焼を停止する。その際でも、温度検出器66が検出した給湯温度が目標温度になるようにガス比例弁18が燃焼量を調整する。
【0053】
そして、循環給湯兼用受熱フィン21の循環伝熱管63側の受熱面積を大きく形成しているので、循環給湯兼用燃焼部73から発生した燃焼熱が効率よく循環伝熱管63に伝わり、循環温水がさらに温度上昇し循環伝熱管63から熱負荷へ循環する。逆に、循環給湯兼用受熱フィン21の給湯伝熱管64側の受熱面積を小さく形成しているので、給湯伝熱管64の吸熱量が抑えられ、給湯温度を要求温度に維持するためにガス比例弁18が燃焼量を増加させる。(給湯優先制御)これらの結果、循環能力が改善されて循環温水の温度が上昇すし目標温度に近づく。
【0054】
(実施例7)
図10は本発明において実施例6、7の1缶2回路式熱源装置の部分断面正面図である。実施例5と異なる点は、循環給湯同時運転を要求された時に、給湯の要求能力が大きく、逆に循環の要求能力が小さい場合には、給湯用燃焼部53、54の運転を優先的に開始させる同時運転制御部69を設けたことである。なお実施例5と同一符号のものは同一構造を有し、説明は省略する。
【0055】
そして、循環単独運転から給湯・循環同時運転への移行についてを説明する。循環給湯兼用燃焼部73が燃焼している時に、カランなどが開いて給湯伝熱管64に通水された場合、流水検知器67、68は共にON信号を発信し、温度検出器66が検出した給湯温度が目標温度になるようにガス比例弁18が燃焼量を調整する。そして、温度検出器65が検出した循環温水温度が目標温度を超えていれば、ガス遮断弁71を開き給湯用燃焼部54が燃焼を開始する。その直後に、ガス遮断弁72を閉止して循環給湯兼用燃焼部73の燃焼を停止する。その際でも、温度検出器66が検出した給湯温度が目標温度になるようにガス比例弁18が燃焼量を調整する。
【0056】
そして、給湯用受熱フィン23の給湯伝熱管64側の受熱面積を大きく形成しているので、給湯用燃焼部54から発生した燃焼熱が効率よく給湯伝熱管64を加熱する。逆に、給湯用受熱フィン23の循環伝熱管63側の受熱面積を小さく形成しているので、循環伝熱管63の吸熱量が抑えられ、給湯温度を要求温度に維持するためにガス比例弁18が燃焼量を減少させる。(給湯優先制御)これらの結果、給湯能力が改善されて循環温水の温度が低下すし目標温度に近づく。
【0057】
【発明の効果】
以上のように本発明によれば、次のような有利な効果を有する。
【0058】
(1)循環給湯兼用受熱フィンを循環伝熱管側の受熱面積を大きく形成し逆に給湯伝熱管側の受熱面積を小さく形成しので、循環単独運転時に給湯伝熱管の吸熱量は少なくなり、給湯伝熱管の残留水の沸騰を防止できる。また、循環給湯兼用受熱フィンを循環伝熱管側の受熱面積を大きく形成し逆に給湯伝熱管側の受熱面積を小さく形成したので、循環給湯兼用燃焼部の単独運転時に循環伝熱管の放熱量は少なく、循環熱効率が向上できる。
【0059】
(2)受熱フィンを給湯用燃焼部側に比べて循環給湯兼用燃焼部側を疎になるように設けたので、循環給湯兼用燃焼部側の給湯伝熱管の吸熱量が少なくなり、給湯伝熱管の残留水の沸騰を抑制できる。
【0060】
(3)受熱フィンを給湯用燃焼部側に比べて循環給湯兼用燃焼部側の肉厚を薄くしたので、循環給湯兼用燃焼部側の給湯伝熱管の吸熱量が少なくなり、給湯伝熱管の残留水の沸騰を抑制できる。
【0061】
(4)給湯用受熱フィンを循環給湯兼用受熱フィンと同形状で反転させて設けたので、循環単独運転時における給湯伝熱管の残留水の沸騰を防止し、かつ金型の共有化ができる。
【0062】
(5)給湯単独運転を要求された時に、給湯用燃焼部の運転を優先的に開始させる燃焼制御部を設け、また、給湯用受熱フィンの循環伝熱管側の受熱面積を小さく形成したので、循環伝熱管の吸熱量は少なく、循環伝熱管の残留水の沸騰を防止できる。他方、給湯用受熱フィンを給湯伝熱管側の受熱面積を大きく形成しているので、給湯効率が向上する。
【0063】
(6)循環給湯同時運転を要求された時に、給湯の要求能力が小さく、逆に循環の要求能力が大きい場合には、循環給湯兼用燃焼部の運転を優先的に開始させる燃焼制御部を設け、かつ、循環給湯兼用受熱フィンを循環伝熱管側の受熱面積を大きく形成し逆に給湯伝熱管側の受熱面積を小さく形成したので、給湯伝熱管の吸熱量が抑えられ、給湯温度を要求温度に維持するために燃焼量が増加する。これらの結果、循環能力が改善されて循環温水の温度が上昇し目標温度に近づく。
【0064】
(7)循環給湯同時運転を要求された時に、給湯の要求能力が大きく、逆に循環の要求能力が小さい場合には、給湯用燃焼部の運転を優先的に開始させる燃焼制御部を設け、かつ、循環給湯兼用受熱フィンを循環伝熱管側の受熱面積を大きく形成し逆に給湯伝熱管側の受熱面積を小さく形成したので、循環伝熱管の吸熱量が抑えられ、給湯温度を要求温度に維持するために燃焼量が減少する。これらの結果、給湯能力が改善されて循環温水の温度が低下し目標温度に近づく。
【図面の簡単な説明】
【図1】本発明おける実施例1の1缶2回路式熱源装置の部分断面正面図
【図2】同装置の部分断面側面図
【図3】同装置の別の部分断面側面図
【図4】本発明おける実施例2の1缶2回路式熱源装置の部分断面正面図
【図5】本発明おける実施例3の1缶2回路式熱源装置の部分断面正面図
【図6】本発明おける実施例4の1缶2回路式熱源装置の部分断面側面図
【図7】同装置の部分断面側面図
【図8】同装置の別の部分断面正面図
【図9】本発明おける実施例5の1缶2回路式熱源装置の部分断面正面図
【図10】本発明おける実施例6、7の1缶2回路式熱源装置の部分断面正面図
【図11】従来の燃焼装置の部分断面正面図
【図12】従来の燃焼装置の部分断面側面図
【符号の説明】
12、28、35、41、53 循環給湯兼用燃焼部
13、14、26、27、32、33、42、43、56、57 給湯用燃焼部
19、29、37、39 循環伝熱管
20、30、38、40 給湯伝熱管
21、44 循環給湯兼用受熱フィン
23、47 給湯用受熱フィン
31、34、36 受熱フィン
62、69 単独運転制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single-can two-circuit heat source device used for hot water supply and heating, or hot water supply and a bath.
[0002]
[Prior art]
Conventionally, this type of one-can two-circuit heat source device is generally as described in Japanese Patent Laid-Open No. 63-38852. As shown in FIGS. 11 and 12, this apparatus includes a circulating hot water supply / combustion unit 1 and hot water combustion units 2, 3 and branches a gas conduit 4 to gas shut-off valves 5, 6 and gas, respectively. A gas proportional valve 7 is provided at the inlet side portion of the conduit 4. The circulation heat transfer pipe 8 and the hot water supply heat transfer pipe 9 are integrally formed across the downstream sides of the circulation hot water supply / combustion section 1 and the hot water supply combustion sections 2 and 3 and are provided in a staggered manner. The circulating heat transfer tube 8 is located on the downstream side of the hot water supply heat transfer tube 9. The heat receiving fin 10 is penetrated by the circulation heat transfer tube 8 and the hot water supply heat transfer tube 9. The combustion fan 11 communicates with the circulating hot water supply / combustion unit 1 and the hot water supply combustion units 2 and 3.
[0003]
Next, the hot water supply single operation will be described. When a currant or the like is opened and water is passed through the hot water supply heat transfer tube 9, the combustion fan 11 is driven, and at the same time, the gas proportional valve 7 is opened, and the circulating hot water supply / combustion unit 1 starts combustion. The combustion heat is transmitted from the heat receiving fins 10 to the hot water supply heat transfer tube 9, and the hot water is discharged from the hot water supply heat transfer tube 9. At that time, the gas proportional valve 7 adjusts the combustion amount so that the required hot water supply temperature is obtained. When a large hot water supply capacity is required, the gas cutoff valves 5 and 6 are opened, the hot water supply combustion units 2 and 3 start combustion, and the gas proportional valve 7 adjusts the combustion amount. Next, the heat balance of the residual water in the circulating heat transfer tube 8 is considered. First, the circulating heat transfer pipe 8 itself and the heat receiving fin 10 are directly heated by the flame and exhaust gas formed in the circulating hot water supply / combustion unit 1 and the hot water supply combustion units 2 and 3. Secondly, there is heat radiation by heat conduction from the residual water of the circulating heat transfer tube 8 to the hot water flowing in the hot water supply heat transfer tube 9 through the contact portion between the circulating heat transfer tube 8 and the hot water supply heat transfer tube 9. In particular, in the first heat absorption, most of the combustion heat generated from the circulating hot water supply / combustion unit 1 and the hot water combustion units 2 and 3 is taken away from the heat receiving fins 10 to the hot water supply heat transfer tube 9. The amount of heat is relatively small, and the heat balance is balanced immediately before the residual water in the circulating heat transfer tube 8 boils.
[0004]
Next, the hot water supply / circulation simultaneous operation will be described. When a currant or the like is opened and water is passed through the hot water supply heat transfer pipe 9 and the circulating hot water is sucked into the circulation heat transfer pipe 8 by a circulation pump (not shown), the required hot water supply temperature is obtained in the same manner as in the hot water supply single operation. Thus, the circulating hot water supply / combustion unit 1 and the hot water supply combustion units 2 and 3 burn, and the gas proportional valve 7 adjusts the combustion amount (hot water supply priority control). Then, since the combustion heat is transmitted from the heat receiving fins 10 to the hot water supply heat transfer tube 9, hot water having a required temperature is discharged from the hot water supply heat transfer tube 9. Further, the remaining combustion heat is transferred from the heat receiving fins 10 to the circulating heat transfer tube 8, and although it is gradually flowing, the circulating hot water whose temperature has increased circulates from the circulating heat transfer tube 8 to the heat load (temperature increase of about 40 to 60 deg).
[0005]
[Problems to be solved by the invention]
In the conventional one-can two-circuit heat source device described above, when the circulation (bath) single operation is requested, the gas proportional valve 7 is opened and the circulating hot water supply / combustion unit 1 starts combustion. At that time, the gas proportional valve 7 adjusts the combustion amount to a constant amount. Next, since the combustion heat is transferred from the heat receiving fins 10 to the circulation heat transfer tubes 8, the circulating hot water whose temperature has increased is circulated from the circulation heat transfer tubes 8 to a bathtub (not shown). Further, since the required circulation capacity such as bath (heating) is generally smaller than the required hot water supply capacity, it is not necessary to additionally operate the hot water combustion units 2 and 3. Next, the heat balance of the residual water in the hot water supply heat transfer tube 9 will be considered.
[0006]
First, the hot water supply heat transfer tube 9 itself and the heat receiving fin 10 on the downstream side of the circulating hot water supply / combustion unit 1 are heated by the flame and exhaust gas formed in the circulating hot water supply / combustion unit 1. Second, there is heat radiation by heat conduction from the residual water of the hot water transfer tube 9 to the circulating hot water flowing in the circulating heat transfer tube 8 through the contact portion between the circulating heat transfer tube 8 and the hot water transfer tube 9. Thirdly, the hot water supply heat transfer tubes 9 and the heat receiving fins 10 on the downstream side of the hot water supply combustion units 2 and 3 are cooled by the air supplied from the combustion fan 11. In particular, in the first heat absorption, since the flame and exhaust gas generated from the circulating hot water supply / combustion unit 1 heats the hot water supply heat transfer tube 9 itself and the heat receiving fins 10, the heat absorption amount of the hot water supply heat transfer tube 9 is large. In spite of this heat dissipation, there has been a problem that the temperature of the residual water in the hot water supply heat transfer tube 9 rises and eventually boils until the heat balance is balanced. In the heating single operation, the gas proportional valve 7 adjusts the combustion amount so that the required circulating hot water temperature is obtained.
[0007]
In addition, when simultaneous operation of circulating hot water is required, naturally, the heat absorption distribution between the circulating heat transfer tube 8 and the hot water supply heat transfer tube 9 is affected by the flow rate and temperature, but the ratio is almost constant ( For example, circulation: hot water supply = 1: 5). Also, hot water supply is preferentially controlled, while the circulation continues. Therefore, when the required hot water supply capacity is small, the circulation capacity is very small and the temperature of the circulating hot water hardly increases. On the other hand, when the required hot water supply capacity is large, the circulation capacity becomes very large and the circulating hot water has a problem of high temperature.
[0008]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems and to provide a single-can two-circuit type heat source device that does not boil even in a single circulation operation and has high thermal efficiency.
[0009]
[Means for Solving the Problems]
To solve the above problems, the present invention , Circulating hot water / combustion section and hot water combustion section It is arranged across each downstream side and it is integrated in the vertical direction. The hot water transfer pipe, the circulating heat transfer pipe, and the hot water transfer pipe and the circulating heat transfer pipe downstream of the circulating hot water combined use combustion section are fixed to the circulating heat transfer pipe side to increase the heat receiving area of the hot water transfer pipe side. A small heat-receiving fin for circulating hot water supply and a hot-water heat transfer pipe and a circulating heat transfer pipe on the downstream side of the hot water combustion section are formed to reduce the heat-receiving area on the circulating heat-transfer pipe side, and conversely the heat-receiving area on the hot-water heat transfer pipe side. A large-sized heat-receiving fin for hot water supply is provided. And when circulating single operation is required, the heat receiving area on the circulating heat transfer tube side of the circulating hot water supply / heat receiving fin is large, so the combustion heat generated from the circulating hot water supply / combustion section is efficiently transferred to the circulating heat transfer tube The circulating hot water rises in temperature and circulates from the circulating heat transfer tube to the heat load.
[0010]
Next, let us consider the heat balance of the residual water in the hot water transfer tube. First, the hot water supply heat transfer pipe itself and the circulating hot water supply / heat receiving fin on the downstream side of the circulating hot water supply / combustion section are heated by the flame and exhaust gas formed in the circulating hot water supply / combustion section. However, since the heat receiving area on the hot water transfer tube side of the circulating hot water supply / heat receiving fin is formed small, heat conduction through the circulating hot water supply / heat receiving fin is small, and the heat absorption amount of the hot water supply heat transfer tube is reduced. Second, there is heat dissipation by heat conduction from the residual water of the hot water heat transfer tube to the circulating hot water flowing in the circulating heat transfer tube through the contact portion between the circulating heat transfer tube and the hot water supply heat transfer tube. Third, the hot-water supply heat transfer pipe itself and the hot-water supply heat-receiving fins on the downstream side of the hot-water supply combustion section are air-cooled by the air ejected from the hot-water supply combustion section. In particular, since the heat receiving fin for hot water supply has a large heat receiving area on the hot water transfer tube side, the amount of heat released from the hot water transfer tube increases.
[0011]
Therefore, since the third heat radiation is improved and the first heat absorption is suppressed, the heat balance can be balanced at a low temperature of the residual water in the hot water supply heat transfer tube. In other words, the residual water in the hot water transfer tube is maintained at a temperature slightly higher than the circulating hot water being circulated, so the residual water in the hot water transfer tube does not boil. On the other hand, since the heat receiving fin for hot water supply forms a small heat receiving area on the circulating heat transfer tube side, the heat radiation amount of the circulating heat transfer tube is small. Accordingly, since the circulating hot water heated by the circulating hot water supply / combustion unit and heated is not cooled by air, the efficiency of the circulating heat can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention can be carried out in the form described in each claim. As described in claim 1, the circulating hot water combined use combustion section and the hot water supply combustion section are provided. It is arranged across each downstream side and it is integrated in the vertical direction. The hot water transfer pipe, the circulating heat transfer pipe, and the hot water transfer pipe and the circulating heat transfer pipe downstream of the circulating hot water combined use combustion section are fixed to the circulating heat transfer pipe side to increase the heat receiving area of the hot water transfer pipe side. A small heat-receiving fin for circulating hot water supply and a hot-water heat transfer pipe and a circulating heat transfer pipe on the downstream side of the hot water combustion section are formed to reduce the heat-receiving area on the circulating heat-transfer pipe side, and conversely the heat-receiving area on the hot-water heat transfer pipe side. A large-sized heat-receiving fin for hot water supply is provided. And when circulating single operation is required, the heat receiving area on the circulating heat transfer tube side of the circulating hot water supply / heat receiving fin is large, so the combustion heat generated from the circulating hot water supply / combustion section is efficiently transferred to the circulating heat transfer tube The circulating hot water rises in temperature and circulates from the circulating heat transfer tube to the heat load.
[0013]
Next, let us consider the heat balance of the residual water in the hot water transfer tube. First, the hot water supply heat transfer pipe itself and the circulating hot water supply / heat receiving fin on the downstream side of the circulating hot water supply / combustion section are heated by the flame and exhaust gas formed in the circulating hot water supply / combustion section. However, since the heat receiving area on the hot water transfer tube side of the circulating hot water supply / heat receiving fin is formed small, heat conduction through the circulating hot water supply / heat receiving fin is small, and the heat absorption amount of the hot water supply heat transfer tube is reduced. Second, there is heat dissipation by heat conduction from the residual water of the hot water heat transfer tube to the circulating hot water flowing in the circulating heat transfer tube through the contact portion between the circulating heat transfer tube and the hot water supply heat transfer tube. Thirdly, the hot water supply heat transfer pipe itself and the circulating hot water supply / heat receiving fin on the downstream side of the hot water supply combustion section are air-cooled by the air ejected from the hot water supply combustion section. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption can be suppressed, so that the heat balance can be balanced at a relatively low temperature of the residual water in the hot water transfer tube. In other words, the residual water in the hot water transfer tube is maintained at a temperature slightly higher than the circulating hot water being circulated, so the residual water in the hot water transfer tube does not boil.
[0014]
Further, the hot water supply heat transfer tube and the circulation heat transfer tube provided in an integrated configuration across the downstream side of the circulating hot water supply / combustion portion and the hot water supply combustion portion as described in claim 2 are circulated as compared with the hot water supply combustion portion side. It has a hot water supply heat transfer tube and a heat receiving fin that is fixed to the circulating heat transfer tube so that the hot water supply / combustion part side is sparse. And the heat balance of the residual water of the hot-water supply heat exchanger tube in the case where the circulation single operation is required is considered. First, the heat receiving fins are arranged so that the circulating hot water / combustion unit side is sparser than the hot water combustion unit side, so the heat absorption per unit length of the circulating heat transfer tube on the circulating hot water / combustion unit side is reduced. To do. Second, there is heat dissipation by heat conduction from the residual water of the hot water heat transfer tube to the circulating hot water flowing in the circulating heat transfer tube through the contact portion between the circulating heat transfer tube and the hot water supply heat transfer tube. Thirdly, the heat receiving fins on the downstream side of the hot water supply combustion section and the hot water supply heat transfer tube themselves are air-cooled by the air ejected from the hot water combustion section. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption can be suppressed, so that the heat balance can be balanced at a relatively low temperature of the residual water in the hot water transfer tube. In other words, since the residual water in the hot water supply heat transfer tube is maintained at a temperature higher than the circulating hot water being circulated, boiling of the residual water in the hot water supply heat transfer tube can be suppressed.
[0015]
Also, as compared with the hot water supply heat exchanger tube and the circulating heat transfer tube provided in an integrated configuration across the downstream side of the circulating hot water supply combined combustion portion and the hot water supply combustion portion as described in claim 3, it is circulated as compared with the hot water supply combustion portion side. It has a hot water supply heat transfer tube and a heat receiving fin that is fixed to the circulating heat transfer tube by reducing the thickness of the hot water supply / combustion unit. And the heat balance of the residual water of the hot-water supply heat transfer tube when circulation is required is considered. First, since the thickness of the heat receiving fin is made thinner on the circulating hot water supply / combustion part side than on the hot water supply combustion part side, the amount of heat absorbed per unit length of the circulating heat transfer tube on the circulating hot water supply / combustion part side is reduced. Second, there is heat dissipation by heat conduction from the residual water of the hot water heat transfer tube to the circulating hot water flowing in the circulating heat transfer tube through the contact portion between the circulating heat transfer tube and the hot water supply heat transfer tube. Thirdly, the heat receiving fins on the downstream side of the hot water supply combustion section and the hot water supply heat transfer tube themselves are air-cooled by the air ejected from the hot water combustion section. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption can be suppressed, so that the heat balance can be balanced at a relatively low temperature of the residual water in the hot water transfer tube. In other words, since the residual water in the hot water supply heat transfer tube is maintained at a temperature higher than the circulating hot water being circulated, boiling of the residual water in the hot water supply heat transfer tube can be suppressed.
[0016]
Further, as described in claim 4 , A hot water supply heat transfer tube and a circulation heat transfer tube provided in a lattice shape in an integrated configuration across the downstream side of the circulation hot water supply combustion unit and the hot water supply combustion unit, and the hot water supply heat transfer tube downstream of the circulation hot water supply combustion unit A circulating hot water combined heat receiving fin that is fixedly penetrated to the circulating heat transfer tube and has a large heat receiving area on the circulating heat transfer tube side and conversely a small heat receiving area on the hot water supply heat transfer tube side, and hot water supply on the downstream side of the hot water combustion section It has the same shape as the heat receiving fins for circulating hot water supply and fixed to the heat transfer tubes and circulating heat transfer tubes. Inverted in the vertical direction, the heat receiving area on the circulating heat transfer tube side was made smaller, and conversely the heat receiving area on the hot water supply heat transfer tube side was made larger It has a heat-receiving fin for hot water supply. And since the integrally constructed hot water supply heat transfer tube and circulation heat transfer tube are provided in a lattice shape, the circulation hot water supply heat receiving fin and the hot water supply heat receiving fin have the same shape. Vertically It can be used properly by reversing. That is, the mold can be shared. In addition, the hot water supply heat transfer tube and the circulation heat transfer tube provided in an integrated configuration are not in a lattice shape, and the same effect can be obtained even in one stage.
[0017]
Further, as described in claim 5 , When the hot water supply single operation is requested, the operation of the hot water combustion unit is preferentially started, or when the circulation single operation is requested, Circulation An independent operation control unit for operating the hot water supply / combustion unit is provided. When the hot water supply independent operation is requested, the combustion control unit preferentially starts the operation of the hot water supply combustion unit, and the gas proportional valve adjusts the combustion amount so that the requested hot water supply temperature is reached. Therefore, since the heat receiving area on the hot water transfer pipe side of the hot water supply heat receiving fin is formed large, the combustion heat generated from the hot water supply combustion section can efficiently heat the hot water supply heat transfer pipe, and the hot water supply efficiency is improved. Next, consider the heat balance of the residual water in the circulating heat transfer tube. First, the circulating heat transfer tube itself and the hot water receiving fins on the downstream side of the hot water combustion section are heated by the flame and exhaust gas formed in the hot water combustion section. However, since the heat receiving area on the circulating heat transfer tube side of the hot water supply heat receiving fin is formed small, the heat conduction through the hot water receiving heat receiving fin is small, and the heat absorption amount of the circulating heat transfer tube is reduced. Secondly, there is heat release by heat conduction from the residual water of the circulating heat transfer tube to the hot water flowing in the hot water transfer tube through the contact portion between the circulating heat transfer tube and the hot water supply heat transfer tube. Third, the circulating heat transfer pipe itself and the circulating hot water supply / heat receiving fin on the downstream side of the circulating hot water supply / combustion section are air-cooled by the air ejected from the circulating hot water supply / combustion section. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption can be suppressed, so that the heat balance can be balanced at a low temperature of the residual water in the circulating heat transfer tube. In other words, the residual water in the circulating heat transfer tube is maintained at a slightly higher temperature than the hot water flowing through the hot water supply heat transfer tube, so that the residual water in the circulating heat transfer tube does not boil.
[0018]
Next, let us consider the heat balance of the residual water in the hot-water supply heat transfer tube when a single circulation operation is required. First, the hot water supply heat transfer pipe itself and the circulating hot water supply / heat receiving fin on the downstream side of the circulating hot water supply / combustion section are heated by the flame and exhaust gas formed in the circulating hot water supply / combustion section. However, since the heat receiving area on the hot water transfer tube side of the circulating hot water supply / heat receiving fin is formed small, heat conduction through the circulating hot water supply / heat receiving fin is small, and the heat absorption amount of the hot water supply heat transfer tube is reduced. Second, there is heat dissipation by heat conduction from the residual water of the hot water heat transfer tube to the circulating hot water flowing in the circulating heat transfer tube through the contact portion between the circulating heat transfer tube and the hot water supply heat transfer tube. Thirdly, the hot water supply heat transfer pipe itself and the circulating hot water supply / heat receiving fin on the downstream side of the hot water supply combustion section are air-cooled by the air ejected from the hot water supply combustion section. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption can be suppressed, so that the heat balance can be balanced at a relatively low temperature of the residual water in the hot water transfer tube. In other words, the residual water in the hot water transfer tube is maintained at a temperature slightly higher than the circulating hot water being circulated, so the residual water in the hot water transfer tube does not boil.
[0019]
In addition, when the circulating hot water supply simultaneous operation is requested as described in claim 6, if the required hot water supply capacity is small and the circulating required capacity is large, the operation of the circulating hot water combined use combustion section is preferentially started. And a simultaneous operation control unit. Then, the hot water supply combustion section burns so that the required hot water supply temperature is reached, and the gas proportional valve adjusts the combustion amount. At this time, if the actual circulation capacity is smaller than the required value (temperature rise value of circulating hot water), the combustion control unit stops the operation of the hot water supply combustion unit and preferentially starts the operation of the circulating hot water supply / combustion unit. And since the heat receiving area on the circulating heat transfer tube side of the circulating hot water supply / heat receiving fin is large, the combustion heat generated from the circulating hot water combined combustion section is efficiently transmitted to the circulating heat transfer tube, and the circulating hot water further rises in temperature and circulates. Circulate from heat transfer tube to heat load. Conversely, the heat receiving area on the side of the hot water transfer tube of the circulating hot water supply heat receiving fin is small, so the amount of heat absorbed by the hot water transfer tube is suppressed, and the gas proportional valve burns to maintain the hot water supply temperature at the required temperature. Increase. (Hot water supply priority control) As a result, the circulation capacity is improved, the temperature of the circulating hot water rises and approaches the target temperature.
[0020]
In addition, when the circulating hot water supply simultaneous operation is requested as described in claim 7, when the required hot water supply capacity is large and conversely the circulating required capacity is small, the operation of the hot water combustion unit is preferentially started. It has a simultaneous operation control part. And a circulating hot water supply combined combustion part burns so that it may become the requested | required warm water temperature, and a gas proportional valve adjusts the amount of combustion. At that time, if the actual circulation capacity is greater than the required value (temperature rise value of circulating hot water), the combustion control unit stops the operation of the circulating hot water supply combustion unit and preferentially starts the operation of the hot water supply combustion unit. Therefore, since the heat receiving area on the hot water transfer tube side of the hot water supply heat receiving fin is formed large, the combustion heat generated from the hot water supply combustion section efficiently heats the hot water supply heat transfer tube. Conversely, since the heat receiving area on the circulating heat transfer tube side of the circulating hot water supply combined heat receiving fin is formed small, the heat absorption amount of the circulating heat transfer tube is reduced. That is, the amount of combustion decreases in order to maintain the hot water supply temperature at the required temperature. (Hot-water supply priority control) As a result, the hot-water supply capacity is improved (the circulation capacity is lowered), and the temperature of the circulating hot water is suppressed to approach the target temperature.
[0021]
In addition, in Claims 1-4, even if it comprises integrally between hot water supply heat exchanger tubes or circulation heat exchanger tubes, an effect does not change.
[0022]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0023]
Example 1
FIG. 1 is a partial cross-sectional front view of a one-can two-circuit heat source device according to a first embodiment of the present invention. 2 and 3 are partial sectional side views of the apparatus. In the figure, reference numeral 12 denotes a circulating hot water supply / combustion unit. Hot water supply combustion units 13 and 14 are provided on both sides of the circulating hot water supply / combustion unit 12. Reference numerals 15 and 16 denote gas cutoff valves provided in the branched gas conduit 17. Reference numeral 18 denotes a gas proportional valve provided on the inlet side of the gas conduit 17. Reference numeral 19 denotes a circulating heat transfer tube. Reference numeral 20 denotes a hot water supply heat transfer tube. A hot water supply heat transfer tube 20 is disposed upstream of the circulation heat transfer tube 19 and brazed to form an integrated structure. The integrated circulation heat transfer pipe 19 and hot water supply heat transfer pipe 20 are provided in a staggered manner across the downstream sides of the circulation hot water supply / combustion section 12 and the hot water supply combustion sections 13 and 14. 21 has a large heat receiving area on the lower and upper circulating heat transfer tubes 19 side, conversely a smaller heat receiving area on the lower hot water supply heat transfer tube 20 side, and further has a notch 22 on the upper hot water supply heat transfer tube 20 side. The circulating hot water supply / heat receiving fin is fixed to the circulating heat transfer pipe 19 and the hot water supply heat transfer pipe 20 on the downstream side of the circulating hot water supply / combustion unit 14 by brazing. 23 is provided with a notch 24 on the lower circulating heat transfer tube 19 side, further reduces the heat receiving area on the upper circulating heat transfer tube 19 side, and conversely increases the heat receiving area on the hot water supply heat transfer tube 20 side. These are pierced and fixed (braded) to the circulating heat transfer tube 19 and the hot water supply heat transfer tube 20 on the downstream side of the hot water supply heat transfer tube 20. The combustion fan 25 communicates with the circulating hot water supply / combustion unit 12 and the hot water supply combustion units 13 and 14.
[0024]
Next, circulation (bath) single operation will be described. When circulating hot water is sucked into the circulating heat transfer pipe 19 by a bath circulation pump (not shown), the combustion fan 25 is driven, and at the same time, the gas proportional valve 18 is opened, and the circulating hot water supply / combustion unit 12 starts combustion. Thereafter, the gas proportional valve 18 adjusts the combustion amount to a constant amount (the temperature of the circulating hot water gradually changes). Since the heat receiving area on the circulating heat transfer pipe 19 side of the circulating hot water supply / heat receiving fins 21 is large, the combustion heat generated from the circulating hot water supply / combustion unit 12 is efficiently transmitted to the circulating heat transfer pipe 19 and the circulating hot water is heated to a temperature. It rises and circulates from the circulating heat transfer tube 19 to a bathtub (not shown). Next, the heat balance of the residual water in the hot water transfer tube 20 will be considered. First, the hot water supply heat transfer pipe 20 itself and the circulating hot water supply / heat receiving fin 21 on the downstream side of the circulating hot water supply / combustion unit 12 are heated by the flame and exhaust gas formed in the circulating hot water supply / combustion unit 12.
[0025]
However, since the heat receiving area on the lower hot water supply heat transfer pipe 20 side of the circulating hot water supply / heat receiving fin 21 is formed small, and the notch 22 is provided on the upper hot water supply heat transfer pipe 20 side, the heat through the circulating hot water supply heat receiving fin 21 is also provided. The conduction is small, and the amount of heat absorbed by the hot-water supply heat transfer tube 19 is reduced. Secondly, there is heat radiation by heat conduction from the residual water of the hot water supply heat transfer tube 20 to the circulating hot water flowing in the circulation heat transfer tube 19 through the contact portion (the brazing material) between the circulation heat transfer tube 19 and the hot water supply heat transfer tube 20. . Third, the hot water supply heat transfer pipe 20 and the hot water supply heat receiving fins 23 on the downstream side of the hot water supply combustion sections 13 and 14 are cooled by air blown from the combustion fan 25 and ejected from the hot water supply combustion sections 13 and 14. In particular, since the heat receiving fins 23 for hot water supply have a large heat receiving area on the hot water transfer tube 20 side, the amount of heat released from the hot water transfer tube 20 increases. As a result, the hot water supply heat transfer pipe 20 on the downstream side of the circulating hot water supply / combustion unit 12 is also indirectly air-cooled strongly. Therefore, since the third heat radiation is improved and the first heat absorption is suppressed, the heat balance can be balanced at a low temperature of the residual water in the hot water supply heat transfer tube 20. In other words, since the residual water in the hot water supply heat transfer tube 20 is maintained at a temperature slightly higher than the circulating hot water being circulated, the residual water in the hot water supply heat transfer tube 20 does not boil. In the case of a single operation of circulation (heating), the gas proportional valve 18 adjusts the amount of combustion so that the circulating hot water becomes the required temperature. On the other hand, the heat receiving fin 23 for hot water supply is provided with a notch 24 on the lower circulating heat transfer tube 19 side and further has a smaller heat receiving area on the upper circulating heat transfer tube 19 side. There are few. Therefore, since the circulating hot water heated by the circulating hot water supply / combustion unit 12 and having a temperature rise is not cooled by air, the circulating heat efficiency can be improved.
[0026]
Next, the hot water supply single operation will be described. When a currant or the like is opened and water is passed through the hot water supply heat transfer tube 20, the combustion fan 25 is driven, and at the same time, the gas proportional valve 25 is opened, and the circulating hot water supply / combustion unit 12 starts combustion. The combustion heat is transmitted from the heat receiving fins 21 to the hot water supply heat transfer tube 20, and the hot water is discharged from the hot water supply heat transfer tube 20. At that time, the gas proportional valve 18 adjusts the combustion amount so that the required hot water supply temperature is obtained. When a large hot water supply capacity is required, the gas shutoff valves 15 and 16 are opened, the hot water supply combustion sections 13 and 14 start combustion, and the gas proportional valve 18 adjusts the combustion amount (about 38 to 60 ° C.). .
[0027]
Next, considering the heat balance of the circulating heat transfer tube 19, the hot water receiving heat receiving fin 23 is provided with a notch 24 on the lower circulating heat transfer tube 19 side, further forming a smaller heat receiving area on the upper circulating heat transfer tube 19 side, On the contrary, since the heat receiving area on the lower and upper hot water supply heat transfer pipes 20 side is formed large, the hot water supply efficiency is good, the heat absorption amount of the circulation heat transfer pipe 19 is small, and the residual water of the circulation heat transfer pipe 19 is at a relatively low temperature. The heat balance can be balanced. In other words, since the residual water in the circulating heat transfer tube 19 is maintained at a temperature slightly higher than the hot water supply temperature, the residual water in the circulating heat transfer tube 19 does not boil. Subsequently, considering the heat balance of the hot water supply heat transfer pipe 20, the circulating hot water supply / heat receiving fin 21 has a small heat receiving area on the lower hot water supply heat transfer pipe 20 side, and a notch 22 is provided on the upper hot water supply heat transfer pipe 20 side. Therefore, it is inevitable that the hot water supply thermal efficiency deteriorates. In addition, even when the circulating hot water supply simultaneous operation is requested, it is inevitable that the hot water supply thermal efficiency deteriorates as in the case of the single hot water supply operation.
[0028]
(Example 2)
FIG. 4 is a partial cross-sectional front view of a one-can two-circuit heat source device according to the second embodiment of the present invention. The difference from the first embodiment is that the heat receiving fins 31 that are fixed to the circulating heat transfer pipe 29 and the hot water supply heat transfer pipe 30 are formed so that the circulating hot water supply / combustion section 28 side is sparser than the hot water supply combustion sections 26 and 27 side. That is. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0029]
Next, circulation (bath) single operation will be described. When circulating hot water is sucked into the circulation heat transfer pipe 29 by a bath circulation pump (not shown), the combustion fan 25 is driven, and at the same time, the gas proportional valve 18 is opened, and the circulating hot water supply / combustion unit 28 starts combustion. Thereafter, the gas proportional valve 18 adjusts the combustion amount to a constant amount. Since the heat receiving fins 31 are arranged so that the circulating hot water supply / combustion unit 28 side is sparser than the hot water supply combustion units 26 and 27, the heat absorption amount of the circulating heat transfer pipe 29 is reduced, and the temperature of the circulating hot water rises. Is suppressed.
[0030]
Next, the heat balance of the residual water in the hot water transfer tube 30 will be considered. First, since the number of heat receiving fins 31 per unit length of the circulating heat transfer tube 29 on the circulating hot water supply / combustion unit 28 side is reduced as compared with the hot water supply combustion units 26 and 27 side as described above, the circulating hot water supply combined use The amount of heat absorbed per unit length of the circulating heat transfer tube 29 on the combustion unit 28 side is reduced. Secondly, there is heat radiation by heat conduction from the residual water of the hot water supply heat transfer tube 30 to the circulating hot water flowing in the circulation heat transfer tube 29 through the contact portion between the circulation heat transfer tube 29 and the hot water supply heat transfer tube 30. Thirdly, the heat receiving fins 31 on the downstream side of the hot water supply combustion portions 26 and 27 and the hot water supply heat transfer pipe 30 themselves are air-cooled by the air ejected from the hot water supply combustion portions 26 and 27.
[0031]
That is, the hot water supply heat transfer pipe 20 on the downstream side of the circulating hot water / combustion unit 28 is also indirectly cooled by air. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption is suppressed, so that the heat balance can be balanced at a relatively low temperature of the residual water in the hot water supply heat transfer tube 30. In other words, since the residual water in the hot water supply heat transfer tube 30 is maintained at a temperature higher than the circulating hot water being circulated, boiling of the residual water in the hot water supply heat transfer tube 30 can be suppressed. In order to compensate for the thinned number of the heat receiving fins 31 per unit length of the circulating heat transfer tube 29 on the circulating hot water / combustion unit 28 side, the length of the circulating heat transfer tube 29 on the circulating hot water / combustion unit 28 side must be increased. I must. In other words, in order to maintain the circulation capacity, the one-can two-circuit heat source device becomes a little larger.
[0032]
Next, the hot water supply single operation will be described. When a currant or the like is opened and water is passed through the hot water supply heat transfer tube 29, the combustion fan 25 is driven, and at the same time, the gas proportional valve 18 is opened and the circulating hot water supply / combustion unit 28 starts combustion. The combustion heat is transmitted from the heat receiving fins 31 to the hot water supply heat transfer tube 30, and the hot water is discharged from the hot water supply heat transfer tube 30. At that time, the gas proportional valve 18 adjusts the combustion amount so that the required hot water supply temperature is obtained. When a large hot water supply capacity is required, the gas shutoff valves 15 and 16 are opened, the hot water supply combustion units 26 and 27 start combustion, and the gas proportional valve 18 adjusts the combustion amount (about 38 to 60 ° C.). .
[0033]
Next, considering the heat balance of the hot water supply heat transfer tube 30, the number of the heat receiving fins 31 per unit length of the circulation heat transfer tube 29 on the circulating hot water supply / combustion unit 28 side is reduced. . In addition, even when the circulating hot water supply simultaneous operation is requested, it is inevitable that the hot water supply thermal efficiency deteriorates as in the case of the single hot water supply operation.
[0034]
Example 3
FIG. 5 is a partial cross-sectional front view of a one-can two-circuit heat source device according to Embodiment 3 of the present invention. The difference from the first embodiment is that the thickness of the heat receiving fins 36 on the circulating hot water supply / combustion unit 35 side is made thinner than the heat receiving fins 34 on the hot water supply combustion units 32, 33 side, so that the circulating heat transfer tube 37 and the hot water supply heat transfer tube 38 It is through-fixed. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0035]
Next, circulation (bath) single operation will be described. When circulating hot water is sucked into the circulating heat transfer pipe 37 by a bath circulation pump (not shown), the combustion fan 25 is driven, and at the same time, the gas proportional valve 18 is opened and the circulating hot water supply / combustion unit 35 starts combustion. Thereafter, the gas proportional valve 18 adjusts the combustion amount to a constant amount.
[0036]
Next, the heat balance of the residual water in the hot water supply heat transfer pipe 38 when circulation is required will be considered. First, since the thickness of the heat receiving fins 36 is made thinner than that of the heat receiving fins 34, the fin efficiency of the heat receiving fins 36 is poor, and the amount of heat absorbed per unit length of the circulating heat transfer pipe 37 on the circulating hot water supply / combustion unit 35 side is reduced. To do. Further, the molds of the heat receiving fins 34 and 36 can be shared. Second, there is heat radiation by heat conduction from the residual water of the hot water transfer tube 38 to the circulating hot water flowing in the circulating heat transfer tube 37 through the contact portion between the circulating heat transfer tube 37 and the hot water transfer tube 38. Thirdly, the hot water supply heat transfer pipe 38 itself and the heat receiving fins 34 on the downstream side of the hot water supply combustion sections 32 and 33 are air-cooled by the air ejected from the hot water supply combustion sections 32 and 33.
[0037]
That is, the hot water supply heat transfer pipe 38 on the downstream side of the circulating hot water / combustion unit 35 is also indirectly cooled by air. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption can be suppressed, so that the heat balance can be balanced at a relatively low temperature of the residual water in the hot water supply heat transfer tube 38. In other words, since the residual water in the hot water supply heat transfer pipe 38 is maintained at a temperature higher than the circulating hot water being circulated, boiling of the residual water in the hot water supply heat transfer pipe 38 can be suppressed.
[0038]
Next, the hot water supply single operation will be described. When the currant or the like is opened and water is passed through the hot water supply heat transfer pipe 38, the combustion fan 25 is driven, and at the same time, the gas proportional valve 18 is opened and the circulating hot water supply / combustion unit 28 starts combustion. Then, the combustion heat is transmitted from the heat receiving fins 36 to the hot water supply heat transfer pipe 38, and the hot water is discharged from the hot water supply heat transfer pipe 38. At that time, the gas proportional valve 18 adjusts the combustion amount so that the required hot water supply temperature is obtained. When a large hot water supply capacity is required, the gas shutoff valves 15 and 16 are opened, the hot water supply combustion units 32 and 33 start combustion, and the gas proportional valve 18 adjusts the combustion amount (about 38 to 60 ° C.). .
[0039]
Next, considering the heat balance of the hot water supply heat transfer tube 38, the thickness of the heat receiving fins 36 is made thinner than that of the heat receiving fins 34; In addition, even when the circulating hot water supply simultaneous operation is requested, it is inevitable that the hot water supply thermal efficiency deteriorates as in the case of the single hot water supply operation.
[0040]
Example 4
6 and 7 are partial cross-sectional side views of a single can / two-circuit type heat source device according to Embodiment 4 of the present invention. FIG. 8 is a partial cross-sectional front view of a single can / two circuit type heat source device according to Embodiment 4 of the present invention. The difference from the first embodiment is that the circulation heat transfer pipe 39 and the hot water supply heat transfer pipe 40 are integrally formed across the downstream side of the circulation hot water supply / combustion section 41 and the hot water supply combustion sections 42 and 43, and provided in a grid pattern. That is. The circulating hot water supply / heat receiving fins 44 are fixed to the hot water supply heat transfer pipe 40 and the circulating heat transfer pipe 39 on the downstream side of the circulating hot water supply / combustion unit 41 so as to increase the heat receiving area on the upper circulating heat transfer pipe 39 side. Notches 45 and 46 that reduce the heat receiving area on the hot water supply heat transfer tube 40 side and inhibit heat conduction in the vicinity of the lower circulation heat transfer tube 39 and the upper hot water supply heat transfer tube 40. With Yes. Further, the hot water supply heat receiving fins 47 are fixed to the hot water supply heat transfer pipes 40 and the circulation heat transfer pipes 39 on the downstream side of the hot water supply combustion section 42 and are inverted in the same shape as the circulation hot water supply heat reception fins 44. The circulating hot water supply / heat receiving fins 44 and the hot water receiving heat receiving fins 47 are provided with step press portions 48 so that the exhaust gas flows along the circulating heat transfer tubes 39 and the hot water supply heat transfer tubes 40. Further, a rectifying plate 49 is provided on the downstream side of the circulating hot water supply / heat receiving fins 44 and the hot water receiving heat receiving fins 47, and in particular, a vent hole 50 is opened in the rectifying plate 49 on the downstream side of the hot water receiving heat receiving fins 47. Yes. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0041]
Next, circulation (bath) single operation will be described. When circulating hot water is sucked into the circulation heat transfer pipe 39 by a bath circulation pump (not shown), the combustion fan 25 is driven, and at the same time, the gas proportional valve 18 is opened, and the circulating hot water supply / combustion unit 41 starts combustion. Flames and exhaust gas generated from the circulating hot water supply / combustion unit 41 flow in the vicinity of the hot water supply heat transfer tube 40 and the circulating heat transfer tube 39 by the step pushing portion 48 and the rectifying plate 49. Thereafter, the gas proportional valve 18 adjusts the combustion amount to a constant amount. (The temperature of the circulating hot water gradually changes) And, since the heat receiving area on the circulating heat transfer pipe 39 side of the circulating hot water supply / heat receiving fin 44 is formed large, the combustion heat generated from the circulating hot water supply / combustion unit 41 efficiently circulates. It is transmitted to the heat pipe 39, and the temperature of the circulating hot water rises and circulates from the circulating heat transfer pipe 39 to a bathtub (not shown). Next, the heat balance of the residual water in the hot water supply heat transfer tube 39 will be considered. First, the hot water supply heat transfer pipe 40 itself and the circulating hot water supply / heat receiving fins 44 on the downstream side of the circulating hot water supply / combustion unit 41 are heated by the flame and exhaust gas formed in the circulating hot water supply / combustion unit 41.
[0042]
However, since the heat receiving area on the lower hot water supply heat transfer pipe 40 side is formed small and the notch 45 is provided on the upper hot water supply heat transfer pipe 40 side, the amount of heat absorbed by the hot water supply heat transfer pipe 40 is small. Secondly, there is heat radiation by heat conduction from the residual water of the hot water supply heat transfer tube 40 to the circulating hot water flowing in the circulation heat transfer tube 39 through the contact portion (the brazing material) between the circulation heat transfer tube 39 and the hot water supply heat transfer tube 40. . Third, the hot-water supply heat transfer pipe 40 itself and the hot-water supply heat receiving fins 47 on the downstream side of the hot-water supply combustion sections 42 and 43 are air-cooled by the air ejected from the hot-water supply combustion sections 42 and 43. In particular, since the heat receiving fin 47 for hot water supply has a large heat receiving area on the side of the hot water transfer tube 40, the amount of heat released from the hot water transfer tube 40 is increased. Therefore, since the third heat radiation can be improved and the first heat absorption can be suppressed, the heat balance can be balanced at a low temperature of the residual water in the hot water supply heat transfer tube 40. In other words, since the residual water in the hot water supply heat transfer tube 40 is maintained at a temperature slightly higher than the circulating hot water being circulated, the residual water in the hot water supply heat transfer tube 40 does not boil.
[0043]
Next, a hot water supply single operation in which the circulating hot water supply / combustion unit 41 and the hot water supply combustion units 42 and 43 burn will be described. The flame and exhaust gas generated from the hot water combustion sections 42 and 43 flow in the vicinity of the hot water supply heat transfer tube 40 and the lower circulation heat transfer tube 39 by the step pushing portion 48 and the rectifying plate 49, but then the exhaust gas is the upper circulation heat transfer tube 39. It flows toward the vent 50 without flowing in the vicinity.
[0044]
Therefore, the amount of heat absorbed by the upper circulating heat transfer tube 39 can be suppressed, so that the residual water temperature of the upper circulating heat transfer tube 39 can be further lowered. The circulating hot water supply / heat receiving fin 21 has a small heat receiving area on the lower hot water supply heat transfer tube 40 side, further provided with a notch 45 on the upper hot water supply heat transfer tube 40 side, and the hot water supply heat receiving fin 47 has an upper hot water supply heat transfer tube 40. Since the notch 44 is provided on the side, it is inevitable that the hot water supply thermal efficiency deteriorates.
[0045]
In addition, when the hot water supply simultaneous operation is requested, it is inevitable that the hot water supply thermal efficiency is deteriorated as in the case of the single hot water supply operation. However, since the circulation heat transfer pipe 39 and the hot water supply heat transfer pipe 40 which are integrally formed are provided in a lattice shape, the circulation hot water supply / heat receiving fins 44 and the hot water supply heat receiving fins 47 can be selectively used by inverting them in the same shape. We can make the molds common.
[0046]
(Example 5)
FIG. 9 is a partial cross-sectional front view of the single can / two circuit type heat source device according to the fifth embodiment of the present invention. The difference from the first embodiment is that the water flow detectors 53 and 54 are provided at the inlets of the circulating heat transfer pipe 51 and the hot water supply heat transfer pipe 52, respectively, and the gas conduits correspond to the circulating hot water combined combustion section 55 and the hot water supply combustion sections 56 and 57, respectively. 58 is provided with gas shut-off valves 59-61. The independent operation control unit 62 opens and closes the gas shut-off valves 59 to 61 by ON / OFF signals of the flowing water detectors 53 and 54 in order to use the circulating hot water supply / combustion unit 55 and the hot water supply combustion units 56 and 57 separately. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0047]
Next, the hot water supply single operation will be described. When a currant or the like is opened and water is passed through the hot water supply heat transfer pipe 52, the flowing water detector 52 transmits an ON signal, the gas proportional valve 18 and the gas shut-off valve 59 are simultaneously opened, and the circulating hot water supply / combustion unit 55 starts combustion. . The single operation control unit 62 opens the gas cutoff valve 60 and the hot water supply combustion unit 56 starts combustion. At that time, the gas proportional valve 18 controls the combustion amount to be constant. When a flame detector (not shown) detects a flame, the gas shut-off valve 59 is closed and only the hot water supply combustion unit 56 continues combustion. Thereafter, the gas proportional valve 18 adjusts the combustion amount so that the required hot water supply temperature is reached. When a large hot water supply capability is required, the gas shut-off valve 61 is opened and the hot water supply combustion unit 57 also starts combustion.
[0048]
Therefore, since the heat receiving area on the hot water transfer pipe 52 side of the hot water supply heat receiving fins 23 is formed large, the combustion heat generated from the hot water supply combustion sections 56 and 57 can efficiently heat the hot water supply heat transfer pipe 52, and the hot water supply efficiency is improved. improves. Next, the heat balance of the residual water in the circulating heat transfer tube 51 will be considered. First, the circulating heat transfer pipe 51 itself and the hot water receiving heat receiving fins 23 on the downstream side of the hot water combustion sections 56 and 57 are heated by the flame and exhaust gas formed in the hot water combustion sections 56 and 57. However, since the heat receiving area on the circulating heat transfer pipe 51 side of the hot water receiving heat receiving fin 23 is formed small, the heat absorption amount of the circulating heat transfer pipe 51 is reduced. Second, there is heat radiation by heat conduction from the residual water of the circulating heat transfer tube 51 to the hot water flowing in the hot water supply heat transfer tube 52 through the contact portion between the circulating heat transfer tube 51 and the hot water supply heat transfer tube 52. Thirdly, the circulating heat transfer pipe 51 itself and the circulating hot water supply / heat receiving fin 21 on the downstream side of the circulating hot water supply / combustion unit 55 are air-cooled by the air ejected from the circulating hot water supply / combustion unit 55.
[0049]
In particular, since the heat receiving fin 23 for hot water supply has a large heat receiving area on the side of the hot water transfer tube 52, the amount of heat released from the hot water transfer tube 52 increases. Therefore, the third heat radiation can be improved and the first heat absorption can be suppressed, so that the heat balance can be balanced at a low temperature of the residual water in the circulating heat transfer tube 51. In other words, the residual water in the circulation heat transfer tube 51 is maintained at a temperature slightly higher than the warm water flowing through the hot water supply heat transfer tube 52, so that the residual water in the circulation heat transfer tube 51 does not boil. However, when the maximum hot water supply capacity is required, when the gas shutoff valve 59 is further opened and all of the circulating hot water supply / combustion unit 55 and the hot water supply combustion units 56 and 57 start combustion, the circulating hot water supply / heat receiving fins 21 are used. The hot water supply efficiency is lowered, and the heat balance is balanced at a relatively high temperature of the residual water in the circulating heat transfer tube 51.
[0050]
Next, the heat balance of the residual water in the hot water supply heat transfer tube 52 when a single circulation operation is requested will be considered. First, the hot water supply heat transfer pipe 52 itself and the circulating hot water supply / heat receiving fin 21 on the downstream side of the circulating hot water supply / combustion unit 55 are heated by the flame and exhaust gas formed in the circulating hot water supply / combustion unit 55. However, since the heat receiving area on the hot water transfer tube 52 side of the circulating hot water supply / heat receiving fin 21 is formed small, the heat conduction through the circulating hot water supply / heat receiving fin 21 is small, and the amount of heat absorbed by the hot water supply heat transfer tube 52 is reduced. Second, there is heat radiation by heat conduction from the residual water of the hot water transfer tube 52 to the circulating hot water flowing in the circulating heat transfer tube 51 through the contact portion between the circulating heat transfer tube 51 and the hot water transfer tube 52. Third, the hot water supply heat transfer pipe 52 itself and the circulating hot water supply / heat receiving fins 21 on the downstream side of the hot water supply combustion sections 56 and 57 are air-cooled by the air ejected from the hot water supply combustion sections 56 and 57. Therefore, the second and third heat dissipation cannot be improved, but the first heat absorption can be suppressed, so that the heat balance can be balanced at a relatively low temperature of the residual water in the hot water supply heat transfer tube 52. In other words, since the residual water in the hot water supply heat transfer tube 52 is maintained at a temperature slightly higher than the circulating hot water being circulated, the residual water in the hot water supply heat transfer tube 52 does not boil.
[0051]
(Example 6)
FIG. 10 is a partial cross-sectional front view of the single-can two-circuit heat source device according to the sixth embodiment of the present invention. The difference from the fifth embodiment is that temperature detectors 65 and 66 are provided at the outlets of the circulation heat transfer pipe 63 and the hot water supply heat transfer pipe 64, respectively. Further, when simultaneous operation of circulating hot water supply is requested and both the flowing water detectors 67 and 68 transmit ON signals, the simultaneous operation control unit 69 detects gas if the circulating hot water temperature detected by the temperature detector 65 does not reach the target temperature. The shutoff valves 70 and 71 are closed and the gas shutoff valve 72 is opened to preferentially start the operation of the circulating hot water supply / combustion unit 73. In addition, the thing of the same code | symbol as Example 5 has the same structure, and abbreviate | omits description.
[0052]
Then, the transition from the hot water supply single operation to the hot water supply / circulation simultaneous operation will be described. When hot water is being sucked into the circulating heat transfer pipe 63 by a circulating pump (not shown) while the hot water supply combustion sections 53 and 54 are burning, the flowing water detectors 67 and 68 both transmit an ON signal to The gas proportional valve 18 adjusts the amount of combustion so that the hot water temperature detected by the detector 66 becomes the target temperature. If the circulating hot water temperature detected by the temperature detector 65 does not reach the target temperature, the gas shut-off valve 72 is opened and the circulating hot water supply / combustion unit 73 starts combustion. Immediately thereafter, the gas shutoff valve 70 is closed to stop the combustion of the hot water supply combustion section 53. Even at that time, the gas proportional valve 18 adjusts the combustion amount so that the hot water supply temperature detected by the temperature detector 66 becomes the target temperature.
[0053]
Since the heat receiving area on the circulating heat transfer pipe 63 side of the circulating hot water supply / heat receiving fin 21 is large, the combustion heat generated from the circulating hot water supply / combustion unit 73 is efficiently transmitted to the circulating heat transfer pipe 63, and the circulating hot water is further increased. The temperature rises and circulates from the circulating heat transfer tube 63 to the heat load. On the contrary, since the heat receiving area on the hot water transfer pipe 64 side of the circulating hot water supply / heat receiving fin 21 is small, the heat absorption amount of the hot water transfer pipe 64 is suppressed, and a gas proportional valve is used to maintain the hot water supply temperature at the required temperature. 18 increases the amount of combustion. (Hot water supply priority control) As a result, the circulation capacity is improved and the temperature of the circulating hot water rises and approaches the target temperature.
[0054]
(Example 7)
FIG. 10 is a partial cross-sectional front view of a single can / two-circuit heat source device according to Examples 6 and 7 of the present invention. The difference from the fifth embodiment is that when the simultaneous hot water supply operation is requested, the hot water supply required capacity is large, and conversely, when the required hot water circulation capacity is small, the hot water combustion units 53 and 54 are preferentially operated. The simultaneous operation control unit 69 to be started is provided. In addition, the thing of the same code | symbol as Example 5 has the same structure, and abbreviate | omits description.
[0055]
Then, the transition from the independent circulation operation to the hot water supply / circulation simultaneous operation will be described. When the circulating hot water supply / combustion unit 73 is combusting, when the currant or the like is opened and water is passed through the hot water supply heat transfer pipe 64, both the water flow detectors 67 and 68 transmit ON signals, and the temperature detector 66 detects them. The gas proportional valve 18 adjusts the combustion amount so that the hot water supply temperature becomes the target temperature. If the circulating hot water temperature detected by the temperature detector 65 exceeds the target temperature, the gas shut-off valve 71 is opened and the hot water supply combustion unit 54 starts combustion. Immediately thereafter, the gas shut-off valve 72 is closed to stop the combustion of the circulating hot water supply / combustion unit 73. Even at that time, the gas proportional valve 18 adjusts the combustion amount so that the hot water supply temperature detected by the temperature detector 66 becomes the target temperature.
[0056]
Since the heat receiving area on the hot water transfer pipe 64 side of the hot water supply heat receiving fin 23 is formed large, the combustion heat generated from the hot water supply combustion section 54 efficiently heats the hot water supply heat transfer pipe 64. On the contrary, since the heat receiving area on the circulating heat transfer pipe 63 side of the hot water receiving heat receiving fin 23 is formed small, the heat absorption amount of the circulating heat transfer pipe 63 is suppressed, and the gas proportional valve 18 is used to maintain the hot water supply temperature at the required temperature. Reduces the amount of combustion. (Hot-water supply priority control) As a result, the hot-water supply capacity is improved and the temperature of the circulating hot water is lowered and approaches the target temperature.
[0057]
【The invention's effect】
As described above, the present invention has the following advantageous effects.
[0058]
(1) Since the heat receiving area for the circulating hot water supply tube is formed with a large heat receiving area on the circulating heat transfer tube side and conversely with a small heat receiving area on the hot water supply heat transfer tube side, the amount of heat absorbed by the hot water heat transfer tube is reduced during single circulation operation. Boiling of residual water in the heat transfer tube can be prevented. In addition, since the heat receiving area on the circulating heat transfer tube side of the circulating hot water supply / heat receiving fin is formed large and conversely the heat receiving area on the hot water supply heat transfer tube side is small, the amount of heat released from the circulating heat transfer tube is Less circulation heat efficiency can be improved.
[0059]
(2) Since the heat receiving fin is provided so that the circulating hot water supply / combustion part side is sparser than the hot water supply combustion part side, the amount of heat absorbed by the hot water transfer pipe on the circulating hot water supply / combustion part side is reduced, and the hot water supply heat transfer pipe Can suppress the boiling of residual water.
[0060]
(3) Since the thickness of the heat receiving fin on the side of the circulating hot water supply / combustion unit is thinner than that of the hot water supply combustion unit, the amount of heat absorbed by the hot water transfer tube on the circulating hot water supply / combustion unit side is reduced, and the hot water transfer tube remains. Water boiling can be suppressed.
[0061]
(4) Since the hot water supply heat receiving fin is provided with the same shape as that of the circulating hot water supply heat receiving fin, it is possible to prevent boiling of residual water in the hot water supply heat transfer pipe and to share the mold during the single circulation operation.
[0062]
(5) When a hot water supply single operation is requested, a combustion control unit is provided to preferentially start the operation of the hot water combustion unit, and the heat receiving area on the circulating heat transfer tube side of the hot water receiving heat fin is formed small. The heat absorption amount of the circulating heat transfer tube is small, and boiling of residual water in the circulating heat transfer tube can be prevented. On the other hand, since the heat receiving fin for hot water supply has a large heat receiving area on the side of the hot water transfer tube, the efficiency of hot water supply is improved.
[0063]
(6) A combustion control unit is provided for preferentially starting the operation of the circulating hot water supply / combustion unit when the required hot water supply capability is small when the circulating hot water supply simultaneous operation is requested and the required circulating capability is large. In addition, since the heat receiving area on the circulating heat transfer tube side is made larger and the heat receiving area on the hot water transfer tube side is made smaller, the heat absorption amount of the hot water transfer tube is reduced, and the hot water supply temperature is reduced to the required temperature. The amount of combustion increases in order to maintain the current. As a result, the circulation capacity is improved, the temperature of the circulating hot water rises and approaches the target temperature.
[0064]
(7) When the simultaneous hot water supply operation is requested, when the required hot water supply capacity is large, and conversely the required circulation capacity is small, a combustion control unit is provided to preferentially start the operation of the hot water combustion unit, In addition, since the heat receiving area on the circulating heat transfer tube side is formed larger and the heat receiving area on the hot water transfer tube side is made smaller, the heat absorption amount of the circulating heat transfer tube is reduced, and the hot water supply temperature is set to the required temperature. To maintain, the amount of combustion is reduced. As a result, the hot water supply capacity is improved, the temperature of the circulating hot water is lowered, and approaches the target temperature.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional front view of a single-can two-circuit heat source device according to a first embodiment of the present invention.
FIG. 2 is a partial sectional side view of the apparatus.
FIG. 3 is another partial sectional side view of the apparatus.
FIG. 4 is a partial cross-sectional front view of a single can two-circuit heat source device according to a second embodiment of the present invention.
FIG. 5 is a partial cross-sectional front view of a single can / two-circuit heat source device according to a third embodiment of the present invention.
FIG. 6 is a partial cross-sectional side view of a single can / two-circuit heat source device according to a fourth embodiment of the present invention.
FIG. 7 is a partial sectional side view of the apparatus.
FIG. 8 is another partial cross-sectional front view of the apparatus.
FIG. 9 is a partial cross-sectional front view of a one-can two-circuit heat source device according to a fifth embodiment of the present invention.
FIG. 10 is a partial cross-sectional front view of a single can / two-circuit heat source device according to Embodiments 6 and 7 of the present invention.
FIG. 11 is a partial sectional front view of a conventional combustion apparatus.
FIG. 12 is a partial sectional side view of a conventional combustion apparatus.
[Explanation of symbols]
12, 28, 35, 41, 53 Circulating hot water combined combustion section
13, 14, 26, 27, 32, 33, 42, 43, 56, 57 Hot water combustion section
19, 29, 37, 39 Circulating heat transfer tubes
20, 30, 38, 40 Hot water supply heat transfer tube
21, 44 Heat-receiving fins for circulating hot water supply
23, 47 Heat receiving fin for hot water supply
31, 34, 36 Heat receiving fin
62, 69 Independent operation control unit

Claims (7)

循環給湯兼用燃焼部と給湯用燃焼部の各下流側を横断して配置し上下方向に一体構成とした給湯伝熱管と循環伝熱管と、前記循環給湯兼用燃焼部の下流側の前記給湯伝熱管と前記循環伝熱管に貫通固定し前記循環伝熱管側の受熱面積を大きく形成し逆に前記給湯伝熱管側の受熱面積を小さく形成した循環給湯兼用受熱フィンと、前記給湯用燃焼部の下流側の前記給湯伝熱管と前記循環伝熱管に貫通固定し前記循環伝熱管側の受熱面積を小さく形成し逆に前記給湯伝熱管側の受熱面積を大きく形成した給湯用受熱フィンとを有する1缶2回路式熱源装置。 A hot water supply heat transfer tube and a circulation heat transfer tube that are arranged transversely across the downstream sides of the circulating hot water supply / combustion unit and the hot water supply combustion unit and are integrally formed in the vertical direction, and the hot water supply heat transfer tube downstream of the circulating hot water supply / combustion unit And a circulating heat supply heat receiving fin that is fixedly penetrated to the circulation heat transfer tube and has a large heat receiving area on the circulating heat transfer tube side and conversely a small heat receiving area on the hot water supply heat transfer tube side, and a downstream side of the hot water combustion section A can 2 having a hot water supply heat receiving tube and a heat receiving fin for hot water supply, which is fixedly penetrated to the circulating heat transfer tube, has a small heat receiving area on the circulating heat transfer tube side, and conversely has a large heat receiving area on the hot water transfer tube side. Circuit type heat source device. 循環給湯兼用燃焼部と給湯用燃焼部との下流側を横断し一体構成にして設けた給湯伝熱管と循環伝熱管と、前記給湯用燃焼部側に比べて前記循環給湯兼用燃焼部側を疎になるように前記給湯伝熱管と前記循環伝熱管に貫通固定した受熱フィンとを有する1缶2回路式熱源装置。  A hot water supply heat transfer tube and a circulation heat transfer tube provided in an integrated configuration across the downstream side of the circulating hot water supply / combustion unit and the hot water supply combustion unit, and the circulating hot water supply / combustion unit side is sparser than the hot water supply combustion unit side. 1 can 2 circuit type heat source device which has the above-mentioned hot-water supply heat exchanger tube and the heat receiving fin penetrated and fixed to the circulation heat exchanger tube. 循環給湯兼用燃焼部と給湯用燃焼部との下流側を横断し一体構成にして設けた給湯伝熱管と循環伝熱管と、前記給湯用燃焼部側に比べて前記循環給湯兼用燃焼部側の肉厚を薄くし前記給湯伝熱管と前記循環伝熱管に貫通固定した受熱フィンとを有する1缶2回路式熱源装置。  A hot-water supply heat transfer tube and a circulation heat transfer tube provided in an integrated configuration across the downstream side of the circulating hot water supply / combustion unit and the hot water supply combustion unit, and the meat on the circulating hot water supply / combustion unit side as compared with the hot water combustion unit side A one-can two-circuit heat source apparatus having a thickness and a heat receiving fin that is fixed to the hot water transfer tube and the circulating heat transfer tube. 循環給湯兼用燃焼部と給湯用燃焼部との下流側を横断し一体構成にして格子状に設けた給湯伝熱管と循環伝熱管と、前記循環給湯兼用燃焼部の下流側の前記給湯伝熱管と前記循環伝熱管に貫通固定し前記循環伝熱管側の受熱面積を大きく形成し逆に前記給湯伝熱管側の受熱面積を小さく形成した循環給湯兼用受熱フィンと、前記給湯用燃焼部の下流側の前記給湯伝熱管と前記循環伝熱管に貫通固定し前記循環給湯兼用受熱フィンと同形状で上下方向に反転させ、前記循環伝熱管側の受熱面積を小さく形成し逆に前記給湯伝熱管側の受熱面積を大きく形成した給湯用受熱フィンとを有する1缶2回路式熱源装置。A hot water supply heat transfer tube and a circulation heat transfer tube provided in a lattice shape in an integrated configuration across the downstream side of the circulation hot water supply combustion unit and the hot water supply combustion unit, and the hot water supply heat transfer tube downstream of the circulation hot water supply combustion unit A circulating hot water combined heat receiving fin that is fixedly penetrated to the circulating heat transfer tube and has a large heat receiving area on the circulating heat transfer tube side and conversely a small heat receiving area on the hot water heat transfer tube side, and on the downstream side of the hot water combustion section The hot water supply heat transfer pipe and the circulating heat transfer pipe are penetrated and fixed and inverted in the vertical direction in the same shape as the circulating hot water supply combined use heat receiving fin, so that the heat receiving area on the circulating heat transfer pipe side is reduced, and conversely the heat reception on the hot water supply heat transfer pipe side A one-can two-circuit heat source device having a hot water receiving fin having a large area . 給湯単独運転を要求された時に、給湯用燃焼部の運転を優先的に開始させ、または循環単独運転を要求された時に、循環給湯兼用燃焼部を運転させる単独運転制御部とを有する請求項1から4のいずれか1項記載の1缶2回路式熱源装置。2. An independent operation control unit for starting the operation of the hot water supply combustion unit preferentially when the hot water supply single operation is requested, or operating the circulation hot water supply combined combustion unit when the circulation single operation is requested. 1-can 2 circuit type heat source apparatus of any one of 1-4. 循環給湯同時運転を要求された時に、給湯の要求能力が小さく、逆に循環の要求能力が大きい場合には、循環給湯兼用燃焼部の運転を優先的に開始させる同時運転制御部を有する請求項1から4のいずれか1項記載の1缶2回路式熱源装置。  A simultaneous operation control unit that preferentially starts the operation of the circulating hot water supply / combustion unit when the required capacity of hot water supply is small and the required capacity of circulation is large when the simultaneous operation of circulating hot water supply is requested. One can two-circuit type heat source device of any one of 1-4. 循環給湯同時運転を要求された時に、給湯の要求能力が大きく、逆に循環の要求能力が小さい場合には、給湯用燃焼部の運転を優先的に開始させる同時運転制御部とを有する請求項1から4のいずれか1項記載の1缶2回路式熱源装置。  And a simultaneous operation control unit for preferentially starting the operation of the hot water combustion unit when the required capacity for hot water supply is large and the required capacity for circulation is small when the simultaneous operation of circulating hot water supply is requested. One can two-circuit type heat source device of any one of 1-4.
JP03557298A 1998-02-18 1998-02-18 1 can 2 circuit heat source device Expired - Fee Related JP3858427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03557298A JP3858427B2 (en) 1998-02-18 1998-02-18 1 can 2 circuit heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03557298A JP3858427B2 (en) 1998-02-18 1998-02-18 1 can 2 circuit heat source device

Publications (2)

Publication Number Publication Date
JPH11230620A JPH11230620A (en) 1999-08-27
JP3858427B2 true JP3858427B2 (en) 2006-12-13

Family

ID=12445485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03557298A Expired - Fee Related JP3858427B2 (en) 1998-02-18 1998-02-18 1 can 2 circuit heat source device

Country Status (1)

Country Link
JP (1) JP3858427B2 (en)

Also Published As

Publication number Publication date
JPH11230620A (en) 1999-08-27

Similar Documents

Publication Publication Date Title
JP2005337632A (en) Heat source device
JP3858427B2 (en) 1 can 2 circuit heat source device
JP3941035B2 (en) Heat exchanger
JPH087307Y2 (en) Heat exchanger for 1-can 2-circuit water heater
JP3422273B2 (en) Combustion device with heat exchanger
WO2018018977A1 (en) Gas water heater
JP2008032276A (en) Combined heat source unit
JP3763196B2 (en) 1 can 2 circuit heat source device
JP3368843B2 (en) 1 can 2 circuit heat source device
JP3876519B2 (en) Heat source equipment
JP3853196B2 (en) Hot water heater / heat source machine
WO2023054718A1 (en) Cogeneration system
JP2001201179A (en) Hot water supplier
JP4025326B2 (en) Heat source machine
JP3834431B2 (en) Heat exchanger
JP2001201173A (en) One-can, two-circuit system of heat source device
CN118066712A (en) Gas heating water heating equipment, heating water heating system and control method thereof
JPS5854570Y2 (en) Hot water heat dissipation device
JP2882160B2 (en) Water heater with bath kettle
JP2619956B2 (en) Heat exchanger
JPH06129709A (en) Hot-water supplier equipped with bath boiler
JP2834302B2 (en) Heat exchanger
JPH05215395A (en) Hot water supplying apparatus with bath boiler
JP3365126B2 (en) Furama with water heater
JP3019548B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040914

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees