JP3857421B2 - Can body overheating detection method and apparatus - Google Patents

Can body overheating detection method and apparatus Download PDF

Info

Publication number
JP3857421B2
JP3857421B2 JP14596098A JP14596098A JP3857421B2 JP 3857421 B2 JP3857421 B2 JP 3857421B2 JP 14596098 A JP14596098 A JP 14596098A JP 14596098 A JP14596098 A JP 14596098A JP 3857421 B2 JP3857421 B2 JP 3857421B2
Authority
JP
Japan
Prior art keywords
temperature
vertical fin
combustion gas
water pipe
stud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14596098A
Other languages
Japanese (ja)
Other versions
JPH11337007A (en
Inventor
朗 森
信機 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP14596098A priority Critical patent/JP3857421B2/en
Publication of JPH11337007A publication Critical patent/JPH11337007A/en
Application granted granted Critical
Publication of JP3857421B2 publication Critical patent/JP3857421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼室の周縁に隣合う水管と水管との間に縦ひれを設けて内外二重の 環状水管壁を形成し、両水管壁間の環状部分を燃焼ガス通路とする一般的な多管式 貫流ボイラにおける缶体過熱検知方法および缶体過熱検知装置に関する。詳しくは 、前記の二重環状多管式貫流ボイラにおいて、過熱等の異常低水位事故の発生を逸 早く検知し、対策を講じるための缶体過熱検知方法および装置に関する。なお、以 下の説明において「多管式貫流ボイラ」又は「ボイラ」の語は、特に断らない限り 前記の「二重環状多管式貫流ボイラ」を意味する。
【0002】
【従来の技術】
多管式貫流ボイラが、何等かの原因でボイラ内の水位が異常に低下し缶体が過熱されるのをそのまま放置すれば、重大事故につながるおそれがある。このような事故を防止する一手段として、従来は図9に示されるような、水管31と隣合う水管との間にあって軸方向に前記両水管に接続されている縦ひれ32の外側(燃焼炉壁35側)に、温度センサー33の検出端を保持するために挿入穴を穿ったスタッド34を固着して温度センサー検出端36を挿入し、縦ひれ32の温度上昇を常時監視して、缶体の過熱を検知することが行われていた。
【0003】
【発明が解決しようとする課題】
ところが最近、ボイラのコンパクト化がすすみ、取付位置の制約が大きくなって 、温度センサーが、本来であれば最も検出したい熱負荷の大きな水管の管璧温度を 逸早く検出することが難しくなってきた。すなわち、温度センサーを熱負荷の高い 燃焼室の出口(図2中、内環側左上の縦ひれの欠如した部分)近くに取り付けるこ とができれば、過熱に対する応答が早いが、ボイラのコンパクト化により取付ける スペースが見出だせなくなった。しかし、スペースに比較的余裕の残っている水管 の間隔は大きいが熱負荷の比較的低い箇所においては、従来の缶体過熱検知方法は 十分な機能を果たせないことが判った。そこで、本発明者がコンパクト化したボイ ラにおいても十分な応答速度を有する缶体過熱検知手段の提供を課題に研究の結果 、本発明を完成したものである。
【0004】
【課題を解決するための手段】
図面を参照して前記課題の解決手段を説明する。本発明は、燃焼室の周縁に隣合 う水管1と水管1との間に縦ひれ2を設けて内外二重の環状水管壁を形成し、両水 管壁間の環状部分を燃焼ガス通路とする二重環状多管式貫流ボイラにおける缶体過 熱検出方法であって、前記燃焼ガスの出口(即ち燃焼ガス通路の入口)とは離れた 位置に、手元側8から検出端挿入穴7が設けられ突き出た先端部分9を有するスタ ッド4を、手元側8を燃焼炉壁5側にして先端部分9を縦ひれ2を貫通し燃焼ガス 流6中に独立して突き出させ縦ひれ2に固着し、検出端挿入穴7に温度センサー検 出端10を挿入して、先端部9が燃焼ガスによって高温に、手元部8が縦ひれ2を 介して水管温度により低温に維持されている運転中のスタッド4の温度を測定し、 前記測定温度の異常変化を検出して缶体の過熱を検知することを特徴とする缶体過 熱検知方法を提供する。前記の提供した方法において好ましくは、温度センサ検出 端10の位置を、縦ひれ2の外側面から内側面までの間の適宜の位置に設置する。
【0005】
燃焼室の周縁に隣合う水管1と水管1との間に縦ひれ2を設けて内外二重の環状 水管壁を形成し、両水管壁間の環状部分を燃焼ガス通路とする二重環状多管式貫流 ボイラにおける缶体過熱検知装置であって、前記燃焼ガスの出口とは離れた位置に 、手元側8から検出端挿入穴7が設けられたスタッド4が、先端部分9を縦ひれ2 を貫通させ燃焼ガス流6中に独立して突き出し縦ひれ2に固着され、運転中、先端 部9が燃焼ガス6によって高温に、手元部8が縦ひれ2を介して水管1によって低 温に維持されているスタッド4の温度を測定するため、検出端が挿入穴7に挿入さ れている温度センサーを備えたことを特徴とする缶体過熱検知装置を提供する。
【0006】
【発明の実施の形態】
本発明の缶体過熱検知方法および装置を実施形態例を示す図面を参照して具体的に説明する。図1は、図2の一部拡大図であって、本発明の缶体過熱検知装置の取付の形態例を示す詳細図、図2は缶体過熱検知装置の取付位置を示す多管式貫流ボイラの軸に直角方向の断面図、図3は本発明の缶体過熱検知装置の本体構造を示す軸方向の断面図である。
【0007】
本発明の缶体過熱検知方法においては、従来、温度センサー検出端を保持するス タッドを、縦ひれの外側(ろ壁側)に固着していたが、本発明で使用するスタッド 4は、先端部分9を突き出させて形成し、縦ひれ2に貫通口を開けて先端部分9を 貫通させ燃焼ガス6に中に向け独立して突き出し縦ひれ2に固着する。スタッド4 の手元側8には、温度センサー検出端10の挿入穴7を設けて、検出端10を挿入 し保持する。
【0008】
本発明の缶体過熱検知装置のスタッド4の形状は、図面に示すような釘頭状に限られず、取付位置周辺の状況、温度センサー3の形状や感度により適宜に決めることができる。縦ひれ2の内面からの突出長さ、突出部分の径などは、温度センサー3の種類、縦ひれ2の厚さや取付位置によって有る程度経験的に決められる事項であるが、一般的に突き出し長さは5ないし25mm、突き出し部分9の径は8ないし15mmである。他方、手元側8には温度センサー検出端10を挿入する挿入穴7が設けられ、温度センサー検出端10を挿入、保持する。従って、本発明においても温度センサー3は挿入穴7内の温度を測定することになる。通常、温度センサー3は先端に検出端10があり、挿入穴7の底まで挿入して測定するので挿入穴7の深さは温度の検出位置に一致する。測定位置は後述のように本発明での重要事項の一つである。スタッド4の縦ひれ2への取付けは、熱伝導抵抗をできるだけ小さくするために溶接が望ましい。
【0009】
本発明の作用について説明する。本発明の缶体過熱検知装置においては、ボイラ の運転中、縦ひれ2から燃焼ガス側6に独立して突き出させたスタッド4の先端部 分9が燃焼ガスにより直接加熱されている。他方、スタッド4の手元側は水管1の 温度が燃焼ガス温度よりかなり低いので、縦ひれ2を介して水管1により冷却され ている。検出温度は、測定位置におけるこれらの加熱と冷却のバランスにより決ま る。低水位事故などの異常が発生して例えばボイラの水位が低下し、図4の火炉に 面している水管の温度Aに例示されるように缶体が過熱状態になると水管1からは 冷却作用がなくなり、高温加熱されている先端部9の影響でスタッド4の温度は全 体として急速に上昇し、温度センサー3は図4のBに例示されているように温度上 昇を検出し、異常事態が検知される。なお、図4のCは従来の温度センサーの温度 検出状態を示す。
【0010】
温度センサー検出端が適当な位置に設置されておれば、前記の温度上昇勾配および幅は大きく、異常事態は極めて容易かつ迅速に検知される。しかし、スタッド先端部分の温度は正常運転時においてもかなり高いので、図5に例示されるように、温度センサー23の検出端26の位置がスタッド24の先端部分25に深く挿入され過ぎている場合には、異常が発生し、缶体が過熱状態になり水管21の温度が上昇して先端部25の温度が上昇しても、図6に示したように温度センサー検出温度Dは、元の温度が高いために火炉に面している水管の温度Aが加熱によって上昇しても、温度上昇の巾が小さく、検知されにくい傾向を生じる。従って、温度センサー検出端10の位置は、正常運転においては水管1の温度に近く、かつ、燃焼ガスにより加熱されやすい位置が望ましい。この位置はボイラの構造、スタッド4の取付位置と形状、縦ひれ2の厚さなどの影響があり、ときに調整する必要があるが、原則として図7の(a)に示されるように縦ひれの外側面から(b)に示されるように縦ひれの内側面までの間に設置する。
【0011】
従来の缶体過熱検知装置を水管の間隔は広いが、比較的熱負荷の低い箇所に取付けた場合の温度は、加熱、冷却ともにほぼ水管温度に支配されており、缶体が過熱状態になっても水管の温度に追従して上昇するため、上昇巾および勾配が小さく、異常事態の検知が遅れがちであった。
【0012】
【実施例】
次に本発明の缶体過熱検知方法の効果を、従来の方法と比較して確認したので、 その結果を説明する。まず、水管数が数十本、水管長さ1m、最高使用蒸気圧力1 0kg/cm2 の多管式貫流ボイラを用い、水管の間隔10〜40mm、縦ひれ の厚さ5〜10mmの缶体に、図1に示したのと同じ形式の本発明の缶体過熱検知 装置を取り付けた。使用した本発明の缶体過熱検知装置のスタッドには炭素鋼を用 い、先端部を直径10mm、長さ20mmに仕上げ、手元側には直径5.5mm、 深さ6mmの検出端挿入穴を設けた。この缶体過熱検知装置の先端部を縦ひれにあ けた開口部に挿入し、内面から14mmを燃焼ガス流中に突出させて、縦ひれの外 面側に溶接した。缶体の過熱状態を検知するため、図8に示した位置に温度計TC を取り付けて火炉に面している水管の温度を測定した。また、図9に示した従来の 缶体過熱検知装置としては、先端部を10×10×30mmのブロックに仕上げ、 直径5.5mmの検出端挿入孔を貫通させて設けた。これを縦ひれの外面部に溶接 した。
【0013】
缶体の過熱状態における測定結果を図4に示す。Aは火炉に面している水管の温 、Bは本発明実施例の温度センサーの検出温度、Cは従来方式の缶体過熱検知装 置の検出温度である。さらに、本発明実施例の缶体過熱検知装置と同じ形式および 寸法のスタッドを、同様の位置に取り付けた。ただし、センサー挿入穴の深さを2 1mmとしてセンサーの先端を挿入し、応答を測定した。その結果を第6図に示す 。Aは火炉に面している水管の温度、Dは本例の温度センサーの検出温度である。
【0014】
【発明の効果】
本発明の缶体過熱検知方法およびその装置を利用することにより、従来の方法では検出の遅かった熱負荷の小さな水管の周辺に温度センサーの検出端をおいても、過熱状態を逸早く検知できるようになった。
【図面の簡単な説明】
【図1】 本発明の缶体過熱検知装置の取付の形態例を示す詳細断面図
【図2】 缶体過熱検知装置の取付位置を示すボイラ軸に直角方向の断面図
【図3】 本発明の缶体過熱検知装置の本体構造を示す軸方向断面図
【図4】 缶体の過熱状態における各検知方法の応答状態の記録
【図5】 缶体過熱検知装置のあまり好ましくない形態例を示す断面図
【図6】 検出端が先端に寄り過ぎた場合の過熱状態に対する応答記録
【図7】 望ましい温度センサー検出端の位置の範囲を示す図
【図8】 実施例における火炉側水管の温度測定位置を示す図
【図9】 従来の缶体過熱検知装置の取付形態例を示す断面図
【符号の説明】
1:水管 2:縦ひれ 3:温度センサー 4:スタッド 5:燃焼炉壁
6:燃焼ガス流 7:検出端挿入穴 8:手元側 9:スタッド先端部分
10:温度センサー検出端 11:温度センサーのホルダー
12:スプリング 21:水管 22:縦ひれ 23:温度センサー
24:スタッド 25:スタッド先端部分 26温度センサー検出端
31:水管 32:縦ひれ 33:温度センサー 34:スタッド
35:燃焼炉壁 36:温度センサー検出端 TC:温度計
[0001]
BACKGROUND OF THE INVENTION
In the present invention , a vertical fin is provided between a water pipe adjacent to the periphery of a combustion chamber and a water pipe to form an inner and outer double annular water pipe wall, and an annular portion between both water pipe walls is used as a combustion gas passage. TECHNICAL FIELD The present invention relates to a can body overheat detection method and a can body overheat detection apparatus in a typical multi-tube once-through boiler . Specifically, the present invention relates to a can body overheat detection method and apparatus for quickly detecting the occurrence of an abnormal low water level accident such as overheating in the double annular multi-tube once-through boiler. Incidentally, the term "multi-tube once-through boiler" or "boiler" in the description of the following means "dual annular-tube once-through boiler" said unless otherwise specified.
[0002]
[Prior art]
If the multitubular once-through boiler is left unattended as a result of abnormally lowering the water level in the boiler due to any cause and overheating of the can body, a serious accident may occur. As a means for preventing such an accident, conventionally, as shown in FIG. 9, the outer side of the vertical fin 32 (combustion furnace) between the water pipe 31 and the adjacent water pipe and connected to the two water pipes in the axial direction. On the wall 35 side), a stud 34 having an insertion hole is fixed to hold the detection end of the temperature sensor 33, and the temperature sensor detection end 36 is inserted, and the temperature rise of the vertical fin 32 is constantly monitored. It was done to detect overheating of the body.
[0003]
[Problems to be solved by the invention]
Recently, however, as boilers have become more compact and restrictions on the mounting position have become greater, it has become difficult for temperature sensors to quickly detect the wall temperature of water pipes that would otherwise be most sensitive to heat. In other words, if the temperature sensor can be installed near the outlet of the combustion chamber where the heat load is high (in Fig. 2, the upper left side where there is no vertical fin on the inner ring side) , the response to overheating is fast, but the boiler is downsized. I couldn't find the space to install it. However, it was found that the conventional method for detecting overheating of cans cannot perform adequate functions at locations where the space between the water pipes that have a relatively large margin remains large but the heat load is relatively low. Thus, the present inventors have completed the present invention as a result of research aimed at providing means for detecting overheating of a can body that has a sufficient response speed even in a compact boiler.
[0004]
[Means for Solving the Problems]
Means for solving the problems will be described with reference to the drawings. The present invention provides a vertical fin 2 between the water pipe 1 and the water pipe 1 adjacent to the periphery of the combustion chamber to form an inner and outer double annular water pipe wall, and the annular portion between both water pipe walls is treated with combustion gas. A method for detecting overheating of a can in a double annular multi-tube once-through boiler as a passage, wherein a detection end insertion hole is provided from a proximal side 8 at a position away from the outlet of the combustion gas (that is, the inlet of the combustion gas passage). 7 studs 4 having a tip portion 9 which project provided, allowed to protrude independently tip portion 9 to the hand side 8 to the combustion furnace wall 5 side vertical fin 2 in penetrating the combustion gas stream 6 Fixed to the vertical fin 2, the temperature sensor detection end 10 is inserted into the detection end insertion hole 7, and the tip end portion 9 is maintained at a high temperature by the combustion gas and the hand portion 8 is maintained at a low temperature by the water pipe temperature via the vertical fin 2. is the temperature of the stud 4 during operation are measured, overheating of the can body by detecting the abnormal variation of the measured temperature A method for detecting overheating of a can body is provided. Preferably, in the method provided above, the position of the temperature sensor detection end 10 is set at an appropriate position between the outer side surface and the inner side surface of the vertical fin 2.
[0005]
A vertical fin 2 is provided between the water pipe 1 adjacent to the periphery of the combustion chamber and the water pipe 1 to form an inner and outer double annular water pipe wall, and the annular portion between the two water pipe walls serves as a combustion gas passage. An annular multi-tube type once-through boiler is a can body overheat detection device, and a stud 4 provided with a detection end insertion hole 7 from a hand side 8 at a position away from the outlet of the combustion gas vertically extends a tip portion 9. Through the fin 2 , it protrudes independently into the combustion gas flow 6 and is fixed to the vertical fin 2. During operation, the tip 9 is heated to a high temperature by the combustion gas 6, and the hand 8 is lowered by the water pipe 1 through the vertical fin 2. In order to measure the temperature of the stud 4 that is maintained at a temperature, a can body overheat detection device is provided that includes a temperature sensor having a detection end inserted into an insertion hole 7.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
A can body overheat detection method and apparatus according to the present invention will be specifically described with reference to the drawings showing an embodiment. FIG. 1 is a partially enlarged view of FIG. 2, and is a detailed view showing an example of the mounting configuration of the can body overheat detection device of the present invention, and FIG. 2 is a multi-tube type once-through flow showing the mounting position of the can body overheat detection device FIG. 3 is a sectional view in the direction perpendicular to the axis of the boiler, and FIG. 3 is a sectional view in the axial direction showing the main body structure of the can body overheat detection device of the present invention.
[0007]
In the can body overheat detection method of the present invention, the stud that holds the temperature sensor detection end is conventionally fixed to the outside of the vertical fin (filter wall side). A portion 9 is formed by protruding, a through hole is opened in the vertical fin 2, the tip portion 9 is penetrated, and the fuel gas 6 is protruded independently and fixed to the vertical fin 2. An insertion hole 7 for the temperature sensor detection end 10 is provided on the proximal side 8 of the stud 4 so that the detection end 10 is inserted and held.
[0008]
The shape of the stud 4 of the can overheating detection device of the present invention is not limited to the nail head shape as shown in the drawings, and can be determined as appropriate depending on the situation around the mounting position, the shape and sensitivity of the temperature sensor 3. The protrusion length from the inner surface of the vertical fin 2 and the diameter of the protruding portion are matters determined empirically to some extent depending on the type of the temperature sensor 3, the thickness of the vertical fin 2, and the mounting position. The length is 5 to 25 mm, and the diameter of the protruding portion 9 is 8 to 15 mm. On the other hand, an insertion hole 7 for inserting the temperature sensor detection end 10 is provided on the hand side 8, and the temperature sensor detection end 10 is inserted and held. Therefore, also in the present invention, the temperature sensor 3 measures the temperature in the insertion hole 7. Normally, the temperature sensor 3 has a detection end 10 at the tip, and is inserted into the bottom of the insertion hole 7 for measurement, so that the depth of the insertion hole 7 matches the temperature detection position. The measurement position is one of important matters in the present invention as described later. The stud 4 is attached to the vertical fin 2 by welding in order to make the heat conduction resistance as small as possible.
[0009]
The operation of the present invention will be described. In the can body overheat detection device of the present invention, during the operation of the boiler, the tip end portion 9 of the stud 4 protruding independently from the vertical fin 2 to the combustion gas side 6 is directly heated by the combustion gas. On the other hand, since the temperature of the water pipe 1 is considerably lower than the combustion gas temperature on the proximal side of the stud 4, it is cooled by the water pipe 1 through the vertical fin 2. The detected temperature is determined by the balance between heating and cooling at the measurement position. When an abnormality such as a low water level accident occurs and the water level of the boiler is lowered, for example, when the can body is overheated as exemplified by the temperature A of the water pipe facing the furnace in FIG. The temperature of the stud 4 rapidly rises as a whole due to the influence of the tip 9 heated at a high temperature, and the temperature sensor 3 detects the temperature rise as illustrated in FIG. A situation is detected. FIG. 4C shows the temperature detection state of the conventional temperature sensor.
[0010]
If the temperature sensor detection end is installed at an appropriate position, the temperature increase gradient and width are large, and an abnormal situation can be detected very easily and quickly. However, since the temperature at the tip end portion of the stud is considerably high even during normal operation, the position of the detection end 26 of the temperature sensor 23 is inserted too deeply into the tip end portion 25 of the stud 24 as illustrated in FIG. Even if an abnormality occurs, the temperature of the water pipe 21 rises due to the overheating of the can body, and the temperature of the tip portion 25 rises, the temperature sensor detection temperature D is the original temperature as shown in FIG. Even if the temperature A of the water pipe facing the furnace rises due to heating because of the high temperature, the temperature rise is small and tends to be difficult to detect. Therefore, the position of the temperature sensor detection end 10 is preferably a position that is close to the temperature of the water pipe 1 during normal operation and is easily heated by the combustion gas. This position is affected by the structure of the boiler, the mounting position and shape of the stud 4, the thickness of the vertical fin 2, etc., and it is sometimes necessary to adjust this, but in principle the vertical position as shown in FIG. Installed between the outer side of the fin and the inner side of the vertical fin as shown in (b).
[0011]
Although the temperature of the conventional can body overheat detection device is wide in the interval between the water pipes, the temperature when the heat can be mounted at a location where the heat load is relatively low is governed by the water pipe temperature for both heating and cooling, and the can body becomes overheated. However, since the temperature rises following the temperature of the water pipe, the rise width and gradient are small, and the detection of abnormal situations tends to be delayed.
[0012]
【Example】
Next, the effect of the can overheating detection method of the present invention was confirmed by comparison with the conventional method, and the result will be described. First, a multi-tube once-through boiler with dozens of water tubes, water tube length of 1 m, and maximum steam pressure of 10 kg / cm 2 was used to form a can with water tube spacing of 10 to 40 mm and vertical fin thickness of 5 to 10 mm. The can body overheat detection device of the present invention of the same type as shown in FIG. 1 was attached. Carbon steel is used for the stud of the can overheating detector of the present invention used, the tip is finished with a diameter of 10 mm and a length of 20 mm, and a detection end insertion hole with a diameter of 5.5 mm and a depth of 6 mm is formed on the hand side. Provided. The tip of this can body overheat detection device was inserted into an opening in the vertical fin, and 14 mm was projected from the inner surface into the combustion gas flow and welded to the outer surface side of the vertical fin. In order to detect the overheating state of the can body, a thermometer TC was attached at the position shown in FIG. 8 and the temperature of the water pipe facing the furnace was measured. In addition, in the conventional can body overheat detection device shown in FIG. 9, the tip portion was finished in a 10 × 10 × 30 mm block, and a detection end insertion hole having a diameter of 5.5 mm was provided. This was welded to the outer surface of the vertical fin.
[0013]
The measurement result in the overheated state of the can body is shown in FIG. A is the temperature measured in the water tube facing the furnace, B the temperature detected by the temperature sensor of the present invention embodiment, C is a detected temperature of the can body overheat detection equipment the conventional method. Furthermore, studs of the same type and size as those of the can body overheat detection device of the embodiment of the present invention were attached at the same positions. However, the depth of the sensor insertion hole was 21 mm, the tip of the sensor was inserted, and the response was measured. The results are shown in FIG. A is the temperature of the water pipe facing the furnace, and D is the detected temperature of the temperature sensor of this example.
[0014]
【The invention's effect】
By utilizing the can body overheat detection method and the apparatus of the present invention, it is possible to detect the overheat state quickly even if the detection end of the temperature sensor is placed around the water pipe with a small heat load, which was slow to detect in the conventional method. Became.
[Brief description of the drawings]
FIG. 1 is a detailed cross-sectional view showing an example of a mounting configuration of a can body overheat detection device according to the present invention. FIG. 2 is a cross-sectional view perpendicular to a boiler shaft showing a mounting position of the can body overheat detection device. FIG. 4 is a sectional view in the axial direction showing the main body structure of the can body overheat detection device. FIG. 4 is a record of the response state of each detection method in the overheat state of the can body. Cross-sectional view [Fig. 6] Response record for overheating when the detection end is too close to the tip. [Fig. 7] A diagram showing the range of the desired temperature sensor detection end. [Fig. 8] Temperature measurement of the furnace water pipe in the embodiment. FIG. 9 is a cross-sectional view showing an example of a mounting configuration of a conventional can body overheat detection device.
1: Water pipe 2: Vertical fin 3: Temperature sensor 4: Stud 5: Combustion furnace wall 6: Combustion gas flow 7: Detection end insertion hole 8: Hand side 9: Stud tip portion 10: Temperature sensor detection end 11: Temperature sensor Holder 12: Spring 21: Water pipe 22: Vertical fin 23: Temperature sensor 24: Stud 25: Stud tip portion 26 Temperature sensor detection end 31: Water pipe 32: Vertical fin 33: Temperature sensor 34: Stud 35: Combustion furnace wall 36: Temperature Sensor detection end TC: Thermometer

Claims (3)

燃焼室の周縁に隣合う水管と水管との間に縦ひれを設けて内外二重の環状水管壁 を形成し、両水管壁間の環状部分を燃焼ガス通路とする二重環状多管式貫流ボイラ における缶体過熱検出方法であって、
前記燃焼ガスの出口(即ち燃焼ガス通路の入口)とは離れた位置に、
手元側から検出端挿入穴が設けられ突き出た先端部分を有するスタッドを、
手元側を燃焼炉壁側にして先端部分を縦ひれを貫通し燃焼ガス流中に独立して突 き出させ、縦ひれに固着し、
検出端挿入穴に温度センサー検出端を挿入して、先端部が燃焼ガスによって高温 に、手元部が縦ひれを介して水管温度により低温に維持されている運転中のスタッ ドの温度を測定し、
前記測定温度の異常変化を検出して缶体の過熱を検知することを特徴とする缶体 過熱検知方法。
Double annular multi-tube with a vertical fin between the water pipes adjacent to the periphery of the combustion chamber to form a double annular water pipe wall, with the annular part between the two water pipe walls as the combustion gas passage A method for detecting overheating of a can in a once-through boiler,
In a position away from the combustion gas outlet (i.e., the inlet of the combustion gas passage),
A stud having a tip portion that is provided with a detection end insertion hole from the proximal side and protrudes,
The proximal to the combustion furnace wall side vertical fin penetrates independently into the combustion gas stream is exiting can butt the tip portion, secured to the vertical fin,
The detecting end insertion hole by inserting a temperature sensor detecting end, the hot tip by combustion gas, hand portion with water tube temperature via a vertical fin to measure the temperature of the stud in operation is maintained at a low temperature ,
A method for detecting overheating of a can body, wherein an abnormal change in the measured temperature is detected to detect overheating of the can body.
温度センサー検出端の位置を、縦ひれの外側面から内側面までの間に設置するこ とを特徴とする請求項1記載の缶体過熱検知方法。        The can body overheating detection method according to claim 1, wherein the temperature sensor detection end is installed between the outer side surface and the inner side surface of the vertical fin. 燃焼室の周縁に隣合う水管と水管との間に縦ひれを設けて内外二重の環状水管壁 を形成し、両水管壁間の環状部分を燃焼ガス通路とする二重環状多管式貫流ボイラ における缶体過熱検知装置であって、
前記燃焼ガスの出口とは離れた位置に、手元側から検出端挿入穴が設けられたス タッドが、先端部分を縦ひれを貫通し燃焼ガス流中に独立して突き出されて、縦ひ れに固着され、
運転中、先端部が燃焼ガスによって高温に、手元部が縦ひれを介して水管により 低温に維持されているスタッドの温度を測定するため、検出端が前記挿入穴に挿入 されている温度センサーを備えたことを特徴とする缶体過熱検知装置。
Double annular multi-tube with a vertical fin between the water pipes adjacent to the periphery of the combustion chamber to form a double annular water pipe wall, with the annular part between the two water pipe walls as the combustion gas passage It is a can body overheat detection device in a once-through boiler,
A position apart from the outlet of the combustion gas, stud the detection end insertion holes provided from the proximal side, protrudes the tip portion of the vertical fin penetrates independently into the combustion gas stream, Re Tatehi Fixed to
During operation, in order to measure the temperature of the stud whose tip is kept at a high temperature by the combustion gas and whose hand is kept at a low temperature by the water pipe via the vertical fin, a temperature sensor having a detection end inserted into the insertion hole is used. can body overheat detection apparatus characterized by comprising.
JP14596098A 1998-05-27 1998-05-27 Can body overheating detection method and apparatus Expired - Fee Related JP3857421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14596098A JP3857421B2 (en) 1998-05-27 1998-05-27 Can body overheating detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14596098A JP3857421B2 (en) 1998-05-27 1998-05-27 Can body overheating detection method and apparatus

Publications (2)

Publication Number Publication Date
JPH11337007A JPH11337007A (en) 1999-12-10
JP3857421B2 true JP3857421B2 (en) 2006-12-13

Family

ID=15397010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14596098A Expired - Fee Related JP3857421B2 (en) 1998-05-27 1998-05-27 Can body overheating detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3857421B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510755B2 (en) * 2013-12-27 2019-05-08 川崎重工業株式会社 Scale adhesion amount estimation system
CN104235823A (en) * 2014-10-14 2014-12-24 上海望特能源科技有限公司 Novel method for online monitoring flue gas heat load distribution of spiral water wall of supercritical boiler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616244Y2 (en) * 1985-09-03 1994-04-27 三浦工業株式会社 Water pipe temperature detector in a multi-tube once-through boiler.
JPH0714838Y2 (en) * 1985-09-03 1995-04-10 三浦工業株式会社 Water tube temperature detector for boiler
JPH01167633U (en) * 1988-05-17 1989-11-24
JPH0812112B2 (en) * 1991-09-30 1996-02-07 三浦工業株式会社 Mounting structure of water pipe temperature detector in square multi-tube once-through boiler
JP2548392Y2 (en) * 1992-09-21 1997-09-17 三浦工業 株式会社 Mounting structure of heat transfer tube temperature detector in thermal equipment

Also Published As

Publication number Publication date
JPH11337007A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
CA2360217C (en) Attachable heat flux measuring device
AU648163B2 (en) Thermoelectric sensor
JP5141171B2 (en) boiler
JP3857421B2 (en) Can body overheating detection method and apparatus
JP2002501164A (en) Fuel operated air heating device
JP6187747B2 (en) boiler
CN208058931U (en) Temperature sensor and gas-cooker
JP2548392Y2 (en) Mounting structure of heat transfer tube temperature detector in thermal equipment
CN108266760A (en) Temperature sensor and gas-cooker
KR101961738B1 (en) Heat flux sensor installed boiler wall tube of thermal power plant
JP2008215729A (en) Pot bottom temperature sensor
JPH0616244Y2 (en) Water pipe temperature detector in a multi-tube once-through boiler.
JPH0717926Y2 (en) Water pipe temperature detectors such as multi-tube once-through boilers
JPH0714838Y2 (en) Water tube temperature detector for boiler
CN112629685A (en) Device and method for measuring temperature in boiler heating surface pipe
JPH11201406A (en) Device for judging adhesion of substance for dropping heat conductivity of boiler
CA1142169A (en) Turndown indicator for rotary regenerative heat exchanger
JPH0812112B2 (en) Mounting structure of water pipe temperature detector in square multi-tube once-through boiler
JP4262876B2 (en) Incomplete combustion prevention device
JPS61165521A (en) Misfire detector
JP3324389B2 (en) Gas temperature measurement device
JP2514243Y2 (en) Combustion water heater
JPS58115245A (en) Water heater
JP2501350Y2 (en) Water heater
KR920005383Y1 (en) Exhaust blockade inspection device for gas burner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees