JP3858202B2 - Spray abrasive for polishing - Google Patents

Spray abrasive for polishing Download PDF

Info

Publication number
JP3858202B2
JP3858202B2 JP32682994A JP32682994A JP3858202B2 JP 3858202 B2 JP3858202 B2 JP 3858202B2 JP 32682994 A JP32682994 A JP 32682994A JP 32682994 A JP32682994 A JP 32682994A JP 3858202 B2 JP3858202 B2 JP 3858202B2
Authority
JP
Japan
Prior art keywords
abrasive
content
polishing
aerosil
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32682994A
Other languages
Japanese (ja)
Other versions
JPH08183947A (en
Inventor
進 今村
康志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN CORUNDUM CO.,LTD.
Original Assignee
RIKEN CORUNDUM CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN CORUNDUM CO.,LTD. filed Critical RIKEN CORUNDUM CO.,LTD.
Priority to JP32682994A priority Critical patent/JP3858202B2/en
Publication of JPH08183947A publication Critical patent/JPH08183947A/en
Application granted granted Critical
Publication of JP3858202B2 publication Critical patent/JP3858202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、金属、ガラス、石材などの加工面の仕上げ、艶出し等に用いるスプレー型の研磨剤に関するものである。
【0002】
【従来の技術】
従来、板ガラスやフォーク、鍋などの被削材の加工面の仕上げ、艶出し、特に鏡面仕上げを行う場合、被削材を構成する材料に対応した研磨材、例えばガラスなどは酸化セリウム(CeO2 )、ステンレスなどの金属は酸化クロム(Cr2 3 )、アルミなどの軽金属はシリカ(Si02 )等を微粉または微粒子状にしてグリセリド系油脂で棒状に固めたものを、研磨機などのフェルト、バフ、不織布のような弾性のある基材に塗布し、その基材の遊離砥粒によって被削材の鏡面仕上げを行っている。
【0003】
【発明が解決しようとする課題】
上記のような従来の研磨剤は、被削材の材料に対応した研磨材を油脂類で固めた固形状のものなので、研磨作業を行う場合、まず、フェルトなどの基材に固形の研磨剤を塗布させなければならないため面倒であるとともに、塗布の際に、研磨剤特有の油臭いいやな匂いがより一層強くなって悪臭となり、また、研磨剤の粉塵が飛び散るため、作業環境が悪かった。
【0004】
また、作業後、被削材から油気を除去しなければならなかったり、特に工芸品等の小さく、形状が複雑な製品の場合、自動琢磨機を使用せずほとんど手作業で行われるため、一層手間がかかり面倒な作業となっていた。さらに、このような研磨作業は一般家庭において行われておらず、仕上げにかかる工賃が高く、コストアップとなっていた。
【0005】
また、自動琢磨機で研磨を行う場合、スピードを早くすると被削材に異常スクラッチ(加工むら)が発生してきれいに研磨することができず、また、ゆっくり行うと時間ばかりかかってしまうので、作業性に問題があった。
【0006】
そこで、固形の研磨剤をペースト状にし、固形の場合と同様にフェルトなどの基材に塗布させて研磨を行うものがあるが、このペースト状の研磨剤は、普通15000〜90000mPa,Sと比較的粘度の高いものであるため、フェルトなどの基材に塗布させる場合、その扱いがしにくく面倒であり、また、水に溶かした研磨剤を自動琢磨機のノズルから被削材に噴射させて磨く場合も、研磨剤がうまく噴射しなかったり、工業的に設備が大きいものになってしまうなどの問題があった。
【0007】
また、固形およびペースト状の研磨剤は扱いにくいため、一度に磨けない場合を考えて多量の研磨剤を基材に塗布したりする必要があり、塗布し過ぎたりまたは不足するなど無駄が多く作業に手間がかかり、不経済でもあった。
【0008】
本発明は、上記のような課題を解決するためになされたもので、金属、ガラスなどの加工面の仕上げ、艶出しを家庭等においても手軽にかつ簡単に行うことのできる安価なポリッシング用スプレー研磨剤を提供することを目的としたものである。
【0009】
【課題を解決する手段】
この発明に係るポリッシング用スプレー研磨剤は、研磨材、水、アエロジルおよび研磨材粘度低下性を示す界面活性剤からなる研磨液と、所定量のガスとを混合してスプレー容器に充填したものである。
【0010】
また、研磨液の研磨材は、その粒子径が10μm以下で80%以上が5μm以下であり、その含有量が1.0wt%〜65.0wt%の範囲内であり、望ましくは10.0wt%〜50.0wt%の範囲内であるものである。
【0011】
さらに、研磨液の研磨材粘度低下性を示す界面活性剤は、ポリオキシエーテル化合物またはアルキルエーテル化合物からなるものである。そして、この研磨液の研磨材粘度低下性を示す界面活性剤の含有量を、研磨材、水およびアエロジルからなる原液の粘土が100mPa,Sとなるように定めたものである。
【0012】
また、研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上の場合はアエロジルの含有量が10.0wt%以上、研磨材の含有量が65.0wt%以上の場合はアエロジルの含有量が12.0wt%以上である。望ましくは、研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上65.0wt%未満の場合はアエロジルの含有量が10.0wt%以上12.0wt%未満である。
【0013】
さらに、ガスはジメチルエーテルまたは液化石油ガスであり、このガスの量が全容量の1/3〜1/2である。
【0014】
【作用】
研磨材、水、アエロジルおよび研磨材粘度低下性を示す界面活性剤からなる研磨液と、所定量のガスとを混合してスプレー容器に充填し、ポリッシング用スプレー研磨剤を作製するとき、研磨液の研磨材は、その粒子径が10μm以下で80%以上が5μm以下であり、その含有量が1.0wt%〜65.0wt%の範囲内、望ましくは10.0wt%〜50.0wt%の範囲内であり、研磨材粘度低下性を示す界面活性剤は、ポリオキシエーテル化合物またはアルキルエーテル化合物からなるもので、この研磨材粘度低下性を示す界面活性剤の含有量を、研磨材、水およびアエロジルからなる原液の粘土が100mPa,Sとなるように定めたものであり、また、アエロジルの含有量は、研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上の場合はアエロジルの含有量が10.0wt%以上、研磨材の含有量が65.0wt%以上の場合はアエロジルの含有量が12.0wt%以上であり、望ましくは、研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上65.0wt%未満の場合はアエロジルの含有量が10.0wt%以上12.0wt%未満であり、ガスはジメチルエーテルまたは液化石油ガスであり、このガスの量が全容量の1/3〜1/2であるものとする。これにより、分散性を保持しつつ粘土の低い研磨剤となり、安価で取扱いが便利であるとともに、研磨の仕上がりが良好なスプレー研磨剤が得られる。
【0015】
【実施例】
次に、実施例を挙げて本発明を具体的に説明する。なお、文中等の「部」は主溶媒の水に対する相対混合比を表す。また、DMEはジメチルエーテル(CH3 −O−CH3 )を表す。
【0016】
まず、表1に実施例1〜9の研磨剤の成分表を示す。
【表1】

Figure 0003858202
【0017】
そして、表1の成分表に基づき、研磨材(平均粒径2.0μm、5μm以下が98,8%含まれる)20部と、水100部と、分散剤であるアエロジル(主成分:Si02 、わた状で白色)を混合して分散性の良好な原液をそれぞれ作製する。なお、アエロジルは水に溶けるとSiOH- となり、無色透明なゲルとなる。この時、原液は実施例1の場合、粘度が24000mPa,S(38℃)と高い。そこで、この原液の粘度を低く、つまりほぼ100mPa,S(38℃)になるように、界面活性剤であるセロソルブ(CH3 CH2 −O−CH2 CH2 −OH)を混合して研磨液を作製する。そして、DMEを25℃、圧力5〜6kg/m2 において全容量のほぼ1/3程度の量加えてプラスチックまたは金属材料などで構成されたスプレー容器に充填し、スプレー研磨剤を作製する。
【0018】
このように作製された実施例1〜9のスプレー研磨剤は、その中に混合されている研磨材が沈殿していないので、分散性が保持されかつ粘度が低い懸濁液であることが確認できる。また、このスプレー研磨剤はDMEを全容量のほぼ1/3の量を加えることによってミスト状に噴射されるので、フェルト等の基材に噴射する場合などにおいて取扱いが容易であり、手作業および自動琢磨機の両者において便利に使用することができる。また、界面活性剤として使用しているセロソルブは、原液の粘度を低くするだけでなく、pHが7に近くかつ価格が安いものであるので、研磨剤として安定性が高くコストの低い経済的なものが得られる。さらに、このスプレー研磨剤は無臭のであるので、研磨剤特有の臭気によって作業が妨げられ作業能率が悪くなるなどのおそれもなくなり、作業環境の改善を計ることができる。したがって、上記のような組成で完成粘度がほぼ100mPa,Sになるように混合されたものがスプレー研磨剤として使用可能であることがわかる。
【0019】
次に、上記のような作製方法で研磨材が研磨液中10%含まれその研磨材の粒度分布が異なるスプレー研磨剤を作製し、フェルトに吹き付けて被削材の研磨を行い、被削材に対する研磨粗さ、特に光沢具合の評価を行った。
【0020】
各研磨材の評価条件およびその評価結果を表2および表3に示す。
【表2】
Figure 0003858202
【0021】
【表3】
Figure 0003858202
【0022】
まず、実施例11および比較例11において、表2からわかるように、研磨材である酸化セリウムの粒子径rが10μmを超えるものが少量でも混合している研磨剤(比較例11−C,11−D)で被削材の研磨を行うと、研磨した部分にスクラッチ(白濁)が発生して透明感が得られず、被削材の表面最大粗さRmaxが0.21μmまたは1.92μmと大きくなって良好な光沢面を得ることができない。これと反対に、酸化セリウムの最大粒子径が10μm以下で、80%以上が5μm以下の範囲に分布する研磨剤(実施例11−A,11−B)で研磨を行うと、Rmaxが0.05μm以下と小さくなり、透明感のある良好な光沢面を得ることができる。したがって、研磨材である酸化セリウムの粒子径rは10μm以下でその80%が5μm以下であることが望ましい。
【0023】
次に、実施例12および比較例12において、研磨材を酸化クロムとした場合も、最大粒子径が10μm以下で、80%以上が超え5μm以下の範囲に分布する研磨剤(実施例12−A,12−B)で研磨を行うと、Rmaxが0.07μm以下となり、良好な光沢面を得ることができる。また、鏡面の定義は一般的にRmaxが0.1μm以下となっており、比較例12−C,12−Dの場合はこの数値より大きくなっているので、研磨した部分が鏡面ではないことが明らかであり、実施例12−A,12−Bの場合はこの数値をクリアしているので、鏡面であることがわかる。したがって、研磨材である酸化セリウムの粒子径rは10μm以下でその80%が5μm以下であることが望ましい。
【0024】
実施例13〜19および比較例13〜19においては、上述の実施例11,12および比較例11,12とほぼ同様の結果が得られ、研磨材の粒子径rは10μm以下で、その80%が5μm以下であることが望ましい。
【0025】
このように、研磨材の粒子径が10μm以下でその80%が5μm以下の研磨材、水、アエロジルおよび界面活性剤であるセロソルブからなる研磨液と、DMEとを混合し、スプレー容器に充填した実施例11〜19スプレーの研磨剤は、金属、ガラスなどの加工面の仕上げ、艶出しなどを良好に行うことができる信頼性の高いスプレー研磨剤を得ることができる。
【0026】
次に、水、アエロジルおよびセロソルブに、各研磨材(平均粒径2.0μm、5μm以下が98,8%含まれる)の含有量が1.0wt%、10.0wt%、20.0wt%、30.0wt%、50.0wt%、65.0wt%となるように混合して研磨液を作製し、DMEとともにスプレー容器に充填してスプレー研磨剤を作製し、各研磨材の含有量別スプレー研磨剤における被削材の琢磨試験を行ってその仕上げ表面粗さと研磨力の評価をおこなった。なお、研磨材の含有量が65.0wt%を超えるようにスプレー研磨剤を作製しようとすると、研磨液の粘度をほぼ100mPa,Sにするために界面活性剤を多量に混合しなければならないため、水が混合できなくなってしまう。よって、スプレー研磨剤をミスト状に噴射させるための粘度100mPa,Sにできる研磨材の最大含有量は65.0wt%が限度である。また、研磨材の含有量が80.0wt%および90.0wt%である水と研磨材からなる液状タイプのものを作製し、これを比較例とする。
【0027】
各研磨材の評価条件およびその評価結果を表4、表5および表6に示す。
【表4】
Figure 0003858202
【0028】
【表5】
Figure 0003858202
【0029】
【表6】
Figure 0003858202
【0030】
まず、実施例21および比較例21において、表4からわかるように、研磨材である酸化セリウムの含有量が65.0wt%を超える(比較例21)と、研磨力が大きくなり過ぎるため被削材の表面最大粗さRmaxが0.09μmまたは0.12μmとなり、表面の歪みが大きくなって良好な仕上げを行うことができない。また、研磨力が大きいために削れ過ぎてしまう。このため、研磨量が50mg/m2 または56mg/m2 と多くなり、透明性は良くなるが被削材の表面がフラットにならないなど偏向角が所定の範囲から逸脱して不規則になってしまい、仕上げ精度が悪くなる。また、研磨材の含有量が1.0wt%の場合、被削材を研磨することができ光沢もでるにはでるが、研磨力が小さいために、3分間の研磨時間では研磨量が0.1mg/m2 と少なく研磨にかなりの時間がかかってしまう。さらに、研磨材の含有量が1.0wt%未満であると、研磨力が小さくほとんど研磨されないため、工業用品としては不適当である。一方、研磨材の含有量が10.0wt%以上で50.0wt%以下のスプレー研磨剤(実施例21)は、表面最大粗さRmaxが0.02μm〜0.03μmと小さくほぼ一定しており、研磨量も少ないため、被削材の表面の歪みがほとんどなく偏向角が一定で良好な仕上げを得ることができる。また、研磨材の含有量が低くなるにつれて仕上がり時間がかかるものの、仕上がり精度は良い。したがって、研磨材である酸化セリウムの含有量は1.0wt%〜65.0wt%の範囲内であることが望ましく、さらに10.0wt%〜50.0wt%の範囲内であることが好ましい。
【0031】
次に、実施例22および比較例22において、研磨材を酸化クロムとした場合も、その含有量が65.0wt%を超える(比較例22)と、研磨力が大きくなり過ぎるため被削材の表面最大粗さRmaxが0.09μmまたは0.11μmとなり、表面の歪みが大きくなって良好が仕上げを行うことができない。また、研磨力が大きいので削れ過ぎてしまうため、研磨量が39mg/m2 または42mg/m2 と多くなり、偏向角が所定の範囲から逸脱して不規則になってしまって仕上げ精度が悪くなる。また、研磨材の含有量が1.0wt%の場合、研磨力が小さく研磨に時間がかかってしまい、1.0wt%未満の場合はほとんど研磨されず、工業用品としては不適当である。一方、研磨材の含有量が10.0wt%〜50.0wt%のスプレー研磨剤(実施例22)は、表面最大粗さRmaxが0.03μm〜0.04μmと小さくほぼ一定しており、研磨量も少ないため、偏向角が一定で良好な仕上げを得ることができる。したがって、研磨材である酸化クロムの含有量は1.0wt%〜65.0wt%の範囲内であることが望ましく、さらに10.0wt%〜50.0wt%の範囲内であることが好ましい。
【0032】
実施例23〜29および比較例23〜29においては、上述の実施例21,22および比較例21,22とほぼ同様の結果が得られ、研磨材の含有量は1.0wt%〜65.0wt%の範囲内であることが望ましく、さらに10.0wt%〜50.0wt%の範囲内であることが望ましい。
【0033】
このように、研磨材、水、分散剤および界面活性剤からなる研磨液において、その研磨材の含有量を1.0wt%〜65.0wt%の範囲内、さらに望ましくは10.0wt%〜50.0wt%の範囲内とし、この研磨液とDMEとを混合してスプレー容器に充填した実施例21〜29のスプレー研磨剤は、被削材の偏向角が一定で研磨力の大きい仕上げ精度の高いスプレー研磨剤を得ることができる。
【0034】
次に、含有量が1.0wt%、5.0wt%、10.0wt%、20.0wt%、30.0wt%、50.0wt%、65.0wt%の各研磨材に水およびセロソルブを混合し、さらに分散剤であるアエロジルの含有量を変えて混合して数種類の研磨液を作製し、DMEとともにスプレー容器に充填して数種類のスプレー研磨剤を作製する。そして、これら作製されたスプレー研磨剤を常温でほぼ6か月間放置し、その間の分散性の善し悪しを観察して保存安定性の評価を行った。但し、任意観察日においてスプレー研磨剤に沈殿や液性状の変化が全くなく分散性が優である場合は「◎」、沈殿や液性状の変化がなく分散性が良である場合は「○」、少しでも沈殿が有る場合は「△」、分離がある場合は「×」と判定した。
【0035】
この評価結果を表7〜表15に示す。
【表7】
Figure 0003858202
【0036】
【表8】
Figure 0003858202
【0037】
【表9】
Figure 0003858202
【0038】
【表10】
Figure 0003858202
【0039】
【表11】
Figure 0003858202
【0040】
【表12】
Figure 0003858202
【0041】
【表13】
Figure 0003858202
【0042】
【表14】
Figure 0003858202
【0043】
【表15】
Figure 0003858202
【0044】
まず、実施例31Aおよび比較例31Aにおいて、表7からわかるように、研磨材である酸化セリウムの含有量が1.0wt%の場合、アエロジルの含有量を1.0wt%とするとほぼ30日目でスプレー研磨剤に沈殿が見られ、分散性つまり保存安定性が低下してしまう。また、アエロジルの含有量を1.5wt%とするとやはり90日目で沈殿が見られ、6か月間保存安定性を維持することができない。これと反対に、アエロジルの含有量を2.0wt%とすると180日間(6か月間)放置しても沈殿等は見られず、保存安定性は維持されている。また、表7に示していないが、アエロジルの含有量を2.0wt%を超えても2.0wt%の場合と同様に保存安定性は維持される。
【0045】
次に、実施例32Aおよび比較例32Aにおいて、表8からわかるように、研磨材である酸化クロムの含有量を1.0wt%とした場合、アエロジルの含有量を2.0wt%未満とすると6か月間保存安定性を維持することはできず、例えばほぼ30日目で沈殿が見られ保存安定性が低下してしまう。これと反対に、アエロジルの含有量を2.0wt%以上とすると180日間(6か月間)放置しても沈殿等は見られず、保存安定性は維持されている。
【0046】
このような結果は、酸化セリウムおよび酸化クロムに限ることではなく、他の研磨材例えばシリカ、酸化ジルコニウムなどでも同様の結果が得られている(表9〜表15参照)。したがって、研磨材の含有量が1.0wt%の場合、分散剤の含有量を2.0wt%以上としてスプレー研磨剤を作製すれば、6か月間その分散性、つまり保存安定性が維持されるスプレー研磨剤を得ることができる。
【0047】
実施例31Bおよび比較例31Bにおいて、表7からわかるように、研磨材である酸化セリウムの含有量が5.0wt%の場合、アエロジルの含有量を1.0wt%とするとほぼ30日目で沈殿が見られ、保存安定性が低下してしまう。また、アエロジルの含有量を1.5wt%とするとやはり90日目で沈殿が見られ、6か月間保存安定性を維持することができない。これと反対に、アエロジルの含有量を2.0wt%とすると180日間(6か月間)放置しても沈殿等は見られず、保存安定性は維持されている。
【0048】
また、実施例32Bおよび比較例32Bにおいて、表8からわかるように、研磨材である酸化クロムの含有量を5.0wt%とした場合、アエロジルの含有量を2.0wt%以上とすると180日間(6か月間)放置しても沈殿等は見られず、保存安定性は維持されている。さらに、他の研磨材でも同様の結果が得られており(表9〜表15参照)、したがって、研磨材の含有量が5.0wt%の場合、分散剤の含有量を2.0wt%以上としてスプレー研磨剤を作製すれば、6か月間その分散性が維持されるスプレー研磨剤を得ることができる。
【0049】
そして、表7〜表15から明らかなように、研磨材の含有量が10.0wt%の場合は分散剤の含有量が2.0wt%以上、研磨材の含有量が20.0wt%の場合は分散剤の含有量が5.0wt%以上、研磨材の含有量が30.0wt%の場合は分散剤の含有量が6.0wt%以上、研磨材の含有量が50.0wt%の場合は分散剤の含有量が10.0wt%以上、研磨材の含有量が65.0wt%の場合は分散剤の含有量が12.0wt%以上となり、研磨材の種類に関係なく、研磨材の含有量に対して分散剤の含有量は決められる。
【0050】
しがたって、上述したように、研磨材の含有量は1.0wt%〜65.0wt%の範囲内であることが望ましく、さらに10.0wt%〜50.0wt%の範囲内であることが望ましいので、分散剤の含有量は2.0wt%〜12.0wt%の範囲内であることが望ましく、さらに2.0wt%〜10.0wt%の範囲内であることが好ましい。
【0051】
このように、研磨材、水、分散剤および界面活性剤からなる研磨液において、その研磨材の含有量を1.0wt%〜65.0wt%の範囲内、さらに望ましくは10.0wt%〜50.0wt%の範囲内とし、分散剤の含有量を2.0wt%〜12.0wt%の範囲内、さらに望ましくは2.0wt%〜10.0wt%の範囲内として、この研磨液とDMEとを混合してスプレー容器に充填した実施例31A〜39Gのスプレー研磨剤は、分散性が6か月間維持される品質の良いスプレー研磨剤を得ることができる。
【0052】
なお、上述の実施例では界面活性剤をポリオキシエーテル化合物であるセロソルブとし、ガスをDMEとした場合を例示して説明したが、界面活性剤は他のポリオキシエーテル化合物、アルキルエーテル化合物などでもよく、また、ガスは液化石油ガス(LPG)でもよい。これらの場合も同様の効果を奏する。
また、上述の実施例のスプレー研磨剤に例えば柑橘系の香料を加えてもよい。
【0053】
【発明の効果】
以上のように本発明に係るポリッシング用スプレー研磨剤は、研磨材、水、アエロジルおよび研磨材粘度低下性を示す界面活性剤からなる研磨液と、所定量のガスとを混合してスプレー容器に充填して作製したので、分散性を保持しつつ粘土の低い研磨剤となり、取扱いが便利なスプレー研磨剤を得ることができる。
【0054】
また、研磨液の研磨材は、その粒子径が10μm以下で80%以上が5μm以下であり、その含有量が1.0wt%〜65.0wt%の範囲内であり、望ましくは10.0wt%〜50.0wt%の範囲内であるようにしたので、良好な加工を施すことができる研磨効果の高いスプレー研磨剤を得ることができる。
【0055】
さらに、研磨液の研磨材粘度低下性を示す界面活性剤は、ポリオキシエーテル化合物またはアルキルエーテル化合物からなり、この研磨材粘度低下性を示す界面活性剤の含有量を、研磨材、水およびアエロジルからなる原液の粘土が100mPa,Sとなるように定めたので、スプレー容器内での分散性がよく、噴射性の良好な安定性の高い経済的な研磨剤を得ることができる。
【0056】
また、研磨液において、研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上の場合はアエロジルの含有量が10.0wt%以上、研磨材の含有量が65.0wt%以上の場合はアエロジルの含有量が12.0wt%以上であり、望ましくは、研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上65.0wt%未満の場合はアエロジルの含有量が10.0wt%以上12.0wt%未満であるようにしたので、研磨材の沈殿を防止し、分散性が維持された品質の良いスプレー研磨材を得ることができる。
【0057】
また、ガスはジメチルエーテルまたは液化石油ガスであり、このガスの量が全容量の1/3〜1/2であるようにしたので、ミスト状に噴射することができ、取扱いが容易なスプレー研磨剤を得ることができる。[0001]
[Industrial application fields]
The present invention relates to a spray-type abrasive used for finishing, polishing and the like of metal, glass, stone and other processed surfaces.
[0002]
[Prior art]
Conventionally, when finishing and glazing of a work surface of a work material such as a plate glass, a fork, and a pan, especially when performing a mirror finish, an abrasive corresponding to the material constituting the work material, such as glass, is cerium oxide (CeO 2). ), metal chromium oxide (Cr 2 0 3 such as stainless steel), those light metal such as aluminum that solidified into a rod of silica (Si0 2) or the like in the fine or particulate glyceride-based oil, felt like polisher It is applied to an elastic base material such as a buff or a non-woven fabric, and the work surface is mirror-finished by the free abrasive grains of the base material.
[0003]
[Problems to be solved by the invention]
The conventional abrasive as described above is a solid material obtained by solidifying an abrasive material corresponding to the material of the work material with oils and fats, so when performing a polishing operation, first, a solid abrasive agent on a substrate such as felt In addition, it was troublesome because it had to be applied, and during application, the oily odor and odor that was unique to the abrasive became stronger and became a foul odor, and the dust of the abrasive was scattered and the working environment was bad .
[0004]
In addition, after work, oil must be removed from the work material, especially in the case of small and complex products such as crafts, because it is almost manually performed without using an automatic polishing machine, It was more laborious and tedious. Further, such polishing work is not performed in ordinary households, and the work cost for finishing is high, resulting in an increase in cost.
[0005]
Also, when polishing with an automatic polishing machine, if the speed is increased, abnormal scratches (unevenness of processing) will occur on the work material, and it will not be possible to polish cleanly, and if it is performed slowly, it will take time. There was a problem with sex.
[0006]
Therefore, some solid abrasives are made into a paste and applied to a substrate such as felt as in the case of solids for polishing. This paste-like abrasive is usually compared with 15000 to 90000 mPa, S. When applied to a substrate such as felt, it is difficult to handle and cumbersome. In addition, abrasives dissolved in water are sprayed onto the work material from the nozzle of an automatic polishing machine. In the case of polishing, there are problems such that the abrasive does not spray well and industrial facilities become large.
[0007]
Also, since solid and paste-like abrasives are difficult to handle, it is necessary to apply a large amount of abrasives to the substrate in consideration of the case where polishing cannot be performed at once, which is a wasteful operation such as excessive or insufficient application. It was time consuming and uneconomical.
[0008]
The present invention has been made to solve the above problems, and is an inexpensive polishing spray that can easily and easily finish and polish a processed surface of metal, glass, etc. even at home. The object is to provide an abrasive.
[0009]
[Means for solving the problems]
The polishing abrasive for polishing according to the present invention is a mixture of an abrasive, water, aerosil and a polishing agent comprising a surfactant exhibiting a viscosity reducing ability, and a predetermined amount of gas mixed into a spray container. is there.
[0010]
The abrasive of the polishing liquid has a particle size of 10 μm or less and 80% or more and 5 μm or less, and its content is in the range of 1.0 wt% to 65.0 wt%, preferably 10.0 wt%. It is in the range of ˜50.0 wt%.
[0011]
Further, the surfactant exhibiting the abrasive viscosity reduction of the polishing liquid is composed of a polyoxyether compound or an alkyl ether compound. Then, the content of the surfactant exhibiting the abrasive viscosity-reducing property of the polishing liquid is determined so that the clay of the stock solution composed of the abrasive, water and aerosil is 100 mPa, S.
[0012]
Further, when the abrasive content is 1.0 wt% or more, the Aerosil content is 2.0 wt% or more, and when the abrasive content is 20.0 wt% or more, the Aerosil content is 5.0 wt%. As described above, when the content of the abrasive is 30.0 wt% or more, the content of Aerosil is 6.0 wt% or more, and when the content of the abrasive is 50.0 wt% or more, the content of Aerosil is 10.0 wt%. As described above, when the content of the abrasive is 65.0 wt% or more, the content of Aerosil is 12.0 wt% or more. Desirably, when the abrasive content is 1.0 wt% or more, the aerosil content is 2.0 wt% or more, and when the abrasive content is 20.0 wt% or more, the aerosil content is 5.0 wt%. % If the abrasive content is 30.0 wt% or more, the Aerosil content is 6.0 wt% or more, and if the abrasive content is 50.0 wt% or more and less than 65.0 wt%, the Aerosil content is The amount is 10.0 wt% or more and less than 12.0 wt%.
[0013]
Further, the gas is dimethyl ether or liquefied petroleum gas, and the amount of this gas is 1/3 to 1/2 of the total volume.
[0014]
[Action]
When producing a polishing abrasive for polishing by mixing a polishing liquid composed of an abrasive, water, aerosil and a surfactant exhibiting an abrasive viscosity lowering with a predetermined amount of gas and filling a spray container, the polishing liquid The abrasive has a particle diameter of 10 μm or less and 80% or more is 5 μm or less, and its content is in the range of 1.0 wt% to 65.0 wt%, preferably 10.0 wt% to 50.0 wt%. The surfactant that is within the range and exhibits the abrasive viscosity reducing property is composed of a polyoxyether compound or an alkyl ether compound, and the content of the surfactant exhibiting the abrasive viscosity reducing property is changed to abrasive, water And the clay of the stock solution composed of Aerosil is determined to be 100 mPa, S, and the content of Aerosil is Aeroge when the abrasive content is 1.0 wt% or more. In the case where the content of aluminum is 2.0 wt% or more, the content of abrasive is 20.0 wt% or more, the content of Aerosil is 5.0 wt% or more, and the content of abrasive is 30.0 wt% or more When the content of Aerosil is 6.0 wt% or more, when the content of abrasive is 50.0 wt% or more, when the content of Aerosil is 10.0 wt% or more, and when the content of abrasive is 65.0 wt% or more The content of Aerosil is 12.0 wt% or more. Desirably, when the content of abrasive is 1.0 wt% or more, the content of Aerosil is 2.0 wt% or more and the content of abrasive is 20.0 wt%. % Or more, the content of Aerosil is 5.0 wt% or more, and when the content of abrasive is 30.0 wt% or more, the content of Aerosil is 6.0 wt% or more and the content of abrasive is 50.0 wt%. % Or more and less than 65.0 wt% The content of Aerosil is less than or 10.0 wt% 12.0 wt%, the gas is dimethyl ether or liquefied petroleum gas, it is assumed the amount of the gas is 1 / 3-1 / 2 of the total volume. Thereby, it becomes an abrasive having a low clay while maintaining dispersibility, and it is possible to obtain a spray abrasive that is inexpensive and convenient to handle and has a good polishing finish.
[0015]
【Example】
Next, the present invention will be specifically described with reference to examples. Note that “part” in the text represents the relative mixing ratio of the main solvent to water. DME represents dimethyl ether (CH 3 —O—CH 3 ).
[0016]
First, the component table | surface of the abrasive | polishing agent of Examples 1-9 is shown in Table 1.
[Table 1]
Figure 0003858202
[0017]
And based on the composition table of Table 1, 20 parts of abrasive (containing an average particle size of 2.0 μm, 5 μm or less is 98,8%), 100 parts of water, and Aerosil (main component: SiO 2 ) as a dispersant. , White and white) are mixed to prepare stock solutions with good dispersibility. Incidentally, Aerosil is when dissolved in water SiOH - becomes, and the colorless and transparent gel. At this time, in the case of Example 1, the stock solution has a high viscosity of 24000 mPa, S (38 ° C.). Accordingly, a cellosolve (CH 3 CH 2 —O—CH 2 CH 2 —OH) as a surfactant is mixed so that the viscosity of the stock solution is low, that is, approximately 100 mPa, S (38 ° C.). Is made. Then, DME is added in an amount of about 1/3 of the total volume at 25 ° C. and a pressure of 5 to 6 kg / m 2 and filled in a spray container made of plastic or metal material to produce a spray abrasive.
[0018]
It was confirmed that the spray abrasives of Examples 1 to 9 produced in this way were suspensions that maintained dispersibility and had low viscosity because the abrasives mixed therein were not precipitated. it can. In addition, since this spray abrasive is sprayed in a mist form by adding approximately 1/3 of the total volume of DME, it is easy to handle when spraying on a substrate such as felt, It can be used conveniently in both automatic polishing machines. In addition, cellosolve used as a surfactant not only lowers the viscosity of the stock solution, but also has a pH close to 7 and a low price. Things are obtained. Furthermore, since this spray abrasive is odorless, there is no possibility that the work is hindered by the odor peculiar to the abrasive and the work efficiency is deteriorated, and the work environment can be improved. Therefore, it can be seen that a mixture of the above composition so that the final viscosity is about 100 mPa, S can be used as a spray abrasive.
[0019]
Next, a spray abrasive containing 10% of the abrasive in the polishing liquid and having a different particle size distribution of the abrasive is produced by the above production method, and the workpiece is polished by spraying on the felt. The polishing roughness, particularly the glossiness was evaluated.
[0020]
Tables 2 and 3 show the evaluation conditions of each abrasive and the evaluation results.
[Table 2]
Figure 0003858202
[0021]
[Table 3]
Figure 0003858202
[0022]
First, as can be seen from Table 2 in Example 11 and Comparative Example 11, a polishing agent in which a particle size r of cerium oxide, which is an abrasive, exceeds 10 μm is mixed (Comparative Examples 11-C, 11). -D) When the work material is polished, scratches (white turbidity) are generated in the polished part, and a transparent feeling is not obtained, and the maximum surface roughness Rmax of the work material is 0.21 μm or 1.92 μm. It becomes too large to obtain a good glossy surface. On the contrary, when polishing is performed with a polishing agent (Examples 11-A and 11-B) in which the maximum particle size of cerium oxide is 10 μm or less and 80% or more is distributed in a range of 5 μm or less, Rmax is set to 0.1. A good glossy surface with a sense of transparency can be obtained because it is as small as 05 μm or less. Therefore, it is desirable that the particle diameter r of the cerium oxide as an abrasive is 10 μm or less, and 80% of the particle diameter is 5 μm or less.
[0023]
Next, in Example 12 and Comparative Example 12, even when chromium oxide is used as the abrasive, an abrasive having a maximum particle size of 10 μm or less and more than 80% and distributed in a range of 5 μm or less (Example 12-A , 12-B), Rmax becomes 0.07 μm or less, and a good glossy surface can be obtained. In addition, the definition of the mirror surface is generally that Rmax is 0.1 μm or less, and in the case of Comparative Examples 12-C and 12-D, which is larger than this value, the polished part may not be a mirror surface. Obviously, in the case of Examples 12-A and 12-B, since this numerical value is cleared, it can be seen that it is a mirror surface. Therefore, it is desirable that the particle diameter r of the cerium oxide as an abrasive is 10 μm or less, and 80% of the particle diameter is 5 μm or less.
[0024]
In Examples 13 to 19 and Comparative Examples 13 to 19, almost the same results as those of Examples 11 and 12 and Comparative Examples 11 and 12 described above were obtained, and the particle diameter r of the abrasive was 10 μm or less, and 80% thereof. Is preferably 5 μm or less.
[0025]
In this way, the abrasive having a particle diameter of 10 μm or less and 80% of the abrasive is 5 μm or less, a polishing liquid composed of water, aerosil, and cellosolve as a surfactant, and DME are mixed and filled into a spray container. Examples 11-19 Spray abrasives can provide a highly reliable spray abrasive capable of satisfactorily finishing and polishing a processed surface such as metal or glass.
[0026]
Next, water, aerosil and cellosolve contain 1.0 wt%, 10.0 wt%, 20.0 wt% of each abrasive (containing an average particle size of 2.0 μm, 5 μm or less of 98,8%), A polishing liquid is prepared by mixing so as to be 30.0 wt%, 50.0 wt%, and 65.0 wt%, and is filled in a spray container together with DME to produce a spray abrasive. A polishing test of the work material with an abrasive was performed to evaluate the finished surface roughness and polishing power. In addition, when it is going to produce a spray abrasive so that content of abrasives may exceed 65.0 wt%, in order to make the viscosity of polishing liquid into about 100 mPa, S, surfactant must be mixed in large quantities. The water will not be mixed. Therefore, the maximum content of the abrasive that can be made into a viscosity of 100 mPa, S for spraying the spray abrasive in a mist form is limited to 65.0 wt%. Moreover, the liquid type thing which consists of water and abrasives whose content of abrasives is 80.0 wt% and 90.0 wt% is produced, and this is used as a comparative example.
[0027]
Tables 4, 5 and 6 show the evaluation conditions of each abrasive and the evaluation results.
[Table 4]
Figure 0003858202
[0028]
[Table 5]
Figure 0003858202
[0029]
[Table 6]
Figure 0003858202
[0030]
First, in Example 21 and Comparative Example 21, as can be seen from Table 4, when the content of cerium oxide as an abrasive exceeds 65.0 wt% (Comparative Example 21), the polishing force becomes too large, so that the workpiece is cut. The maximum surface roughness Rmax of the material becomes 0.09 μm or 0.12 μm, and the surface distortion becomes large, so that satisfactory finishing cannot be performed. In addition, since the polishing power is large, it is excessively shaved. For this reason, the polishing amount is increased to 50 mg / m 2 or 56 mg / m 2 , and the transparency is improved, but the surface of the work material does not become flat. As a result, the finishing accuracy deteriorates. Further, when the content of the abrasive is 1.0 wt%, the work material can be polished and gloss can be obtained. However, since the polishing power is small, the polishing amount is 0. Polishing takes as much time as 1 mg / m 2 . Furthermore, when the content of the abrasive is less than 1.0 wt%, the polishing power is small and the material is hardly polished, so that it is unsuitable as an industrial product. On the other hand, the spray abrasive (Example 21) having an abrasive content of 10.0 wt% or more and 50.0 wt% or less has a surface maximum roughness Rmax as small as 0.02 μm to 0.03 μm and almost constant. Since the polishing amount is small, there is almost no distortion of the surface of the work material, and a satisfactory finish can be obtained with a constant deflection angle. Moreover, although finishing time is required as the abrasive content decreases, the finishing accuracy is good. Therefore, the content of cerium oxide as an abrasive is preferably in the range of 1.0 wt% to 65.0 wt%, and more preferably in the range of 10.0 wt% to 50.0 wt%.
[0031]
Next, in Example 22 and Comparative Example 22, even when the polishing material is chromium oxide, if the content exceeds 65.0 wt% (Comparative Example 22), the polishing power becomes too large, so The maximum surface roughness Rmax is 0.09 μm or 0.11 μm, and the surface distortion becomes large, and satisfactory finishing cannot be performed. In addition, since the polishing force is large, it is excessively scraped, so the polishing amount increases to 39 mg / m 2 or 42 mg / m 2 , and the deflection angle deviates from a predetermined range and becomes irregular, resulting in poor finishing accuracy. Become. Further, when the content of the abrasive is 1.0 wt%, the polishing power is small and it takes time to polish, and when it is less than 1.0 wt%, it is hardly polished and is not suitable as an industrial article. On the other hand, the spray abrasive (Example 22) having an abrasive content of 10.0 wt% to 50.0 wt% has a maximum surface roughness Rmax as small as 0.03 μm to 0.04 μm and is almost constant. Since the amount is small, a good finish can be obtained with a constant deflection angle. Therefore, the content of chromium oxide as an abrasive is preferably in the range of 1.0 wt% to 65.0 wt%, and more preferably in the range of 10.0 wt% to 50.0 wt%.
[0032]
In Examples 23-29 and Comparative Examples 23-29, substantially the same results as in Examples 21 and 22 and Comparative Examples 21 and 22 described above were obtained, and the abrasive content was 1.0 wt% to 65.0 wt%. % Is desirably in the range of 10.0 wt% to 50.0 wt%.
[0033]
Thus, in the polishing liquid comprising the abrasive, water, dispersant and surfactant, the content of the abrasive is within the range of 1.0 wt% to 65.0 wt%, more preferably 10.0 wt% to 50 wt%. The spray abrasives of Examples 21 to 29, in which the polishing liquid and DME are mixed and filled in a spray container within the range of 0.0 wt%, the finishing angle of the work material is constant, and the polishing accuracy is high. A high spray abrasive can be obtained.
[0034]
Next, water and cellosolve are mixed in each abrasive having a content of 1.0 wt%, 5.0 wt%, 10.0 wt%, 20.0 wt%, 30.0 wt%, 50.0 wt%, and 65.0 wt%. Further, several types of polishing liquids are prepared by changing the content of the aerosil which is a dispersing agent, and filled with a DME together with a DME to prepare several types of spray polishing agents. Then, these prepared spray abrasives were allowed to stand at room temperature for about 6 months, and the storage stability was evaluated by observing whether the dispersibility was good or bad during that period. However, if there is no precipitation or liquid property change and the dispersibility is excellent in the spray abrasive on any observation day, “◎”, and if there is no precipitation or liquid property change and the dispersibility is good, “○”. When there was any precipitation, it was judged as “Δ”, and when there was separation, it was judged as “x”.
[0035]
The evaluation results are shown in Tables 7 to 15.
[Table 7]
Figure 0003858202
[0036]
[Table 8]
Figure 0003858202
[0037]
[Table 9]
Figure 0003858202
[0038]
[Table 10]
Figure 0003858202
[0039]
[Table 11]
Figure 0003858202
[0040]
[Table 12]
Figure 0003858202
[0041]
[Table 13]
Figure 0003858202
[0042]
[Table 14]
Figure 0003858202
[0043]
[Table 15]
Figure 0003858202
[0044]
First, in Example 31A and Comparative Example 31A, as can be seen from Table 7, when the content of cerium oxide as an abrasive is 1.0 wt%, when the content of Aerosil is 1.0 wt%, approximately 30th day As a result, precipitation is observed in the spray abrasive and the dispersibility, that is, the storage stability is lowered. Moreover, when the content of Aerosil is 1.5 wt%, precipitation is still observed on the 90th day, and the storage stability cannot be maintained for 6 months. On the other hand, when the content of Aerosil is 2.0 wt%, no precipitation is observed even if it is left for 180 days (6 months), and the storage stability is maintained. Although not shown in Table 7, even when the content of Aerosil exceeds 2.0 wt%, the storage stability is maintained as in the case of 2.0 wt%.
[0045]
Next, in Example 32A and Comparative Example 32A, as can be seen from Table 8, when the content of chromium oxide as an abrasive is 1.0 wt%, the content of Aerosil is less than 2.0 wt%. Storage stability cannot be maintained for months, and for example, precipitation is observed on about the 30th day and storage stability is lowered. On the other hand, when the content of Aerosil is 2.0 wt% or more, no precipitation is observed even if it is left for 180 days (6 months), and the storage stability is maintained.
[0046]
Such results are not limited to cerium oxide and chromium oxide, and similar results are obtained with other abrasives such as silica and zirconium oxide (see Tables 9 to 15). Therefore, when the content of the abrasive is 1.0 wt%, if the spray abrasive is prepared with the content of the dispersant being 2.0 wt% or more, the dispersibility, that is, the storage stability is maintained for 6 months. A spray abrasive can be obtained.
[0047]
In Example 31B and Comparative Example 31B, as can be seen from Table 7, when the content of cerium oxide, which is an abrasive, is 5.0 wt%, the precipitation is approximately 30 days when the content of Aerosil is 1.0 wt%. Is observed, and the storage stability is lowered. Moreover, when the content of Aerosil is 1.5 wt%, precipitation is still observed on the 90th day, and the storage stability cannot be maintained for 6 months. On the other hand, when the content of Aerosil is 2.0 wt%, no precipitation is observed even if it is left for 180 days (6 months), and the storage stability is maintained.
[0048]
In Example 32B and Comparative Example 32B, as can be seen from Table 8, when the content of chromium oxide as an abrasive is 5.0 wt%, the content of Aerosil is 2.0 wt% or more, 180 days. (For 6 months) No precipitation or the like is observed even after standing, and the storage stability is maintained. Further, similar results were obtained with other abrasives (see Tables 9 to 15). Therefore, when the abrasive content is 5.0 wt%, the dispersant content is 2.0 wt% or more. As a spray abrasive, a spray abrasive that maintains its dispersibility for 6 months can be obtained.
[0049]
As is clear from Tables 7 to 15, when the abrasive content is 10.0 wt%, the dispersant content is 2.0 wt% or more, and the abrasive content is 20.0 wt%. When the dispersant content is 5.0 wt% or more and the abrasive content is 30.0 wt%, the dispersant content is 6.0 wt% or more and the abrasive content is 50.0 wt% When the content of the dispersant is 10.0 wt% or more and the content of the abrasive is 65.0 wt%, the content of the dispersant is 12.0 wt% or more, regardless of the type of the abrasive. The content of the dispersant is determined with respect to the content.
[0050]
Therefore, as described above, the content of the abrasive is preferably in the range of 1.0 wt% to 65.0 wt%, and more preferably in the range of 10.0 wt% to 50.0 wt%. Since it is desirable, the content of the dispersant is desirably in the range of 2.0 wt% to 12.0 wt%, and more preferably in the range of 2.0 wt% to 10.0 wt%.
[0051]
Thus, in the polishing liquid comprising the abrasive, water, dispersant and surfactant, the content of the abrasive is within the range of 1.0 wt% to 65.0 wt%, more preferably 10.0 wt% to 50 wt%. And 0.05% by weight, and the content of the dispersant is 2.0% to 12.0% by weight, more preferably 2.0% to 10.0% by weight. The spray abrasives of Examples 31A to 39G mixed with and filled in a spray container can obtain a high quality spray abrasive in which dispersibility is maintained for 6 months.
[0052]
In the above-described embodiments, the surfactant is made of cellosolve, which is a polyoxyether compound, and the gas is made of DME. However, the surfactant may be other polyoxyether compounds, alkyl ether compounds, or the like. Well, the gas may be liquefied petroleum gas (LPG). These cases also have the same effect.
Moreover, you may add a citrus-type fragrance | flavor, for example to the spray polishing agent of the above-mentioned Example.
[0053]
【The invention's effect】
As described above, the polishing spray abrasive for polishing according to the present invention mixes a polishing liquid composed of an abrasive, water, aerosil and a surfactant exhibiting an abrasive viscosity reduction, and a predetermined amount of gas into a spray container. Since it was prepared by filling, it becomes an abrasive with low clay while maintaining dispersibility, and a spray abrasive that is easy to handle can be obtained.
[0054]
The abrasive of the polishing liquid has a particle size of 10 μm or less and 80% or more and 5 μm or less, and its content is in the range of 1.0 wt% to 65.0 wt%, preferably 10.0 wt%. Since it is in the range of ˜50.0 wt%, it is possible to obtain a spray abrasive having a high polishing effect that can be satisfactorily processed.
[0055]
Further, the surfactant exhibiting the abrasive viscosity reducing property of the polishing liquid is composed of a polyoxyether compound or an alkyl ether compound, and the content of the surfactant exhibiting the abrasive viscosity decreasing property is changed to abrasive, water and aerosil. Since the undiluted clay consisting of 100 mPa, S is determined, it is possible to obtain a highly stable and economical abrasive with good dispersibility in the spray container and good sprayability.
[0056]
Further, in the polishing liquid, when the content of the abrasive is 1.0 wt% or more, the content of Aerosil is 2.0 wt% or more, and when the content of the abrasive is 20.0 wt% or more, the content of Aerosil is When the content of the abrasive is 5.0 wt% or more and the content of the abrasive is 30.0 wt% or more, the content of the Aerosil is 6.0 wt% or more, and when the content of the abrasive is 50.0 wt% or more, the content of the Aerosil is When the content of the abrasive is 10.0 wt% or more and the content of the abrasive is 65.0 wt% or more, the content of the Aerosil is 12.0 wt% or more, and desirably when the content of the abrasive is 1.0 wt% or more When the Aerosil content is 2.0 wt% or more and the abrasive content is 20.0 wt% or more, the Aerosil content is 5.0 wt% or more, and the abrasive content is 30.0 wt% or more. Aerosil content is 6. wt% or more, since the content of the abrasive is in the case of less than 50.0 wt% or more 65.0Wt% content of Aerosil were to be less than 10.0 wt% or more 12.0 wt%, the precipitation of the abrasive It is possible to obtain a high-quality spray abrasive that is prevented and maintains dispersibility.
[0057]
Further, the gas is dimethyl ether or liquefied petroleum gas, and the amount of this gas is 1/3 to 1/2 of the total volume, so that it can be sprayed in a mist form and is easy to handle. Can be obtained.

Claims (8)

研磨材、水、アエロジルおよび研磨材粘度低下性を示す界面活性剤からなる研磨液と、所定量のガスとを混合してスプレー容器に充填したことを特徴とするポリッシング用スプレー研磨剤。A polishing abrasive for polishing, characterized by mixing a polishing liquid comprising an abrasive, water, aerosil and a surfactant exhibiting an abrasive viscosity-reducing property with a predetermined amount of gas and filling a spray container. 研磨液の研磨材は、その粒子径が10μm以下で80%以上が5μm以下であり、その含有量が1.0wt%〜65.0wt%の範囲内であることを特徴とする請求項1記載のポリッシング用スプレー研磨剤。Abrasive polishing liquid, the particle size of more than 80% 10μm or less is at 5μm or less, according to claim 1, wherein the content is being in the range of 1.0wt% ~65.0wt% Spray abrasive for polishing. 研磨液の研磨材は、その粒子径が10μm以下で80%以上が5μm以下であり、その含有量が10.0wt%〜50.0wt%の範囲内であることを特徴とする請求項2記載のポリッシング用スプレー研磨剤。The abrasive of the polishing liquid has a particle size of 10 µm or less, 80% or more and 5 µm or less, and its content is in the range of 10.0 wt% to 50.0 wt%. Polishing abrasive for polishing. 研磨液の研磨材粘度低下性を示す界面活性剤は、ポリオキシエーテル化合物またはアルキルエーテル化合物からなることを特徴とする請求項1〜3のいずれかに記載のポリッシング用スプレー研磨剤。The polishing abrasive for polishing according to any one of claims 1 to 3, wherein the surfactant exhibiting a lowering of the abrasive viscosity of the polishing liquid comprises a polyoxyether compound or an alkyl ether compound. 研磨液の研磨材粘度低下性を示す界面活性剤の含有量を、研磨材、水およびアエロジルからなる原液の粘土が100mPa,Sとなるように定めたことを特徴とする請求項1〜4のいずれかに記載のポリッシング用スプレー研磨剤。The content of the surfactant showing a polishing material viscosity decrease of the polishing liquid, abrasive, a stock solution consisting of water and aerosil clay 100 mPa, according to claim 1, characterized in that defined so that S The spray abrasive | polishing agent for polishing in any one . 研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上の場合はアエロジルの含有量が10.0wt%以上、研磨材の含有量が65.0wt%以上の場合はアエロジルの含有量が12.0wt%以上であることを特徴とする請求項1〜5のいずれかに記載のポリッシング用スプレー研磨剤。 When the abrasive content is 1.0 wt% or more, the Aerosil content is 2.0 wt% or more, and when the abrasive content is 20.0 wt% or more, the Aerosil content is 5.0 wt% or more, When the abrasive content is 30.0 wt% or more, the Aerosil content is 6.0 wt% or more, and when the abrasive content is 50.0 wt% or more, the Aerosil content is 10.0 wt% or more, The polishing abrasive for polishing according to any one of claims 1 to 5, wherein when the content of the abrasive is 65.0 wt% or more, the content of Aerosil is 12.0 wt% or more . 研磨材の含有量が1.0wt%以上の場合はアエロジルの含有量が2.0wt%以上、研磨材の含有量が20.0wt%以上の場合はアエロジルの含有量が5.0wt%以上、研磨材の含有量が30.0wt%以上の場合はアエロジルの含有量が6.0wt%以上、研磨材の含有量が50.0wt%以上65.0wt%未満の場合はアエロジルの含有量が10.0wt%以上12.0wt%未満であることを特徴とする請求項6記載のポリッシング用スプレー研磨剤。When the abrasive content is 1.0 wt% or more, the Aerosil content is 2.0 wt% or more, and when the abrasive content is 20.0 wt% or more, the Aerosil content is 5.0 wt% or more, When the abrasive content is 30.0 wt% or more, the Aerosil content is 6.0 wt% or more, and when the abrasive content is 50.0 wt% or more and less than 65.0 wt%, the Aerosil content is 10 The polishing spray abrasive for polishing according to claim 6, wherein the content is 0.0 wt% or more and less than 12.0 wt%. ガスはジメチルエーテルまたは液化石油ガスであり、該ガスの量が全容量の1/3〜1/2であることを特徴とする請求項1〜7のいずれかに記載のポリッシング用スプレー研磨剤。The polishing abrasive for polishing according to any one of claims 1 to 7 , wherein the gas is dimethyl ether or liquefied petroleum gas, and the amount of the gas is 1/3 to 1/2 of the total volume.
JP32682994A 1994-12-28 1994-12-28 Spray abrasive for polishing Expired - Fee Related JP3858202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32682994A JP3858202B2 (en) 1994-12-28 1994-12-28 Spray abrasive for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32682994A JP3858202B2 (en) 1994-12-28 1994-12-28 Spray abrasive for polishing

Publications (2)

Publication Number Publication Date
JPH08183947A JPH08183947A (en) 1996-07-16
JP3858202B2 true JP3858202B2 (en) 2006-12-13

Family

ID=18192188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32682994A Expired - Fee Related JP3858202B2 (en) 1994-12-28 1994-12-28 Spray abrasive for polishing

Country Status (1)

Country Link
JP (1) JP3858202B2 (en)

Also Published As

Publication number Publication date
JPH08183947A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
US7374592B2 (en) Cleaning and polishing composition for metallic surfaces
US5968238A (en) Polishing composition including water soluble polishing agent
CN105862044A (en) Chemical mechanical polishing slurry
CN103342965A (en) Ultra-fine polishing wax for stainless steel metal product
WO2005056662A2 (en) Cleaning and polishing wax composition
US5094687A (en) Buffing composition
CN107001916B (en) Abrasive composition
US3042509A (en) Abrasive and polish compound
JP3858202B2 (en) Spray abrasive for polishing
EP0387988B1 (en) Buffing composition
EP0258707B1 (en) Liquid cleanser composition
US5277708A (en) Buffing composition
US5945474A (en) Composition and method for removing a substance from a finished surface
JP3826238B2 (en) Liquid composition for metal polishing
JPS5984999A (en) Cleanser composition for liquid detergent abrasion
CA2597985A1 (en) Cleaning and polishing wax composition
JP5483815B2 (en) Wrapping agent composition
KR100264777B1 (en) Cleaner and brightener for automobile having abrasive function
JP4296362B2 (en) Abrasive composition
US5577949A (en) Buffing method
JP2001507064A (en) Aqueous target coating composition and sander finishing method using the target coating composition
JPH02169680A (en) Polishing cleaner composition
JPH0436200B2 (en)
JP2001226665A (en) Abrasive for polishing agent and polishing agent composition containing the same
JP2000017251A (en) Aqueous composition for polishing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees