JP3855943B2 - HF defect evaluation method for SOI wafer - Google Patents

HF defect evaluation method for SOI wafer Download PDF

Info

Publication number
JP3855943B2
JP3855943B2 JP2003036250A JP2003036250A JP3855943B2 JP 3855943 B2 JP3855943 B2 JP 3855943B2 JP 2003036250 A JP2003036250 A JP 2003036250A JP 2003036250 A JP2003036250 A JP 2003036250A JP 3855943 B2 JP3855943 B2 JP 3855943B2
Authority
JP
Japan
Prior art keywords
wafer
defect
vapor
soi wafer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003036250A
Other languages
Japanese (ja)
Other versions
JP2004247539A (en
Inventor
勝也 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2003036250A priority Critical patent/JP3855943B2/en
Publication of JP2004247539A publication Critical patent/JP2004247539A/en
Application granted granted Critical
Publication of JP3855943B2 publication Critical patent/JP3855943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、シリコンウェーハの表面のSOI(Silicon‐on‐Insulator)層上にあるHF欠陥を検出し評価する方法に関し、ウェーハの前処理として基板表面をHF(フッ化水素酸)蒸気処理にてエッチングして、ウェーハヘのパーティクル汚染が少なくHF欠陥を正確に検出するSOIウェーハのHF欠陥評価方法に関する。
【0002】
【従来の技術】
シリコン基板上に絶縁分離された薄いシリコン層を形成するSOIウェーハは、そのシリコン層にデバイスを形成して高速動作、低消費電力動作を可能とする。かかるSOIウェーハの主な製造方法としては、酸素イオン注入と高温アニールによりシリコン基板内部に埋め込み酸化膜を形成させたSIMOX(Separation by IMplanted OXygen)ウェーハと、2枚のシリコンウェーハを熱酸化膜により貼り合わせた後に一方を薄膜化する貼り合わせSOIウェーハの2種類が存在する。
【0003】
このうちSIMOXウェーハは、表面SOI層の膜厚均一性が優れておりLSI動作時の消費電力低減に適したウェーハと考えられ、シリコン基板中に酸素を注入するイオン注入工程と、その後ウェーハを熱処理する高温アニール工程との2工程から製造されている。
【0004】
前記高温アニール工程では、金属などが原因でシリコンと金属が結びついた欠陥(シリサイド)が発生し、デバイス作成時にデバイスの歩留まりを低下する原因となることが知られている。この欠陥を検出し評価する方法として、欠陥(シリサイド)を溶解させるために評価基板表面のSOI層をHF洗浄によリエッチングし、その後ウェーハの欠陥部分を光学顕微鏡で全面にわたって観察するHF欠陥評価方法が一般的である。
【0005】
【発明が解決しようとする課題】
上記評価方法で知見できるHF欠陥は、デバイスの歩留まりを低下する原因となり、高温アニール工程での発生を極力抑える必要があるとされており、このHF欠陥の検出、評価方法の確立が、SIMOXウェーハの技術開発上重要な要因となっている。
【0006】
HF欠陥評価方法としては、基板表面のSOI層をHF洗浄によりエッチングし、その後ウェーハの欠陥部分を光学顕微鏡や表面検査装置等の自動欠陥カウント装置を利用して観察しているが、エッチング時のウェーハヘのパーティクル汚染が多い問題点がある。
【0007】
すなわち、ウェーハをHF洗浄すると、洗浄で多数のパーティクルが付着して前記自動欠陥カウント装置によるウェーハの全面観察時に、HF欠陥とパーティクルとの区別に膨大な時間と労力を要し、迅速で正確なHF欠陥評価ができない問題がある。
【0008】
この発明は、SIMOXウェーハや貼り合わせSOIウェーハの前処理時にパーティクル付着が少なく、光学顕徴鏡などによる自動欠陥カウントに際し、迅速で正確なHF欠陥の評価が可能なSOIウェーハのHF欠陥評価方法の提供を目的としている。
【0009】
【課題を解決するための手段】
発明者らは、欠陥(シリサイド)を溶解させる際にパーティクル付着が少ない状態でエッチング可能な方法について鋭意検討した結果、HF(フッ化水素酸)蒸気処理によりSOI層をエッチングすると、目的が達成できることを知見し、この発明を完成した。
【0010】
すなわち、この発明は、SOIウェーハの表面SOI層をHF蒸気によりエッチングする前処理を施した後、HF欠陥を検出し評価することを特徴とするSOIウェーハのHF欠陥評価方法である。
【0011】
また、この発明は、上記構成の前処理に、SOIウェーハを収納する反応容器と、フッ化水素酸溶液を不活性ガスによりバブリングしフッ化水素酸蒸気を発生させて反応容器内に供給するHF蒸気発生装置とを用いることを特徴とするSOIウェーハのHF欠陥評価方法である。
【0012】
【発明の実施の形態】
従来のHF洗浄によるエッチングは、溶液エッチングであり、表面自然酸化膜がエッチングされたウェーハ表面が撥水性を呈し、多くのパーティクルが付着するものであった。それに対し、この発明の前処理はフッ化水素酸蒸気をエッチングに使用するエッチング方法であって、蒸気中にパーティクルが少ないことよりウェーハに付着するパーティクルも少ない利点がある。
【0013】
この発明によるHF欠陥評価方法の前処理について詳述すると、図1に示すエッチング装置は、SOIウェーハを収納する反応容器と、フッ化水素酸溶液を不活性ガスによりバブリングしフッ化水素酸蒸気を発生させて反応容器内に供給するHF蒸気発生装置とから構成される。
【0014】
上記装置の構成には、例えば図1に示すごとく、HF蒸気に対して浸食され難い材質、例えば、フッ素樹脂等からなる反応容器1の側面又は上面に被処理SOIウェーハwが出し入れ可能な開閉扉又は蓋2を設け、反応容器1両側面にガス導入口3と排出口4を設け、また反応容器1内に前記SOIウェーハwが水平載置するためのステージ5を配置してあり、ステージ5にはウェーハwを冷却可能な冷却器6を内蔵した構成が採用できる。
【0015】
HF蒸気発生装置10は、密閉可能な薬液容器11内にフッ化水素酸溶液を収納して、高純度ガス配管12でN2ガスなどの不活性ガスでバブリングしてフッ化水素酸蒸気を発生させ、前記反応容器1の排気口4より吸気ポンプで排気することで、ガス導入口3に接続するガス配管13にて反応容器1内に供給することができる。
【0016】
バブリングガスとしては、蒸気中にパーティクルを含ませないために、不活性な高純度ガスが望ましく、例えば露点が−110℃以下の窒素、アルゴン又はヘリウムガスなどが採用できる。
【0017】
この発明において、反応容器1内のステージ5にSOIウェーハwを載置して冷却器6にて冷却するのは、反応容器1内に導入したフッ化水素酸蒸気を当該ウェーハw表面に結露させてエッチングを促進させるためであり、蒸気量などの条件に応じて冷却温度を適宜選定すると良い。
【0018】
この発明において、フッ化水素酸蒸気を用いてエッチングする前処理を完了した後、ウェーハのHF欠陥を評価する方法は、公知のいずれの方法、装置も採用でき、例えばウェーハ表面を観察して欠陥部分をカウントできる、光学顕微鏡や表面検査装置等の自動欠陥カウント装置を利用することができる。
【0019】
【実施例】
実施例1
前述した図1の反応容器1とHF蒸気発生装置10からなるエッチング装置を使用した。反応容器1の蓋2を開け、SIMOXウェーハをステージ5上に載置して、冷却器6を作動してステージ及び該ウェーハを15℃に冷却した。エッチング薬液として50%フッ化水素酸溶液300mlを薬液容器11に入れ、N2ガスを1l/minの流量で流した。この流気状態で5分間(min)放置、1時間(hr)放置するエッチングを実施した。その後、反応容器内にN2ガスのみを15分間(min)流してN2ガス置換を行ない、蓋2を開けSIMOXウェーハを取り出した。
【0020】
処理後のSIMOXウェーハをウェーハ表面検査装置測定で、0.13μm以上のパーティクル増加量を測定したところ、5分間処理で5個以下、1時間処理においても30個以下であった。
【0021】
比較のため、従来の0.5%HF溶液に浸漬する洗浄処理を4分間行った場合のパーティクル増加量を測定したところ1300〜2200(個)増加していた。この比較例と実施例1の結果をエッチング時間と増加パーティクルとの関係を示す図2のグラフに表した。
【0022】
実施例2
実施例1の5分間の前処理を完了したSIMOXウェーハを光学顕微鏡により5.0(μm)以上のHF欠陥とパーティクル増加量を観察した。その結果を、図3のグラフに示す。すなわち、HF蒸気によるエッチングでは、パーティクル増加量は4個であるが、従来の0.5%HF洗浄の場合は、46個であり、SIMOXウェーハにおいてもこの発明による前処理がHF洗浄に比べパーティクル付着が極端に少なく良好であった。
【0023】
また、5分間及び1時間の前処理を施したSIMOXウェーハの光学顕微鏡によるHF欠陥観察も良好であることを確認し、この発明によつてSIMOXウェーハ表面のHF欠陥を簡単にかつ迅速に観察できることが明らかになった。
【0024】
【発明の効果】
この発明により、SOIウェーハ表面をパーティクル汚染なく所定のエッチングが可能となり、その後の光学顕微鏡によるHF欠陥全面観察の際に、HF欠陥を簡単かつ迅速に観察できるようになる。さらに、SIMOXウェーハのHF欠陥を表面検査装置等の自動欠陥カウント装置により、自動で正確に測定することも可能となり、SIMOXウェーハのはHF欠陥観察の処理能力の向上を実現できる。
【図面の簡単な説明】
【図1】この発明によるエッチング装置の構成例を示す説明図である。
【図2】エッチング時間と増加パーティクルとの関係を示すグラフである。
【図3】前処理法の違いと増加パーティクルとの関係を示すグラフである。
【符号の説明】
w SOIウェーハ
1 反応容器
2 蓋
3 ガス導入口
4 排出口
5 ステージ
6 冷却器
10 HF蒸気発生装置
11 薬液容器
12 高純度ガス配管
13 ガス配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting and evaluating HF defects on a silicon-on-insulator (SOI) layer on the surface of a silicon wafer, and the substrate surface is subjected to HF (hydrofluoric acid) vapor treatment as a pretreatment of the wafer. The present invention relates to an SOI wafer HF defect evaluation method that etches and accurately detects HF defects with less particle contamination on the wafer.
[0002]
[Prior art]
An SOI wafer in which a thin silicon layer isolated on a silicon substrate is formed enables a high speed operation and a low power consumption operation by forming a device on the silicon layer. The main manufacturing method of such an SOI wafer is that a SIMOX (Separation by IMplanted Oxygen) wafer in which a buried oxide film is formed inside a silicon substrate by oxygen ion implantation and high temperature annealing, and two silicon wafers are bonded with a thermal oxide film. There are two types of bonded SOI wafers in which one is thinned after being combined.
[0003]
Of these, the SIMOX wafer is considered to be a wafer that has excellent surface SOI layer thickness uniformity and is suitable for reducing power consumption during LSI operation. An ion implantation process for implanting oxygen into a silicon substrate, and then the wafer is heat-treated. It is manufactured from two processes including a high temperature annealing process.
[0004]
In the high-temperature annealing process, it is known that a defect (silicide) in which silicon and metal are combined due to a metal or the like is generated, and this causes a decrease in device yield at the time of device fabrication. As a method for detecting and evaluating this defect, HF defect evaluation is performed by re-etching the SOI layer on the surface of the evaluation substrate by HF cleaning in order to dissolve the defect (silicide), and then observing the entire defective portion of the wafer with an optical microscope. The method is common.
[0005]
[Problems to be solved by the invention]
It is said that the HF defects that can be found by the above evaluation method cause a decrease in the device yield, and it is necessary to suppress the generation in the high-temperature annealing process as much as possible. It is an important factor in technological development.
[0006]
As an HF defect evaluation method, the SOI layer on the substrate surface is etched by HF cleaning, and then the defective portion of the wafer is observed using an automatic defect counting device such as an optical microscope or a surface inspection device. There is a problem that there is a lot of particle contamination on the wafer.
[0007]
That is, when the wafer is cleaned with HF, a large number of particles adhere to the wafer, and when the entire surface of the wafer is observed by the automatic defect counting device, it takes a lot of time and labor to distinguish between HF defects and particles. There is a problem that HF defect evaluation cannot be performed.
[0008]
The present invention is an SOI wafer HF defect evaluation method capable of evaluating HF defects quickly and accurately during automatic defect counting using an optical microscope or the like, with less particle adhesion during pre-processing of a SIMOX wafer or a bonded SOI wafer. The purpose is to provide.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on a method capable of etching with less particle adhesion when defects (silicide) are dissolved, the inventors can achieve the object by etching the SOI layer by HF (hydrofluoric acid) vapor treatment. As a result, the present invention was completed.
[0010]
That is, the present invention is an SOI wafer HF defect evaluation method characterized by detecting and evaluating an HF defect after performing a pretreatment for etching the surface SOI layer of the SOI wafer with HF vapor.
[0011]
Further, according to the present invention, in the pretreatment having the above-described configuration, a reaction container that stores an SOI wafer, and an HF that generates hydrofluoric acid vapor by bubbling a hydrofluoric acid solution with an inert gas and supplies the hydrofluoric acid vapor into the reaction container. A method for evaluating an HF defect in an SOI wafer, characterized by using a steam generator.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The etching by the conventional HF cleaning is solution etching, and the wafer surface on which the surface natural oxide film is etched exhibits water repellency and many particles adhere to it. On the other hand, the pretreatment of the present invention is an etching method that uses hydrofluoric acid vapor for etching, and has the advantage that fewer particles adhere to the wafer than fewer particles in the vapor.
[0013]
The pre-processing of the HF defect evaluation method according to the present invention will be described in detail. The etching apparatus shown in FIG. 1 includes a reaction vessel containing an SOI wafer, and hydrofluoric acid solution is bubbled with an inert gas to generate hydrofluoric acid vapor. And an HF vapor generator that is generated and supplied into the reaction vessel.
[0014]
As shown in FIG. 1, for example, the apparatus has an open / close door that allows the SOI wafer w to be processed to be taken in and out of a side surface or an upper surface of a reaction vessel 1 made of a material that is not easily eroded by HF vapor, for example, a fluorine resin. Alternatively, a lid 2 is provided, gas inlets 3 and outlets 4 are provided on both side surfaces of the reaction vessel 1, and a stage 5 for horizontally placing the SOI wafer w is disposed in the reaction vessel 1. A configuration in which a cooler 6 capable of cooling the wafer w is incorporated can be adopted.
[0015]
The HF vapor generator 10 stores a hydrofluoric acid solution in a sealable chemical container 11 and generates hydrofluoric acid vapor by bubbling with an inert gas such as N 2 gas in a high purity gas pipe 12. By exhausting from the exhaust port 4 of the reaction vessel 1 with an intake pump, the gas can be supplied into the reaction vessel 1 through the gas pipe 13 connected to the gas introduction port 3.
[0016]
The bubbling gas is preferably an inert high-purity gas so that particles are not included in the vapor. For example, nitrogen, argon, or helium gas having a dew point of −110 ° C. or less can be employed.
[0017]
In the present invention, the SOI wafer w is placed on the stage 5 in the reaction vessel 1 and cooled by the cooler 6 because the hydrofluoric acid vapor introduced into the reaction vessel 1 is condensed on the surface of the wafer w. In order to promote etching, the cooling temperature may be appropriately selected according to conditions such as the amount of vapor.
[0018]
In this invention, after completing the pretreatment for etching using hydrofluoric acid vapor, the method for evaluating the HF defect of the wafer can adopt any known method and apparatus, for example, by observing the wafer surface to detect the defect. Automatic defect counting devices such as optical microscopes and surface inspection devices that can count the parts can be used.
[0019]
【Example】
Example 1
An etching apparatus comprising the reaction vessel 1 and the HF vapor generator 10 shown in FIG. 1 was used. The lid 2 of the reaction vessel 1 was opened, the SIMOX wafer was placed on the stage 5, and the cooler 6 was operated to cool the stage and the wafer to 15 ° C. As a chemical solution for etching, 300 ml of 50% hydrofluoric acid solution was placed in the chemical solution container 11, and N 2 gas was allowed to flow at a flow rate of 1 l / min. Etching was allowed to stand for 5 minutes (min) in this air flow state for 1 hour (hr). Thereafter, only N 2 gas was allowed to flow in the reaction vessel for 15 minutes (min) to perform N 2 gas replacement, the lid 2 was opened, and the SIMOX wafer was taken out.
[0020]
When the SIMOx wafer after the treatment was measured for the amount of increase in particles of 0.13 μm or more by the wafer surface inspection apparatus measurement, it was 5 or less in the 5-minute treatment and 30 or less in the 1-hour treatment.
[0021]
For comparison, when the amount of increase in particles was measured when the conventional cleaning treatment of immersing in a 0.5% HF solution was performed for 4 minutes, the number of particles increased by 1300 to 2200 (pieces). The results of this comparative example and Example 1 are shown in the graph of FIG. 2 showing the relationship between etching time and increased particles.
[0022]
Example 2
The SIMOX wafer that had been subjected to the pretreatment for 5 minutes in Example 1 was observed for an HF defect of 5.0 (μm) or more and an increased amount of particles with an optical microscope. The result is shown in the graph of FIG. That is, in the etching with HF vapor, the number of particles increased is 4, but in the case of the conventional 0.5% HF cleaning, it is 46, and in the SIMOX wafer, the pre-treatment according to the present invention is more effective than the HF cleaning. Adhesion was extremely small and good.
[0023]
In addition, it is confirmed that the HF defect observation by the optical microscope of the SIMOX wafer subjected to the pretreatment for 5 minutes and 1 hour is good, and according to the present invention, the HF defect on the surface of the SIMOX wafer can be observed easily and quickly. Became clear.
[0024]
【The invention's effect】
According to the present invention, it becomes possible to perform predetermined etching on the surface of the SOI wafer without particle contamination, and the HF defect can be easily and quickly observed during subsequent observation of the entire surface of the HF defect using an optical microscope. Furthermore, the HF defect of the SIMOX wafer can be automatically and accurately measured by an automatic defect counting apparatus such as a surface inspection apparatus, and the SIMOX wafer can improve the processing capability of HF defect observation.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a configuration example of an etching apparatus according to the present invention.
FIG. 2 is a graph showing the relationship between etching time and increased particles.
FIG. 3 is a graph showing the relationship between a difference in pretreatment methods and increased particles.
[Explanation of symbols]
w SOI wafer 1 reaction vessel 2 lid 3 gas inlet 4 outlet 5 stage 6 cooler 10 HF vapor generator 11 chemical vessel 12 high-purity gas pipe 13 gas pipe

Claims (2)

SOIウェーハの表面SOI層をHF蒸気によりエッチングする前処理を施した後、HF欠陥を検出し評価するSOIウェーハのHF欠陥評価方法。An SOI wafer HF defect evaluation method for detecting and evaluating an HF defect after performing a pretreatment for etching the surface SOI layer of the SOI wafer with HF vapor. 前処理に、SOIウェーハを収納する反応容器と、フッ化水素酸溶液を不活性ガスによりバブリングしフッ化水素酸蒸気を発生させて反応容器内に供給するHF蒸気発生装置とを用いる請求項1に記載のSOIウェーハのHF欠陥評価方法。The pre-treatment uses a reaction vessel containing an SOI wafer and an HF vapor generator for bubbling a hydrofluoric acid solution with an inert gas to generate hydrofluoric acid vapor and supplying the vapor into the reaction vessel. The HF defect evaluation method of SOI wafer as described in 2.
JP2003036250A 2003-02-14 2003-02-14 HF defect evaluation method for SOI wafer Expired - Lifetime JP3855943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036250A JP3855943B2 (en) 2003-02-14 2003-02-14 HF defect evaluation method for SOI wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036250A JP3855943B2 (en) 2003-02-14 2003-02-14 HF defect evaluation method for SOI wafer

Publications (2)

Publication Number Publication Date
JP2004247539A JP2004247539A (en) 2004-09-02
JP3855943B2 true JP3855943B2 (en) 2006-12-13

Family

ID=33021396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036250A Expired - Lifetime JP3855943B2 (en) 2003-02-14 2003-02-14 HF defect evaluation method for SOI wafer

Country Status (1)

Country Link
JP (1) JP3855943B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104867845B (en) * 2014-02-26 2019-05-17 盛美半导体设备(上海)有限公司 Vapor etching device
CN104860259A (en) * 2014-02-26 2015-08-26 盛美半导体设备(上海)有限公司 Low-pressure vapor-phase etching method
CN106409672A (en) * 2015-07-28 2017-02-15 中国科学院微电子研究所 Method and apparatus for etching semiconductor substrate

Also Published As

Publication number Publication date
JP2004247539A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP5976013B2 (en) Method for reducing metal content in a device layer of an SOI structure, and SOI structure manufactured by such a method
KR100607186B1 (en) Method of producing soi wafer by hydrogen ion implanting separation method and soi wafer produced by the method
US6200878B1 (en) SOI substrate processing method
JP2014508405A5 (en)
TWI528482B (en) Methods for monitoring the amount of contamination imparted into semiconductor wafers during wafer processing
EP0984483B1 (en) Semiconductor substrate and method for producing the same
JP4827587B2 (en) Silicon wafer manufacturing method
EP1840560A3 (en) Method of revealing crystalline faults in a massive substrate
US10049916B2 (en) Method of manufacturing a germanium-on-insulator substrate
JP2019195020A (en) Metal impurity removing method of semiconductor silicon wafer
TWI609434B (en) SOS substrate manufacturing method and SOS substrate
JP3855943B2 (en) HF defect evaluation method for SOI wafer
JPH08148552A (en) Semiconductor thermal treatment jig and its surface treatment method
JP6520777B2 (en) Evaluation method of silicon single crystal wafer
KR100211648B1 (en) Method for generating semiconductor wafer
JP2004063513A (en) Cleaning and drying method of semiconductor substrate
JP2004335695A (en) Method for manufacturing thin film soi wafer, and method for evaluating defect thereof
JP2004063721A (en) Method for evaluating ni contamination in silicon wafer
JPH1055991A (en) Method and device for manufacturing semiconductor device
JP2004031845A (en) Method for evaluating gettering capability
JP3578063B2 (en) Pretreatment method for Si wafer and semiconductor wafer
JP2008227207A (en) Bonded wafer manufacturing method
JPH1070166A (en) Semiconductor testing method and crystal defect sensing liquid used therefor
JP2002184961A (en) Soi substrate and thermal treatment method therefor
CN117191932A (en) Method and system for testing metal recovery rate of silicon wafer surface

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Ref document number: 3855943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term