JP3855484B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3855484B2
JP3855484B2 JP24937398A JP24937398A JP3855484B2 JP 3855484 B2 JP3855484 B2 JP 3855484B2 JP 24937398 A JP24937398 A JP 24937398A JP 24937398 A JP24937398 A JP 24937398A JP 3855484 B2 JP3855484 B2 JP 3855484B2
Authority
JP
Japan
Prior art keywords
fin group
short
hot water
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24937398A
Other languages
Japanese (ja)
Other versions
JP2000074499A (en
Inventor
正満 近藤
文孝 菊谷
英夫 富田
幸一 金崎
昌知 吉村
裕之 舩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24937398A priority Critical patent/JP3855484B2/en
Publication of JP2000074499A publication Critical patent/JP2000074499A/en
Application granted granted Critical
Publication of JP3855484B2 publication Critical patent/JP3855484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Fluid Heaters (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は風呂の追い焚き機能や暖房機能を有する給湯機において、燃焼熱源が1カ所存在し、前記機能を満足する熱交換装置に関するものである。
【0002】
【従来の技術】
従来、一つの燃焼部によって2種類の流体を同時に加熱できる熱交換器は、給湯と風呂の運転ができる給湯風呂装置などの複合給湯機に採用されている。この種の従来の熱交換装置は特開平9−145162号公報に記載されているようなものがあった。この熱交換装置では、図8に示す様に、燃焼部1と熱交換器を覆う缶体2と、給湯管3と風呂管4を接触させて共通する複数枚の伝熱フィン5を貫通させ、使用しない機能の流体回路が受ける熱を、使用している流体に放熱し、使用しない方の流体温度の上昇を抑制している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の熱交換器の構成では、特に風呂管4を通過する流体を加熱したいときに、所定の燃焼量を超えると火炎に近い上流側の給湯管3への受熱量が多くなり、流体温度が上昇し、沸騰に至ることもあった。そのため、装置の耐久性と安全性に課題を与えていた。
【0004】
また、温度上昇を抑制するために、燃焼量を抑えるといった制御を導入していたため、本来の性能を十分に発揮できない場合も生じていた。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するために、燃焼部によって加熱される複数の伝熱フィンと、前記伝熱フィンを貫通し前記燃焼部より発生する高温ガスが流れる方向と交差して並べられ互いに接合された複数の流路を設けた熱交換部と、前記熱交換部を覆う缶体と、前記伝熱フィンは前記高温ガスの流れ方向に長いロングフィン群と短いショートフィン群を有し、前記ショートフィン群は前記缶体の近傍のみ前記流路と前記伝熱フィン先端までの距離が大きく、前記ロングフィン群と前記ショートフィン群を通過後の排気ガスを混合する整流板を排気通路の内部に設け、前記燃焼部から供給され缶体近傍を流れるバイパス空気量は、前記ショートフィン群を通過する量を、前記ロングフィン群を通過する量よりも多くしたことを特徴とする熱交換装置である。
【0006】
上記発明によれば、一つの缶体で複数の機能を備えた熱交換装置において、一つの機能のみを使用したときに、使用しない機能の管内流体の沸騰を抑制できるとともに、ショートフィン群を使用した最大運転モードで熱交換する時でも、缶体と排気ガスの温度上昇を抑制できる。
【0007】
【発明の実施の形態】
本発明は、燃焼部によって加熱される複数の伝熱フィンと、伝熱フィンを貫通し燃焼部より発生する高温ガスが流れる方向と交差して並べられ互いに接合された複数の流路を設けた熱交換部と、熱交換部を覆う缶体と、伝熱フィンは高温ガスの流れ方向に長いロングフィン群と短いショートフィン群を有し、ショートフィン群は缶体の近傍のみ流路と伝熱フィン先端までの距離が大きく、ロングフィン群とショートフィン群を通過後の排気ガスを混合する整流板を排気通路の内部に設け、燃焼部から供給され缶体近傍を流れるバイパス空気量は、ショートフィン群を通過する量を、ロングフィン群を通過する量よりも多くした熱交換装置である。
【0008】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0009】
(実施例1)
図1から図4は本発明による実施例1であり、例えば本発明の熱交換器を給湯風呂装置に組み込んだ構成を模式的に示した図2と、図1はショートフィン群の断面図、図3はロングフィン群断面図であり、図4はフィンブロックの構成図である。本実施例の給湯風呂装置において、2は熱交換部を覆う缶体であり、1は燃焼部であるバーナであり、缶体2に設けた流体回路で排気ガスが通過する上流側流路である断面形状がハート型をした給湯管3と、もう一方の下流側流路である風呂管4を、燃焼ガスの流れに沿う如く、一対として伝熱フィンのショートフィン群5−Aと、ロングフィン群5−Bを貫通した構成となっている。
【0010】
図1において、ショートフィン群5−A断面図で第一パス6および第五パス7のフィン幅をロングフィン群と同様に缶体2近傍側へ舌部8を広くしている。
【0011】
従来の構成における課題は、風呂運転している状態で、所定の燃焼量を超えると、給湯管の流体が沸騰することである。この課題を解決する手段として、上流側流路である給湯管3をハート型に変形させハート型の凹部と風呂管4の下側とを組み合わせ、給湯管3と風呂管4の接触面積を拡大すると共にロウ材により確実に接触させ伝熱量を増加させる。さらに、風呂運転する際の燃焼部に相当する伝熱フィン5を、フィン長さが短いショートフィン群5−Aとし、給湯管への受熱量を減少させることが考えられる。ただし、風呂運転の最大運転モードと、給湯最大運転モードでショートフィン群5−Aを使用して熱交換する際にはショートフィン群5−Aで給湯管3もしくは風呂管4の受熱量が少ないため排気ガス温度が上昇し缶体2の温度を上昇させるという課題を生じてしまう。
【0012】
そこで本発明の構成によれば、缶体2近傍の第一パス6および第五パス7のフィン舌部8を給湯管3から缶体2の方向へ広くすることで、最大運転モードでの停止している管の内部流体の沸騰を防止できると共に、ショートフィン群5−Aの缶体2の温度上昇を抑制できる。
【0013】
従って図2の構成で、例えば給湯は行わず、風呂運転を行った場合、バーナ1から給湯管3に加熱される熱量はショートフィン群5−Aを設けることで抑制でき、給湯管3内部の流体の昇温は抑制され、燃焼量が増加しても流体が沸騰することはなくなる。さらに、第一パス6および第五パス7の缶体2側を通過する排気ガスはフィン舌部8が大きいため、缶体2の温度上昇を抑制し缶体割れの発生が防止できると共に、耐久性も大幅に向上する。
【0014】
図2の構成において、流体回路の上流側を給湯管3、下流側を風呂管4としているが、下流側を暖房温水回路としても同様の効果が得られる。
【0015】
また、本実施例では、本発明を給湯風呂装置に適用した例で説明したが、給湯暖房装置、暖房風呂装置にも適用できる。
【0016】
さらに、給湯と風呂の二つの流路における例を示したが、給湯と風呂と暖房のように三つないしは複数の水路を接合しても同様の効果を発揮できるものである。
【0017】
(実施例2)
図4は本発明による実施例2であり、本発明のショートフィン群5−A断面図を示したものである。本発明の目的と効果は、実施例1で示したものと同じであり、本実施例と実施例1との構成における違いは、缶体2近傍の第一パス6および第五パス7の舌部8をロングフィン群5−Bと同様に長くすることで、風呂運転時の給湯管3の流体の沸騰を防止でき、ショートフィン群5−Aの缶体温度上昇を抑制できることである。
【0018】
なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0019】
ショートフィン群5−A断面図で缶体2近傍の第一パス6および第五パス7のフィン舌部8をロングフィン群5−Bと同様に長くしている。
【0020】
従って図5の構成で、例えば最大運転モードで熱交換を行った場合、第一パス6および第五パス7の缶体2側を通過する排気ガスは、舌部8が長いため給湯管3ないしは風呂管4への吸熱量が増加するため、缶体2の温度上昇を抑制し、缶体2の割れの発生を防止できると共に、耐久性も大幅に向上する。
【0021】
図5の構成において、流体回路の上流側を給湯管3、下流側を風呂管4としているが、下流側を暖房温水回路としても同様の効果が得られる。
【0022】
また、本実施例では、本発明を給湯風呂装置に適用した例で説明したが、給湯暖房装置、暖房風呂装置にも適用できる。
【0023】
さらに、給湯と風呂の二つの流路における例を示したが、給湯と風呂と暖房のように三つないしは複数の水路を接合しても同様の効果を発揮できるものである。
【0024】
(実施例3)
図6は本発明による実施例3であり、本発明の排気通路9の構成を示したものである。本発明の目的と効果は、排気通路9から排出される排気ガスの温度を整流板10により均一化し、排気ガス温度を低下することである。
【0025】
なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。 従来の構成における課題は、風呂運転している状態で、所定の燃焼量を超えると、給湯管3の流体が沸騰することである。この課題を解決する手段として、風呂運転する際の燃焼部に相当する伝熱フィン5の長さが短いショートフィン群5−Aとし、給湯管3への吸熱量を減少させることが考えられる。ただし、給湯運転をする際にはこのショートフィン群5−Aで給湯管3の吸熱量が少ないため排気ガス温度が上昇してしまうという課題を生じる。
【0026】
そこで本発明の構成によれば、ショートフィン群5−Aを通過した高温の排気ガスと、ロングフィン群5−Bを通過した低温の排気ガスを混合する整流板10を排気通路9に設けたものである。この整流板10の効果により、ショートフィン群5−Aを通過した排気ガスとロングフィン群5−Bを通過した排気ガスが混合され、排気温度を低下することができる。
【0027】
(実施例4)
図7は本発明による実施例4であり、本発明のバーナ1のバイパス空気通路11の構成を示したものである。本発明の目的と効果は、ショートフィン群5−Aを通過する高温ガスによる缶体2温度と排気通路9から排出される排気ガスの温度を低下し、缶体2割れを防止することである。
【0028】
なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0029】
従来の構成としては缶体2の温度と高温ガス温度を低下するために、火炎の周囲に冷却用の空気を通過させるためのバイパス空気通路11を設けている。しかしながら、風呂運転する際のバーナ1に相当する伝熱フィン5の長さを短いショートフィン群5−Aとし、給湯管3への吸熱量を減少させる構成とした場合、給湯運転をする際にはこのショートフィン群で給湯管3の吸熱量が少ないため、缶体2の温度上昇による割れの発生や、排気ガス温度が上昇してしまうという課題を生じる。
【0030】
そこで本発明の構成によれば、ロングフィン群5−Bを通過する高温ガスの温度を低下させるバイパス空気通路11より、ショートフィン群5−Aを通過する高温ガスの温度を低下させるバイパス空気通路11の径を大きくすることで、ショートフィン群5−Aを通過する高温ガスの温度を低下することができる。さらに、排気ガス温度が低下することから、缶体2と排気通路9の温度上昇も抑制できることから、缶体2と排気通路9の耐久性能を向上できる。ここでバイパス空気通路11の穴径を大きくした例を示したが、単位長さ当たりの穴数を多くすることで冷却空気量を多くしても同様の効果を発揮することができる。
【0031】
【発明の効果】
以上のように、本発明の熱交換装置によれば、次のような効果が得られる。
【0032】
(1)伝熱フィンを貫通し複数の流路を接合して設けた熱交換部で伝熱フィンがロングフィン群とショートフィン群に分かれて形成され、ショートフィン群の缶体の近傍のみ流路と伝熱フィン先端までの距離を大きくした熱交換器であって、下流側流路の機能を使用する際にはショートフィン群のみを燃焼部で加熱することで、停止している上流側流路の内部の流体の沸騰を防止することができる。さらに、最大燃焼する際にショートフィン群の缶体近傍の流路と伝熱フィン先端までの距離を大きくすることで、缶体近傍流路の受熱量が増加し缶体の温度上昇を抑制できる。すなわち、複数の機能のうち一つの機能のみを使っている状態で燃焼量が増大しても、使用しない機能の流体の沸騰を防止することができとともに、ショートフィン群の缶体温度の上昇を抑制できる。
【0033】
この効果により、スケールの発生防止と熱交換器の延命化が実現されるとともに、装置の持つ性能が十分に発揮され、ユーザーに与えていた不快感は解消される。さらに、缶体の耐久性能が向上し、製品の信頼性が大幅に向上する。
【0034】
(2)伝熱フィンを貫通し複数の流路を接合して設けた熱交換部と、伝熱フィンがロングフィン群とショートフィン群に分かれて形成され、ショートフィン群の缶体の近傍のみ流路と伝熱フィン先端までの距離が大きく、排気ガスが熱交換部を通過し缶体から外部へ放出される際にロングフィン群とショートフィン群を通過する排気ガスを混合する整流板を排気通路の内部に設けた熱交換器であって、燃焼部が最大運転モードで燃焼するときに、ショートフィン群を通過した高温の排気ガスがロングフィンを通過した比較的低温の排気ガスと整流板により排気通路内部で混合されることにより、排気ガスの過度な温度上昇を抑制し排気通路の耐久性能を向上し、製品の信頼性が大幅に向上する。
【0035】
(3)また、燃焼部で缶体近傍の排気ガス温度を低下するためにバイパス空気通路を設け、ショートフィン群を通過する排気ガスの缶体近傍のバイパス空気の量を、ロングフィン群よりも多くした熱交換器であって、燃焼部が最大運転モードで燃焼するときに、ショートフィン群へ向かう高温の排気ガスのうち缶体近傍の排気ガスの温度を、バイパス空気の量を増やし冷却効果をアップすることにより、排気ガスの過度な温度上昇を抑制し缶体並びに排気通路の耐久性能を向上し、製品の信頼性が大幅に向上する。
【図面の簡単な説明】
【図1】 本発明の実施例1の熱交換装置のショートフィン群断面図
【図2】 本発明の実施例1の熱交換装置の構成図
【図3】 同装置のロングフィン群断面図
【図4】 同装置のフィン組図
【図5】 本発明の実施例2の熱交換装置のショートフィン群断面図
【図6】 本発明の実施例3の熱交換装置の排気通路構成図
【図7】 本発明の実施例4の熱交換装置のバイパス空気構成図
【図8】 従来の熱交換装置の構成図
【符号の説明】
1 燃焼部
2 缶体
3 給湯管(流路)
4 風呂管(流路)
5 伝熱フィン
5−A ショートフィン群
5−B ロングフィン群
10 整流板
12 排気通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger having a combustion heat source in a hot water heater having a bath reheating function and a heating function and satisfying the function.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a heat exchanger that can simultaneously heat two types of fluids with a single combustion unit has been employed in a complex water heater such as a hot water bath apparatus that can operate hot water and a bath. A conventional heat exchange apparatus of this type has been described in Japanese Patent Application Laid-Open No. 9-145162. In this heat exchange device, as shown in FIG. 8, a can body 2 covering the combustion section 1 and the heat exchanger, a hot water supply pipe 3 and a bath pipe 4 are brought into contact with each other and a plurality of common heat transfer fins 5 are penetrated. The heat received by the fluid circuit with a function that is not used is dissipated to the fluid that is being used, and the rise in the temperature of the fluid that is not being used is suppressed.
[0003]
[Problems to be solved by the invention]
However, in the configuration of the conventional heat exchanger, particularly when it is desired to heat the fluid passing through the bath pipe 4, when the predetermined amount of combustion is exceeded, the amount of heat received by the upstream hot water supply pipe 3 close to the flame increases. The fluid temperature increased and sometimes boiled. For this reason, there are problems in durability and safety of the apparatus.
[0004]
In addition, since control for suppressing the amount of combustion was introduced in order to suppress the temperature rise, the original performance could not be fully exhibited.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a plurality of heat transfer fins heated by a combustion section and a plurality of heat transfer fins that are lined up and joined to each other through a direction through which the high temperature gas generated from the combustion section passes through the heat transfer fins. The heat exchange part provided with a plurality of flow paths, a can covering the heat exchange part, and the heat transfer fins have long fin groups and short short fin groups that are long in the flow direction of the high-temperature gas, The short fin group has a large distance from the flow path to the tip of the heat transfer fin only in the vicinity of the can body, and a rectifying plate that mixes the exhaust gas after passing through the long fin group and the short fin group is provided inside the exhaust passage. provided, the bypass air quantity flowing through the can bodies near supplied from the combustion section, the amount that passes through the short fin group, heat exchange instrumentation, characterized in that it has more than the amount that passes through the long fin group It is.
[0006]
According to the above invention, in the heat exchange device having a plurality of functions in one can body, when only one function is used, it is possible to suppress boiling of the in-pipe fluid having a function that is not used and to use a short fin group. Even when heat exchange is performed in the maximum operation mode, the temperature rise of the can and the exhaust gas can be suppressed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is provided with a plurality of heat transfer fins heated by the combustion section and a plurality of flow paths that are lined up crossing the direction in which the high temperature gas generated from the combustion section flows through the heat transfer fins and joined to each other. The heat exchange part, the can covering the heat exchange part, and the heat transfer fins have a long fin group and a short short fin group that are long in the flow direction of the high-temperature gas. The distance to the tip of the heat fin is large, a rectifying plate that mixes the exhaust gas after passing through the long fin group and the short fin group is provided inside the exhaust passage, and the amount of bypass air supplied from the combustion section and flowing near the can body is This is a heat exchange device in which the amount passing through the short fin group is larger than the amount passing through the long fin group .
[0008]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0009]
(Example 1)
1 to 4 show a first embodiment according to the present invention, for example, FIG. 2 schematically showing a configuration in which the heat exchanger of the present invention is incorporated in a hot water bath apparatus, and FIG. 1 is a cross-sectional view of a short fin group. FIG. 3 is a cross-sectional view of the long fin group, and FIG. 4 is a configuration diagram of the fin block. In the hot water bath apparatus of the present embodiment, 2 is a can body that covers the heat exchange section, 1 is a burner that is a combustion section, and is an upstream flow path through which exhaust gas passes through a fluid circuit provided in the can body 2. A hot water supply pipe 3 having a heart-shaped cross section and a bath pipe 4 which is the other downstream flow path are paired with a short fin group 5-A of heat transfer fins along the flow of the combustion gas, and a long It is the structure which penetrated the fin group 5-B.
[0010]
In FIG. 1, the fin width of the first pass 6 and the fifth pass 7 in the short fin group 5-A cross-sectional view is widened to the vicinity of the can body 2 in the same manner as the long fin group.
[0011]
The problem with the conventional configuration is that the fluid in the hot water supply pipe boils when the predetermined combustion amount is exceeded while the bath is operating. As a means for solving this problem, the hot water supply pipe 3 which is the upstream flow path is deformed into a heart shape, and the contact area between the hot water supply pipe 3 and the bath pipe 4 is expanded by combining the heart-shaped recess and the lower side of the bath pipe 4. In addition, the amount of heat transfer is increased by reliably contacting with the brazing material. Furthermore, it is conceivable that the heat transfer fins 5 corresponding to the combustion section during the bath operation are short fin groups 5-A having short fin lengths to reduce the amount of heat received by the hot water supply pipe. However, when heat is exchanged using the short fin group 5-A in the maximum bath operation mode and the hot water supply maximum operation mode, the amount of heat received by the hot water supply pipe 3 or the bath pipe 4 is small in the short fin group 5-A. Therefore, the exhaust gas temperature rises and the problem of raising the temperature of the can body 2 arises.
[0012]
Therefore, according to the configuration of the present invention, the fin tongue 8 of the first pass 6 and the fifth pass 7 in the vicinity of the can body 2 is widened from the hot water supply pipe 3 toward the can body 2 to stop in the maximum operation mode. It is possible to prevent boiling of the internal fluid of the pipe, and to suppress the temperature rise of the can body 2 of the short fin group 5-A.
[0013]
Therefore, in the configuration of FIG. 2, for example, when hot water supply is not performed and bath operation is performed, the amount of heat heated from the burner 1 to the hot water supply pipe 3 can be suppressed by providing the short fin group 5-A. The temperature rise of the fluid is suppressed, and the fluid does not boil even if the amount of combustion increases. Further, since the exhaust gas passing through the first pass 6 and the fifth pass 7 on the side of the can body 2 has a large fin tongue 8, the temperature rise of the can body 2 can be suppressed and the occurrence of cracks in the can body can be prevented, and durability The characteristics are also greatly improved.
[0014]
In the configuration of FIG. 2, the hot water supply pipe 3 is provided on the upstream side of the fluid circuit, and the bath pipe 4 is provided on the downstream side. However, the same effect can be obtained when the heating hot water circuit is provided on the downstream side.
[0015]
Moreover, although the present Example demonstrated in the example which applied this invention to the hot water bath apparatus, it can apply also to a hot water heater and a heating bath apparatus.
[0016]
Furthermore, although the example in two flow paths of hot water supply and bath was shown, the same effect can be exhibited even if three or a plurality of water channels are joined like hot water supply, bath and heating.
[0017]
(Example 2)
FIG. 4 is a second embodiment of the present invention and shows a cross-sectional view of the short fin group 5-A of the present invention. The objects and effects of the present invention are the same as those shown in the first embodiment. The difference between the present embodiment and the first embodiment is that the tongues of the first pass 6 and the fifth pass 7 in the vicinity of the can body 2 are the same. By lengthening the part 8 in the same manner as the long fin group 5-B, boiling of the fluid in the hot water supply pipe 3 during bath operation can be prevented, and an increase in can temperature of the short fin group 5-A can be suppressed.
[0018]
In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0019]
In the sectional view of the short fin group 5-A, the fin tongues 8 of the first pass 6 and the fifth pass 7 in the vicinity of the can body 2 are elongated similarly to the long fin group 5-B.
[0020]
Therefore, when heat exchange is performed in the maximum operation mode in the configuration of FIG. 5, for example, the exhaust gas passing through the can body 2 side of the first pass 6 and the fifth pass 7 has a long tongue portion 8, so Since the heat absorption amount to the bath pipe 4 increases, the temperature rise of the can body 2 can be suppressed, the occurrence of cracking of the can body 2 can be prevented, and the durability is also greatly improved.
[0021]
In the configuration of FIG. 5, the hot water supply pipe 3 is provided on the upstream side of the fluid circuit, and the bath pipe 4 is provided on the downstream side. However, the same effect can be obtained when the heating hot water circuit is provided on the downstream side.
[0022]
Moreover, although the present Example demonstrated in the example which applied this invention to the hot water bath apparatus, it can apply also to a hot water heater and a heating bath apparatus.
[0023]
Furthermore, although the example in two flow paths of hot water supply and bath was shown, the same effect can be exhibited even if three or a plurality of water channels are joined like hot water supply, bath and heating.
[0024]
(Example 3)
FIG. 6 is a third embodiment according to the present invention and shows the configuration of the exhaust passage 9 of the present invention. An object and effect of the present invention is to make the temperature of the exhaust gas discharged from the exhaust passage 9 uniform by the rectifying plate 10 and to reduce the exhaust gas temperature.
[0025]
In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description. The problem in the conventional configuration is that the fluid in the hot water supply pipe 3 boils when the predetermined combustion amount is exceeded while the bath is in operation. As a means for solving this problem, it is conceivable to reduce the heat absorption amount to the hot water supply pipe 3 by using the short fin group 5-A in which the length of the heat transfer fin 5 corresponding to the combustion portion during the bath operation is short. However, when the hot water supply operation is performed, the heat absorption amount of the hot water supply pipe 3 is small in the short fin group 5-A, which causes a problem that the exhaust gas temperature rises.
[0026]
Thus, according to the configuration of the present invention, the exhaust passage 9 is provided with the rectifying plate 10 that mixes the high temperature exhaust gas that has passed through the short fin group 5-A and the low temperature exhaust gas that has passed through the long fin group 5-B. Is. Due to the effect of the current plate 10, the exhaust gas that has passed through the short fin group 5-A and the exhaust gas that has passed through the long fin group 5-B are mixed, and the exhaust temperature can be lowered.
[0027]
(Example 4)
FIG. 7 shows a configuration of the bypass air passage 11 of the burner 1 according to the fourth embodiment of the present invention. The object and effect of the present invention is to reduce the temperature of the can body 2 due to the high-temperature gas passing through the short fin group 5-A and the temperature of the exhaust gas discharged from the exhaust passage 9 to prevent the can body 2 from cracking. .
[0028]
In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0029]
As a conventional configuration, in order to reduce the temperature of the can body 2 and the high-temperature gas temperature, a bypass air passage 11 for allowing cooling air to pass around the flame is provided. However, when the length of the heat transfer fin 5 corresponding to the burner 1 during the bath operation is set to the short fin group 5-A and the heat absorption amount to the hot water supply pipe 3 is reduced, the hot water supply operation is performed. Since the heat absorption amount of the hot water supply pipe 3 is small in this short fin group, there arises a problem that cracking occurs due to the temperature rise of the can body 2 and the exhaust gas temperature rises.
[0030]
Therefore, according to the configuration of the present invention, the bypass air passage for lowering the temperature of the hot gas passing through the short fin group 5-A than the bypass air passage 11 for lowering the temperature of the hot gas passing through the long fin group 5-B. By increasing the diameter of 11, the temperature of the hot gas passing through the short fin group 5-A can be lowered. Furthermore, since the exhaust gas temperature is lowered, the temperature rise of the can body 2 and the exhaust passage 9 can be suppressed, so that the durability performance of the can body 2 and the exhaust passage 9 can be improved. Although the example in which the hole diameter of the bypass air passage 11 is increased is shown here, the same effect can be exhibited even if the amount of cooling air is increased by increasing the number of holes per unit length.
[0031]
【The invention's effect】
As described above, according to the heat exchange device of the present invention, the following effects can be obtained.
[0032]
(1) The heat transfer fins are formed by dividing the long fin group and the short fin group at the heat exchange part provided by joining the plurality of flow paths through the heat transfer fins, and flow only in the vicinity of the can of the short fin group. A heat exchanger with a large distance between the path and the heat transfer fin tip, and when using the function of the downstream flow path, only the short fin group is heated in the combustion section, so that the upstream side is stopped Boiling of the fluid inside the flow path can be prevented. Furthermore, by increasing the distance between the flow path near the can body of the short fin group and the tip of the heat transfer fin during maximum combustion, the amount of heat received in the flow path near the can body can be increased, and the temperature rise of the can body can be suppressed. . That is, even if the combustion amount increases while only one function is used among a plurality of functions, it is possible to prevent boiling of the fluid of the function that is not used, and to increase the can body temperature of the short fin group. Can be suppressed.
[0033]
With this effect, scale generation prevention and heat exchanger life extension are realized, the performance of the apparatus is fully exhibited, and the discomfort given to the user is eliminated. Furthermore, the durability performance of the can body is improved, and the reliability of the product is greatly improved.
[0034]
(2) A heat exchanging part provided by joining a plurality of flow paths through the heat transfer fins, and the heat transfer fins are divided into a long fin group and a short fin group, and only in the vicinity of the can of the short fin group A rectifying plate that mixes the exhaust gas that passes through the long fin group and the short fin group when the exhaust gas passes through the heat exchange section and is discharged to the outside when the distance between the flow path and the heat transfer fin tip is large. A heat exchanger provided inside the exhaust passage, and when the combustion section burns in the maximum operation mode, the high-temperature exhaust gas that has passed through the short fin group is commutated with the relatively low-temperature exhaust gas that has passed through the long fin. By mixing in the exhaust passage by the plate, an excessive temperature rise of the exhaust gas is suppressed, the durability performance of the exhaust passage is improved, and the reliability of the product is greatly improved.
[0035]
(3) In addition, a bypass air passage is provided to lower the exhaust gas temperature in the vicinity of the can body in the combustion section, and the amount of the bypass air in the vicinity of the can body of the exhaust gas passing through the short fin group is larger than that in the long fin group. Increased heat exchanger, when the combustion section burns in the maximum operation mode, the temperature of the exhaust gas in the vicinity of the can body out of the high-temperature exhaust gas toward the short fin group increases the amount of bypass air and the cooling effect By increasing the temperature, the excessive temperature rise of the exhaust gas is suppressed, the durability performance of the can body and the exhaust passage is improved, and the reliability of the product is greatly improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a short fin group of a heat exchange device according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of a heat exchange device according to a first embodiment of the present invention. FIG. 4 is a fin assembly diagram of the apparatus. FIG. 5 is a cross-sectional view of a short fin group of a heat exchange device according to a second embodiment of the invention. FIG. 6 is an exhaust passage configuration diagram of a heat exchange device according to the third embodiment of the invention. 7] Bypass air configuration diagram of heat exchange device of embodiment 4 of the present invention [FIG. 8] Configuration diagram of conventional heat exchange device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combustion part 2 Can body 3 Hot-water supply pipe (flow path)
4 bath pipe (flow path)
5 Heat transfer fin 5-A Short fin group 5-B Long fin group 10 Current plate 12 Exhaust passage

Claims (1)

燃焼部によって加熱される複数の伝熱フィンと、前記伝熱フィンを貫通し前記燃焼部より発生する高温ガスが流れる方向と交差して並べられ互いに接合された複数の流路を設けた熱交換部と、前記熱交換部を覆う缶体と、前記伝熱フィンは前記高温ガスの流れ方向に長いロングフィン群と短いショートフィン群を有し、前記ショートフィン群は前記缶体の近傍のみ前記流路と前記伝熱フィン先端までの距離が大きく、前記ロングフィン群と前記ショートフィン群を通過後の排気ガスを混合する整流板を排気通路の内部に設け、前記燃焼部から供給され缶体近傍を流れるバイパス空気量は、前記ショートフィン群を通過する量を、前記ロングフィン群を通過する量よりも多くした熱交換装置。Heat exchange provided with a plurality of heat transfer fins heated by the combustion section and a plurality of flow paths that penetrate the heat transfer fins and are lined up and joined to each other in a direction in which the high-temperature gas generated from the combustion section flows. Part, a can body covering the heat exchanging part, the heat transfer fin has a long fin group and a short short fin group which are long in the flow direction of the hot gas, and the short fin group is only in the vicinity of the can body A can body that is provided from the combustion section is provided with a rectifying plate that has a large distance between the flow path and the tip of the heat transfer fin and that mixes the exhaust gas after passing through the long fin group and the short fin group. The amount of bypass air flowing in the vicinity is a heat exchange device in which the amount passing through the short fin group is larger than the amount passing through the long fin group .
JP24937398A 1998-09-03 1998-09-03 Heat exchanger Expired - Lifetime JP3855484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24937398A JP3855484B2 (en) 1998-09-03 1998-09-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24937398A JP3855484B2 (en) 1998-09-03 1998-09-03 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2000074499A JP2000074499A (en) 2000-03-14
JP3855484B2 true JP3855484B2 (en) 2006-12-13

Family

ID=17192067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24937398A Expired - Lifetime JP3855484B2 (en) 1998-09-03 1998-09-03 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3855484B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6820685B1 (en) * 2004-02-26 2004-11-23 Baltimore Aircoil Company, Inc. Densified heat transfer tube bundle

Also Published As

Publication number Publication date
JP2000074499A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP3855484B2 (en) Heat exchanger
JP2004116913A (en) Heat exchanger
KR20160141321A (en) A heat transfer pin of heat exchanger for a boiler
JP3763196B2 (en) 1 can 2 circuit heat source device
JP2000146306A (en) Heat exchanger
JP3841081B2 (en) Combustion device
JP2004003773A (en) Heat exchanger
JP2000205657A (en) Heat exchanger
JP2000304348A (en) Combustor
JP2001201179A (en) Hot water supplier
JP2001082808A (en) Heat exchanger
JP3772493B2 (en) Water heater
JP2000146307A (en) Heat exchanger
JPH11211237A (en) Single body double circuit combination hot water supply apparatus
JP2001324221A (en) Combustion device
KR200225596Y1 (en) Heat transfer fin for heat exchanger of gas boiler
JP2001201183A (en) Combustion apparatus
JP2001099493A (en) Combustor
JP3876519B2 (en) Heat source equipment
JP3858427B2 (en) 1 can 2 circuit heat source device
JP2003014308A (en) Heat exchanger
JP2003083618A (en) Heat exchanger
JPH11201555A (en) Single-boiler twine-channel heat exchanger
JP2001336831A (en) Combustion device
JP2004293992A (en) Heat exchanger structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350