JP2009103459A - Ultrasonic plate thickness measuring device - Google Patents

Ultrasonic plate thickness measuring device Download PDF

Info

Publication number
JP2009103459A
JP2009103459A JP2007272725A JP2007272725A JP2009103459A JP 2009103459 A JP2009103459 A JP 2009103459A JP 2007272725 A JP2007272725 A JP 2007272725A JP 2007272725 A JP2007272725 A JP 2007272725A JP 2009103459 A JP2009103459 A JP 2009103459A
Authority
JP
Japan
Prior art keywords
frequency
plate thickness
ultrasonic
attenuation level
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007272725A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sekine
良浩 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2007272725A priority Critical patent/JP2009103459A/en
Publication of JP2009103459A publication Critical patent/JP2009103459A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic plate thickness measuring device, capable of readily measuring and with high accuracy container plate thickness, using a simple constitution that uses ultrasonic waves. <P>SOLUTION: In this ultrasonic plate thickness measuring device 1, ultrasonic waves are transmitted from an ultrasonic transmission part 2 to a system to be measured, while the frequency is changed into a plurality of set values, and the attenuation level of a reverberation vibration waveform by an ultrasonic reception part 2 is measured at each frequency. Then, a frequency in which the attenuation level is minimized in the measurement range is specified as a plate thickness reflection frequency, based on the assembly of the attenuation level measurement results of the reverberation vibration waveform at each frequency; and the plate thickness, corresponding to the specified plate thickness reflection frequency, is calculated as a wall part plate thickness of the container 190 at a measurement executing position, by referring to the plate thickness/frequency relation stored, beforehand. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は超音波板厚測定装置に関する。   The present invention relates to an ultrasonic plate thickness measuring apparatus.

特開2004−333314号公報JP 2004-333314 A

LPガスボンベ等の容器壁部に超音波送信部及び受信部を配置し、容器内部の液面や反対側の壁面で反射したエコーの信号レベルにより液面の有無を判定するようにした超音波液面計が知られている(特許文献1)。   Ultrasonic liquid in which an ultrasonic transmitter and receiver are arranged on the wall of a container such as an LP gas cylinder, and the presence or absence of the liquid level is determined based on the signal level of echo reflected from the liquid level inside the container or the opposite wall. An area meter is known (Patent Document 1).

しかしながら、上記従来の超音波液面計では、エコー情報から得られるのは液面位置に関係した情報のみであり、容器構造、特に容器板厚に関係した情報を測定できない問題があった。   However, in the conventional ultrasonic liquid level gauge, only information related to the liquid level position can be obtained from the echo information, and there is a problem that information related to the container structure, particularly the container plate thickness, cannot be measured.

本発明の課題は、超音波を用いた簡単な構成により、容器板厚を容易にかつ高精度に測定できる超音波板厚測定装置を提供することにある。   The subject of this invention is providing the ultrasonic plate thickness measuring apparatus which can measure a container plate | board thickness easily and with high precision by simple structure using an ultrasonic wave.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の超音波板厚測定装置は、
液体を収容した容器を被測定系として、該容器の壁部外面に定められた測定実施位置に取り付けて使用され、被測定系に測定用超音波ビームを予め定められた時間励振入力した後、当該測定用超音波ビームの入力を遮断する超音波送信部と、
測定実施位置に取り付けて使用され、測定用超音波ビームの入力遮断後の残響振動波形を検出する残響検出手段と、
超音波の周波数を変更可能に設定する周波数設定部と、
周波数を複数の設定値に変更しつつ超音波送信部により被測定系に測定用超音波ビーム送信し、各周波数にて超音波受信部による残響振動波形の減衰レベルを測定する減衰レベル測定手段と、
各周波数における残響振動波形の減衰レベル測定結果の集合に基づき、当該測定の範囲内にて減衰レベルが極小化される周波数を板厚反映周波数として特定する板厚反映周波数特定手段と、
板厚反映周波数と容器の板厚との関係を記憶する板厚/周波数関係記憶手段と、
記憶された板厚/周波数関係を参照して、特定された板厚反映周波数に対応する板厚を測定実施位置における容器の壁部板厚として算出する壁部板厚算出手段と、
該壁部板厚の算出結果を出力する壁部板厚出力手段と、を備えたことを特徴とする。
In order to solve the above problems, the ultrasonic plate thickness measuring apparatus of the present invention is
A container containing a liquid is used as a system to be measured and is attached to a measurement execution position determined on the outer surface of the wall of the container, and after inputting an ultrasonic beam for measurement to the system to be measured for a predetermined time, An ultrasonic transmitter for blocking the input of the ultrasonic beam for measurement;
Reverberation detection means for detecting a reverberation vibration waveform used after being blocked from the input of the measurement ultrasonic beam;
A frequency setting section for setting the ultrasonic frequency to be changeable;
An attenuation level measuring means for transmitting an ultrasonic beam for measurement to the system under measurement by the ultrasonic transmission unit while changing the frequency to a plurality of set values, and measuring the attenuation level of the reverberation vibration waveform by the ultrasonic reception unit at each frequency; ,
Based on a set of attenuation level measurement results of the reverberation vibration waveform at each frequency, a plate thickness reflecting frequency specifying means for specifying a frequency at which the attenuation level is minimized within the measurement range as a plate thickness reflecting frequency;
Plate thickness / frequency relationship storage means for storing the relationship between the plate thickness reflection frequency and the plate thickness of the container;
Referring to the stored plate thickness / frequency relationship, wall thickness calculation means for calculating the plate thickness corresponding to the specified plate thickness reflection frequency as the wall thickness of the container at the measurement execution position;
And a wall thickness output means for outputting the calculation result of the wall thickness.

上記本発明の超音波板厚測定装置の構成によると、周波数を複数の設定値に変更しつつ超音波送信部により被測定系に超音波を送信し、各周波数にて超音波受信部による残響振動波形の減衰レベルを測定するとともに、各周波数における残響振動波形の減衰レベル測定結果の集合に基づき、当該測定の範囲内にて減衰レベルが極小化される周波数を板厚反映周波数として特定し、予め記憶されている板厚/周波数関係を参照して、特定された板厚反映周波数に対応する板厚を測定実施位置における容器の壁部板厚として算出する。すなわち、超音波を用いた簡単な構成により、容器板厚を(非破壊にて)容易にかつ高精度に測定できる。   According to the configuration of the ultrasonic plate thickness measuring apparatus of the present invention, the ultrasonic wave is transmitted to the measurement target system by the ultrasonic wave transmission unit while changing the frequency to a plurality of set values, and the reverberation by the ultrasonic wave reception unit at each frequency. While measuring the attenuation level of the vibration waveform, based on the set of attenuation level measurement results of the reverberation vibration waveform at each frequency, the frequency at which the attenuation level is minimized within the measurement range is specified as the plate thickness reflection frequency, With reference to the plate thickness / frequency relationship stored in advance, the plate thickness corresponding to the specified plate thickness reflection frequency is calculated as the wall thickness of the container at the measurement execution position. That is, with a simple configuration using ultrasonic waves, the container plate thickness can be easily and highly accurately measured (non-destructively).

残響検出手段は、残響振動波形の検出を容器上にて液体なしとなることが予め知れている位置にて行なうものとすることで、板厚固有振動数近傍での減衰残響振動レベル変化が急峻となり、測定精度を高めることができる。   The reverberation detection means detects the reverberation vibration waveform at a position where it is known in advance that there will be no liquid on the container, so that the attenuation reverberation vibration level change near the plate thickness natural frequency is steep. Thus, the measurement accuracy can be increased.

また、本発明の超音波板厚測定装置は、残響振動波形を包絡線検波する包絡線検波手段を設けることができる。この場合、減衰レベル測定手段は、残響振動波形の包絡線検波波形を用いて減衰レベルを測定するものとされる。残響振動の包絡線検波波形を用いて振幅特定を行なうことにより、例えば振幅のサンプリング点が振動波形のピーク点からずれていても正確な振幅評価を行なうことができる。   Moreover, the ultrasonic plate thickness measuring apparatus of the present invention can be provided with an envelope detection means for detecting an envelope of a reverberation vibration waveform. In this case, the attenuation level measuring means measures the attenuation level using the envelope detection waveform of the reverberation vibration waveform. By performing the amplitude identification using the envelope detection waveform of the reverberation vibration, for example, accurate amplitude evaluation can be performed even if the sampling point of the amplitude is deviated from the peak point of the vibration waveform.

減衰レベル測定手段は、周波数を予め定められた周波数帯域内にてスイープするとともに、当該スイープ帯域内にて減衰レベルが極小化される周波数を壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを板厚反映周波数として特定するものとできる。測定用超音波ビームの周波数が、壁部板厚方向の固有周波数(板厚固有周波数)と一致するとき残響振動の振幅も極大化するので、これを用いて板厚測定することにより精度を高めることができる。   The attenuation level measuring means sweeps the frequency within a predetermined frequency band, and sets the frequency at which the attenuation level is minimized within the sweep band to the natural frequency of the longitudinal natural vibration in the thickness direction of the wall portion. And this can be specified as the plate thickness reflection frequency. When the frequency of the ultrasonic beam for measurement coincides with the natural frequency in the thickness direction of the wall (plate thickness natural frequency), the amplitude of the reverberation vibration also maximizes, and this increases the accuracy by measuring the plate thickness. be able to.

板厚/周波数関係記憶手段は、縦波固有振動の互いに隣接する複数の次数について各々、縦波固有振動の種々の板厚での固有周波数を板厚/固有周波数列として記憶するものとできる。容器の壁部は、例えばガスボンベ等では金属板材であり、その板厚方向に超音波を入力した場合、入力された超音波は縦波振動の形で壁部内部を該板厚方向に伝播する。このとき、入力される超音波の周波数設定値が、測定温度での壁部の固有周波数fmに一致しているとき、残響振動の振幅はピーク(極大点)を示す(つまり、減衰レベルが極小化し、長く尾を引いた減衰波形となる)。固有周波数fmは、板材を最も効率良く超音波が透過する周波数であり、板材を透過する縦波音波の波をλ、板の厚さをtとすると、
t=m・λ/2 ‥(1)
あるいは、
λ=2t/m ‥(1)’
であり、縦波の音速をC、固有周波数をfmとすると、
fm=C/λ ‥(2)
なので、(1)’(2)より、
fm=m・C/2t ‥(3)
ここに、mは固有振動の次数を示す整数である。固有周波数は振動の次数m=1(基本振動),2(2次振動),‥,N(N次振動)にそれぞれ対応して、f1=1・C/2t,f2=2・C/2t,‥,fN=N・C/2tと周期的に出現する。従って、受信振幅の極大点も、これら固有周波数に対応して周期的に出現する。板厚tが変化すれば、各次数の固有周波数も(3)式に従って双曲線状に変化する。これを各次数mの値毎にt(板厚)−f(周波数)平面上に描画すれば図6のようになる。板厚/固有周波数列は、(3)式に壁部材質に応じた音速Cと次数mを代入して得られる曲線となる。個々の板厚にて、測定用超音波ビームの周波数をスイープすれば、残響振動振幅の周波数依存性は、各次数の固有周波数を示す曲線位置と交わる周波数にて周期的に極大値を描くことになる。
The plate thickness / frequency relationship storage means can store the natural frequencies at various plate thicknesses of the longitudinal natural wave as a plate thickness / natural frequency sequence for a plurality of adjacent orders of the longitudinal natural vibration. The wall portion of the container is, for example, a metal plate material in a gas cylinder or the like. When an ultrasonic wave is input in the thickness direction, the input ultrasonic wave propagates in the thickness direction of the wall portion in the form of longitudinal wave vibration. . At this time, when the frequency setting value of the input ultrasonic wave matches the natural frequency fm of the wall portion at the measurement temperature, the amplitude of the reverberation vibration shows a peak (maximum point) (that is, the attenuation level is minimal). It becomes an attenuation waveform with a long tail). The natural frequency fm is a frequency at which the ultrasonic wave is transmitted through the plate material most efficiently, where λ is the longitudinal wave wave that passes through the plate material, and t is the thickness of the plate.
t = m · λ / 2 (1)
Or
λ = 2t / m (1) ′
If the sound velocity of the longitudinal wave is C and the natural frequency is fm,
fm = C / λ (2)
So from (1) '(2)
fm = m · C / 2t (3)
Here, m is an integer indicating the order of the natural vibration. The natural frequencies correspond to the vibration orders m = 1 (fundamental vibration), 2 (secondary vibration),..., N (Nth vibration), respectively, f1 = 1 · C / 2t, f2 = 2 · C / 2t. ,..., FN = N · C / 2t and appear periodically. Therefore, the maximum point of the reception amplitude also appears periodically corresponding to these natural frequencies. If the plate thickness t changes, the natural frequency of each order also changes in a hyperbolic shape according to the equation (3). If this is drawn on the t (plate thickness) -f (frequency) plane for each value of order m, the result is as shown in FIG. The plate thickness / natural frequency sequence is a curve obtained by substituting the sound velocity C and the order m in accordance with the wall member quality into the equation (3). If the frequency of the ultrasonic beam for measurement is swept at each plate thickness, the frequency dependence of the reverberation vibration amplitude will draw a local maximum periodically at the frequency that intersects the curve position indicating the natural frequency of each order. become.

この場合、減衰レベル測定手段は、測定用超音波ビームの周波数のスイープ帯域幅を、減衰レベルが極小化される極点が当該帯域内に複数現れるように設定することができる(図6参照)。壁部板厚算出手段は、帯域内にて複数の極点に対応する周波数を極点周波数群として特定するとともに、板厚/固有周波数列に対してそれら極点周波数群が一括して適合する板厚値を探索することにより壁部板厚値を算出するよう構成できる。すなわち、板の固有振動に由来して出現する残響振動振幅の極大点(減衰レベル極小点)が、複数次数にわたって板厚/固有周波数列((3)式)に適合するかどうかを判定することで、板の固有振動に由来しないスプリアスを板厚測定から排除することができ、板厚測定の精度をさらに高めることができる。   In this case, the attenuation level measuring means can set the sweep bandwidth of the frequency of the ultrasonic beam for measurement so that a plurality of extreme points at which the attenuation level is minimized appear in the band (see FIG. 6). The wall thickness calculation means specifies the frequency corresponding to a plurality of extreme points in the band as the extreme frequency group, and the thickness value that the extreme frequency group conforms to the thickness / natural frequency sequence collectively. The wall thickness value can be calculated by searching for. That is, it is determined whether or not the maximum point (damping level minimum point) of the reverberation vibration amplitude that appears due to the natural vibration of the plate conforms to the plate thickness / natural frequency sequence (formula (3)) over a plurality of orders. Thus, spurious components that do not originate from the natural vibration of the plate can be excluded from the plate thickness measurement, and the accuracy of the plate thickness measurement can be further increased.

ただし、残響振動振幅の極大点(減衰レベル極小点)を複数次にわたってカバーするスイープ帯域幅は、図6に示すように相当に広帯域なので、次のように構成するとよい。すなわち、減衰レベル測定手段は、帯域をラフ探索用帯域として、当該ラフ探索用帯域内にて周波数を第一の周波数間隔にて断続的に変化させる形でスイープしつつ、各周波数での減衰レベルを測定するものとする。また、壁部板厚算出手段は、該第一の周波数間隔によるスイープ結果に基づいて複数の極点を特定し、板厚/固有周波数列に対してそれら極点周波数群が一括して適合する板厚値をラフ板厚値として特定するものとする。そして、減衰レベル測定手段は、複数の極点のいずれかを目印極点として選択するとともに、ラフ探索用帯域よりも狭い精密探索用帯域を、当該目印極点を含む形で設定し、該精密探索用帯域を第一の周波数間隔よりも小さい第二の周波数間隔にて断続的に変化させる形でスイープしつつ、各周波数での減衰レベルを測定する。壁部板厚算出手段は、該第二の周波数間隔によるスイープ結果に基づいて目印極点に対応する精密極点として特定し、該目印極点に対応する板厚/固有周波数列上にて精密極点を与える周波数に対応する板厚値を精密板厚値として算出する。このようにすると、スイープ帯域全体では第一の周波数間隔を採用することにより残響振動測定の点数を大幅に削減でき、かつ、板厚を読み取るための極点近傍では第一の周波数間隔よりも小さい第二の周波数間隔を採用することにより、極点の特定精度を大幅に向上することができる。   However, since the sweep bandwidth that covers the maximum point (damping level minimum point) of the reverberation vibration amplitude over a plurality of orders is considerably wide as shown in FIG. 6, it may be configured as follows. That is, the attenuation level measuring means sweeps in such a manner that the band is a rough search band and the frequency is intermittently changed in the rough search band at the first frequency interval. Shall be measured. Further, the wall thickness calculation means specifies a plurality of poles based on the sweep result by the first frequency interval, and the thickness of the pole frequency group collectively matching the thickness / natural frequency sequence. The value shall be specified as the rough plate thickness value. The attenuation level measuring means selects any one of a plurality of poles as a landmark pole, sets a fine search band narrower than the rough search band in a form including the landmark pole, Is measured while the frequency is intermittently changed at a second frequency interval smaller than the first frequency interval, and the attenuation level at each frequency is measured. The wall thickness calculation means specifies a precise pole corresponding to the mark pole based on the sweep result of the second frequency interval, and gives a precision pole on the plate thickness / natural frequency sequence corresponding to the mark pole A plate thickness value corresponding to the frequency is calculated as a precise plate thickness value. In this way, by adopting the first frequency interval in the entire sweep band, the number of reverberation vibration measurement points can be greatly reduced, and in the vicinity of the pole point for reading the plate thickness, the first frequency interval is smaller than the first frequency interval. By adopting the second frequency interval, it is possible to greatly improve the accuracy of pole identification.

この場合、減衰レベル測定手段は、周波数帯域を複数の副帯域に分割してそれら副帯域毎にスイープを行なうものとできる。残響検出手段は、副帯域毎に当該副帯域に対応する通過周波数帯域を有したバンドパスフィルタと、スイープを行なう副帯域の切り替えに伴い残響振動波形を通過させるバンドパスフィルタを対応する通過周波数帯域のものに逐次切り替えるフィルタ切替手段とを有し、測定用超音波ビームによる残響振動波形を、当該測定用超音波ビームの周波数が属する通過周波数帯域のバンドパスフィルタを通過させた後検出するものとすることができる。これにより、多重反射干渉や倍音振動あるいは部材間の望まざる共振結合等に由来したスプリアスやノイズの影響をバンドパスフィルタにより除去でき、検出される残響信号のS/N比を高めることができる。   In this case, the attenuation level measuring means can divide the frequency band into a plurality of sub-bands and perform a sweep for each of the sub-bands. The reverberation detecting means includes a pass frequency band corresponding to a band pass filter having a pass frequency band corresponding to the sub band for each sub band and a band pass filter for passing a reverberation vibration waveform when switching the sub band to be swept. And a filter switching means for sequentially switching to the one, and detecting a reverberation vibration waveform by the measurement ultrasonic beam after passing through a band-pass filter of a pass frequency band to which the frequency of the measurement ultrasonic beam belongs, can do. Thereby, the influence of spurious and noise derived from multiple reflection interference, overtone vibration, unwanted resonance coupling between members, and the like can be removed by the bandpass filter, and the S / N ratio of the reverberation signal to be detected can be increased.

減衰レベル測定手段は、測定用超音波ビームの入力を遮断後に予め定められ時間を経過したときの残響振動波形の振幅を、減衰レベルを反映した情報として取得するとともに、当該振幅の極大値を与える周波数を壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを板厚反映周波数として特定するよう構成することができる。この方式によると、励振を遮断した後の経過時間を固定化し、当該時間経過後に残響振動波形の振幅を一律に測定することで、周波数スイープしつつ行なう減衰レベルの変化挙動を容易に把握することができ、ひいては板厚反映周波数を見出す動作アルゴリズムを簡略化することができる。同様に、減衰レベル測定手段は、包絡線検波波形を予め定められた積分期間にて積分し、その積分値を、減衰レベルを反映した情報として取得するとともに、該積分値の極大値を与える周波数を壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを板厚反映周波数として特定するよう構成することができる。減衰レベルを反映した情報を積分値として取得することにより、波形振幅の瞬時値を用いる場合よりもノイズ等の影響を受けにくくなり、測定精度を高めることができる。   The attenuation level measurement means obtains the amplitude of the reverberation vibration waveform when a predetermined time has elapsed after blocking the input of the measurement ultrasonic beam as information reflecting the attenuation level, and gives the maximum value of the amplitude. The frequency can be found as the natural frequency of the longitudinal natural vibration in the thickness direction of the wall, and can be configured to be specified as the thickness reflection frequency. According to this method, the elapsed time after the excitation is cut off is fixed, and the amplitude of the reverberation vibration waveform is uniformly measured after the time has elapsed, so that the change behavior of the attenuation level performed while sweeping the frequency can be easily grasped. As a result, the operation algorithm for finding the thickness reflection frequency can be simplified. Similarly, the attenuation level measuring means integrates the envelope detection waveform in a predetermined integration period, acquires the integrated value as information reflecting the attenuation level, and gives the maximum value of the integrated value. Can be found as the natural frequency of the longitudinal natural vibration in the plate thickness direction of the wall, and this can be specified as the plate thickness reflection frequency. By acquiring the information reflecting the attenuation level as an integral value, it becomes less susceptible to noise and the like than when using the instantaneous value of the waveform amplitude, and the measurement accuracy can be improved.

一方、減衰レベル測定手段は、減衰残響振動の減衰レベルが予め定められた参照レベルに到達するまでの減衰時間を計測する減衰時間計測手段を有し、当該減衰時間を、減衰レベルを反映した情報として取得するとともに、該減衰時間の極大値を与える周波数を壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを板厚反映周波数として特定するよう構成することもできる。この方式では、減衰残響振動の時間変化を監視する必要があり、サンプリング回数は増大するが、ノイズ等による突発的なパラメータ値の変化を誤差として容易に識別できるので、判定精度を高めることができる利点がある。   On the other hand, the attenuation level measuring means has attenuation time measuring means for measuring the attenuation time until the attenuation level of the damped reverberation vibration reaches a predetermined reference level, and the attenuation time is information that reflects the attenuation level. In addition, the frequency that gives the maximum value of the decay time can be found as the natural frequency of the longitudinal natural vibration in the thickness direction of the wall, and can be specified as the thickness reflection frequency. In this method, it is necessary to monitor temporal changes in the damped reverberation vibration, and the number of sampling times increases. However, sudden change in parameter values due to noise or the like can be easily identified as an error, so that the determination accuracy can be improved. There are advantages.

本発明に係る液体板厚測定装置の実施形態を、図面を参照しつつ説明する。図1は、測定対象となる容器の一例を示すものであり、LPG又はLNGの金属タンク190として構成されている。金属タンク190は鋼鉄製であり、円筒状の容器本体部200(容器本体部)の上下に、底面部202及び上面部203を溶接接合した構造を有する。上面部203は、容器最上面部の周縁に側壁部の上端部が連なる一体の蓋部材として形成されている。また、容器本体部200は、側壁部の残余部分をなすものである。上面部203の上部中央には圧力制御弁が組み込まれたガス取出部203Vが形成されている。該金属タンク190に上記LPGないしLNGからなる液体Lが収容され、被測定系を構成する。   An embodiment of a liquid plate thickness measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 1 shows an example of a container to be measured, and is configured as an LPG or LNG metal tank 190. The metal tank 190 is made of steel, and has a structure in which a bottom surface portion 202 and a top surface portion 203 are welded and joined to the top and bottom of a cylindrical container body 200 (container body). The upper surface portion 203 is formed as an integral lid member in which the upper end portion of the side wall portion is connected to the periphery of the uppermost surface portion of the container. Moreover, the container main-body part 200 makes the remainder part of a side wall part. A gas extraction part 203V in which a pressure control valve is incorporated is formed in the upper center of the upper surface part 203. The liquid L made of LPG or LNG is accommodated in the metal tank 190 to constitute a system to be measured.

そして、液体板厚測定装置1は、上記の金属タンク190内の壁部の板厚を、所望の測定実施位置にてタンク外から測定できるように構成されている。液体板厚測定装置1は、具体的には、該容器190の容器本体部200の外面に対し、液深さ方向の任意位置に押し当て可能な(つまり、ユーザーの欲する任意の測定位置に取り付け可能な)超音波トランスジューサ2を有している。該超音波トランスジューサ2は、被測定系に超音波を送信する超音波送信部と、入力された該超音波に基づく反射波を受信する超音波受信部との機能を合わせ有するものである(すなわち、超音波送受信部として機能する)。   The liquid plate thickness measuring apparatus 1 is configured to measure the plate thickness of the wall portion in the metal tank 190 from outside the tank at a desired measurement execution position. Specifically, the liquid plate thickness measuring apparatus 1 can be pressed against an outer surface of the container main body 200 of the container 190 at an arbitrary position in the liquid depth direction (that is, attached to an arbitrary measurement position desired by the user). It has an ultrasonic transducer 2 (possible). The ultrasonic transducer 2 has a function of an ultrasonic transmission unit that transmits ultrasonic waves to the system to be measured and an ultrasonic reception unit that receives reflected waves based on the input ultrasonic waves (that is, the ultrasonic transducer 2). , Function as an ultrasonic transmission / reception unit).

図2は、液体板厚測定装置1の電気回路構成を概念的に示すブロック図である。該液体板厚測定装置1は、ユーザーが手で保持可能な樹脂等で構成された筐体3を有し、その先端面に超音波トランスジューサ2がはめ込まれている。超音波放出面となる超音波トランスジューサ2の前端面は、筐体3の前端に形成された開口内に位置し、その表面に密着する形で音響インピーダンス整合層2Pが取り付けられている。音響インピーダンス整合層2Pは、超音波トランスジューサ2(圧電セラミック)と容器本体部200(鋼鉄)との中間(望ましくは両者の幾何学平均値)の音響インピーダンスを有するとともに、容器本体部200に押し付けられたときに追従変形してその外面に密着できる柔軟弾性材料(例えば、シリコーン樹脂)にて構成されている。   FIG. 2 is a block diagram conceptually showing an electric circuit configuration of the liquid plate thickness measuring apparatus 1. The liquid plate thickness measuring apparatus 1 has a housing 3 made of a resin or the like that can be held by a user's hand, and an ultrasonic transducer 2 is fitted on the front end surface thereof. The front end surface of the ultrasonic transducer 2 serving as the ultrasonic wave emitting surface is located in an opening formed at the front end of the housing 3 and the acoustic impedance matching layer 2P is attached so as to be in close contact with the surface. The acoustic impedance matching layer 2P has an acoustic impedance intermediate between the ultrasonic transducer 2 (piezoelectric ceramic) and the container body 200 (steel) (preferably the geometric average value of both), and is pressed against the container body 200. It is made of a flexible elastic material (for example, a silicone resin) that can be deformed following the contact with the outer surface of the material.

超音波トランスジューサ2は、駆動回路101からの駆動電圧の印加により超音波ビームを送出する一方、反射波の受信により電気信号(受信信号)を信号処理回路103に出力する。具体的には、板厚方向に分極処理された圧電セラミック振動板21と、該圧電セラミック振動板21の各主表面を覆う形で該圧電セラミック振動板21を挟んで対向形成された電極対2e,2eとを備える。この電極対2e,2eは、超音波ビームの送信駆動時には該圧電セラミック振動板21を超音波振動させるための駆動電圧が印加される駆動電極となり、反射波の受信時には圧電セラミック振動板21の振動に伴う電気信号を出力する出力電極となる。これら電極対2e,2eと、駆動回路101及び信号処理回路103との接続切り替えは切替スイッチ101sにより行なわれる。   The ultrasonic transducer 2 transmits an ultrasonic beam by applying a driving voltage from the driving circuit 101, and outputs an electric signal (reception signal) to the signal processing circuit 103 by receiving a reflected wave. Specifically, the piezoelectric ceramic diaphragm 21 polarized in the plate thickness direction, and the electrode pair 2e formed to face each other with the piezoelectric ceramic diaphragm 21 sandwiched between the main surfaces of the piezoelectric ceramic diaphragm 21. , 2e. The electrode pairs 2e and 2e serve as drive electrodes to which a drive voltage for ultrasonically vibrating the piezoelectric ceramic diaphragm 21 is applied when transmitting an ultrasonic beam, and vibrations of the piezoelectric ceramic diaphragm 21 are received when a reflected wave is received. It becomes an output electrode which outputs the electrical signal accompanying. The connection between the electrode pair 2e, 2e, the drive circuit 101, and the signal processing circuit 103 is switched by a changeover switch 101s.

駆動回路101は、マイコン100からのデジタル周波数指示値をアナログ周波数指示電圧に変換するD/A変換部101cと、そのアナログ周波数指示電圧が入力され、対応する周波数にて発振出力するVCO(Voltage Controlled Oscillator)101bと、そのVCO101bの出力を増幅して圧電セラミック振動板21へ駆動信号として出力する主回路(アンプ)101aとを有する。また、信号処理回路103は、圧電セラミック振動板21の振動波形を増幅するアンプ103a、増幅された減衰振動波形を包絡線検波する包絡線検波部103b、その検波出力をデジタル変換してマイコン100に入力するA/D変換部103cとを有する。   The drive circuit 101 has a D / A converter 101c that converts a digital frequency instruction value from the microcomputer 100 into an analog frequency instruction voltage, and a VCO (Voltage Controlled) that receives the analog frequency instruction voltage and oscillates at a corresponding frequency. Oscillator) 101b, and a main circuit (amplifier) 101a that amplifies the output of the VCO 101b and outputs the amplified signal to the piezoelectric ceramic diaphragm 21 as a drive signal. The signal processing circuit 103 also includes an amplifier 103 a that amplifies the vibration waveform of the piezoelectric ceramic diaphragm 21, an envelope detection unit 103 b that detects the amplified damped vibration waveform, and digitally converts the detection output to the microcomputer 100. An A / D converter 103c for input.

図2に戻り、上記の駆動回路101、切替スイッチ101s、周波数設定部102、信号処理回路103は、これらの動作シーケンス制御を司るマイコン100に接続されている。また、該マイコン100には入力部105と表示部104も接続されている。入力部105は押しボタンスイッチやキーボードなどで構成され、板厚測定の開始トリガー操作に使用される。また、表示部104は板厚測定結果を数字等により出力するものであり、例えば7セグメントLEDや液晶ディスプレイ等により構成される。   Returning to FIG. 2, the drive circuit 101, the changeover switch 101 s, the frequency setting unit 102, and the signal processing circuit 103 are connected to the microcomputer 100 that controls these operation sequences. The microcomputer 100 is also connected with an input unit 105 and a display unit 104. The input unit 105 includes a push button switch, a keyboard, and the like, and is used for a start trigger operation for thickness measurement. The display unit 104 outputs a plate thickness measurement result by numbers and the like, and is configured by, for example, a 7-segment LED or a liquid crystal display.

液体板厚測定装置1の各回路ブロック(マイコン100、駆動回路101、信号処理回路103)へは、交換可能な乾電池Bから安定化電源回路102を介して電源電圧が供給される。   A power supply voltage is supplied from the replaceable dry battery B through the stabilized power supply circuit 102 to each circuit block (the microcomputer 100, the drive circuit 101, and the signal processing circuit 103) of the liquid plate thickness measuring apparatus 1.

以下、液体検知装置1の動作について、図3のフローチャートにより説明する。図1に示すように、まず、超音波トランスジューサ2上の音響インピーダンス整合層2Pの表面(以下、検知面という)を、容器190の容器本体部200の外面に対し、所望の測定位置に検知面を押し当て、図2の入力部105から測定開始入力を行なう(例えば、入力部105に含まれる検知ボタン105aを押すなど:図3、S0)。すると、マイコン100は測定駆動プログラムを起動し、測定処理を開始する。まず、S1にて、超音波トランスジューサ2の初期設定として、バーストパルスの駆動印加時間や、周波数スイープの帯域幅等を設定する。次いで、駆動周波数をスイープの帯域開始値fminに設定し、図2のVCO101bを該周波数にて動作開始する。そして、S2において、切替スイッチ101Sが、超音波トランスジューサ2を駆動回路104に接続する駆動接続状態に切り替わり、駆動回路104は、設定された周波数にて駆動交流電圧のバーストパルスを1ないし複数回、超音波トランスジューサ2に印加する。これにより、超音波トランスジューサ2から超音波ビームSWが上記の測定位置にて容器本体部200に向け出力される。 Hereinafter, the operation of the liquid detection device 1 will be described with reference to the flowchart of FIG. As shown in FIG. 1, first, the surface of the acoustic impedance matching layer 2P on the ultrasonic transducer 2 (hereinafter referred to as a detection surface) is placed at a desired measurement position with respect to the outer surface of the container body 200 of the container 190. 2 and a measurement start input is performed from the input unit 105 in FIG. 2 (for example, a detection button 105a included in the input unit 105 is pressed: FIG. 3, S0). Then, the microcomputer 100 starts the measurement driving program and starts the measurement process. First, in S1, as an initial setting of the ultrasonic transducer 2, a burst pulse drive application time, a frequency sweep bandwidth, and the like are set. Then, set the drive frequency in the band starting value f min of sweep, to start operating VCO101b in Figure 2 at the frequency. In S2, the changeover switch 101S switches to a drive connection state in which the ultrasonic transducer 2 is connected to the drive circuit 104, and the drive circuit 104 generates a burst pulse of the drive AC voltage one or more times at the set frequency. Apply to the ultrasonic transducer 2. Thereby, the ultrasonic beam SW is output from the ultrasonic transducer 2 toward the container main body 200 at the measurement position.

この駆動交流電圧のバーストパルス印加は、例えば10〜50μs程度に定められた印加パルス期間tnが完了すれば強制的に遮断される。そして、その遮断とともに図2の切替スイッチ101Sは、超音波トランスジューサ2を信号処理回路103に接続する信号検出接続状態に切り替わり、励振遮断後の容器190からの残響振動を超音波トランスジューサ2により検出する。実際には、切替スイッチ101Sの切替動作に要する期間等を勘案し、励振遮断後一定の遅延時間Δt経過してから残響振動の検出が開始される。   The burst pulse application of the driving AC voltage is forcibly cut off when the application pulse period tn set to, for example, about 10 to 50 μs is completed. 2 is switched to a signal detection connection state in which the ultrasonic transducer 2 is connected to the signal processing circuit 103, and the ultrasonic transducer 2 detects the reverberation vibration from the container 190 after the excitation is cut off. . Actually, the period required for the switching operation of the changeover switch 101S is taken into consideration, and the detection of the reverberation vibration is started after a certain delay time Δt has elapsed after the excitation is cut off.

図4A、図4Bは、その残響振動の検出波形の一例を示すもので、液体の非存在部(液無し部)では容器190容器本体部200の内側が空隙となり、壁部内面を境とした音響インピーダンス差が非常に大きくなる。容器本体部200に入力された測定用超音波ビームは、その励振周波数が容器本体部200の壁部の材質及び厚さにて決まる固有周波数と一致していれば、壁部内面にてほぼ全反射して金属製の容器本体部200内に戻り、振動継続するため減衰が生じにくい。その結果、図4Aの上に示すように、残響の尾引きが非常に長くなる。しかし、液体の存在部(液有り部)では、容器本体部200の内側に液体Lが存在するため、上記の音響インピーダンス差は縮小し、容器本体部200を透過して内部摩擦の大きい液体内に漏れこむ音波比率が増加するので、図4Bに示すごとく振動減衰は著しくなる。従って、測定用超音波ビームの周波数を一定の帯域でスイープしたとき、液体の非存在部(液無し部)では、減衰振動の振幅の周波数変化がより顕著に表れる形となり、板板厚固有振動数近傍での減衰残響振動レベル(減衰振動の振幅あるいは尾引きの度合い)の変化が急峻となり、測定精度を高めることができる。従って、板厚測定を行なう際には、該液無し部を選んで測定実施位置を定めることが、測定精度向上を図る上で望ましい。該液無し部として、例えば容器本体部200の上部を採用してもよいし、はじめから空とわかっている容器を採用すればで、容器本体部200の任意位置が液無し部として採用できる。   FIG. 4A and FIG. 4B show an example of the detection waveform of the reverberation vibration. In the non-existing portion (liquid-free portion), the inside of the container 190 container main body 200 becomes a void, and the inner surface of the wall portion is the boundary. The acoustic impedance difference becomes very large. If the excitation frequency of the ultrasonic beam for measurement input to the container main body 200 matches the natural frequency determined by the material and thickness of the wall of the container main body 200, almost all of the ultrasonic beam on the inner surface of the wall is obtained. Reflection returns to the inside of the metal container main body 200 and continues to vibrate, so that it is difficult for attenuation to occur. As a result, as shown in FIG. 4A, the reverberation tail is very long. However, since the liquid L is present inside the container main body 200 in the liquid existing portion (the liquid present portion), the above-described acoustic impedance difference is reduced, and the inside of the liquid having a large internal friction is transmitted through the container main body 200. Since the ratio of sound waves leaking into the channel increases, vibration damping becomes significant as shown in FIG. 4B. Therefore, when the frequency of the ultrasonic beam for measurement is swept in a certain band, the frequency change of the amplitude of the damped vibration appears more prominently in the non-existing part of liquid (no liquid part), and the plate thickness natural vibration The change of the damped reverberation vibration level (the amplitude of the damped vibration or the degree of tailing) in the vicinity of the number becomes steep, and the measurement accuracy can be improved. Therefore, when measuring the plate thickness, it is desirable to select the liquid-free portion and determine the measurement execution position in order to improve the measurement accuracy. As the liquid-free portion, for example, the upper portion of the container main body portion 200 may be adopted, or an arbitrary position of the container main body portion 200 can be adopted as the liquid-free portion by adopting a container that is known to be empty from the beginning.

具体的には、図4Aに示すように、測定用超音波ビームSWの入力を遮断後に予め定められ時間tsを経過したときの、該減衰残響振動の振幅を減衰レベル情報としてスイープ中の周波数毎に取得する。図2の信号処理回路では、図5に示すごとく、減衰振動波形をアンプ103aにて増幅し(ステップ1)、検波回路103bにより半波整流し(ステップ2)、さらにその半波整流波形を包絡線検波する(ステップ3)。そして、その包絡線検波された波形の時間ts経過後のレベルを振幅値として取得するのである。   Specifically, as shown in FIG. 4A, for each frequency in the sweep, the amplitude of the damped reverberation vibration when the predetermined time ts has elapsed after the input of the measurement ultrasonic beam SW is cut off is used as attenuation level information. To get to. In the signal processing circuit of FIG. 2, as shown in FIG. 5, the damped oscillation waveform is amplified by the amplifier 103a (step 1), half-wave rectified by the detection circuit 103b (step 2), and the half-wave rectified waveform is enveloped. Line detection is performed (step 3). And the level after the time ts progress of the waveform by which the envelope detection was carried out is acquired as an amplitude value.

上記の測定は、測定用超音波ビームの周波数を決められた周波数帯域内にてスイープしながら繰り返し実施され、当該スイープ帯域内にて上記減衰振動波形の振幅が極大化する周波数(すなわち、減衰レベルが極小化される周波数)を壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを板厚反映周波数として特定する。具体的には、縦波固有振動の互いに隣接する複数の次数について、縦波固有振動の種々の板厚での固有周波数が板厚/固有周波数列として、図1のマイコン100内のメモリ(ROM等)に記憶されている。   The above measurement is repeatedly performed while sweeping the frequency of the ultrasonic beam for measurement within a predetermined frequency band, and the frequency at which the amplitude of the damped oscillation waveform is maximized within the sweep band (that is, the attenuation level). Is found as the natural frequency of the natural vibration of the longitudinal wave in the plate thickness direction of the wall, and this is specified as the plate thickness reflection frequency. Specifically, for a plurality of adjacent orders of longitudinal natural vibration, the natural frequency at various plate thicknesses of longitudinal natural vibration is a plate thickness / natural frequency sequence, and the memory (ROM) in the microcomputer 100 in FIG. Etc.).

容器の壁部はここでは鉄板(金属板材)であり、前述のごとく、その固有周波数fmは、鉄板を透過する縦波音波の波をλ、板の厚さをt、縦波の音速をC、固有周波数をfm(mは次数)として、
fm=m・C/2t ‥(3)
である。(3)式を各次数mの値毎にt(板厚)−f(周波数)平面上に描画すれば図6のごとく、板厚/固有周波数列は、(3)式に壁部材質に応じた音速Cと次数mを代入して得られる曲線となる。なお、板厚/固有周波数列のデータは、(3)式を充足する(t,fm)の離散データとして記憶しておいてもよいし、(3)式そのものを関数として記憶しておいてもよい。
Here, the wall of the container is an iron plate (metal plate material), and as described above, its natural frequency fm is λ for the wave of the longitudinal wave transmitted through the iron plate, t for the thickness of the plate, and C for the sound velocity of the longitudinal wave. , Where the natural frequency is fm (m is the order)
fm = m · C / 2t (3)
It is. If the equation (3) is drawn on the t (plate thickness) -f (frequency) plane for each value of m, the plate thickness / natural frequency sequence is represented by the equation (3) as the wall member quality as shown in FIG. The curve is obtained by substituting the corresponding sound speed C and order m. The plate thickness / natural frequency sequence data may be stored as discrete data of (t, fm) that satisfies equation (3), or equation (3) itself is stored as a function. Also good.

この段階では板厚tは未だ特定されていないが、板厚tそのものは不変であるから、(図6上のある未知の板厚tに対応する位置にて)測定用超音波ビームの周波数をスイープすれば、残響振動振幅の周波数依存性は各次数の固有周波数を示す曲線位置と交わる周波数にて周期的に極大値を描くことになる。そして、測定用超音波ビームの周波数のスイープ帯域幅は、減衰レベルが極小化される極点が当該帯域内に複数(具体的には、2個〜4個)現れるように設定されている。   At this stage, the plate thickness t is not yet specified, but the plate thickness t itself is not changed, so that the frequency of the ultrasonic beam for measurement is set (at a position corresponding to an unknown plate thickness t on FIG. 6). When swept, the frequency dependence of the reverberation vibration amplitude periodically draws a local maximum at a frequency that intersects with the curve position indicating the natural frequency of each order. Then, the frequency sweep bandwidth of the measurement ultrasonic beam is set such that a plurality (specifically, 2 to 4) of extreme points at which the attenuation level is minimized appear in the band.

該周波数帯域は、図6に示すように複数の(ここでは3つの)副帯域に分割する形で設定されており、各副帯域毎にスイープが実施される(図3:S3)。そして、各副帯域毎に、当該副帯域に対応する通過周波数帯域を有したバンドパスフィルタF−1(通過帯域:1100〜1350kHz),F−2(通過帯域:900〜1100kHz),F−3(通過帯域:650〜900kHz)が設けられている。そして、スイープを行なう副帯域の切り替えに伴い残響振動波形を通過させるバンドパスフィルタも対応する通過周波数帯域のものに逐次切り替えられる。測定用超音波ビームによる残響振動波形は、当該測定用超音波ビームの周波数が属する通過周波数帯域のバンドパスフィルタを通過させた後、振幅(減衰レベル)の特定に供される(図3:S4,S5,S6)。なお、本実施形態において各バンドパスフィルタは、マイコン100上にて取り込んだデジタル包絡線検波波形に対し、当該マイコン100が実行するソフトウェアフィルタリングプログラムとして構成されているが、アナログ包絡線検波波形を信号として直接通過させるパッシブフィルタ回路ないしアクティブフィルタ回路として構成することも可能である。   The frequency band is set to be divided into a plurality of (here, three) sub-bands as shown in FIG. 6, and a sweep is performed for each sub-band (FIG. 3: S3). For each subband, bandpass filters F-1 (passband: 1100 to 1350 kHz), F-2 (passband: 900 to 1100 kHz), F-3 having a pass frequency band corresponding to the subband. (Pass band: 650 to 900 kHz) is provided. Then, the bandpass filter that passes the reverberation vibration waveform is sequentially switched to the corresponding pass frequency band in accordance with the switching of the subband for performing the sweep. The reverberation vibration waveform by the measurement ultrasonic beam is passed through a band-pass filter in the pass frequency band to which the frequency of the measurement ultrasonic beam belongs, and is then used for specifying the amplitude (attenuation level) (FIG. 3: S4). , S5, S6). In this embodiment, each band-pass filter is configured as a software filtering program executed by the microcomputer 100 with respect to the digital envelope detection waveform captured on the microcomputer 100, but the analog envelope detection waveform is a signal. It is also possible to configure as a passive filter circuit or an active filter circuit that allows direct passage.

上記の帯域内では、図7に示すごとく、周波数スイープして得られる減衰振動の振幅データ上にて、該振幅が極大となる周波数f1,f2,f3が極点周波数群として特定される。そして、メモリに記憶されている図6の板厚/固有周波数列上で、それら極点周波数群f1,f2,f3が一括して適合する板厚値を探索し、これを壁部板厚値として算出する。図6では、測定可能な板厚範囲(ここでは、2.4〜15.9mm)の全域を複数の区間(ここでは、A,B,C,D,Eの5区間)に区切り、特定された極点周波数群f1,f2,f3の板厚/固有周波数列にマッチングさせる際に、極点を与える固有周波数の個数や出現間隔が区間毎に異なることを利用して、どの区間が極点周波数群f1,f2,f3に適合するかを先行判定する。例えば、図6において、各板厚/固有周波数列が前述のごとく双曲線関数であるから低板厚側ほど変化率が急峻となり、隣接する次数の板厚/固有周波数列の周波数方向の出現間隔は広くなる。従って、該出現間隔は、最も低板厚側の区間Aにおいて最大となり,区間B,C,D,Eの順で小さくなる。   Within the above band, as shown in FIG. 7, the frequencies f1, f2, and f3 at which the amplitude is maximum are specified as the pole frequency group on the amplitude data of the damped vibration obtained by frequency sweeping. Then, on the plate thickness / natural frequency sequence of FIG. 6 stored in the memory, the plate thickness values to which these pole frequency groups f1, f2, and f3 are matched together are searched, and this is used as the wall plate thickness value. calculate. In FIG. 6, the entire plate thickness range that can be measured (here, 2.4 to 15.9 mm) is divided into a plurality of sections (here, five sections A, B, C, D, and E). When matching the thickness / natural frequency train of the pole frequency groups f1, f2, and f3, the number of natural frequencies giving the poles and the appearance interval differ from section to section, which section is the pole frequency group f1. , F2, and f3 are determined in advance. For example, in FIG. 6, since each plate thickness / natural frequency sequence is a hyperbolic function as described above, the rate of change becomes steeper toward the lower plate thickness side, and the appearance interval in the frequency direction of the adjacent plate thickness / natural frequency sequence is Become wider. Therefore, the appearance interval becomes maximum in the section A on the lowest thickness side, and decreases in the order of sections B, C, D, and E.

従って、特定された極点周波数群f1,f2,f3の周波数間隔が、A,B,C,D,Eのどの区間において、板厚/固有周波数列の周波数方向の出現間隔に一番近くなるかを先行判定することは、区間特定を行なう上で有効といえる。そして、極点周波数群f1,f2,f3の周波数間隔が、どの区間の出現間隔にも一致しないか、あるいは、ある区間にて間隔のみは一致しても、板厚/固有周波数列の出現周波数位置において不一致となるなど、理論的照合の妥当性が得られない場合は、図8に示すごとく、周波数スイープして得られる減衰振動の振幅/周波数プロファイルが不要スプリアスを含んでいる可能性が高いので、図3のS8において、特定された極点周波数群f1,f2,f3を不適と判断し、S2に戻って測定をやり直すようにする。   Therefore, in which section of A, B, C, D, and E the frequency interval of the specified pole frequency groups f1, f2, and f3 is closest to the appearance interval in the frequency direction of the plate thickness / natural frequency sequence It can be said that it is effective in determining the section in advance. Even if the frequency intervals of the pole frequency groups f1, f2, and f3 do not coincide with the appearance intervals of any section, or even if only the intervals match in a certain section, the appearance frequency position of the plate thickness / natural frequency sequence If the validity of the theoretical collation cannot be obtained, such as in the case of non-coincidence, the amplitude / frequency profile of the damped vibration obtained by frequency sweeping is likely to contain unnecessary spurious as shown in FIG. In S8 of FIG. 3, the specified pole frequency groups f1, f2, and f3 are determined to be inappropriate, and the process returns to S2 and the measurement is performed again.

なお、残響振動振幅の極大点(減衰レベル極小点)を複数次にわたってカバーするスイープ帯域幅は、図6では約600kHzと相当に広帯域である。そこで、この帯域をラフ探索用帯域として、当該ラフ探索用帯域内にて周波数を第一の周波数間隔(例えば、2〜10kHz)にて断続的に変化させる形でスイープしつつ、各周波数での減衰レベルを測定する(図3:S2〜S8)。そして、該第一の周波数間隔によるスイープ結果に基づいて上記のごとく複数の極点f1、f2、f3を特定し、板厚/固有周波数列に対してそれら極点周波数群が一括して適合する板厚値をラフ板厚値t’として特定する。次に、複数の極点のいずれかを目印極点として選択する。そして、ラフ探索用帯域よりも狭い精密探索用帯域を、当該目印極点を含む形で設定し、該精密探索用帯域を第一の周波数間隔よりも小さい第二の周波数間隔(例えば、50〜1000Hz)にて断続的に変化させる形でスイープしつつ、各周波数での減衰レベルを測定する。   Note that the sweep bandwidth that covers the maximum point (damping level minimum point) of the reverberation vibration amplitude over a plurality of orders is a fairly wide band of about 600 kHz in FIG. Therefore, this band is set as a rough search band, and the frequency is intermittently changed within the rough search band at a first frequency interval (for example, 2 to 10 kHz). The attenuation level is measured (FIG. 3: S2 to S8). Then, a plurality of pole points f1, f2, and f3 are specified as described above based on the sweep result by the first frequency interval, and the plate thickness in which these pole frequency groups are collectively adapted to the plate thickness / natural frequency sequence. The value is specified as the rough plate thickness value t ′. Next, one of a plurality of poles is selected as a landmark pole. Then, a fine search band narrower than the rough search band is set so as to include the landmark pole, and the fine search band is set to a second frequency interval (for example, 50 to 1000 Hz) smaller than the first frequency interval. ) Measure the attenuation level at each frequency while sweeping in the form of intermittent changes.

例えば、区間Dが特定された場合は、一例として、3つある極点f1、f2、f3のうち、中央のものf2を目印極点とできる。また、このときのラフ板厚値t’は約11.5mmであり、目印極点f2を含む精密探索用帯域を1010〜1050kHzとして設定できる。また、ラフ探索帯域で特定したf2の周波数を中心として前後等間隔(例えば±20kHz)で精密探索用帯域を設定してもよい。   For example, when the section D is specified, as an example, among the three pole points f1, f2, and f3, the center one f2 can be used as the mark pole point. The rough plate thickness value t ′ at this time is about 11.5 mm, and the fine search band including the mark pole point f2 can be set as 1010 to 1050 kHz. Also, the fine search band may be set at equal intervals (for example, ± 20 kHz) around the frequency f2 specified in the rough search band.

そして、該第二の周波数間隔によるスイープ結果に基づいて目印極点に対応する精密極点として特定し、該目印極点に対応する板厚/固有周波数列上にて精密極点を与える周波数に対応する板厚値を精密板厚値tとして算出する。スイープ帯域全体では第一の周波数間隔を採用することにより残響振動測定の点数を大幅に削減でき、かつ、板厚を読み取るための極点近傍では第一の周波数間隔よりも小さい第二の周波数間隔を採用することにより、極点の特定精度を大幅に向上することができる。   Then, based on the sweep result by the second frequency interval, it is specified as a precision pole corresponding to the mark pole, and the board thickness corresponding to the frequency that gives the precision pole on the plate thickness / natural frequency sequence corresponding to the mark pole The value is calculated as a precision plate thickness value t. By adopting the first frequency interval for the entire sweep band, the number of reverberation vibration measurements can be greatly reduced, and a second frequency interval smaller than the first frequency interval is near the pole for reading the plate thickness. By adopting it, it is possible to greatly improve the pinpoint identification accuracy.

なお、包絡線検波波形は、図5のステップ4に示すごとく、上記の時間tsを積分期間として積分演算し、その積分値を、減衰レベルを反映した情報として使用するとともに、該積分値の極大値を与える周波数を壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを板厚反映周波数として特定するようにしてもよい。また、図9に示すように、減衰残響振動の減衰レベルが予め定められた参照レベルVthに到達するまでの減衰時間tdを計測し、当該減衰時間tdを、減衰レベルを反映した情報として取得するとともに、該減衰時間の極大値を与える周波数を壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを板厚反映周波数として特定するようにしてもよい。   As shown in Step 4 of FIG. 5, the envelope detection waveform is integrated using the time ts as the integration period, and the integration value is used as information reflecting the attenuation level, and the maximum of the integration value is used. The frequency that gives the value may be found as the natural frequency of the longitudinal natural vibration in the thickness direction of the wall and specified as the thickness reflection frequency. Further, as shown in FIG. 9, the decay time td until the decay level of the damped reverberation vibration reaches a predetermined reference level Vth is measured, and the decay time td is acquired as information reflecting the decay level. At the same time, the frequency that gives the maximum value of the decay time may be found as the natural frequency of the longitudinal natural vibration in the plate thickness direction of the wall, and this may be specified as the plate thickness reflection frequency.

本発明の超音波板厚測定装置の使用例を示す模式図。The schematic diagram which shows the usage example of the ultrasonic plate thickness measuring apparatus of this invention. 図1の超音波板厚測定装置の電気的構成例を示すブロック図。The block diagram which shows the electrical structural example of the ultrasonic plate thickness measuring apparatus of FIG. 図2のマイコンが実行する測定プログラムの流れを示すフローチャート。The flowchart which shows the flow of the measurement program which the microcomputer of FIG. 2 performs. 液体の非存在部における減衰振動波形の一例を示す図。The figure which shows an example of the damped vibration waveform in the non-existing part of a liquid. 液体の存在部における減衰振動波形の一例を示す図。The figure which shows an example of the damped vibration waveform in the presence part of a liquid. 減衰振動波形の処理概念を説明する図。The figure explaining the processing concept of a damped vibration waveform. 板厚/固有周波数列の具体例を示す図。The figure which shows the specific example of plate | board thickness / natural frequency sequence. 周波数スイープして得られる減衰振動の振幅データの一例を示す図。The figure which shows an example of the amplitude data of the damped vibration obtained by frequency sweeping. 減衰振動の振幅データにおける不要スプリアスの影響を説明する図。The figure explaining the influence of the unnecessary spurious in the amplitude data of a damped vibration. 減衰振動波形の処理概念の別例を説明する図。The figure explaining another example of the processing concept of a damped vibration waveform.

符号の説明Explanation of symbols

1 液体板厚測定装置
2 超音波トランスジューサ(超音波送信部、超音波受信部)
SW 超音波ビーム
L 液体
2 超音波トランスジューサ(超音波送信部、残響検出手段)
SW 超音波ビーム
L 液体
100 マイコン(減衰レベル測定手段、板厚反映周波数特定手段、板厚/周波数関係記憶手段、壁部板厚算出手段)
101b VCO(周波数設定部)
102 周波数設定部
103 信号処理回路
103b 包絡線検波部(包絡線検波手段)
104 表示部(壁部板厚出力手段)
190 容器
1 Liquid thickness measuring device 2 Ultrasonic transducer (ultrasonic transmitter, ultrasonic receiver)
SW Ultrasonic beam L Liquid 2 Ultrasonic transducer (Ultrasonic transmitter, reverberation detection means)
SW Ultrasonic beam L Liquid 100 Microcomputer (Attenuation level measuring means, plate thickness reflection frequency specifying means, plate thickness / frequency relation storage means, wall thickness calculation means)
101b VCO (frequency setting unit)
102 frequency setting unit 103 signal processing circuit 103b envelope detection unit (envelope detection means)
104 Display (wall thickness output means)
190 containers

Claims (10)

液体を収容した容器を被測定系として、該容器の壁部外面に定められた測定実施位置に取り付けて使用され、前記被測定系に前記測定用超音波ビームを予め定められた時間励振入力した後、当該測定用超音波ビームの入力を遮断する超音波送信部と、
前記測定実施位置に取り付けて使用され、前記測定用超音波ビームの入力遮断後の残響振動波形を検出する残響検出手段と、
前記超音波の周波数を変更可能に設定する周波数設定部と、
前記周波数を複数の設定値に変更しつつ前記超音波送信部により前記被測定系に前記測定用超音波ビーム送信し、各周波数にて前記超音波受信部による前記残響振動波形の減衰レベルを測定する減衰レベル測定手段と、
各前記周波数における前記残響振動波形の減衰レベル測定結果の集合に基づき、当該測定の範囲内にて前記減衰レベルが極小化される周波数を板厚反映周波数として特定する板厚反映周波数特定手段と、
前記板厚反映周波数と前記容器の板厚との関係を記憶する板厚/周波数関係記憶手段と、
記憶された前記板厚/周波数関係を参照して、特定された前記板厚反映周波数に対応する板厚を前記測定実施位置における前記容器の壁部板厚として算出する壁部板厚算出手段と、
該壁部板厚の算出結果を出力する壁部板厚出力手段と、
を備えたことを特徴とする超音波板厚測定装置。
A container containing a liquid is used as a system to be measured, which is attached to a measurement execution position determined on the outer surface of the wall of the container, and the measurement ultrasonic beam is input to the system to be measured for a predetermined time. Then, an ultrasonic transmission unit that blocks input of the ultrasonic beam for measurement,
Reverberation detection means for detecting a reverberation vibration waveform after being cut off from the input of the ultrasonic beam for measurement;
A frequency setting unit for setting the frequency of the ultrasonic wave to be changeable;
While changing the frequency to a plurality of set values, the ultrasonic transmission unit transmits the ultrasonic beam for measurement to the measurement target system, and measures the attenuation level of the reverberation vibration waveform by the ultrasonic reception unit at each frequency. An attenuation level measuring means,
Based on a set of attenuation level measurement results of the reverberation vibration waveform at each of the frequencies, a plate thickness reflection frequency specifying unit that specifies a frequency at which the attenuation level is minimized within the measurement range as a plate thickness reflection frequency;
Plate thickness / frequency relationship storage means for storing the relationship between the plate thickness reflection frequency and the plate thickness of the container;
Wall thickness calculation means for calculating the thickness corresponding to the specified thickness reflection frequency as the wall thickness of the container at the measurement execution position with reference to the stored thickness / frequency relationship; ,
Wall thickness output means for outputting the calculation result of the wall thickness;
An ultrasonic plate thickness measuring apparatus comprising:
前記残響検出手段は、前記残響振動波形の検出を前記容器上にて液体有りとなることが予め知れている位置にて行なう請求項1記載の超音波板厚測定装置。   2. The ultrasonic plate thickness measuring apparatus according to claim 1, wherein the reverberation detecting means detects the reverberation vibration waveform at a position where it is known in advance that liquid is present on the container. 前記残響振動波形を包絡線検波する包絡線検波手段を有し、
前記減衰レベル測定手段は、前記残響振動波形の包絡線検波波形を用いて前記減衰レベルを測定する請求項1又は請求項2に記載の超音波板厚測定装置。
Envelope detection means for detecting the reverberation vibration waveform as an envelope,
The ultrasonic plate thickness measuring apparatus according to claim 1, wherein the attenuation level measuring unit measures the attenuation level using an envelope detection waveform of the reverberation vibration waveform.
前記減衰レベル測定手段は、前記周波数を予め定められた周波数帯域内にてスイープするとともに、当該スイープ帯域内にて前記減衰レベルが極小化される周波数を前記壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを前記板厚反映周波数として特定する請求項1ないし請求項3のいずれか1項に記載の超音波板厚測定装置。   The attenuation level measuring means sweeps the frequency within a predetermined frequency band, and sets the frequency at which the attenuation level is minimized within the sweep band to the characteristic of the longitudinal wave in the plate thickness direction of the wall portion. The ultrasonic plate thickness measuring apparatus according to any one of claims 1 to 3, wherein the ultrasonic plate thickness is identified as a natural frequency of vibration and specified as the plate thickness reflection frequency. 前記板厚/周波数関係記憶手段は、前記縦波固有振動の互いに隣接する複数の次数について各々、前記縦波固有振動の種々の板厚での固有周波数を板厚/固有周波数列として記憶するものであり、
前記減衰レベル測定手段は、前記周波数のスイープ帯域幅を、前記減衰レベルが極小化される極点が当該帯域内に複数現れるように設定するものであり、
前記壁部板厚算出手段は、前記帯域内にて前記複数の極点に対応する周波数を極点周波数群として特定するとともに、前記板厚/固有周波数列に対してそれら極点周波数群が一括して適合する板厚値を探索することにより壁部板厚値を算出するものである請求項4記載の超音波板厚測定装置。
The plate thickness / frequency relation storage means stores the natural frequency at various plate thicknesses of the longitudinal natural vibration as a plate thickness / natural frequency sequence for each of a plurality of adjacent orders of the longitudinal natural vibration. And
The attenuation level measurement means sets the sweep bandwidth of the frequency so that a plurality of extreme points at which the attenuation level is minimized appear in the band,
The wall thickness calculating means specifies frequencies corresponding to the plurality of extreme points in the band as extreme frequency groups, and the extreme frequency groups are collectively adapted to the thickness / natural frequency sequence. The ultrasonic plate thickness measuring device according to claim 4, wherein the plate thickness value is calculated by searching for the plate thickness value to be performed.
前記減衰レベル測定手段は、前記帯域をラフ探索用帯域として、当該ラフ探索用帯域内にて前記周波数を第一の周波数間隔にて断続的に変化させる形でスイープしつつ、各周波数での前記減衰レベルを測定し、
前記壁部板厚算出手段は、該第一の周波数間隔によるスイープ結果に基づいて複数の前記極点を特定し、前記板厚/固有周波数列に対してそれら極点周波数群が一括して適合する板厚値をラフ板厚値として特定し、
前記減衰レベル測定手段は、前記複数の極点のいずれかを目印極点として選択するとともに、前記ラフ探索用帯域よりも狭い精密探索用帯域を、当該目印極点を含む形で設定し、該精密探索用帯域を前記第一の周波数間隔よりも小さい第二の周波数間隔にて断続的に変化させる形でスイープしつつ、各周波数での前記減衰レベルを測定し、
前記壁部板厚算出手段は、該第二の周波数間隔によるスイープ結果に基づいて前記目印極点に対応する精密極点として特定し、該目印極点に対応する前記板厚/固有周波数列上にて前記精密極点を与える周波数に対応する板厚値を精密板厚値として算出するものである請求項5記載の超音波板厚測定装置。
The attenuation level measurement means uses the band as a rough search band and sweeps the frequency intermittently within the rough search band at a first frequency interval, Measure the attenuation level,
The wall thickness calculation means specifies a plurality of the poles based on a sweep result of the first frequency interval, and the pole frequency group is collectively matched to the thickness / natural frequency sequence. Specify the thickness value as the rough plate thickness value,
The attenuation level measuring means selects any one of the plurality of poles as a landmark pole, sets a fine search band narrower than the rough search band in a form including the landmark pole, and Measure the attenuation level at each frequency while sweeping the band intermittently in a second frequency interval smaller than the first frequency interval,
The wall thickness calculation means specifies a precise pole corresponding to the mark pole based on the sweep result by the second frequency interval, and the thickness / natural frequency sequence corresponding to the mark pole 6. The ultrasonic plate thickness measuring apparatus according to claim 5, wherein a plate thickness value corresponding to a frequency giving a precise pole is calculated as a precise plate thickness value.
前記減衰レベル測定手段は、前記周波数帯域を複数の副帯域に分割してそれら副帯域毎に前記スイープを行なうものであり、
前記残響検出手段は、前記副帯域毎に当該副帯域に対応する通過周波数帯域を有したバンドパスフィルタと、前記スイープを行なう前記副帯域の切り替えに伴い前記残響振動波形を通過させるバンドパスフィルタを対応する通過周波数帯域のものに逐次切り替えるフィルタ切替手段とを有する請求項4ないし請求項6のいずれか1項に記載の超音波板厚測定装置。
The attenuation level measuring means divides the frequency band into a plurality of subbands and performs the sweep for each of the subbands.
The reverberation detecting means includes: a bandpass filter having a pass frequency band corresponding to the subband for each subband; and a bandpass filter that passes the reverberation vibration waveform when the subband is switched. The ultrasonic plate thickness measuring apparatus according to any one of claims 4 to 6, further comprising filter switching means for sequentially switching to a corresponding pass frequency band.
前記減衰レベル測定手段は、前記測定用超音波ビームの入力を遮断後に予め定められ時間を経過したときの前記残響振動波形の振幅を、前記減衰レベルを反映した情報として取得するとともに、当該振幅の極大値を与える周波数を前記壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを前記板厚反映周波数として特定する請求項4ないし請求項7のいずれか1項に記載の超音波板厚測定装置。   The attenuation level measurement means acquires the amplitude of the reverberation vibration waveform when a predetermined time has elapsed after blocking the input of the measurement ultrasonic beam as information reflecting the attenuation level, and The super frequency according to any one of claims 4 to 7, wherein a frequency that gives a maximum value is found as a natural frequency of longitudinal natural vibration in the thickness direction of the wall portion, and is specified as the thickness reflection frequency. Sonic plate thickness measuring device. 前記減衰レベル測定手段は、前記減衰残響振動の減衰レベルが予め定められた参照レベルに到達するまでの減衰時間を計測する減衰時間計測手段を有し、当該減衰時間を、前記減衰レベルを反映した情報として取得するとともに、該減衰時間の極大値を与える周波数を前記壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを前記板厚反映周波数として特定する請求項4ないし請求項7のいずれか1項に記載の超音波板厚測定装置。   The attenuation level measuring means includes attenuation time measuring means for measuring an attenuation time until the attenuation level of the damped reverberation vibration reaches a predetermined reference level, and the attenuation time reflects the attenuation level. 5. The frequency obtained as information and giving the maximum value of the decay time is found as the natural frequency of the longitudinal natural vibration in the thickness direction of the wall, and is specified as the thickness reflection frequency. 8. The ultrasonic plate thickness measuring apparatus according to any one of 7 above. 請求項3記載の要件を備えるとともに、
前記減衰レベル測定手段は、前記包絡線検波波形を予め定められた積分期間にて積分し、その積分値を、前記減衰レベルを反映した情報として取得するとともに、該積分値の極大値を与える周波数を前記壁部の板厚方向における縦波固有振動の固有周波数として見出し、これを前記板厚反映周波数として特定する請求項4ないし請求項7のいずれか1項に記載の超音波板厚測定装置。
While having the requirements of claim 3,
The attenuation level measuring means integrates the envelope detection waveform in a predetermined integration period, acquires the integration value as information reflecting the attenuation level, and provides a frequency that gives the maximum value of the integration value. The ultrasonic plate thickness measuring apparatus according to any one of claims 4 to 7, wherein the ultrasonic wave thickness is identified as a natural frequency of longitudinal natural vibration in the plate thickness direction of the wall portion and specified as the plate thickness reflecting frequency. .
JP2007272725A 2007-10-19 2007-10-19 Ultrasonic plate thickness measuring device Pending JP2009103459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272725A JP2009103459A (en) 2007-10-19 2007-10-19 Ultrasonic plate thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272725A JP2009103459A (en) 2007-10-19 2007-10-19 Ultrasonic plate thickness measuring device

Publications (1)

Publication Number Publication Date
JP2009103459A true JP2009103459A (en) 2009-05-14

Family

ID=40705277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272725A Pending JP2009103459A (en) 2007-10-19 2007-10-19 Ultrasonic plate thickness measuring device

Country Status (1)

Country Link
JP (1) JP2009103459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486804A (en) * 2020-06-15 2020-08-04 东莞职业技术学院 Signal processing method and measuring method for precision part thickness measurement
WO2021166769A1 (en) * 2020-02-19 2021-08-26 三菱重工業株式会社 Signal processing method and device for ultrasonic testing and thickness-measuring method and device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560822A (en) * 1978-10-31 1980-05-08 Sony Corp Sound characteristic measuring instrument
JPH01143991A (en) * 1987-11-30 1989-06-06 Tatsuta Electric Wire & Cable Co Ltd Ultrasonic distance measuring instrument
JPH0357907A (en) * 1989-07-20 1991-03-13 Asulab Sa Method of measuring distance(e)between two surfaces of objects
JPH051910A (en) * 1990-08-17 1993-01-08 Nkk Corp Measuring method and device for thickness of object for inspection by ultrasonic waves
JPH07198362A (en) * 1993-12-28 1995-08-01 Toshiba Corp Method and apparatus for measurement of decrease in wall thickness of pipe
JPH10318738A (en) * 1997-05-20 1998-12-04 Kishimoto Akira Method and apparatus for measuring wall thickness of bottle
JP2002081926A (en) * 2000-09-06 2002-03-22 Sumitomo Kinzoku Technol Kk Ultrasonic wall thickness measuring method and device
JP2003177015A (en) * 2001-12-11 2003-06-27 Sumitomo Kinzoku Technol Kk Measuring method for thickness of magnetic thin film
JP2004257981A (en) * 2003-02-27 2004-09-16 Ricoh Elemex Corp Ultrasonic level meter and liquid level detection method using the same
JP2004257983A (en) * 2003-02-27 2004-09-16 Ricoh Elemex Corp Ultrasonic level meter and liquid level detection method using the same
JP2004333314A (en) * 2003-05-08 2004-11-25 Ricoh Elemex Corp Ultrasonic level meter and method for detecting liquid level thereof
JP2007010543A (en) * 2005-07-01 2007-01-18 Nihon Techno-Plus Co Ltd Apparatus and method for measuring thickness of oxide film

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560822A (en) * 1978-10-31 1980-05-08 Sony Corp Sound characteristic measuring instrument
JPH01143991A (en) * 1987-11-30 1989-06-06 Tatsuta Electric Wire & Cable Co Ltd Ultrasonic distance measuring instrument
JPH0357907A (en) * 1989-07-20 1991-03-13 Asulab Sa Method of measuring distance(e)between two surfaces of objects
JPH051910A (en) * 1990-08-17 1993-01-08 Nkk Corp Measuring method and device for thickness of object for inspection by ultrasonic waves
JPH07198362A (en) * 1993-12-28 1995-08-01 Toshiba Corp Method and apparatus for measurement of decrease in wall thickness of pipe
JPH10318738A (en) * 1997-05-20 1998-12-04 Kishimoto Akira Method and apparatus for measuring wall thickness of bottle
JP2002081926A (en) * 2000-09-06 2002-03-22 Sumitomo Kinzoku Technol Kk Ultrasonic wall thickness measuring method and device
JP2003177015A (en) * 2001-12-11 2003-06-27 Sumitomo Kinzoku Technol Kk Measuring method for thickness of magnetic thin film
JP2004257981A (en) * 2003-02-27 2004-09-16 Ricoh Elemex Corp Ultrasonic level meter and liquid level detection method using the same
JP2004257983A (en) * 2003-02-27 2004-09-16 Ricoh Elemex Corp Ultrasonic level meter and liquid level detection method using the same
JP2004333314A (en) * 2003-05-08 2004-11-25 Ricoh Elemex Corp Ultrasonic level meter and method for detecting liquid level thereof
JP2007010543A (en) * 2005-07-01 2007-01-18 Nihon Techno-Plus Co Ltd Apparatus and method for measuring thickness of oxide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166769A1 (en) * 2020-02-19 2021-08-26 三菱重工業株式会社 Signal processing method and device for ultrasonic testing and thickness-measuring method and device
JP7369059B2 (en) 2020-02-19 2023-10-25 三菱重工業株式会社 Signal processing method and device for ultrasonic inspection and thickness measurement method and device
CN111486804A (en) * 2020-06-15 2020-08-04 东莞职业技术学院 Signal processing method and measuring method for precision part thickness measurement

Similar Documents

Publication Publication Date Title
US7114390B2 (en) Ultrasonic liquid level monitor
US10551230B2 (en) Measuring system for measuring at least one parameter of a fluid
US11215489B2 (en) Apparatus and method for measuring the flow velocity of a fluid in a pipe
RU2014105294A (en) VIBRATION METER AND APPROPRIATE METHOD FOR DETERMINING THE RESONANCE FREQUENCY
EP3710795B1 (en) Device and method for detecting deposition layers in a conduit conducting a liquid or a soft medium and/or for level detection
JP2011002326A (en) Ultrasonic liquid level meter
JP2009002707A (en) Ultrasonic liquid sensing apparatus
JP2009103459A (en) Ultrasonic plate thickness measuring device
US3028749A (en) Ultrasonic fluid density measuring system
JP2008203207A (en) Liquid detector
US11099042B2 (en) Clamp-on ultrasonic flowmeter determining flow rate corresponding to phase velocity of low order asymmetric mode from plate wave generation
JP2008203205A (en) Liquid detector
JP2010071813A (en) Ultrasonic liquid level meter
JP2009109296A (en) Ultrasonic liquid level meter
JP3234197B2 (en) Ultrasonic sensor and object detection method using the same
JP3436179B2 (en) Ultrasonic flowmeter and flow measurement method
JP4498312B2 (en) Water level detector and equipment
JP2008203204A (en) Liquid detector
JP2009031136A (en) Ultrasonic liquid detector
JP4363141B2 (en) Material detection method and material detection device
JPH1183594A (en) Measuring device
JP2023123323A (en) Level detector
KR101782509B1 (en) A Device for Measuring a Length Using Ultrasound
JPH07229876A (en) Identification of gas in conduit by sonic wave
RU80011U1 (en) ACOUSTIC GAS ANALYZER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828