JP3857122B2 - Magnetic thin film thickness measurement method - Google Patents

Magnetic thin film thickness measurement method Download PDF

Info

Publication number
JP3857122B2
JP3857122B2 JP2001377012A JP2001377012A JP3857122B2 JP 3857122 B2 JP3857122 B2 JP 3857122B2 JP 2001377012 A JP2001377012 A JP 2001377012A JP 2001377012 A JP2001377012 A JP 2001377012A JP 3857122 B2 JP3857122 B2 JP 3857122B2
Authority
JP
Japan
Prior art keywords
thickness
thin film
magnetic thin
frequency
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001377012A
Other languages
Japanese (ja)
Other versions
JP2003177015A (en
Inventor
政司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Technology Inc
Original Assignee
Sumitomo Metal Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Technology Inc filed Critical Sumitomo Metal Technology Inc
Priority to JP2001377012A priority Critical patent/JP3857122B2/en
Publication of JP2003177015A publication Critical patent/JP2003177015A/en
Application granted granted Critical
Publication of JP3857122B2 publication Critical patent/JP3857122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複合材の基材表面に磁性薄膜が存在する場合に、超音波を利用して磁性薄膜の厚さを測定する方法に係り、例えば、ボイラー管を被覆する水蒸気酸化膜、アルミ−ステンレスクラッド鋼板のステンレス鋼等の厚さを非破壊の状態で簡便かつ正確に測定する方法に関する。
【0002】
【従来の技術】
高温、酸化環境下で使用される発電所等におけるボイラー管、薬品腐食環境下で使用される化学プラント等における配管、有機物による腐食環境下で使用される石油プラント等におけるタンク、または、水分、塩分、大気等の腐食環境下で使用される橋梁等の海洋構造物等においては、表面に酸化物を主体とする腐食生成物の被膜ができる。以下の説明では、この腐食生成物の被膜を総称して「酸化膜」という。この酸化膜には「錆」または「スケール」と呼ばれるものも含まれる。
【0003】
上記の酸化膜は、通常、材料の表面に不均一に生成、残存し、これに伴って、材料本体は、腐食によって侵食され減肉する。材料本体の厚さが減少すると機械強度が低下し、やがて破裂することになるため、材料本体の厚さを知ることが安全管理の観点から重要である。また、ボイラ管の場合には、その酸化膜の成長速度から、逆にボイラー管の操業条件(温度、圧力等)を知ることができるため、酸化膜の厚さを測定できれば、ボイラーの操業条件の管理に利用できる。
【0004】
一方、圧力容器、ボイラー、原子炉、貯槽等に使用される部材は、外部と内部とでは要求される特性が相違するので、それぞれの特性を満足するため、2種類の板を接合したクラッド鋼が用いられることがある。通常、クラッド鋼は、2種類の板を熱間圧延または爆着加工によって製造されるが、性能を確認する等の観点から、それぞれの板材の厚みを知る必要がある。
【0005】
以上のとおり、ボイラー管の場合には酸化膜、クラッド鋼の場合にはステンレス板(以下、これらを総称して「磁性薄膜」と呼ぶ)の厚さを非破壊の状態で、簡便に測定する方法が求められている。
【0006】
従来、材料の厚さを非破壊で簡便に測定する方法として、超音波を利用した方法(以下、「超音波厚さ測定法」という)が広く知られており、この超音波厚さ測定法には、反射時間測定法および共鳴法がある。反射時間測定法とは、材料の厚さ方向に短い超音波パルスを入射して、反射波が戻ってくるまでの時間を測定し、この反射時間に音速を乗じて材料の厚さを求める方法である。共鳴法とは、材料の厚さが超音波の波長の1/2の大きさおよびその整数倍となるときに材料内で多重反射する超音波の位相がそろい、定在波が発生して振幅が大きくなるという性質を利用して、材料の厚さを求める方法である。
【0007】
しかし、材料本体に酸化膜が付着している場合、超音波は、材料本体および酸化膜の境界を通り抜けるため、上記のいずれの方法でも、材料本体および酸化膜の厚さを合計した厚さを測定することとなり、材料本体の厚さだけ、または酸化膜の厚さだけを単独に測定することができない。
【0008】
【発明が解決しようとする課題】
本発明は、上記の問題を解決するためになされたものであって、複合材の基材表面に存在する磁性薄膜の厚さを簡便に測定する非破壊測定方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、表面に酸化膜が付着した複合材全体の厚さを共鳴法によって測定したところ、超音波の周波数の変化に伴って、その音速が変化することを確認し、特願2001-180129号では、この音速の変化を利用し、複合材の基材表面に存在する酸化膜の厚さを求める方法を開示している。その後、更に研究を重ねた結果、超音波の周波数の変化に伴って音速が変化するという現象が、磁性薄膜材料の種類によって発生するのではなく、磁性薄膜の厚さと超音波の波長との相関関係に依存することを発見し、本発明を完成させた。
【0010】
本発明は、「複合材の基材表面に存在する磁性薄膜の厚さを超音波によって測定する方法であって、共鳴次数の異なる2以上の共鳴周波数fを測定し、下記の(1)式を用いて複合材全体の見かけ上の厚さd を計算し、このd が最大となるときの周波数fMAXから、下記の(2)式を用いて磁性薄膜の厚さdMAGを求めることを特徴とする磁性薄膜の厚さ測定方法。」を要旨とする。
【0011】
=0.5×n×C/f …(1)
但し、 (1) 式中の各記号の意味は、d は複合材全体の見かけ上の厚さ、nは共鳴次数、Cは基材における音速、f はn次の超音波共鳴周波数を示す。
【0012】
上記の周波数fMAXから、下記の(2)式を用いて磁性薄膜の厚さdMAGを求めることができる。ただし、(2)式中の各記号は、dMAGは磁性薄膜の厚さ、Aは予め各磁性薄膜毎に求めた係数、fMAXは複合材全体の見かけ上の厚さが最大となるときの周波数を示す。
MAG=A/fMAX …(2)
【0013】
なお、上記本発明の磁性薄膜の厚さ測定方法では、超音波の励起および検出には、電磁超音波法を用いるのが望ましく、化学式がM(M:金属原子、O:酸素原子)で表される逆スピネル型構造を持つ酸化物からなる酸化膜を有する複合材を測定するのに有用である。
【0014】
【発明の実施の形態】
強磁性体材料またはフェリ磁性体材料からなる磁性薄膜に電磁波を照射すると、磁性薄膜の厚さと電磁波の波長の1/2の整数倍とが一致するときに、電磁波に伴う磁場によって磁性薄膜中に磁化振動が励起されるため、電磁波の速度が遅くなり(誘電率の実部が大きくなり)、また、電磁波のエネルギーの一部が吸収される(誘電率の虚部が大きくなる)。
【0015】
これは、一般に、磁壁共鳴効果または寸法共鳴効果(例えば、磁性体ハンドブック、朝倉書店、933頁参照)と呼ばれるものである。
【0016】
強磁性材料またはフェリ磁性体材料では、磁化の方向の変化によって結晶軸の長さがわずかに変化する磁歪効果がある。ここで、結晶軸の長さの変化とは、結晶格子が動くこと、即ち、格子振動が励起されることである。逆に、超音波の進行によって結晶格子が動くと、磁歪効果によって磁化の方向が反転させる力が働く。換言すれば、超音波は、磁歪効果によって格子振動を励起させるとともに、磁化の方向を反転させながら進行する。そのため、磁性薄膜中を進行する超音波においても、電磁波の場合の磁壁共鳴効果と同様に、磁性薄膜の厚さと超音波の波長の1/2の整数倍とが一致するときに、磁性薄膜中に磁化振動が励起され、これによって超音波の音速の遅くなるという現象が発生する。
【0017】
前述の通り、共鳴法は、材料の厚さと超音波の波長の1/2の整数倍とが一致する周波数fとなるときに観測される共鳴ピークの周波数(以下、これを「共鳴周波数」という)から厚さを求めることを基本原理としており、共鳴周波数以外の周波数では、材料の厚さを把握することができない。従って、例えば、一種類の物質からなる材料の場合には、超音波の波長が材料の厚さよりも大きい周波数において共鳴が発生するのは、波長の1/2の大きさが材料の厚さと一致する場合だけである。
【0018】
後述する実施例の図4に示すように、磁性薄膜中の音速は、磁性薄膜中の音速が最低となる周波数より低い周波数領域(即ち、超音波の波長の1/2の大きさが磁性薄膜の厚さよりも大きい周波数の領域)においては、周波数によって大きく変化するが、磁性薄膜中の音速が最低となる周波数より高い周波数領域(即ち、超音波の波長の1/2の大きさが磁性薄膜の厚さよりも小さい周波数の領域)においては、その変化は緩やかとなり、音速の変化は収束する。即ち、磁性薄膜中の音速は、超音波の波長の大きさと磁性薄膜の厚さとが一致する周波数から波長の1/2の大きさが磁性薄膜の厚さと一致する周波数までの間では、ほとんど変化しないのである。従って、一種類の物質からなる材料では、音速が周波数によって変化するという現象が顕在化することはない。
【0019】
しかし、磁性薄膜を含む複合材の厚さを測定する場合には、超音波の波長の1/2の大きさが複合材全体の厚さより小さいが、磁性薄膜の厚さより大きいような共鳴周波数が存在する場合がある。このような場合には、磁性薄膜中の音速は変化するが、基材中の音速は変化しないため、このときの周波数を用いて磁性薄膜の厚さを測定することができる。
【0020】
なお、本発明の測定対象となる複合材は、磁性薄膜の磁性が強磁性またはフェリ磁性でなければならないが、基材の磁性は常磁性であるか、強磁性またはフェリ磁性であるかを問わない。しかし、基材の磁性が強磁性またはフェリ磁性の場合には、磁性薄膜の厚さが基材の厚さの1/3以下であるのが望ましい。これは、磁性薄膜と基材の厚さの差がほとんどないような場合には、磁性薄膜中の音速だけでなく、基材中の音速も低下するおそれがあるからである。
【0021】
本発明は、複合材の基材表面に存在する磁性薄膜の厚さを超音波によって測定する方法であって、共鳴次数の異なる2以上の共鳴周波数fを測定し、下記の(1)式を用いて複合材全体の見かけ上の厚さd を計算し、このd が最大となるときの周波数fMAXから磁性薄膜の厚さを求めることを特徴とする磁性薄膜の厚さ測定方法である。但し、(1)式中の各記号は、d は複合材全体の見かけ上の厚さ、nは共鳴次数、Cは基材における音速、fはn次の超音波共鳴周波数を示す。
=0.5×n×C/f …(1)
【0022】
一般に、一種類の物質で構成される材料の厚さを超音波を用いて測定する場合には、材料中の音速、共鳴周波数の次数をn、およびn次の共鳴周波数をfとすると、下記の(a)式によって材料の厚さdを求めることができる。
d=0.5×n×C/f …(a)
【0023】
ここで、一種類の物質で構成される材料の厚さを測定する場合、音速が変化するという現象は発生せず、超音波の共鳴周波数fが等間隔に観測されるので、観測される共鳴周波数fおよびその次数nの値を上記の(a)式に代入して求められる材料の厚さdは一定値となる。しかし、磁性薄膜を含む複合材の厚さを測定する場合には、超音波の波長の1/2の大きさが磁性薄膜の厚さと一致する付近で音速が遅くなるため、共鳴周波数が低周波数側にシフトする。このため、音速Cを一定とする(ここでは、便宜上、磁性薄膜中の音速として基材中の音速を用いる)条件で、この付近の共鳴周波数を上記の(a)式に代入して複合材全体の厚さdを求めると、他の共鳴周波数を用いて求めた厚さよりも大きくなる。
【0024】
本発明の(1)式は、上記の(a)式においてdを複合材の見かけ上の厚さd に置き換えたものである。ここで、複合材の見かけ上の厚さd とは、上記のとおり、磁性薄膜中の音速が基材中の音速と一致するものと仮定したときの複合材全体の厚さをいう。
【0025】
従って、上記の(1)式を用いて、各共鳴次数毎に複合材の見かけ上の厚さd を計算していけば、このd が最大となるときの周波数fMAXは、一義的に定まる。例えば、若干の計算誤差を許容できる場合には、観測された共鳴周波数のうちd が最大となるときの周波数を選べばよい。また、d は、共鳴周波数fにおいてしか定まらないが、適当な関数形、例えば二次関数や三次関数などを用いて、共鳴周波数f以外の周波数に対する複合材の見かけ上の厚さを補間し、この補間関数における複合材の見かけ上の厚さが最大となる周波数fMAXを求めてもよい。また、後述する実施例2で示すような方法を採用してもよい。
【0026】
以上のようにして求められたfMAXは、波長の1/2の大きさが磁性薄膜の厚さと一致する周波数である。従って、下記の(2)式によって、磁性薄膜の厚さを求めることができる。但し、(2)式中の各記号は、dMAGは磁性薄膜の厚さ、Aは予め各磁性薄膜毎に求めた係数、fMAXは複合材全体の見かけ上の厚さが最大となるときの周波数を示す。
MAG=A/fMAX …(2)
【0027】
なお、A値は、音速が最低となるときの超音波の音速の1/2の値である。磁性薄膜がポーラスであったりすると、この値がずれることもあるが、この場合には実測値に合うようにA値を定めればよい。
【0028】
本発明の磁性薄膜の厚さ測定方法においては、超音波の励起および検出には、電磁超音波法を用いるのがよい。これは、電磁超音波法によれば、非接触で、複合材中に超音波を直接、励起できるからである。これに対して、例えば、超音波媒体を利用して超音波を複合材中に励起する圧電素子等を用いる方法では、複合材と超音波媒体とが合体した媒質の共鳴が観測されるため、複合材の共鳴周波数を正確に測定することが困難である。従って、本発明の磁性薄膜の厚さ測定方法においては、超音波の励起および検出には電磁超音波法を用いるのがよい。
【0029】
本発明の磁性薄膜の厚さ測定方法は、化学式がMで表される逆スピネル型構造を持つ酸化物からなる磁性薄膜を有する複合材の磁性薄膜の厚さを測定する場合に特に有用である。この酸化物は、ボイラ等に使用される鉄鋼材料の高温酸化によって生成する酸化物であり、周波数による音速の変化が顕著な物質だからである。
【0030】
【実施例】
(実施例1)
まず、使用済みのボイラー管から、表面に酸化膜が付着した試験片を採取し、これを試験片Aとした。また、厚さが約5mmの2.25Cr-1Mo鋼を水蒸気中で900時間または200時間保持して、鋼の表面に酸化膜が付着した試験片を採取し、900時間保持したものを試験片B、200時間保持したものを試験片Cとした。これらの試験片をX線回折により観察した結果、各試験片に付着した酸化膜は、逆スピネル構造を持つM(M:Fe、Cr)であった。また、各試験片の断面を顕微鏡で観察した結果、試験片A、BおよびCの表面に付着した酸化膜の厚さは、それぞれ0.42mm、0.15mmおよび0.03mmであった。
【0031】
図1は、試験片Aに超音波を照射したときの挙動を示す図である。(a)は試験片Aの超音波スペクトルを示す図であり、(b)は観測された共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図である。なお、図1(a)中の数字は共鳴次数であり、また、図1(b)は(1)式中の音速を3.26km/sec(2.25Cr-1Mo鋼中の音速)として計算した結果である。
【0032】
図1(a)では、2次(0.72MHz)から13次(4.3MHz)までの共鳴ピークが観測されており、各次数で、主ピークの付近に副ピークが観測されているが、これらは表面に若干の凹凸があるためである。また、図1(b)に示すように、共鳴周波数の変化に伴って、複合材全体の見かけ上の厚さも変化し、試験片Aでは、複合材全体の見かけ上の厚さが最大となる周波数fMAXは、2.615MHzである。ここで、予め逆スピネル構造を持つM(M:Fe、Cr)からなる酸化膜について求めた係数Aは1.1であり、これを(2)式に代入すると、試験片Aにおける酸化膜の厚さは0.42mmである。これは、断面観察によって測定した厚さと一致する。
【0033】
図2は、試験片Bについての共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図であり、図3は、試験片Cについての共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図である。図2に示すように、試験片Bでは、複合材全体の見かけ上の厚さが最大となる周波数fMAXは、7.537MHzである。ここで、係数Aを1.1として(2)式に代入すると、試験片Bにおける酸化膜の厚さは0.15mmであり、この試験片でも断面観察によって測定した厚さと一致した。
【0034】
図3においても図1(b)および図2と同様に、共鳴周波数の変化に伴って、複合材全体の見かけ上の厚さも変化するが、複合材全体の見かけ上の厚さが最大となる周波数fMAXは、15MHz以下の範囲内では観測されなかった。しかし、fMAXが15MHzを超える周波数で観測されることが予想できるため、係数Aを1.1として(2)式に代入すると、試験片Cにおける酸化膜の厚さは0.07mm未満であることがわかる。なお、より正確に酸化膜の厚さを測定するためには、40MHz程度まで周波数を観測すればよい。
【0035】
図4は、試験片AおよびBにおける共鳴周波数と酸化膜中の音速との関係を示す図である。同図に示すとおり、試験片Aでは2,615MHzで、試験片Bでは7.537MHzで、それぞれ酸化膜中の音速が最低となるが、いずれの試験片においても酸化膜中の最低音速は、2.2km/sec程度である。即ち、逆スピネル構造を持つM(M:Fe、Cr)からなる酸化膜の場合の係数A(1.1)は、当該酸化膜中の最低音速の1/2程度であり、このことは、音速が最低となるときの超音波の波長が酸化膜の厚さのほぼ1/2となることを示している。従って、(2)式中の係数Aは、予め上記のような実験を磁性薄膜毎に行い、磁性薄膜中の音速の最低値を求め、その値に1/2かけることによって得ることができる。
【0036】
なお、前述したように、波長の1/2の大きさが磁性薄膜の厚さと一致する超音波の音速は、波長の1/2の整数倍が磁性薄膜の厚さと一致する場合の音速とほとんど同じである。従って、実際には、A値は、各材料について通常知られている音速に1/2をかけたものである。
【0037】
(実施例2)
さらに、全体厚さが2.15mmのアルミニウム−フェライトステンレスのクラッド鋼から試験片を採取し、これを試験片Dとした。各試験片の断面を顕微鏡で観察した結果、試験片Dのアルミニウム板の厚さは1.63mm、フェライトステンレス板の厚さは0.52mmであった。
【0038】
図5は、試験片Dに超音波を照射したときの挙動を示す図である。(a)は、試験片Dの超音波スペクトルを示す図であり、(b)は、観測された共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図である。図5(a)に示すとおり、試験片Dでは、2.35MHz、2.91MHz、3.64MHzおよび4.53MHzにおいて共鳴周波数が観測された。また、図5(b)に示すように、それぞれの共鳴周波数における複合材全体の見かけ上の厚さは、それぞれ、1.94mm、2.09mm、2.09mmおよび2.01mmであった。
【0039】
まず、0.1mm程度の計算誤差を許容できる場合には、複合材全体の見かけ上の厚さが最大となる周波数fMAXを2.91MHzまたは3.64MHzとすることができる。従って、この場合、予めフェライトステンレス板について求めた係数Aは1.6であるので、これを(2)式に代入すると、試験片Dにおける酸化膜の厚さは0.55mmまたは0.44mmであり、断面観察によって測定した厚さとほぼ一致する。一方、計算誤差を許容できない場合には、上記の結果から下記のような方法によってfMAXを求め、フェライトステンレス板の厚さを求めてもよい。
【0040】
即ち、図5(b)から点aおよび点bの関係式、ならびに点cおよび点dの関係式は、下記のように表せる。
= 0.27×f+1.31
=−0.09×f+2.42
これらの式を連立させて交点における周波数を求めると、3.08MHzとなり、これをfMAXとしてもよい。fMAXが3.08MHzであり、係数Aが1.6であるので、(2)式より、フェライトステンレス板の厚さは0.52mmとなる。これは、断面観察によって測定した厚さと一致する。
【0041】
【発明の効果】
本発明によれば、複合材全体の厚さのみならず、複合材の基材表面に存在する磁性薄膜のみの厚さを非破壊の状態で、簡便に測定することができる。従って、複合材の機械強度等の特性を予測することができ、安全管理上有用である。また、本発明によってボイラー管等の表面を被覆する酸化膜等の厚さを定期的に測定すれば、酸化膜の生成速度を把握することができるので、ボイラー等の操業条件の管理上も有用である。
【図面の簡単な説明】
【図1】試験片Aに超音波を照射したときの挙動を示す図である。(a)は、試験片Aの超音波スペクトルを示す図であり、(b)は、観測された共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図である。
【図2】試験片Bについての共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図である。
【図3】試験片Cについての共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図である。
【図4】試験片AおよびBにおける共鳴周波数と酸化膜中の音速との関係を示す図である。
【図5】試験片Dに超音波を照射したときの挙動を示す図である。(a)は、試験片Dの超音波スペクトルを示す図であり、(b)は、観測された共鳴周波数と(1)式から求めた見かけ上の複合材全体の厚さとの関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of measuring the thickness of a magnetic thin film using ultrasonic waves when a magnetic thin film is present on the surface of a composite material, for example, a steam oxide film covering a boiler tube, aluminum The present invention relates to a method for easily and accurately measuring the thickness of a stainless steel clad steel plate in a non-destructive state.
[0002]
[Prior art]
Boiler tubes in power plants used in high-temperature, oxidizing environments, piping in chemical plants used in chemical corrosive environments, tanks in oil plants used in corrosive environments with organic substances, or moisture and salinity In marine structures such as bridges used in corrosive environments such as the atmosphere, a coating of corrosion products mainly composed of oxides can be formed on the surface. In the following description, the coatings of the corrosion products are collectively referred to as “oxide films”. This oxide film includes what is called “rust” or “scale”.
[0003]
The above-mentioned oxide film is normally generated and remains unevenly on the surface of the material, and accordingly, the material body is eroded by corrosion and thins. If the thickness of the material body is reduced, the mechanical strength is lowered and eventually bursts. Therefore, it is important from the viewpoint of safety management to know the thickness of the material body. In the case of a boiler tube, the operating conditions (temperature, pressure, etc.) of the boiler tube can be known from the growth rate of the oxide film. Therefore, if the thickness of the oxide film can be measured, the operating conditions of the boiler Can be used to manage
[0004]
On the other hand, the members used for pressure vessels, boilers, nuclear reactors, storage tanks, etc. have different required characteristics between the outside and inside. Therefore, in order to satisfy the respective characteristics, clad steel in which two types of plates are joined May be used. Normally, clad steel is manufactured by hot rolling or explosive processing of two types of plates, but it is necessary to know the thickness of each plate material from the viewpoint of confirming performance.
[0005]
As described above, the thickness of an oxide film in the case of boiler tubes and the thickness of a stainless steel plate (hereinafter collectively referred to as “magnetic thin film”) in the case of clad steel are simply measured in a non-destructive state. There is a need for a method.
[0006]
Conventionally, a method using ultrasonic waves (hereinafter, referred to as “ultrasonic thickness measurement method”) is widely known as a method for easily measuring the thickness of a material in a non-destructive manner. Includes a reflection time measurement method and a resonance method. The reflection time measurement method is a method in which a short ultrasonic pulse is incident in the thickness direction of the material, the time until the reflected wave returns, and the thickness of the material is obtained by multiplying the reflection time by the speed of sound. It is. In the resonance method, when the material thickness is half the wavelength of the ultrasonic wave and an integral multiple thereof, the phases of the ultrasonic waves that are multiple-reflected in the material are aligned, and a standing wave is generated and the amplitude is increased. This is a method for obtaining the thickness of the material by utilizing the property of increasing the thickness.
[0007]
However, when an oxide film is attached to the material main body, the ultrasonic wave passes through the boundary between the material main body and the oxide film. Therefore, in any of the above methods, the thickness of the material main body and the oxide film is summed. Therefore, only the thickness of the material body or the thickness of the oxide film cannot be measured alone.
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a nondestructive measurement method for simply measuring the thickness of a magnetic thin film present on the surface of a composite material. .
[0009]
[Means for Solving the Problems]
The present inventor measured the thickness of the entire composite material with an oxide film attached to the surface by a resonance method, and confirmed that the sound velocity changed with a change in the frequency of the ultrasonic wave. No. 180129 discloses a method for obtaining the thickness of an oxide film present on the surface of a composite material by utilizing the change in sound velocity. After that, as a result of further research, the phenomenon that the sound velocity changes with the change in the frequency of the ultrasonic wave does not occur depending on the type of magnetic thin film material, but the correlation between the thickness of the magnetic thin film and the wavelength of the ultrasonic wave. We have found that it depends on relationships and have completed the present invention .
[0010]
The present invention is “ a method of measuring the thickness of a magnetic thin film existing on the surface of a composite material by ultrasonic waves, measuring two or more resonance frequencies f n having different resonance orders, and the following (1) The apparent thickness d n * of the entire composite is calculated using the equation, and the thickness d of the magnetic thin film is calculated using the following equation (2) from the frequency f MAX when this d n * is the maximum. A method for measuring the thickness of a magnetic thin film characterized by obtaining MAG .
[0011]
d n * = 0.5 × n × C / f n (1)
However, the meaning of each symbol in formula (1), d n * is the thickness of the overall composite appearance, n is the resonant order, C is the sound velocity in the substrate, f n is the n-th order of the ultrasonic resonance frequency Indicates.
[0012]
From the frequency f MAX described above, the thickness d MAG of the magnetic thin film can be obtained using the following equation (2). However, each symbol in the equation (2) indicates that d MAG is the thickness of the magnetic thin film, A is a coefficient obtained in advance for each magnetic thin film, and f MAX is the maximum apparent thickness of the entire composite material. Indicates the frequency.
d MAG = A / f MAX (2)
[0013]
In the method for measuring the thickness of the magnetic thin film of the present invention, it is desirable to use the electromagnetic ultrasonic method for excitation and detection of ultrasonic waves, and the chemical formula is M 3 O 4 (M: metal atom, O: oxygen atom). It is useful for measuring a composite material having an oxide film made of an oxide having an inverse spinel structure represented by the following formula.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Upon irradiation with electromagnetic waves in a magnetic thin film made of a ferromagnetic material element material or ferrimagnetic material, when the integer multiple of ½ the thickness and electromagnetic wave of the magnetic thin film are the same, the magnetic thin film by the magnetic field due to the electromagnetic wave Since the magnetization vibration is excited, the speed of the electromagnetic wave is slow (the real part of the dielectric constant is increased), and a part of the energy of the electromagnetic wave is absorbed (the imaginary part of the dielectric constant is increased).
[0015]
This is generally called a domain wall resonance effect or a dimension resonance effect (see, for example, Magnetic Handbook, Asakura Shoten, page 933).
[0016]
A ferromagnetic material or a ferrimagnetic material has a magnetostrictive effect in which the length of the crystal axis slightly changes due to a change in the direction of magnetization. Here, the change in the length of the crystal axis means that the crystal lattice moves, that is, the lattice vibration is excited. Conversely, when the crystal lattice moves due to the progress of the ultrasonic wave, a force that reverses the direction of magnetization due to the magnetostriction effect works. In other words, the ultrasonic wave excites the lattice vibration by the magnetostrictive effect and proceeds while reversing the magnetization direction. Therefore, in the ultrasonic wave traveling in the magnetic thin film, similarly to the domain wall resonance effect in the case of electromagnetic waves, when the thickness of the magnetic thin film and an integral multiple of 1/2 of the wavelength of the ultrasonic wave coincide with each other, Magnetization vibration is excited to cause a phenomenon that the sound velocity of the ultrasonic wave is slowed down.
[0017]
As described above, in the resonance method, the resonance peak frequency (hereinafter referred to as “resonance frequency”) observed when the frequency f n at which the thickness of the material and an integral multiple of ½ of the wavelength of the ultrasonic wave coincide with each other is obtained. Therefore, the thickness of the material cannot be grasped at a frequency other than the resonance frequency. Therefore, for example, in the case of a material composed of one kind of substance, resonance occurs at a frequency where the wavelength of the ultrasonic wave is larger than the thickness of the material. The half of the wavelength matches the thickness of the material. Only if you want to.
[0018]
As shown in FIG. 4 of the embodiment described later, the sound velocity in the magnetic thin film is lower than the frequency at which the sound velocity in the magnetic thin film is the lowest (that is, half the wavelength of the ultrasonic wave is a magnetic thin film). In the frequency region larger than the thickness of the magnetic thin film, the frequency changes greatly depending on the frequency, but the frequency region higher than the frequency at which the sound speed in the magnetic thin film is lowest (that is, the size of the ultrasonic wave is half the magnetic thin film). In a frequency region smaller than the thickness of the sound), the change becomes gentle and the change in sound speed converges. That is, the speed of sound in the magnetic thin film varies substantially between the frequency at which the wavelength of the ultrasonic wave and the thickness of the magnetic thin film coincide with the frequency at which a half of the wavelength matches the thickness of the magnetic thin film. I do not. Therefore, in the case of a material composed of one kind of substance, the phenomenon that the speed of sound changes depending on the frequency does not become obvious.
[0019]
However, when measuring the thickness of a composite material including a magnetic thin film, a resonance frequency such that half the wavelength of the ultrasonic wave is smaller than the total thickness of the composite material but larger than the thickness of the magnetic thin film. May exist. In such a case, the speed of sound in the magnetic thin film changes, but the speed of sound in the base material does not change. Therefore, the thickness of the magnetic thin film can be measured using the frequency at this time.
[0020]
In the composite material to be measured according to the present invention, the magnetic thin film must be ferromagnetic or ferrimagnetic, but it does not matter whether the base material is paramagnetic, ferromagnetic or ferrimagnetic. Absent. However, when the base material is ferromagnetic or ferrimagnetic, it is desirable that the thickness of the magnetic thin film be 1/3 or less of the thickness of the base material. This is because when there is almost no difference in thickness between the magnetic thin film and the base material, not only the speed of sound in the magnetic thin film but also the speed of sound in the base material may be reduced.
[0021]
The present invention is a method for measuring the thickness of a magnetic thin film present on the surface of a composite material by ultrasonic waves, and measuring two or more resonance frequencies f n having different resonance orders, and the following equation (1): Is used to calculate the apparent thickness dn * of the entire composite material, and the thickness of the magnetic thin film is obtained from the frequency f MAX when dn * is maximized. This is a measurement method. However, (1) each symbol in the formula is, d n * denotes the thickness of the overall composite appearance, n is the resonant order, C is the sound velocity in the substrate, the f n is the n-th order of the ultrasonic resonance frequency .
d n * = 0.5 × n × C / f n (1)
[0022]
In general, when the thickness of a material composed of one kind of substance is measured using ultrasonic waves, the sound velocity in the material, the order of the resonance frequency is n, and the n-th resonance frequency is f n . The thickness d of the material can be obtained by the following equation (a).
d = 0.5 × n × C / f n (a)
[0023]
Here, when measuring the thickness of the material composed of one kind of material, the phenomenon that the sound velocity changes does not occur, since the resonance frequency f n of the ultrasonic wave is observed at equal intervals, are observed The thickness d of the material obtained by substituting the value of the resonance frequency f n and its order n into the above equation (a) is a constant value. However, when measuring the thickness of a composite material containing a magnetic thin film, the sound velocity becomes slow in the vicinity where half the wavelength of the ultrasonic wave matches the thickness of the magnetic thin film, so the resonance frequency is low. Shift to the side. Therefore, under the condition that the sound velocity C is constant (for convenience, the sound velocity in the base material is used as the sound velocity in the magnetic thin film), the nearby resonance frequency is substituted into the above equation (a), and the composite material When the total thickness d is obtained, it is larger than the thickness obtained using other resonance frequencies.
[0024]
The formula (1) of the present invention is obtained by replacing d in the above formula (a) with the apparent thickness dn * of the composite material. Here, the apparent thickness dn * of the composite material means the thickness of the entire composite material when it is assumed that the sound velocity in the magnetic thin film matches the sound velocity in the base material as described above.
[0025]
Therefore, if the apparent thickness dn * of the composite material is calculated for each resonance order using the above equation (1), the frequency f MAX when the dn * is maximized is: It is uniquely determined. For example, if it can allow slight calculation error, d n * of the observed resonance frequency may be selected frequency when the maximum. Further, d n * is determined only at the resonance frequency f n , but the apparent thickness of the composite with respect to frequencies other than the resonance frequency f n using an appropriate function form such as a quadratic function or a cubic function. And the frequency f MAX at which the apparent thickness of the composite material in the interpolation function becomes maximum may be obtained. Moreover, you may employ | adopt the method as shown in Example 2 mentioned later.
[0026]
F MAX obtained as described above is a frequency at which a half of the wavelength coincides with the thickness of the magnetic thin film. Therefore, the thickness of the magnetic thin film can be obtained by the following equation (2). However, each symbol in the formula (2) indicates that d MAG is the thickness of the magnetic thin film, A is a coefficient obtained in advance for each magnetic thin film, and f MAX is the maximum apparent thickness of the entire composite material. Indicates the frequency.
d MAG = A / f MAX (2)
[0027]
The A value is a value that is ½ of the ultrasonic sound velocity when the sound velocity is the lowest. If the magnetic thin film is porous, this value may deviate. In this case, the A value may be determined so as to match the actual measurement value.
[0028]
In the method for measuring the thickness of the magnetic thin film of the present invention , an electromagnetic ultrasonic method is preferably used for excitation and detection of ultrasonic waves. This is because according to the electromagnetic ultrasonic method, ultrasonic waves can be directly excited in the composite material without contact. On the other hand, for example, in a method using a piezoelectric element that excites ultrasonic waves into a composite material using an ultrasonic medium, resonance of a medium in which the composite material and the ultrasonic medium are combined is observed. It is difficult to accurately measure the resonance frequency of the composite material. Therefore, in the method for measuring the thickness of the magnetic thin film of the present invention, it is preferable to use an electromagnetic ultrasonic method for excitation and detection of ultrasonic waves.
[0029]
The method for measuring the thickness of a magnetic thin film of the present invention is particularly suitable for measuring the thickness of a magnetic thin film of a composite material having a magnetic thin film made of an oxide having an inverse spinel structure represented by the chemical formula M 3 O 4. Useful. This is because the oxide is an oxide generated by high-temperature oxidation of a steel material used in a boiler or the like, and is a substance in which a change in sound speed due to frequency is remarkable.
[0030]
【Example】
Example 1
First, a test piece with an oxide film attached to the surface was collected from a used boiler tube, and this was used as test piece A. In addition, a 2.25Cr-1Mo steel having a thickness of about 5 mm was held in water vapor for 900 hours or 200 hours, and a test piece with an oxide film attached to the surface of the steel was collected. The test piece C was held for 200 hours. As a result of observing these test pieces by X-ray diffraction, the oxide film adhering to each test piece was M 3 O 4 (M: Fe, Cr) having an inverse spinel structure. Moreover, as a result of observing the cross section of each test piece with a microscope, the thicknesses of the oxide films attached to the surfaces of the test pieces A, B, and C were 0.42 mm, 0.15 mm, and 0.03 mm, respectively.
[0031]
FIG. 1 is a diagram showing the behavior when the test piece A is irradiated with ultrasonic waves. (a) is a figure which shows the ultrasonic spectrum of the test piece A, (b) is a figure which shows the relationship between the observed resonance frequency and the apparent thickness of the whole composite material calculated | required from (1) Formula. . The numbers in Fig. 1 (a) are the resonance orders, and Fig. 1 (b) is the result of calculating the speed of sound in equation (1) as 3.26km / sec (the speed of sound in 2.25Cr-1Mo steel). It is.
[0032]
In Fig. 1 (a), resonance peaks from the second order (0.72MHz) to the 13th order (4.3MHz) are observed, and in each order, sub-peaks are observed near the main peak. This is because the surface has some irregularities. Further, as shown in FIG. 1 (b), the apparent thickness of the entire composite material changes with the change of the resonance frequency, and in the test piece A, the apparent thickness of the entire composite material becomes the maximum. The frequency f MAX is 2.615 MHz. Here, the coefficient A obtained in advance for the oxide film made of M 3 O 4 (M: Fe, Cr) having the reverse spinel structure is 1.1, and when this is substituted into the equation (2), the oxide film in the test piece A The thickness is 0.42mm. This is consistent with the thickness measured by cross-sectional observation.
[0033]
FIG. 2 is a diagram showing the relationship between the resonance frequency for the test piece B and the apparent thickness of the entire composite material obtained from the equation (1). FIG. 3 shows the relationship between the resonance frequency for the test piece C and (1 It is a figure which shows the relationship with the thickness of the whole composite material calculated | required from () Formula. As shown in FIG. 2, in the test piece B, the frequency f MAX at which the apparent thickness of the entire composite material is maximum is 7.537 MHz. Here, when the coefficient A was set to 1.1 and substituted into the equation (2), the thickness of the oxide film in the test piece B was 0.15 mm, and this test piece also coincided with the thickness measured by cross-sectional observation.
[0034]
In FIG. 3 as well as FIG. 1 (b) and FIG. 2, the apparent thickness of the entire composite material changes as the resonance frequency changes, but the apparent thickness of the entire composite material becomes maximum. The frequency f MAX was not observed within the range of 15 MHz or less. However, since f MAX can be expected to be observed at a frequency exceeding 15 MHz, if the coefficient A is set to 1.1 and is substituted into the equation (2), the thickness of the oxide film in the test piece C is found to be less than 0.07 mm. . In order to more accurately measure the thickness of the oxide film, the frequency may be observed up to about 40 MHz.
[0035]
FIG. 4 is a diagram showing the relationship between the resonance frequency in the test pieces A and B and the speed of sound in the oxide film. As shown in the figure, the sound velocity in the oxide film is the lowest at 2,615 MHz for the test piece A and 7.537 MHz for the test piece B, but the minimum sound speed in the oxide film is 2.2 km for any test piece. It is about / sec. That is, the coefficient A (1.1) in the case of an oxide film made of M 3 O 4 (M: Fe, Cr) having an inverse spinel structure is about ½ of the lowest sound velocity in the oxide film. This indicates that the wavelength of the ultrasonic wave when the sound velocity is the lowest is approximately ½ of the thickness of the oxide film. Therefore, the coefficient A in the equation (2) can be obtained by conducting the above-described experiment for each magnetic thin film in advance to obtain the minimum value of the sound velocity in the magnetic thin film and multiplying that value by 1/2.
[0036]
Note that, as described above, the speed of sound of an ultrasonic wave whose half the wavelength matches the thickness of the magnetic thin film is almost the same as the sound speed when an integral multiple of 1/2 of the wavelength matches the thickness of the magnetic thin film. The same. Thus, in practice, the A value is the sound speed normally known for each material multiplied by ½.
[0037]
(Example 2)
Further, a test piece was taken from an aluminum-ferritic stainless clad steel having a total thickness of 2.15 mm, and this was used as test piece D. As a result of observing a cross section of each test piece with a microscope, the thickness of the aluminum plate of test piece D was 1.63 mm, and the thickness of the ferrite stainless steel plate was 0.52 mm.
[0038]
FIG. 5 is a diagram showing the behavior when the test piece D is irradiated with ultrasonic waves. (a) is a figure which shows the ultrasonic spectrum of the test piece D, (b) is a figure which shows the relationship between the observed resonant frequency and the apparent thickness of the whole composite material calculated | required from (1) Formula. It is. As shown in FIG. 5 (a), in the test piece D, resonance frequencies were observed at 2.35 MHz, 2.91 MHz, 3.64 MHz and 4.53 MHz. Further, as shown in FIG. 5B, the apparent thicknesses of the entire composite material at the respective resonance frequencies were 1.94 mm, 2.09 mm, 2.09 mm, and 2.01 mm, respectively.
[0039]
First, when a calculation error of about 0.1 mm can be allowed, the frequency f MAX at which the apparent thickness of the entire composite material becomes maximum can be set to 2.91 MHz or 3.64 MHz. Therefore, in this case, since the coefficient A previously obtained for the ferritic stainless steel plate is 1.6, when this is substituted into the equation (2), the thickness of the oxide film on the test piece D is 0.55 mm or 0.44 mm, and the cross-sectional observation is performed. It is almost the same as the thickness measured by. On the other hand, if the calculation error cannot be allowed, f MAX may be obtained from the above result by the following method to obtain the thickness of the ferrite stainless steel plate.
[0040]
That is, from FIG. 5B, the relational expression between the points a and b and the relational expression between the points c and d can be expressed as follows.
d n * = 0.27 × f n +1.31
d n * = − 0.09 × f n +2.42
When these equations are combined to obtain the frequency at the intersection, it is 3.08 MHz, which may be set as f MAX . Since f MAX is 3.08 MHz and the coefficient A is 1.6, the thickness of the ferrite stainless steel plate is 0.52 mm from the equation (2). This is consistent with the thickness measured by cross-sectional observation.
[0041]
【The invention's effect】
According to the present invention, not only the thickness of the entire composite material, but also the thickness of only the magnetic thin film present on the surface of the base material of the composite material can be easily measured in a non-destructive state. Therefore, characteristics such as mechanical strength of the composite material can be predicted, which is useful for safety management. In addition, if the thickness of an oxide film or the like covering the surface of a boiler tube or the like is measured regularly according to the present invention, the generation rate of the oxide film can be grasped, which is also useful in managing the operating conditions of the boiler and the like. It is.
[Brief description of the drawings]
FIG. 1 is a diagram showing a behavior when a test piece A is irradiated with ultrasonic waves. (a) is a figure which shows the ultrasonic spectrum of the test piece A, (b) is a figure which shows the relationship between the observed resonance frequency and the apparent thickness of the whole composite material calculated | required from (1) Formula. It is.
FIG. 2 is a diagram showing the relationship between the resonance frequency for test piece B and the apparent thickness of the entire composite material obtained from equation (1).
FIG. 3 is a diagram showing the relationship between the resonance frequency of the test piece C and the apparent thickness of the entire composite material obtained from the equation (1).
FIG. 4 is a diagram showing the relationship between the resonance frequency in test pieces A and B and the speed of sound in the oxide film.
FIG. 5 is a diagram showing a behavior when a test piece D is irradiated with ultrasonic waves. (a) is a figure which shows the ultrasonic spectrum of the test piece D, (b) is a figure which shows the relationship between the observed resonant frequency and the apparent thickness of the whole composite material calculated | required from (1) Formula. It is.

Claims (4)

複合材の基材表面に存在する磁性薄膜の厚さを超音波によって測定する方法であって、共鳴次数の異なる2以上の共鳴周波数fを測定し、下記の(1)式を用いて複合材全体の見かけ上の厚さd を計算し、このd が最大となるときの周波数fMAXから磁性薄膜の厚さを求めることを特徴とする磁性薄膜の厚さ測定方法。
=0.5×n×C/f …(1)
但し、(1)式中の各記号の意味は下記の通りである。
:複合材全体の見かけ上の厚さ
n:共鳴次数
C:基材における音速
:n次の超音波共鳴周波数
The thickness of the magnetic thin film is present on the substrate surface of the composite to a method of measuring by ultrasound, two or more resonance frequencies f n of different resonance orders was measured and combined with the following equation (1) A method for measuring a thickness of a magnetic thin film, comprising: calculating an apparent thickness dn * of the entire material, and obtaining a thickness of the magnetic thin film from a frequency f MAX when the dn * is maximized.
d n * = 0.5 × n × C / f n (1)
However, the meaning of each symbol in the formula (1) is as follows.
d n * : apparent thickness of the entire composite material n: resonance order C: sound velocity f n at the base material: n-order ultrasonic resonance frequency
複合材の基材表面に存在する磁性薄膜の厚さを超音波によって測定する方法であって、共鳴次数の異なる2以上の共鳴周波数fを測定し、下記の(1)式を用いて複合材全体の見かけ上の厚さd を計算し、このd が最大となるときの周波数fMAXから、下記の(2)式を用いて磁性薄膜の厚さdMAGを求めることを特徴とする磁性薄膜の厚さ測定方法。
=0.5×n×C/f …(1)
MAG=A/fMAX
…(2)
但し、(1)および(2)式中の各記号の意味は下記の通りである。
:複合材全体の見かけ上の厚さ
n:共鳴次数
C:基材における音速
:n次の超音波共鳴周波数
MAG:磁性薄膜の厚さ
A:予め各磁性薄膜毎に求めた係数
MAX:複合材全体の見かけ上の厚さが最大となるときの周波数
The thickness of the magnetic thin film is present on the substrate surface of the composite to a method of measuring by ultrasound, two or more resonance frequencies f n of different resonance orders was measured and combined with the following equation (1) The apparent thickness d n * of the entire material is calculated, and the thickness d MAG of the magnetic thin film is obtained from the frequency f MAX when this d n * is maximum using the following equation (2). A method for measuring the thickness of a magnetic thin film.
d n * = 0.5 × n × C / f n (1)
d MAG = A / f MAX
… (2)
However, the meaning of each symbol in the formulas (1) and (2) is as follows.
d n * : apparent thickness of the entire composite material n: resonance order C: sound velocity f n at the substrate f n : n-order ultrasonic resonance frequency d MAG : thickness of magnetic thin film A: previously obtained for each magnetic thin film Coefficient f MAX : frequency at which the apparent thickness of the entire composite becomes maximum
超音波の励起および検出に電磁超音波法を用いることを特徴とする請求項1または2に記載の磁性薄膜の厚さ測定方法。 3. The method for measuring a thickness of a magnetic thin film according to claim 1 , wherein an electromagnetic ultrasonic method is used for excitation and detection of ultrasonic waves. 化学式がM(M:金属原子、O:酸素原子)で表される逆スピネル型構造を持つ酸化物からなる酸化膜を有する複合材を対象とする請求項1〜3のいずれかに記載の磁性薄膜の厚さ測定方法。Chemical formula M 3 O 4 (M: metal atom, O: oxygen atom) to any one of claims 1 to 3 directed to a composite material having an oxide film made of an oxide having an inverse spinel structure represented by The magnetic thin film thickness measuring method described.
JP2001377012A 2001-12-11 2001-12-11 Magnetic thin film thickness measurement method Expired - Fee Related JP3857122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377012A JP3857122B2 (en) 2001-12-11 2001-12-11 Magnetic thin film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377012A JP3857122B2 (en) 2001-12-11 2001-12-11 Magnetic thin film thickness measurement method

Publications (2)

Publication Number Publication Date
JP2003177015A JP2003177015A (en) 2003-06-27
JP3857122B2 true JP3857122B2 (en) 2006-12-13

Family

ID=19185081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377012A Expired - Fee Related JP3857122B2 (en) 2001-12-11 2001-12-11 Magnetic thin film thickness measurement method

Country Status (1)

Country Link
JP (1) JP3857122B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884925B2 (en) * 2006-11-07 2012-02-29 新日本製鐵株式会社 Plating thickness measuring device, plating thickness measuring method, program, and computer-readable storage medium
JP4795925B2 (en) * 2006-12-19 2011-10-19 日本テクノプラス株式会社 Ultrasonic thickness measurement method and apparatus
JP2009103459A (en) * 2007-10-19 2009-05-14 Ricoh Elemex Corp Ultrasonic plate thickness measuring device
CN103615996B (en) * 2013-11-14 2017-02-01 大连理工大学 Method for measuring thickness of coatings through ultrasonic signal spectrum filter technology in nondestructive mode
CN108362237B (en) * 2018-02-02 2019-10-11 西安交通大学 The method and system of continuous detection full size lubrication film thickness are composed using ultrasonic reflection coefficient phase

Also Published As

Publication number Publication date
JP2003177015A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
Haines et al. The application of broadband ultrasonic spectroscopy to the study of layered media
Hirao et al. Electromagnetic acoustic resonance and materials characterization
Nakamura et al. Mode conversion and total reflection of torsional waves for pipe inspection
Kim et al. AlN ultrasound sensor for photoacoustic Lamb wave detection in a high-temperature environment
JP3857122B2 (en) Magnetic thin film thickness measurement method
Budimir et al. High temperature nde ultrasound transducers for condition monitoring of superheated steam pipes in nuclear power plants
Kwun et al. Magnetostrictive sensor for generating and detecting plate guided waves
Carnevale et al. Ultrasonic measurement of elastic moduli at elevated temperatures, using momentary contact
Bertoncini et al. Overview and Experimental Evaluation of Magnetostrictive Transducers for Guided Wave Inspection
Lynnworth Ultrasonic measurement of elastic moduli in slender specimens using extensional and torsional wave pulses
Kwun et al. Detection of corrosion in pipe using the magnetostrictive sensor technique
Cheng et al. Study and comparison of pulse compression techniques with three types of excitation for high-temperature EMAT detection
Murayama Study of driving mechanism on electromagnetic acoustic transducer for Lamb wave using magnetostrictive effect and application in drawability evaluation of thin steel sheets
Laws et al. Parallel strip waveguide for ultrasonic flow measurement in harsh environments
Cobb et al. Detecting sensitization in aluminum alloys using acoustic resonance and EMAT ultrasound
Kim et al. High temperature transducer using aluminum nitride single crystal for laser ultrasound detection
Mak et al. Ultrasonic measurement of longitudinal and shear velocities of materials at elevated temperatures
Karpur et al. An approach to determine the experimental transmitter-receiver geometry for the reception of leaky Lamb waves
Thring Enhanced EMAT techniques for the characterisation of hidden defects
Chen et al. Monitoring the Cumulative Process of Corrosion Defects at the Elbow of a Welded Pipe Using Magnetostrictive-Based Torsional Guided Waves
Pedrick et al. A novel technique with a magnetostrictive transducer for in situ length monitoring of a distant specimen
Nicholls et al. Measurement methods to determine the elastic properties of oxides at elevated temperatures
JP2002372412A (en) Method for measurement of oxide film thickness
Gan et al. Ultrasonic thickness measurement technique with self-calibration function
Liu et al. A defects detection method of buried liquid-filled pipes based on T (0, 1) guided waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees