JP3856689B2 - Neutral point clamp type power converter controller - Google Patents

Neutral point clamp type power converter controller Download PDF

Info

Publication number
JP3856689B2
JP3856689B2 JP2001365926A JP2001365926A JP3856689B2 JP 3856689 B2 JP3856689 B2 JP 3856689B2 JP 2001365926 A JP2001365926 A JP 2001365926A JP 2001365926 A JP2001365926 A JP 2001365926A JP 3856689 B2 JP3856689 B2 JP 3856689B2
Authority
JP
Japan
Prior art keywords
neutral point
voltage command
phase
circuit
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001365926A
Other languages
Japanese (ja)
Other versions
JP2003169480A (en
Inventor
木 健太郎 鈴
村 雅 史 中
越 昌 彦 塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2001365926A priority Critical patent/JP3856689B2/en
Publication of JP2003169480A publication Critical patent/JP2003169480A/en
Application granted granted Critical
Publication of JP3856689B2 publication Critical patent/JP3856689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、中性点クランプ式電力変換器の制御装置、特に中性点電位変動を抑制できる制御装置に関する。
【0002】
【従来の技術】
中性点クランプ式電力変換器は公知である。図14に公知の中性点クランプ式電力変換器の主回路構成例を示す。図14において、中性点クランプ式電力変換器3は、ゲートターンオフサイリスタ等のスイッチング素子とそれら個々のスイッチング素子に逆並列接続されたダイオードで構成されるアーム素子、並びに各相毎に一対のクランプダイオードを備えた中性点クランプ式3相ブリッジ回路として構成され、その直流端子は直流電力の授受を行うための直流端子P,Nに接続され、交流端子は交流電力の授受を行うための3相交流端子U,V,Wに接続されている。直流端子P,N間には、端子間の直流電圧を正側直流電圧Vcpと負側直流電圧Vcnに分割するための直流コンデンサ1,2が直列に接続されている。両コンデンサ1,2の接続点が中性点Oを形成し、この中性点Oが中性点クランプ式電力変換器3の各相における正負一対のクランプダイオードの中間接続点に接続される。
【0003】
図14における中性点クランプ式電力変換器3自体の構成と動作態様は良く知られているので、ここではその詳細説明を省略する。中性点クランプ式電力変換器は、直流端子を直流電源に接続し、交流端子に接続された負荷に交流電力を供給する中性点クランプ式インバータとして用いられる場合と、交流端子を交流電源に接続し、直流端子に接続された負荷に直流電力を供給する中性点クランプ式コンバータとして用いられる場合とがある。しかし、両者は呼び方が異なるだけで、その構成や動作は共通であり、解決しようとする課題も共通しているため、本発明では両者を区別せずに中性点クランプ式電力変換器として扱う。また、図14の2組の直流コンデンサ1,2の接続点である直流中性点Oも直流端子として引き出し、2分割された直流電源あるいは直流負荷に接続する場合もあるが、そのような構成のものも本発明の対象として含むものとする。
【0004】
中性点クランプ式電力変換器の解決すべき技術課題の一つに、直流中性点電位変動の抑制技術がある。中性点クランプ式電力変換器では、図14において、直流中性点Oを流れる中性点電流Ioは交流側周波数の3倍の周波数で正負に変動するという原理的な性質を持っている。この中性点電流Ioは直流コンデンサ1,2に分流し、一方の電圧を増加させ、他方の電圧を減少させる作用を及ぼす。すなわち、中性点電流Ioは両コンデンサの電圧をアンバランスにするように作用し、中性点電位は交流側周波数の3倍の周波数で変動することになる。中性点電位変動は正負コンデンサ電圧のアンバランスとして構成部品の耐圧上の問題となるだけでなく、交流側電圧波形へも影響を及ぼし、交流側電流の波形歪みの原因ともなる。
【0005】
中性点電位変動を抑制する方法として、正負コンデンサ電圧の差を検出してフィードバック補正を行う方式が知られている。図15は、フィードバック補正による中性点電位変動抑制制御を実施する装置の構成例(例えば、嶋村他「NPCインバータの直流入力コンデンサ電圧の平衡化制御」電気学会半導体電力変換研究会資料SPC−91−37、平成3年)を示すものである。
【0006】
図15の装置は、図14の装置と同様の主回路構成の電力変換器3に中性点電位を抑制するための制御回路部を付加したものである。正側直流コンデンサ電圧Vcpおよび負側直流コンデンサ電圧Vcnをそれぞれ電圧検出器10,11によって検出し、検出された直流コンデンサ電圧Vcp,Vcnの差すなわち差電圧ΔVpn=Vcp−Vcnを減算器12によって演算し、その差電圧を、増幅器13を介して乗算器15の第1の入力端子に入力する。他方、極性選択器14により、3相電圧指令Vu,Vv,Vw、および電流検出器20,21,22によって検出された3相の変換器交流電流Iu,Iv,Iwに基づいて、電力変換器3の電力の流れの方向すなわち潮流方向を判断して、例えば電力が直流側から交流側へと流れているときは+1の、その逆の場合は−1の極性信号Spが求められ、乗算器15の第2の入力端子に入力される。
【0007】
乗算器15は、増幅器13からの差電圧ΔVpn相当の信号に極性信号Spの値を乗じて中性点電位変動を抑制するための補正量Vcmp=ΔVpn・Spを生成する。この補正量Vcmpは3相の電圧指令Vu,Vv,Vwに加算器16,17,18を介して加算され、補正された3相の電圧指令Vuc,Vvc,Vwcが生成され、3レベルPWM制御回路19に送出される。3レベルPWM制御回路19は入力された電圧指令Vuc,Vvc,Vwcに基づき公知のやり方に従ってパルス幅変調制御を行い中性点クランプ式電力変換器3のスイッチング素子をオンオフ制御する。
【0008】
【発明が解決しようとする課題】
図15の装置によって中性点電位変動を抑制し得ることは確かであるが、中性点電位変動を完全にゼロにするためには、理論上、増幅器13のゲインを無限大にする必要があり、現実的には不可能である。有限のゲインとした場合には、中性点電位変動は運転力率等の電力変換器の運転状態によってその大きさが変化することになるが、総ての運転状態で中性点電位変動を許容値以下に抑制するためには、ゲインを大きくするか、直流コンデンサ1,2のキャパシタンスを大きくしておく必要がある。しかし、ゲインを大きくすると制御上の安定性を損なう虞があるだけでなく、補正量が過大となり、補正後の3相電圧指令Vuc,Vvc,Vwcが可制御範囲を超えてしまうこともあり得る。他方、直流コンデンサ1,2のキャパシタンスを大きくすることは、電力変換装置としてコストアップにつながる。
【0009】
そこで本発明は、総ての運転状態において中性点電位変動をある設定された値以下に抑制し得る、中性点クランプ式電力変換器の制御装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために請求項1に係る発明の中性点クランプ式電力変換器の制御装置は、電力変換器の直流端子間に直列に接続される一対の直流コンデンサの電圧差に基づいて両直流コンデンサの直列接続点に形成される中性点の電位が所定のリミット値を超えたかどうかを判定するリミット判定回路と、3相電圧指令のうち三角波キャリア信号の特定の位相点で最高となる相の電圧指令が正側の最高値になるようなオフセット値を3相総ての電圧指令に加算して3相の正側シフト電圧指令を出力する正側シフト回路と、3相電圧指令のうち三角波キャリア信号の特定の位相点で最低となる相の電圧指令が負側の最低値になるようなオフセット値を3相総ての電圧指令に加算して3相の負側シフト電圧指令を出力する負側シフト回路と、3相電圧指令、正側シフト電圧指令、および負側シフト電圧指令の各電圧指令に基づいてPWM制御を行ったと仮定した場合に発生する各中性点電流を3相電圧指令および3相交流電流から演算する中性点電流演算回路と、リミット判定回路および各中性点電流演算回路の出力信号を元に、中性点の電位がリミット値を超えてしまっている場合に、その中性点電位を所定のリミット値内に最も速く戻すことのできる中性点電流を発生する3相電圧指令を選択する電圧指令選択回路と、この電圧指令選択回路によって選択された3相電圧指令に従って3レベルPWM制御を行う3レベルPWM制御回路とを備えたことを特徴とする。この発明によれば、中性点の電位変動を設定されたリミット値以内に抑制することが可能となる。
【0011】
請求項2に係る発明は、請求項1に記載の中性点クランプ式電力変換器の制御装置において、3レベルPWM制御回路とともに2レベルPWM制御回路を備え、中性点電位がリミット値を超えてしまっている場合に、3相電圧指令、正側シフト電圧指令および負側シフト電圧指令の各電圧指令のどれを用いても中性点電位をリミット値内に戻すことができない場合には、3レベルPWM制御回路に代えて2レベルPWM制御回路に切り換える手段を備えたことを特徴とする。2レベルPWM制御では中性点電流が発生しないため、この発明によれば、中性点電位はそのままの状態に保たれ、結果として設定されたリミット値近傍に保持することができる。
【0012】
さらに、請求項3に係る発明は、請求項1または請求項2に記載の中性点クランプ式電力変換器の制御装置において、中性点電流演算回路は各中性点電流を各3相電圧指令と3相交流電流指令から演算することを特徴とする。この発明によれば、交流電流指令を用いて中性点電流を演算することにより、電流検出器を備える必要がなくなる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。本発明の実施の形態を示す図面において、図15のものと同一の構成要素には同一の符号を付してその個々の説明は省略する。
【0014】
<第1の実施の形態>
図1は本発明による中性点クランプ式電力変換器の制御装置の第1の実施の形態を示すブロック図である。図1の装置には、図15の装置に備えられていた増幅器13、極性選択器14、乗算器15、および加算器16,17,18が省略され、新たにリミット判定回路23、正側シフト回路24、負側シフト回路25、中性点電流演算回路26,27,28、および電圧指令選択回路29を備えている。
【0015】
電圧検出器10,11で検出された正負の直流電圧Vcp,Vcnに基づいて減算器12により差電圧ΔVpn=Vcp−Vcnを求め、その差電圧を中性点電位としてリミット判定回路23に入力する。リミット判定回路23では差電圧ΔVpnが、予め設定されたリミット値±Vnplimの範囲を超えているかどうかの判定を行い、超えている場合、その差電圧ΔVpnをリミット信号Slimとして出力する。すなわち、
ΔVpn<−Vnplim のとき、Slim=ΔVpn<0
−Vnplim≦ΔVpn≦+Vnplim のとき、Slim=0
ΔVpn>+Vnplim のとき、Slim=ΔVpn>0
である。
【0016】
正側シフト回路24では、各パルス期間において、3相電圧指令Vu,Vv,Vwのうちで最高値となる相、例えば図2に示す例ではU相電圧指令Vuが正側の最高値になるようなオフセット値ΔVp(図2参照)を3相総ての電圧指令に加算して、図5に示す3相正側シフト電圧指令Vpu,Vpv,Vpwを出力する。同様にして負側シフト回路25では、3相の電圧指令のうちで最低値となる相、図2に示す例ではW相電圧指令Vwが負側の最低値になるようなオフセット値ΔVnを3相総ての電圧指令に加算して、図7に示すような3相の負側シフト電圧指令Vnu,Vnv,Vnwを出力する。
【0017】
図2は、元の3相電圧指令Vu,Vv,Vwを用いて3レベルPWM制御を行う場合の三角波キャリア信号R1,R2と3相電圧指令Vu,Vv,Vwの関係を示したものである。ここでは各電圧指令の谷および山のタイミングが同期した正および負の2つの三角波キャリア信号R1,R2を用いて、三角波キャリア信号の谷および山のタイミングで3相電圧指令をサンプルホールドし、三角波キャリア信号の半周期毎に3相電圧指令Vu,Vv,Vwに従って3レベルPWM制御を行う。
【0018】
図3は図2の半周期間に発生する中性点電流を各相の出力電圧レベルが異なる4つの期間▲1▼〜▲4▼毎に示したものである。なお、ここでは期間▲1▼〜▲4▼の時間をそれぞれt〜tと定義している。図3から3相電圧指令Vu,Vv,Vwのうち出力電圧レベルがゼロ、つまり中性点Oに接続される相がある場合にのみ中性点電流が生じ、その大きさは中性点Oに接続される相の電流の合計値(ベクトル和)となることが分かる。
【0019】
図4は空間ベクトル上における出力電圧ベクトルU,V,Wと期間▲1▼〜▲4▼の対応関係を表したものである。図3および図4から、期間▲1▼と▲4▼は空間ベクトル上での電圧ベクトルとしては同じであり、中性点電流の極性のみが逆になっていることが分かる。
【0020】
図5は正側シフト回路24が出力する3相正側シフト電圧指令Vpu,Vpv,Vpwを3相電圧指令として3レベルPWM制御を行う場合の、三角波キャリア信号R1,R2と3相電圧指令Vpu,Vpv,Vpwを示したものである。図6は図5に対応する各期間毎に発生する中性点電流を示したものである。
【0021】
図7は負側シフト回路25が発生する3相負側シフト電圧指令Vnu,Vnv,Vnwを3相電圧指令として3レベルPWM制御を行う場合の、三角波キャリア信号R1,R2と3相電圧指令Vnu,Vnv,Vnwの関係を示し、図8は図7に対応する各期間毎に発生する中性点電流を示している。
【0022】
図6と図8の比較から、正側シフト電圧指令Vpu,Vpv,Vpwと負側シフト電圧指令Vnu,Vnv,Vnwのいずれかを用いることにより、期間▲1▼と▲4▼で決まる電圧ベクトルのどちらか一方を選択的に出力できることが分かる。これは空間ベクトル上の電圧ベクトルとしての能力を変えることなく、中性点電流の極性を選択できることを意味する。したがって、中性点電位変動の状態に応じて正側シフト電圧指令か負側シフト電圧指令を適切に選択することにより、中性点電位変動を抑制することが可能となる。
【0023】
中性点電流演算回路26は、電流検出器20,21,22によって検出された3相交流電流Iu,Iv,Iw、および絶対値として1に正規化された3相電圧指令Vu,Vv,Vwから、中性点電流Ioを、
Io=−|Vu|Iu−|Vv|Iv−|Vw|Iw
なる式に従って演算する。
【0024】
同様に中性点電流演算回路27は、3相交流電流Iu,Iv,Iw、および絶対値として1に正規化された3相正側シフト電圧指令Vpu,Vpv,Vpwから、中性点電流Ioを、
Io=−|Vpu|Iu−|Vpv|Iv−|Vpw|Iw
なる式に従って演算する。
【0025】
さらに中性点電流演算回路28は、3相交流電流Iu,Iv,Iw、および絶対値として1に正規化された3相負側シフト電圧指令Vnu,Vnv,Vnwから、中性点電流Ioを、
Io=−|Vnu|Iu−|Vnv|Iv−|Vnw|Iw
なる式に従って演算する。
【0026】
これらの式から求められる中性点電流Ioは、三角波キャリア信号半周期間に発生する中性点電流の平均値となる。演算された各中性点電流Ioとリミット判定回路23が出力するリミット信号Slimを元に、電圧指令選択回路29は中性点電位を最も速くリミット値内に戻すことのできる3相電圧指令を選択する。3レベルPWM制御回路19は、選択された3相電圧指令に従って中性点クランプ式電力変換器3の3レベルPWM制御を行う。
【0027】
本実施の形態によれば、中性点クランプ式電力変換器の中性点電位変動を設定値以下に抑えることが可能となる。
【0028】
<第2の実施の形態>
図9は本発明による中性点クランプ式電力変換器の制御装置の第2の実施の形態を示すブロック図である。図1に示した第1の実施の形態との違いは、電圧指令選択回路29の出力側に、3レベルPWM制御回路19と2レベルPWM制御回路30を併設するとともに、両PWM制御回路19,30の出力側に電圧指令選択回路29からの信号Spwmに従っていずれか一方に切り換えるPWM制御切換回路31を設けた点にある。2レベルPWM制御回路30は、元の3相電圧指令Vu,Vv,Vwに従って、図10に示す2レベルPWM制御を行う。電圧指令選択回路29により3種の3相電圧指令のうちのいずれを用いても、中性点電位をリミット値内に戻すことができないと判断された場合には、電圧指令選択回路29から切換信号Spwmを出力し、その切換信号SpwmによりPWM制御切換回路31は中性点クランプ式電力変換器3に与えるスイッチング信号を、3レベルPWM制御回路19の出力から2レベルPWM制御回路30の出力に切り換える。図2の3レベルPWM制御の場合とは、三角波キャリア信号が正負別々ではなく、図10に示すように正から負まで変化する単一のキャリア信号R0に変更されている点が異なる。
【0029】
図11は、図10に対応する各期間毎に発生する中性点電流を示したものである。図11から、全期間とも中性点電流は発生しないことが分かる。図12は空間ベクトル上における出力電圧ベクトルU,V,Wと各期間の対応を表したものである。図4の3レベルPWM制御の場合と比較すると、図12では中性点Oと外側の正6角形の頂点からなる大三角形を用いてPWM制御を行っており、大三角形の辺の中点に対応する電圧ベクトルを用いていないことが分かる。結果として、図11に示すように中性点電流は発生しない。したがって、中性点電位変動がリミット値を超えた場合に、3種類の3相電圧指令のうちのいずれを用いても中性点電位変動が改善されない場合には、2レベルPWM制御回路30に切り換えることにより、中性点電位変動をそれ以上悪化させずにリミット値近傍に保つことができる。
【0030】
<第3の実施の形態>
図13は、本発明による中性点クランプ式電力変換器の制御装置における第3の実施の形態を示すブロック図である。この実施の形態は、図1に示す第1の実施の形態とは、中性点電流演算回路26,27,28の演算に用いる3相交流電流Iu,Iv,Iwの代わりに、図示していない変換器制御装置内で求められる3相交流電流指令Iu,Iv,Iwを用いている点が異なる。中性点クランプ式電力変換器では電流制御を行うのが一般的であり、その場合、3相交流電流Iu,Iv,Iwは3相交流電流指令Iu,Iv,Iwに追従するように制御される。したがって、本実施の形態に従って3相交流電流Iu,Iv,Iwの代わりに3相交流電流指令Iu,Iv,Iwを用いても本発明の目的が十分に達成されることは明らかである。なお、図9に示した第2の実施の形態においても3相交流電流指令Iu,Iv,Iwを用いて中性点電流の演算を行うことができる。
【0031】
【発明の効果】
本発明によれば、中性点電位変動が、設定されたリミット値を超えた場合に、中性点電位変動をそれ以上悪化させないように電力変換器を制御するので、電力変換器の運転状態にかかわらず中性点電位変動をある設定された値以下に抑制することができる。
【図面の簡単な説明】
【図1】本発明による中性点クランプ式電力変換器の制御装置の第1の実施の形態を示すブロック図。
【図2】3相電圧指令を用いて3レベルPWM制御を行う場合の三角波キャリア信号と電圧指令発生の関係を示す説明図。
【図3】図2の各期間に対応する中性点電流を示す図表。
【図4】図2の各期間に対応する空間ベクトル上の出力電圧ベクトルを示すベクトル図。
【図5】3相正側シフト電圧指令を用いて3レベルPWM制御を行う場合の三角波キャリア信号と電圧指令の関係を示す説明図。
【図6】図5の各期間に対応する中性点電流を示す図表。
【図7】3相負側シフト電圧指令を用いて3レベルPWM制御を行う場合の三角波キャリア信号と電圧指令の関係を示す説明図。
【図8】図7の各期間に対応する中性点電流を示す図表。
【図9】本発明による中性点クランプ式電力変換器の制御装置の第2の実施の形態を示すブロック図。
【図10】3相電圧指令を用いて2レベルPWM制御を行う場合の三角波キャリア信号と電圧指令の関係を示す説明図。
【図11】図10の各期間に対応する中性点電流を示す図表。
【図12】図10の各期間に対応する空間ベクトル上の出力電圧ベクトルを示すベクトル図。
【図13】本発明による中性点クランプ式電力変換器の制御装置の第3の実施の形態を示すブロック図。
【図14】本発明が対象とする公知の中性点クランプ式電力変換器の主回路構成を示す結線図。
【図15】従来の中性点クランプ式電力変換器の制御装置の一構成例を示すブロック図。
【符号の説明】
1,2 直流コンデンサ
3 中性点クランプ式電力変換器
10,11 電圧検出器
12 減算器
13 増幅器
14 極性選択器
15 乗算器
16,17,18 加算器
19 3レベルPWM制御回路
20,21,22 電流検出器
23 リミット判定回路
24 正側シフト回路
25 負側シフト回路
26,27,28 中性点電流演算回路
29 電圧指令選択回路
30 2レベルPWM制御回路
31 PWM制御切換回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a neutral point clamp type power converter, and more particularly to a control device capable of suppressing neutral point potential fluctuation.
[0002]
[Prior art]
Neutral point clamp power converters are known. FIG. 14 shows a main circuit configuration example of a known neutral point clamp type power converter. In FIG. 14, a neutral point clamp type power converter 3 includes a switching element such as a gate turn-off thyristor, an arm element composed of a diode connected in reverse parallel to each switching element, and a pair of clamps for each phase. It is configured as a neutral-point clamped three-phase bridge circuit having a diode, and its DC terminal is connected to DC terminals P and N for transmitting and receiving DC power, and the AC terminal is 3 for transmitting and receiving AC power. It is connected to phase AC terminals U, V, W. Between the DC terminals P and N, DC capacitors 1 and 2 for dividing a DC voltage between the terminals into a positive DC voltage Vcp and a negative DC voltage Vcn are connected in series. A connection point of both capacitors 1 and 2 forms a neutral point O, and this neutral point O is connected to an intermediate connection point of a pair of positive and negative clamp diodes in each phase of the neutral point clamp type power converter 3.
[0003]
Since the configuration and operation mode of the neutral point clamp type power converter 3 itself in FIG. 14 are well known, detailed description thereof is omitted here. The neutral point clamp type power converter is used as a neutral point clamp type inverter that connects a DC terminal to a DC power source and supplies AC power to a load connected to the AC terminal. In some cases, it is used as a neutral point clamp type converter that connects and supplies DC power to a load connected to a DC terminal. However, they are only called differently, the configuration and operation are the same, and the problem to be solved is also common, so the present invention does not distinguish between the two as a neutral point clamp type power converter. deal with. Further, a DC neutral point O that is a connection point of the two sets of DC capacitors 1 and 2 in FIG. 14 is also drawn out as a DC terminal, and may be connected to a divided DC power source or a DC load. Are also included as objects of the present invention.
[0004]
One of the technical problems to be solved by the neutral point clamp type power converter is a technique for suppressing fluctuation of the DC neutral point potential. In the neutral point clamp type power converter, as shown in FIG. 14, the neutral point current Io flowing through the direct current neutral point O has a principle property that it fluctuates positively and negatively at a frequency three times the alternating frequency. The neutral point current Io is shunted to the DC capacitors 1 and 2 and has an effect of increasing one voltage and decreasing the other voltage. That is, the neutral point current Io acts to unbalance the voltages of both capacitors, and the neutral point potential fluctuates at a frequency three times the AC side frequency. The neutral point potential fluctuation not only causes a problem in the breakdown voltage of the component as an imbalance between the positive and negative capacitor voltages, but also affects the AC side voltage waveform and causes waveform distortion of the AC side current.
[0005]
As a method of suppressing neutral point potential fluctuation, a method of performing feedback correction by detecting a difference between positive and negative capacitor voltages is known. FIG. 15 shows a configuration example of a device that performs neutral point potential fluctuation suppression control by feedback correction (for example, Shimamura et al. “Balanced Control of DC Input Capacitor Voltage of NPC Inverter”, IEEJ Semiconductor Power Conversion Study Group Material SPC-91). -37, 1991).
[0006]
The device of FIG. 15 is obtained by adding a control circuit unit for suppressing the neutral point potential to the power converter 3 having the same main circuit configuration as the device of FIG. The positive DC capacitor voltage Vcp and the negative DC capacitor voltage Vcn are detected by the voltage detectors 10 and 11, respectively, and the difference between the detected DC capacitor voltages Vcp and Vcn, that is, the difference voltage ΔVpn = Vcp−Vcn is calculated by the subtractor 12. Then, the difference voltage is input to the first input terminal of the multiplier 15 via the amplifier 13. On the other hand, based on the three-phase voltage commands Vu * , Vv * , Vw * and the three-phase converter alternating currents Iu, Iv, Iw detected by the current detectors 20, 21, 22 by the polarity selector 14, The direction of power flow of the power converter 3, that is, the direction of power flow, is determined. For example, when the power is flowing from the DC side to the AC side, the polarity signal Sp is +1, and vice versa. , And input to the second input terminal of the multiplier 15.
[0007]
The multiplier 15 multiplies the signal corresponding to the difference voltage ΔVpn from the amplifier 13 by the value of the polarity signal Sp to generate a correction amount Vcmp = ΔVpn · Sp for suppressing the neutral point potential fluctuation. This correction amount Vcmp is added to the three-phase voltage commands Vu * , Vv * , Vw * via adders 16, 17, 18 to generate corrected three-phase voltage commands Vuc * , Vvc * , Vwc *. And sent to the three-level PWM control circuit 19. The three-level PWM control circuit 19 performs pulse width modulation control according to a known method based on the input voltage commands Vuc * , Vvc * , and Vwc * , and performs on / off control of the switching elements of the neutral point clamp type power converter 3.
[0008]
[Problems to be solved by the invention]
Although it is certain that the neutral point potential fluctuation can be suppressed by the apparatus of FIG. 15, in order to make the neutral point potential fluctuation completely zero, it is theoretically necessary to make the gain of the amplifier 13 infinite. Yes, practically impossible. In the case of a finite gain, the magnitude of the neutral point potential fluctuation varies depending on the operating state of the power converter, such as the driving power factor. In order to suppress it below the allowable value, it is necessary to increase the gain or increase the capacitance of the DC capacitors 1 and 2. However, if the gain is increased, not only the stability in control may be impaired, but also the correction amount becomes excessive, and the corrected three-phase voltage commands Vuc * , Vvc * , Vwc * exceed the controllable range. There is also a possibility. On the other hand, increasing the capacitance of the DC capacitors 1 and 2 leads to an increase in cost as a power conversion device.
[0009]
Therefore, an object of the present invention is to provide a control device for a neutral point clamp type power converter capable of suppressing a neutral point potential fluctuation to a predetermined value or less in all operating states.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a control device for a neutral point clamp type power converter according to claim 1 is based on a voltage difference between a pair of DC capacitors connected in series between DC terminals of a power converter. A limit determination circuit that determines whether or not the potential of the neutral point formed at the series connection point of both DC capacitors exceeds a predetermined limit value, and the highest at a specific phase point of the triangular wave carrier signal among the three-phase voltage commands A positive-side shift circuit that outputs a three-phase positive-side shift voltage command by adding an offset value so that the voltage command of the phase becomes the positive-side maximum value to all three-phase voltage commands, and a three-phase voltage command Of the three-phase negative shift voltage command by adding an offset value to the voltage command for all three phases so that the voltage command for the lowest phase at the specific phase point of the triangular wave carrier signal becomes the lowest value on the negative side. A negative shift circuit that outputs Each neutral point current generated when it is assumed that PWM control is performed based on the voltage commands of the phase voltage command, the positive side shift voltage command, and the negative side shift voltage command is obtained from the three phase voltage command and the three phase AC current. If the neutral point potential exceeds the limit value based on the neutral point current calculation circuit to be calculated and the output signals of the limit judgment circuit and each neutral point current calculation circuit, the neutral point potential A voltage command selection circuit that selects a three-phase voltage command that generates a neutral point current that can be returned most quickly within a predetermined limit value, and a three-level PWM according to the three-phase voltage command selected by the voltage command selection circuit And a three-level PWM control circuit for performing control. According to the present invention, it is possible to suppress the potential fluctuation at the neutral point within the set limit value.
[0011]
According to a second aspect of the present invention, the neutral point clamp type power converter control device according to the first aspect includes a two-level PWM control circuit together with a three-level PWM control circuit, and the neutral point potential exceeds a limit value. If the neutral point potential cannot be returned to the limit value using any of the three-phase voltage command, the positive shift voltage command, and the negative shift voltage command, A means for switching to a two-level PWM control circuit instead of the three-level PWM control circuit is provided. Since the neutral point current is not generated in the two-level PWM control, according to the present invention, the neutral point potential is maintained as it is, and can be maintained in the vicinity of the set limit value as a result.
[0012]
Furthermore, the invention according to claim 3 is the neutral point clamp type power converter control device according to claim 1 or 2, wherein the neutral point current calculation circuit converts each neutral point current to each three-phase voltage. It calculates from a command and a three-phase alternating current command. According to this invention, it is not necessary to provide a current detector by calculating the neutral point current using the alternating current command.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the drawings showing the embodiment of the present invention, the same components as those in FIG. 15 are denoted by the same reference numerals and their description will be omitted.
[0014]
<First Embodiment>
FIG. 1 is a block diagram showing a first embodiment of a control device for a neutral point clamp type power converter according to the present invention. In the apparatus of FIG. 1, the amplifier 13, the polarity selector 14, the multiplier 15, and the adders 16, 17, and 18 provided in the apparatus of FIG. 15 are omitted, and a limit determination circuit 23, a positive shift, and the like are newly added. A circuit 24, a negative shift circuit 25, a neutral point current calculation circuit 26, 27, 28, and a voltage command selection circuit 29 are provided.
[0015]
Based on the positive and negative DC voltages Vcp and Vcn detected by the voltage detectors 10 and 11, the subtractor 12 obtains a difference voltage ΔVpn = Vcp−Vcn, and inputs the difference voltage to the limit determination circuit 23 as a neutral point potential. . The limit determination circuit 23 determines whether or not the difference voltage ΔVpn exceeds a preset limit value ± Vnplim, and if so, outputs the difference voltage ΔVpn as a limit signal Slim. That is,
When ΔVpn <−Vnplim, Slim = ΔVpn <0
When −Vnplim ≦ ΔVpn ≦ + Vnplim, Slim = 0
When ΔVpn> + Vnplim, Slim = ΔVpn> 0
It is.
[0016]
In the positive shift circuit 24, the phase having the highest value among the three-phase voltage commands Vu * , Vv * , Vw * in each pulse period, for example, the U-phase voltage command Vu * in the example shown in FIG. The offset value ΔVp * (see FIG. 2) that gives the maximum value is added to the voltage command for all three phases, and the three-phase positive shift voltage commands Vpu * , Vpv * , and Vpw * shown in FIG. 5 are output. . Similarly, in the negative shift circuit 25, the offset value ΔVn * that makes the lowest value of the three-phase voltage commands, and in the example shown in FIG. 2, the W-phase voltage command Vw * becomes the negative minimum value . Are added to the voltage commands for all three phases, and the three-phase negative shift voltage commands Vnu * , Vnv * , Vnw * as shown in FIG. 7 are output.
[0017]
2, the original three-phase voltage commands Vu *, Vv *, Vw * triangular wave carrier signal R1 for performing three-level PWM control using, R2 and 3-phase voltage commands Vu *, Vv *, Vw * of the relationship Is shown. Here, using two positive and negative triangular wave carrier signals R1, R2 in which the timing of the valley and peak of each voltage command are synchronized, the three-phase voltage command is sampled and held at the timing of the valley and peak of the triangular wave carrier signal, and the triangular wave Three-level PWM control is performed in accordance with the three-phase voltage commands Vu * , Vv * , Vw * for each half cycle of the carrier signal.
[0018]
FIG. 3 shows the neutral point current generated during the half cycle of FIG. 2 in four periods {circle around (1)} to {circle around (4)} in which the output voltage levels of the respective phases are different. Here, the times of periods {circle around (1)} to {circle around (4)} are defined as t 1 to t 4 , respectively. From FIG. 3, the neutral point current is generated only when the output voltage level of the three-phase voltage commands Vu * , Vv * , Vw * is zero, that is, when there is a phase connected to the neutral point O, and the magnitude thereof is medium. It turns out that it becomes the total value (vector sum) of the electric current of the phase connected to the sex point O.
[0019]
FIG. 4 shows the correspondence between the output voltage vectors U, V, W on the space vector and the periods (1) to (4). 3 and 4, it can be seen that the periods {circle around (1)} and {circle around (4)} are the same as the voltage vector on the space vector, and only the polarity of the neutral point current is reversed.
[0020]
FIG. 5 shows triangular wave carrier signals R1, R2 and three phases when three-level PWM control is performed using the three-phase positive shift voltage commands Vpu * , Vpv * , Vpw * output from the positive shift circuit 24 as the three-phase voltage commands. The voltage commands Vpu * , Vpv * , Vpw * are shown. FIG. 6 shows the neutral point current generated for each period corresponding to FIG.
[0021]
FIG. 7 shows triangular wave carrier signals R1, R2 and three-phase when three-level PWM control is performed using the three-phase negative shift voltage commands Vnu * , Vnv * , Vnw * generated by the negative shift circuit 25 as the three-phase voltage commands. The relationship between the voltage commands Vnu * , Vnv * and Vnw * is shown, and FIG. 8 shows the neutral point current generated for each period corresponding to FIG.
[0022]
From the comparison between FIG. 6 and FIG. 8, by using any one of the positive side shift voltage commands Vpu * , Vpv * , Vpw * and the negative side shift voltage commands Vnu * , Vnv * , Vnw * , the periods ▲ 1 ▼ and ▲ It can be seen that either one of the voltage vectors determined by 4 ▼ can be selectively output. This means that the polarity of the neutral point current can be selected without changing the capability as a voltage vector on the space vector. Therefore, it is possible to suppress the neutral point potential fluctuation by appropriately selecting the positive side shift voltage command or the negative side shift voltage command according to the state of the neutral point potential fluctuation.
[0023]
The neutral point current calculation circuit 26 is a three-phase AC current Iu, Iv, Iw detected by the current detectors 20, 21, 22, and a three-phase voltage command Vu * , Vv * normalized to 1 as an absolute value . , Vw * , neutral point current Io,
Io = − | Vu * | Iu− | Vv * | Iv− | Vw * | Iw
It calculates according to the following formula.
[0024]
Similarly, the neutral point current calculation circuit 27 generates a neutral signal from the three-phase alternating currents Iu, Iv, Iw and the three-phase positive shift voltage commands Vpu * , Vpv * , Vpw * normalized to 1 as absolute values. The point current Io is
Io = − | Vpu * | Iu− | Vpv * | Iv− | Vpw * | Iw
It calculates according to the following formula.
[0025]
Further, the neutral point current calculation circuit 28 generates a neutral point from the three-phase alternating currents Iu, Iv, Iw and the three-phase negative shift voltage commands Vnu * , Vnv * , Vnw * normalized to 1 as absolute values. The current Io,
Io = − | Vnu * | Iu− | Vnv * | Iv− | Vnw * | Iw
It calculates according to the following formula.
[0026]
The neutral point current Io obtained from these equations is an average value of the neutral point currents generated during a half cycle of the triangular wave carrier signal. Based on the calculated neutral point currents Io and the limit signal Slim output from the limit determination circuit 23, the voltage command selection circuit 29 generates a three-phase voltage command that can return the neutral point potential to the limit value the fastest. select. The three-level PWM control circuit 19 performs three-level PWM control of the neutral point clamp type power converter 3 in accordance with the selected three-phase voltage command.
[0027]
According to the present embodiment, it is possible to suppress the neutral point potential fluctuation of the neutral point clamp type power converter below the set value.
[0028]
<Second Embodiment>
FIG. 9 is a block diagram showing a second embodiment of the control device for the neutral point clamp type power converter according to the present invention. The difference from the first embodiment shown in FIG. 1 is that a three-level PWM control circuit 19 and a two-level PWM control circuit 30 are provided on the output side of the voltage command selection circuit 29, and both the PWM control circuits 19, 30 is provided with a PWM control switching circuit 31 for switching to either one in accordance with a signal Spwm from the voltage command selection circuit 29. The two-level PWM control circuit 30 performs the two-level PWM control shown in FIG. 10 in accordance with the original three-phase voltage commands Vu * , Vv * , Vw * . When the voltage command selection circuit 29 determines that the neutral point potential cannot be returned to the limit value using any of the three types of three-phase voltage commands, the voltage command selection circuit 29 switches the voltage command selection circuit 29. The signal Spwm is output, and the PWM control switching circuit 31 changes the switching signal given to the neutral point clamp type power converter 3 from the output of the 3-level PWM control circuit 19 to the output of the 2-level PWM control circuit 30 by the switching signal Spwm. Switch. 2 is different from the case of the three-level PWM control in that the triangular wave carrier signal is not separately positive and negative, but is changed to a single carrier signal R0 that changes from positive to negative as shown in FIG.
[0029]
FIG. 11 shows the neutral point current generated for each period corresponding to FIG. It can be seen from FIG. 11 that neutral point current does not occur during the entire period. FIG. 12 shows the correspondence between the output voltage vectors U, V, and W on the space vector and each period. Compared with the case of the three-level PWM control of FIG. 4, in FIG. 12, PWM control is performed using a large triangle consisting of a neutral point O and the apex of an outer regular hexagon. It can be seen that the corresponding voltage vector is not used. As a result, no neutral point current is generated as shown in FIG. Therefore, when the neutral point potential fluctuation exceeds the limit value, if the neutral point potential fluctuation is not improved by using any of the three types of three-phase voltage commands, the two-level PWM control circuit 30 is set. By switching, neutral point potential fluctuation can be kept near the limit value without further deterioration.
[0030]
<Third Embodiment>
FIG. 13: is a block diagram which shows 3rd Embodiment in the control apparatus of the neutral point clamp type | mold power converter by this invention. This embodiment is different from the first embodiment shown in FIG. 1 in place of the three-phase AC currents Iu, Iv, Iw used for the calculation of the neutral point current calculation circuits 26, 27, 28. The difference is that the three-phase alternating current commands Iu * , Iv * , Iw * required in the converter control apparatus are not used. In the neutral point clamp type power converter, current control is generally performed. In this case, the three-phase AC currents Iu, Iv, Iw follow the three-phase AC current commands Iu * , Iv * , Iw *. Controlled. Therefore, it is apparent that the object of the present invention can be sufficiently achieved even if the three-phase alternating current commands Iu * , Iv * , Iw * are used instead of the three-phase alternating currents Iu, Iv, Iw according to the present embodiment. is there. In the second embodiment shown in FIG. 9, the neutral point current can be calculated using the three-phase alternating current commands Iu * , Iv * , Iw * .
[0031]
【The invention's effect】
According to the present invention, when the neutral point potential fluctuation exceeds the set limit value, the power converter is controlled so as not to further deteriorate the neutral point potential fluctuation. Regardless of this, the neutral point potential fluctuation can be suppressed to a predetermined value or less.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of a control device for a neutral point clamp type power converter according to the present invention;
FIG. 2 is an explanatory diagram showing a relationship between a triangular wave carrier signal and voltage command generation when three-level PWM control is performed using a three-phase voltage command.
3 is a chart showing neutral point currents corresponding to the periods in FIG.
4 is a vector diagram showing an output voltage vector on a space vector corresponding to each period of FIG. 2;
FIG. 5 is an explanatory diagram showing a relationship between a triangular wave carrier signal and a voltage command when three-level PWM control is performed using a three-phase positive shift voltage command.
6 is a chart showing neutral point currents corresponding to the periods shown in FIG.
FIG. 7 is an explanatory diagram showing a relationship between a triangular wave carrier signal and a voltage command when three-level PWM control is performed using a three-phase negative shift voltage command.
8 is a chart showing neutral point currents corresponding to the periods shown in FIG.
FIG. 9 is a block diagram showing a second embodiment of a neutral point clamp type power converter control device according to the present invention;
FIG. 10 is an explanatory diagram showing a relationship between a triangular wave carrier signal and a voltage command when two-level PWM control is performed using a three-phase voltage command.
11 is a chart showing neutral point currents corresponding to the respective periods in FIG.
12 is a vector diagram showing an output voltage vector on a space vector corresponding to each period of FIG.
FIG. 13 is a block diagram showing a third embodiment of a control device for a neutral point clamp type power converter according to the present invention;
FIG. 14 is a connection diagram showing a main circuit configuration of a known neutral point clamp type power converter to which the present invention is applied;
FIG. 15 is a block diagram showing a configuration example of a conventional neutral point clamp type power converter control device;
[Explanation of symbols]
1, 2 DC capacitor 3 Neutral point clamp type power converter 10, 11 Voltage detector 12 Subtractor 13 Amplifier 14 Polarity selector 15 Multiplier 16, 17, 18 Adder 19 3-level PWM control circuit 20, 21, 22 Current detector 23 Limit determination circuit 24 Positive shift circuit 25 Negative shift circuit 26, 27, 28 Neutral point current calculation circuit 29 Voltage command selection circuit 30 Two-level PWM control circuit 31 PWM control switching circuit

Claims (3)

電力変換器の直流端子間に直列に接続される一対の直流コンデンサの電圧差に基づいて両直流コンデンサの直列接続点に形成される中性点の電位が所定のリミット値を超えたかどうかを判定するリミット判定回路と、3相電圧指令のうち三角波キャリア信号の特定の位相点で最高となる相の電圧指令が正側の最高値になるようなオフセット値を3相総ての電圧指令に加算して3相の正側シフト電圧指令を出力する正側シフト回路と、3相電圧指令のうち三角波キャリア信号の特定の位相点で最低となる相の電圧指令が負側の最低値になるようなオフセット値を3相総ての電圧指令に加算して3相の負側シフト電圧指令を出力する負側シフト回路と、前記3相電圧指令、正側シフト電圧指令、および負側シフト電圧指令の各電圧指令に基づいてPWM制御を行ったと仮定した場合に発生する各中性点電流を前記3相電圧指令および3相交流電流から演算する中性点電流演算回路と、前記リミット判定回路および各中性点電流演算回路の出力信号を元に、前記中性点の電位がリミット値を超えてしまっている場合に、その中性点電位を前記所定のリミット値内に最も速く戻すことのできる中性点電流を発生する3相電圧指令を選択する電圧指令選択回路と、この電圧指令選択回路によって選択された3相電圧指令に従って3レベルPWM制御を行う3レベルPWM制御回路とを備えたことを特徴とする中性点クランプ式電力変換器の制御装置。Based on the voltage difference between a pair of DC capacitors connected in series between the DC terminals of the power converter, determine whether the potential at the neutral point formed at the series connection point of both DC capacitors has exceeded a predetermined limit Limit judgment circuit to be added, and an offset value is added to the voltage command for all three phases so that the voltage command of the phase that is highest at a specific phase point of the triangular wave carrier signal among the three-phase voltage commands becomes the highest value on the positive side Thus, the positive side shift circuit that outputs the three-phase positive side shift voltage command, and the voltage command of the phase that becomes the lowest at a specific phase point of the triangular wave carrier signal among the three phase voltage commands becomes the lowest value on the negative side. A negative shift circuit for adding a negative offset value to all three phase voltage commands and outputting a three-phase negative shift voltage command, the three-phase voltage command, the positive shift voltage command, and the negative shift voltage command Based on each voltage command A neutral point current calculation circuit for calculating each neutral point current generated when it is assumed that WM control is performed from the three-phase voltage command and the three-phase alternating current; the limit determination circuit; and each neutral point current calculation circuit When the neutral point potential exceeds the limit value based on the output signal, the neutral point current that can return the neutral point potential within the predetermined limit value the fastest is generated. A neutral voltage neutralizing circuit comprising: a voltage command selection circuit that selects a three-phase voltage command to be performed; and a three-level PWM control circuit that performs three-level PWM control according to the three-phase voltage command selected by the voltage command selection circuit. Control device for point clamp type power converter. 請求項1に記載の中性点クランプ式電力変換器の制御装置において、前記3レベルPWM制御回路とともに2レベルPWM制御回路を備え、中性点電位がリミット値を超えてしまっている場合に、前記3相電圧指令、正側シフト電圧指令および負側シフト電圧指令の各電圧指令のどれを用いても中性点電位をリミット値内に戻すことができない場合には、前記3レベルPWM制御回路に代えて2レベルPWM制御回路に切り換える手段を備えたことを特徴とする中性点クランプ式電力変換器の制御装置。The neutral point clamp type power converter control device according to claim 1, comprising a two-level PWM control circuit together with the three-level PWM control circuit, and when the neutral point potential exceeds a limit value, When the neutral point potential cannot be returned to the limit value using any of the three-phase voltage command, the positive shift voltage command, and the negative shift voltage command, the three-level PWM control circuit A control device for a neutral point clamp type power converter, comprising means for switching to a two-level PWM control circuit instead. 請求項1または請求項2に記載の中性点クランプ式電力変換器の制御装置において、前記中性点電流演算回路は各中性点電流を各3相電圧指令と3相交流電流指令から演算することを特徴とする中性点クランプ式電力変換器の制御装置。3. The control device for a neutral point clamp type power converter according to claim 1 or 2, wherein the neutral point current calculation circuit calculates each neutral point current from each three-phase voltage command and three-phase alternating current command. A control device for a neutral point clamp type power converter.
JP2001365926A 2001-11-30 2001-11-30 Neutral point clamp type power converter controller Expired - Lifetime JP3856689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365926A JP3856689B2 (en) 2001-11-30 2001-11-30 Neutral point clamp type power converter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365926A JP3856689B2 (en) 2001-11-30 2001-11-30 Neutral point clamp type power converter controller

Publications (2)

Publication Number Publication Date
JP2003169480A JP2003169480A (en) 2003-06-13
JP3856689B2 true JP3856689B2 (en) 2006-12-13

Family

ID=19175897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365926A Expired - Lifetime JP3856689B2 (en) 2001-11-30 2001-11-30 Neutral point clamp type power converter controller

Country Status (1)

Country Link
JP (1) JP3856689B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882475B1 (en) * 2005-02-24 2007-04-13 Schneider Electric Ind Sas DEVICE AND METHOD FOR CONTROLLING A CONVERTER AND ELECTRIC CONVERTER COMPRISING SUCH A DEVICE
JP4466618B2 (en) * 2006-06-28 2010-05-26 株式会社日立製作所 Power conversion device and power conversion method
JP5014843B2 (en) * 2007-03-13 2012-08-29 公益財団法人鉄道総合技術研究所 Pulse control unit for pulse tube refrigerator
US8400793B2 (en) * 2009-02-11 2013-03-19 Abb Research Ltd. Method in a cascaded two-level converter, control device and computer program products
CN103138591B (en) * 2011-11-24 2015-09-23 深圳古瑞瓦特新能源股份有限公司 A kind of three level conversion neutral balance control method, device and three-level converter
JP6225418B2 (en) * 2012-04-19 2017-11-08 株式会社明電舎 3-level inverter controller
US9214874B2 (en) * 2012-07-31 2015-12-15 Yashomani Y. Kolhatkar Intelligent level transition systems and methods for transformerless uninterruptible power supply
JP2014107931A (en) * 2012-11-27 2014-06-09 Fuji Electric Co Ltd Method for operating inverter device, and inverter device
JP5998104B2 (en) * 2013-06-20 2016-09-28 株式会社豊田中央研究所 Neutral point clamp power conversion system
KR101561001B1 (en) 2015-02-12 2015-10-16 성균관대학교산학협력단 Forming Method Of Control Signal for 3-Level NPC Inverter, Apparatus of Forming Control Signal for 3-Level NPC Inverter Using Thereof
JP6131360B1 (en) * 2016-03-28 2017-05-17 三菱電機エンジニアリング株式会社 Power converter
JP6836425B2 (en) * 2017-03-08 2021-03-03 田淵電機株式会社 Flyback converter
CN109905048B (en) * 2017-12-08 2021-01-26 台达电子企业管理(上海)有限公司 Neutral point voltage balance control method for three-level circuit
EP3627677A1 (en) 2018-09-18 2020-03-25 Drivetek AG Multi-level inverter
JP7221726B2 (en) * 2019-02-22 2023-02-14 サンデン株式会社 Inverter device
WO2021192288A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 3-level power conversion device and method for controlling intermediate potential of dc power supply unit

Also Published As

Publication number Publication date
JP2003169480A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US5016158A (en) Parallel multi-inverter system and motor drive system using the same
JP3856689B2 (en) Neutral point clamp type power converter controller
JP5598513B2 (en) Power system interconnection inverter device
JP3841282B2 (en) PWM inverter device
JP5683760B2 (en) Power converter
JP6178433B2 (en) Power converter
JP2015201996A (en) Power conversion device, control device for power conversion device, and control method for power conversion device
JP2004266884A (en) Switching power supply type power supply equipment and nuclear magnetic resonance imaging apparatus using the same
JP4147373B2 (en) Inverter control method
JP2016046962A (en) Multilevel power conversion device
KR20200096580A (en) Power conversion device
Rojas et al. Simple structure and control method for a neutral-point-clamped PWM inverter
JP3903429B2 (en) Power converter
Oh et al. Dead-time compensation of a current controlled inverter using the space vector modulation method
JPH06319263A (en) Inverter apparatus
JP2006230035A (en) Power converter and its driving method
WO2018179234A1 (en) H-bridge converter and power conditioner
JP6480290B2 (en) Power converter
JP7040077B2 (en) Power converter
JPH0937592A (en) Pwm controller and control method for three level inverter
JP4448294B2 (en) Power converter
CN112740526A (en) Multi-level inverter
JP4096501B2 (en) Control device for power converter
Sharifzadeh et al. Multi-objective SHM-PWM modulation technique for CMV control in 3-phase inverters
WO2023175759A1 (en) Power conversion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Ref document number: 3856689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term