JP3855144B2 - Foreign matter removal device for track branch - Google Patents

Foreign matter removal device for track branch Download PDF

Info

Publication number
JP3855144B2
JP3855144B2 JP31855699A JP31855699A JP3855144B2 JP 3855144 B2 JP3855144 B2 JP 3855144B2 JP 31855699 A JP31855699 A JP 31855699A JP 31855699 A JP31855699 A JP 31855699A JP 3855144 B2 JP3855144 B2 JP 3855144B2
Authority
JP
Japan
Prior art keywords
track
compressed air
foreign matter
track branching
matter removing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31855699A
Other languages
Japanese (ja)
Other versions
JP2001131935A (en
Inventor
勉 三田村
浩司 山田
孝司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Hokkaido Railway Co
Original Assignee
Nabtesco Corp
Hokkaido Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp, Hokkaido Railway Co filed Critical Nabtesco Corp
Priority to JP31855699A priority Critical patent/JP3855144B2/en
Publication of JP2001131935A publication Critical patent/JP2001131935A/en
Application granted granted Critical
Publication of JP3855144B2 publication Critical patent/JP3855144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Railway Tracks (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道の軌道分岐部の基本レールとトングレールとの間に落下した異物を圧縮空気の噴射によって除去する軌道分岐部の異物除去装置に関する。
【0002】
【従来の技術】
降雪地方等の軌道分岐部では、基本レール間に設けられたポイント切換用のトングレールと上記基本レールとの間の隙間に降雪等が落下することにより、トングレールの不転換が発生する問題がある。そのため、従来、降雪地方等の軌道分岐部には、電熱式、熱風式、温水式等の融雪装置が設置されている。
【0003】
ところが、このような融雪装置は、融雪にある程度の時間を要するので、車両通過直後にポイントを切り換える必要がある場合等には、上記車両が持ち込んで落下した雪塊等が未だ融解されていない場合が多く、トングレールの不転換が生じ易くなる。更に、雪塊がバラスト上に落下することにより生じた飛石等がトングレールと基本レール間に隙間に挟まったような場合には、上記融雪装置では飛石等を除去できない問題もあった。
【0004】
そこで、従来、トングレールに対向する基本レールの内側面に配管ユニットを設けるとともに、この配管ユニットを供給通路を介して圧縮空気源装置に接続し、前記配管ユニットに長手方向に並べて設けた複数のノズル部からトングレールの先端側に向けて圧縮空気を噴射することにより、基本レールとトングレール間に挟まった雪塊、飛石等の異物を吹き飛ばして除去するようにした軌道分岐部の異物除去装置が提案されている(特開平7-54317 号公報参照)。
【0005】
【発明が解決すべき課題】
ところが、上記の異物除去装置では、個々の軌道分岐部毎に上記配管ユニット及び圧縮空気源装置等を個別に備え付けるものであるため、複数の軌道分岐部が存在する場合、その備え付けのための施工作業やメンテナンスに手間が掛かる問題を有していた。
【0006】
特に、空気圧縮器やエアタンクを含む圧縮空気源装置は、軌道分岐部付近に設置した小屋の中等に設けられる。その際、複数の軌道分岐部及び異物除去装置が狭い範囲内で密集するように設けられた場合、それら異物除去装置の数だけ圧縮空気源装置のための小屋が設置される。それらの小屋は、積雪を軌道の脇に寄せる時などに障害となるため、極力小さくまたは少なくしたいものであった。
【0007】
【課題を解決するための手段】
本発明は、上記の課題を解決して、複数の軌道分岐部が存在する場合に、各軌道分岐部における不転換を有効に防止しながら、構成部品の削減を図ることができる軌道分岐部の異物除去装置を提供することを目的とする。
そのため、請求項1の軌道分岐部の異物除去装置は、ほぼ平行に延びる2つの本線と、それら2つの本線をつなぎ、かつそれらの本線の間で交差する2つの副本線との各連結点に設置された軌道分岐部に備え付けられ、基本レールとトングレールとの間に落下した異物を、圧縮空気源装置から供給される圧縮空気を上記基本レールの内側部に配置した配管ユニットから噴射することにより除去する異物除去装置であって、前記各本線のそれぞれに備えられた異物除去装置のうち、前記本線に沿う方向で同じ側に位置する2つの異物除去装置の前記配管ユニットを単一の前記圧縮空気源装置に接続し、それらの異物除去装置の圧縮空気源装置を共有化したことを特徴とするものである。
【0008】
ここで、本発明では、通常、前記本線に沿う方向で同じ側に位置する2つの軌道分岐部で同時にポイント切換を行うことはなく、従って、これら2つの異物除去装置で同時に圧縮空気を噴射することもない点等に着目し、前記2つの異物除去装置について圧縮空気源装置を共有化している。これにより、全体として圧縮空気源装置の個数を削減して、異物除去装置の構成を簡素化できる。
【0009】
請求項2の軌道分岐部の異物除去装置は、請求項1の構成において、前記各異物除去装置による噴射動作は、それぞれの軌道分岐部における列車通過検知及び不転換検知に基づいて行うことを特徴とするものである。
【0010】
ここでは、実際にトングレールの不転換が生じた不転換検知時のみでなく、列車通過検知時にも配管ユニットからの圧縮空気の噴射動作を行うようにしたので、各軌道分岐部で不転換を事前に予防し、かつ実際に不転換が生じた時にも異物を除去することにより、更なる不転換を防止できるようになる。
【0011】
請求項3の軌道分岐部の異物除去装置は、軌道分岐部の基本レールとトングレールとの間に落下した異物を、上記基本レールの内側部に配置した配管ユニットから圧縮空気を噴射することにより除去する異物除去装置において、単一の圧縮空気源装置に接続された配管ユニットを複数の軌道分岐部のそれぞれに備え、一方の軌道分岐部に備えた配管ユニットの噴射動作は、当該軌道分岐部における列車通過検知及びトングレールの不転換検知に基づいて行い、他方の軌道分岐部に備えた配管ユニットの噴射動作は、当該軌道分岐部におけるトングレールの不転換検知に基づいて行うものである。
【0012】
ここでは、比較的近い位置に複数の軌道分岐部が存在し、かつ一方の軌道分岐部における転換動作の頻度が比較的高く、他方の軌道分岐部における転換動作の頻度が比較的低い場合に、圧縮空気源装置を共通化している。
【0013】
転換動作の頻度の比較的高い上記一方の軌道分岐部では、実際に不転換が生じた不転換検知時のみでなく、列車通過検知時にも配管ユニットからの圧縮空気の噴射動作を行うことによって、転換動作の頻度の高い軌道分岐部で不転換を事前に予防し、かつ実際に不転換が生じた時にも異物を除去することにより、更なる不転換を防止できる。また、転換動作の頻度の比較的低い上記他方の軌道分岐部では、実際に不転換が検知された時のみに圧縮空気を噴射することにより、更なる不転換の発生を防止して、転換動作の頻度の低い軌道分岐部におけるポイントの切換動作も確実に行えるようになる。
【0014】
請求項4の軌道分岐部の異物除去装置は、請求項3の構成において、上記一方の軌道分岐部に備えた配管ユニットは、当該軌道分岐部の列車通過検知に基づいて、所定時間だけ圧縮空気を噴射するとともに、当該軌道分岐部の上記不転換検知に基づいて所定時間だけ圧縮空気を噴射するものである。このように、圧縮空気の噴射量を時間で制御することによって、一層簡単な制御とすることができる。
【0015】
請求項5の軌道分岐部の異物除去装置は、請求項3の構成において、上記他方の軌道分岐部に備えた配管ユニットは、当該軌道分岐部の上記不転換検知に基づいて所定時間だけ圧縮空気を噴射するものである。これによれば、圧縮空気の噴射量を時間で制御することによって、一層簡単な制御とすることができる。
【0016】
【発明の実施の形態】
以下、本発明の第1の実施の形態を図面に基づいて説明する。図1に軌道分岐部付近の軌道の配置例を示す。上り本線A1と下り本線A2は互いにほぼ平行に延びている。これらの本線A1、A2をつなぎ、かつ本線A1、A2間で交差する2つの副本線B1、B2が設けられている。各副本線B1、B2の両端部と各本線A1、A2との連結点はそれぞれ軌道分岐部D1乃至D4を構成している。
【0017】
各軌道分岐部D1乃至D4には異物除去装置(図1には具体的に図示せず)が設けられているが、ここでは、本線A1、A2に沿う方向で同じ側、つまり図1の左側に位置する2つの軌道分岐部D1、D2における異物除去装置の圧縮空気源装置1が共有化されるとともに、図1の右側に位置する他の2つの軌道分岐部D3、D4の圧縮空気源装置2も共有化されている。
【0018】
以下、本線A1と副本線B1との連結点である軌道分岐部D1の構成を説明するが、他の軌道分岐部D2乃至D4の構成も軌道分岐部D1と同様である。図2に示すように、軌道分岐部D1では2つの基本レール3、4間に2つのトングレール5、6が配置され、トングレール5、6の図中右端側に連続するように他の2つの基本レール7、8が配置されている。本線A1は軌道分岐部D1より図中左側では基本レール3、4により構成される一方、軌道分岐部D1より図中右側では基本レール7、4により構成されている。また、副本線B1は基本レール3、8により構成されている。
【0019】
図2の状態では、トングレール5の先端側(図中左端側)が基本レール3の内側面に当接されるとともにトングレール6の先端側が基本レール4から離間されることにより、トングレール5によって基本レール7が基本レール3と連結され、本線A1上を車両が直進できる定位側に転換されている。
【0020】
一方、図示しないが、トングレール5、6を基端(図2中右端)を中心に回動させ、上記とは逆にトングレール6の先端側を基本レール4の内側面に当接させるとともにトングレール5の先端側を基本レール3から離間させると、基本レール8がトングレール6を介して基本レール4と連結され、本線A1と副本線B1とが連結される反位側に転換される。
【0021】
なお、便宜上、基本レール3及びトングレール5を定位側のレール、基本レール4及びトングレール6を反位側のレールという。各トングレール5、6の先端部に対応する基本レール3、4の内側面には、いずれかのトングレール5、6の先端が対応する基本レール3、4の内側面に当接して転換が確実に行われていることを検知する接触式等の転換検知センサV2(図2では反位側のセンサV2のみ図示)が設けられている。
【0022】
図3に基本レール4の概略断面を示すように、基本レール4の高さ方向略中間部には、基本レール4の長手方向に所定の間隔を隔てて複数の取付孔4aが設けられている。これら取付孔4aには、中空の圧縮空気供給管10が挿入され、取付金具11及び取付ナット12を介して取り付けられている。
【0023】
基本レール4の内側面には、断面略矩形状で中空の配管ユニット22が固定されている。配管ユニット22は、トングレール6の長手方向中間部から先端部に渡る基本レール4の内側面に設けられ、上記圧縮空気源装置20から供給管路13及び圧縮空気供給管10を介して配管ユニット22内に圧縮空気が供給されるようになっている。配管ユニット22の内側面には、長手方向に所定の間隔を隔てて複数の噴射ノズル24、25がねじ26等で取り付けられている。
【0024】
なお、配管ユニット22及び噴射ノズル24、25は、図3に仮想線で示すように、トングレール6が基本レール4に当接した状態で基本レール4とトングレール6間の隙間に収容可能な幅寸法とされている。21は、枕木15上に設けられて、トングレール6の転換に伴う回動を案内する床板である。
【0025】
以上では、軌道分岐部D1における基本レール4とトングレール6間の配管ユニット22及び噴射ノズル24、25等について説明したが、基本レール3とトングレール5と間にも配管ユニット22’及び噴射ノズル24’、25’等が上記したものと左右対称に設けられ、上記と同様の供給管路13を介して圧縮空気源装置1に接続されている。各噴射ノズル24、25、24’、25’は、図2中に矢印P及びQで示す方向に圧縮空気を噴射するようになっている。
【0026】
なお、軌道分岐部D2も軌道分岐部D1と同様に構成され、かつ上記と同様の配管ユニットや噴射ノズルが基本レールの内側面に設けられている。そして、この軌道分岐部D2の定位側及び反位側の配管ユニットは、上記と同様の供給管路26(図2参照)を介して上記と同一の圧縮空気源装置1に接続され、圧縮空気源装置1から軌道分岐部D1及びD2の双方に圧縮空気が供給可能とされている。
【0027】
次に、圧縮空気源装置1の内部構成を説明する。図4に示すように、圧縮空気源装置1内では、空気圧縮器30のタンク30aから各逆止弁31、32を介して1対のタンク33、34に圧縮空気が供給されるようになっており、これらのタンク33、34にはタンク用圧力センサ33a、34aが設けられている。
【0028】
タンク33、34は各々軌道分岐部D1での噴射に用いられる噴射用電磁弁35、36に接続されるとともに、軌道分岐部D2での噴射に用いられる噴射用電磁弁37、38にも接続されている。また、軌道分岐部D1用の噴射用電磁弁35は前記供給管路13を介して基本レール3側、つまり、定位側の配管ユニット22に接続される一方、噴射用電磁弁36も前記供給管路13を介して基本レール4側、つまり、反位側の配管ユニット22’に接続されている。
【0029】
更に、軌道分岐部D2用の噴射用電磁弁37は、前記供給管路26を介して上記軌道分岐部D2における定位側の基本レールの配管ユニット(不図示)に接続される一方、噴射用電磁弁38は前記供給管路26を介して軌道分岐部D2における反位側の基本レールの配管ユニットに接続されている。
【0030】
図4の状態では、各噴射用電磁弁35乃至38は全て中立位置Xとなっており、タンク33、34内の圧縮空気はいずれの軌道分岐部D1、D2にも供給されない状態である。例えば、軌道分岐部D1用の噴射用電磁弁35、36を定位側位置Yとなるように切り換えると、タンク33、34内の圧縮空気が軌道分岐部D1の定位側、つまり、基本レール3側の配管ユニット22に供給され、軌道分岐部D1の定位側で噴射ノズル24、25から圧縮空気の噴射が行われる。
【0031】
また、軌道分岐部D1用の噴射用電磁弁35、36を図4中上方へ移動させて反位側位置Zに切り換えると、タンク33、34内の圧縮空気が軌道分岐部D1の反位側、つまり、基本レール4側の配管ユニット22’に供給され、軌道分岐部D1の反位側で噴射ノズル24’、25’から圧縮空気の噴射が行われる。なお、軌道分岐部D2の噴射用電磁弁37、38を定位側位置Yまたは反位側位置Zに切り換えた場合も、上記と同様に軌道分岐部D2の定位側または反位側で圧縮空気の噴射が行われる。なお、圧縮空気源装置2も圧縮空気源装置1と同様に構成され、軌道分岐部D3、D4に圧縮空気を供給できるようになっている。
【0032】
次に、共通の圧縮空気源装置1を含む上記2つの軌道分岐部D1及びD2の空気圧回路の制御系の構成を示す。図5に示すように、駅構内等に設けられる制御盤40には、前記列車通過検知センサV1、V1’、軌道分岐部D1及びD2に各々設けた転換検知センサV2、前記圧縮空気源装置1内のタンク33、34の各タンク用圧力センサ33a、34a、空気圧縮器30のタンク用圧力スイッチ30b等が接続されている。そして、制御盤40は、これら各センサやスイッチからの信号等に基づいて、空気圧縮器30のオン・オフ制御や各噴射用電磁弁35乃至38の切換制御等を行うようになっている。
【0033】
列車通過検知センサV1、V1’は、軌道分岐部D1、D2の近傍における各本線A1、A2に沿って配置されている(図1参照)。各列車通過検知センサV1、V1’は、例えば、常時一定強度の交流磁界を発生する送信コイルV1aと、この送信コイルV1aからの磁界を受信する受信コイルV1bとからなり、列車の車輪が送信コイルV1aと受信コイルV1b間を通過する際に生ずる誘導磁界に基づく磁界強度の変化により列車の通過を検知するようになっている。なお、磁界式の列車通過検知センサV1、V1’に代えて、例えば、光学式のものを用いてもよい。
【0034】
制御盤40は噴射用電磁弁35乃至38を切換制御することにより、軌道分岐部D1及びD2の定位側及び反位側の基本レール3、4の内側面から所定のタイミングで圧縮空気を噴射して、基本レール3、4とトングレール5、6間に落下した異物を除去するようになっている。
【0035】
その場合、軌道分岐部D1での圧縮空気源装置1からの圧縮空気の噴射は、前記列車通過検知センサV1により軌道分岐部D1を列車が通過したことが検知された際、及びトングレール5、6で不転換が生じたことが前記転換検知センサV2で検出された際に行われる。一方、軌道分岐部D2での圧縮空気源装置1からの圧縮空気の噴射も、軌道分岐部D2側の前記列車通過検知センサV1’により軌道分岐部D2を列車が通過したことが検知された際、及び軌道分岐部D2側の転換検知センサV2’で当該分岐部D2のトングレール(不図示)の不転換が生じたことが検出された際に行われる。
【0036】
本実施の形態で、軌道分岐部D1、D2の圧縮空気源装置1を共有化したのは、2つの軌道分岐部D1、D2で同時に圧縮空気を噴射する状況が想定されないためである。すなわち、圧縮空気の噴射は、上記のように、まず、列車の通過時に行われるが、実際には安全面の配慮等から2つの本線A1、A2上をそれぞれ走行する列車が2つの軌道分岐部D1、D2を同時に通過することはない。また、通常、一方の軌道分岐部D1またはD2を列車が通過した後、所定時間(一旦圧縮空気を噴射した後、圧縮空気源装置1の空気圧縮器30でタンク33、34内に圧縮空気を補充するのに要する時間)以内に他方の軌道分岐部を列車が通過することもない。
【0037】
また、圧縮空気の噴射は、軌道分岐部D1、D2でトングレール5、6の不転換が生じた際にも行われるが、副本線B1、B2を同時に列車が通過することはなく、従って、軌道分岐部D1、D2で同時にポイント切換が行われることもないため、軌道分岐部D1、D2で同時に不転換が生じることも考えられない。従って、2つの軌道分岐部D1、D2で同時に圧縮空気の噴射が必要とされることはないので、上記のように、軌道分岐部D1、D2で圧縮空気源装置1を共有化しても何ら支障は生じない。
【0038】
上記圧縮空気の噴射モードとしては、制御盤40による自動噴射モードと手動噴射モードとがあり、噴射モードの切換は制御盤40に設けた不図示の自動/手動切換スイッチにより行われるようになっている。以下、自動噴射モードにより噴射する場合の制御盤40の制御手順、つまり、噴射用電磁弁35、36の切換制御等の手順を図6のフローチャートに基づいて説明する。
【0039】
ステップW0でトングレール5、6が定位側または反位側に切り換わった後、列車通過検知センサV1がオン(ステップW1)となると、軌道分岐部D1またはD2を列車が通過し始め(W2)、列車通過検知センサV1またはV1’がオフ(W3)に復帰すると軌道分岐部D1またはD2を列車が通過し終わることになる。
【0040】
列車通過後、タンク33,34内の圧力値が圧縮空気の噴射に十分な所定圧、例えば、0.78MPa以上であるか否かがタンク用圧力センサ33a、34aからの信号に基づいて判定され、所定圧未満であればW1に復帰する。ここで、上記所定圧は上記0.78MPaに限るものではなく、降雪量やトングレール5、6の長さ(圧縮空気の噴射により異物を吹き飛ばすべき範囲)等の条件に応じて適宜に決定される。
【0041】
タンク33、34内の圧力値が上記所定圧以上であれば、続いて、所定時間T、例えば、10秒程度が制御盤40に内蔵された不図示のタイマでカウントされ(W5)、その後、圧縮空気の噴射に先立って不図示のブザーが、所定時間、例えば、3秒間、警報用に鳴動される(W6)。その後、噴射用電磁弁35、36がオンとされ、前記定位側位置Yまたは反位側位置Zに切り換えられて(W7)、定位側または反位側の基本レール3、4の内側面の配管ユニット22または22’から圧縮空気が所定時間、例えば、3秒間噴射(W8)された後、噴射用電磁弁35、36が中立位置Xに復帰されてオフとされる(W9)。
【0042】
その後、列車の通行予定時刻等に応じてポイント転換指令(W10)が出されると、不図示の転換モータの駆動によりトングレール5、6が転換を開始するが、この時、制御盤40内の不図示の転換モータ動作検知タイマがオンとされて(W11)、転換に要する所定時間(例えば、12秒程度)が転換モータ動作検知タイマでカウントされる(W11)。
【0043】
そして、上記所定時間以内に転換モータが停止したか否かが判定され(W12)、所定時間以内に停止していればトングレール5、6の転換が正常に終了したものと判断される一方(W13)、転換モータが所定時間以内に停止していなければ、不転換が生じているものと判定され(W14)、ポイント戻し指令が出される(W15)。
【0044】
これにより、トングレール5、6を元の位置に復帰させるべく上記転換モータが逆回転される(W16)。そして転換モータの逆回転が終了して転換モータが停止しているか否かが判定され(W17)、停止していなければW16に復帰する。一方、転換モータが停止していれば、トングレール5,6が元の位置に復帰しているので、続いて、タンク33、34内の圧力値が所定値、例えば、0.78MPa以上であるかが判定され(W18)、所定値未満であれば圧縮空気の噴射が不可能であるからW10に戻って直ちにポイント切換が再度実行される。
【0045】
一方、W18でタンク33,34内の圧力値が所定値以上であれば、圧縮空気の噴射に先立って不図示のブザーが所定時間、例えば、3秒間、警報用に鳴動される(W19)。その後、噴射用電磁弁35、36がオンとされ、前記定位側位置Yまたは反位側位置Zに切り換えられて(W20)、定位側または反位側の基本レール3、4の内側面の配管ユニット22または22’から圧縮空気が所定時間、例えば、3秒間噴射(W21)されて異物が除去された後、噴射用電磁弁35、36が中立位置Xに復帰されてオフとされる(W22)。
【0046】
その後、ポイント転換指令が出され(W23)、かつ制御盤40内の不図示の転換モータ動作検知タイマがオンとされて(W24)、転換に要する所定時間(例えば、12秒程度)が転換モータ動作検知タイマでカウントされる。そして、上記所定時間以内に転換モータが停止したか否かが判定され(W25)、所定時間以内に停止していればトングレール5,6の転換が終了して不転換が解消されたものと判断される(W26)。一方、転換モータが所定時間以内に停止していなければ、不転換状態が継続ているものと判定され(W27)、W15に戻って上記と同様の手順が繰り返される。
【0047】
次に、本発明の第2の実施の形態を説明する。図7に示すように、鉄道の駅構内には、上り側プラットホーム41と下り側プラットホーム42とが対向位置に配置され、両プラットホーム41、42間に陸橋43が設けられている。そして、上り側プラットホーム41に沿って上り本線A3の軌道が略直線状に延びる一方、下り側プラットホーム42に沿って下り本線A4の軌道が略直線状に延びている。
【0048】
上り本線A3と下り本線A4との間に両本線と略平行に上下副本線B3が設けられ、この上下副本線B3の図1中左側端部は軌道分岐部D5にて上り本線A1と連結可能とされる一方、上下副本線B3の軌道の図1中右側端部は軌道分岐部D6、第1分岐線B3a及び軌道分岐部D7を介して上り本線A1と連結されるか、或いは軌道分岐部D6、第2分岐線B3b及び軌道分岐部D8を介して下り本線A4に連結されることが可能とされている。
【0049】
下り側プラットホーム42における下り本線A4と反対側には下り副本線B4が設けられ、下り副本線B4の両端部は、各々軌道分岐部D9、D10を介して下り本線A4と連結可能とされている。
【0050】
また、上記軌道分岐部D5の上り側プラットホーム41と反対側に軌道分岐部D11が設けられ、この軌道分岐部D11にて、貨物車両用の引き込み線Eが上り本線A3から分岐している。更に、軌道分岐部D5の上り側プラットホーム41側と、下り副本線B4における進行方向前方側のコーナ部には、各々軌道分岐部D12、D13が設けられ、これら軌道分岐部D12、D13には、各々安全側線F1、F2が上り本線A3及び下り副本線B4から分岐している。
【0051】
上記隣接する2つの軌道分岐部D5及びD12は双動式(連動式)であり、軌道分岐部D5が上り本線A3の直進側に転換される時には軌道分岐部D12も直進側に転換される一方、軌道分岐部D5が上下副本線B3側に転換される時には軌道分岐部D12も安全側線F1側に転換されるようになっている。
【0052】
これにより、上下副本線B3から第1の列車が軌道分岐部D5を通過して上り本線A3上に進入しようとする時に、上り本線A3上の第2の列車が上り側プラットホーム41から誤って上記軌道分岐部D5方向へ進行しようとした場合でも、当該第2の車両は軌道分岐部D12から安全側線F1側へ誘導され、車両同士の衝突事故が未然に防止される。
【0053】
上記と同様に軌道分岐部D10及びD13も双動式となっており、軌道分岐部D10が直進側に転換される時には軌道分岐部D13が安全側線F2側に転換され、下り本線A4を通過する車両と下り副本線B4を通過する車両との衝突が防止されるようになっている。なお、軌道分岐部D5と軌道分岐部D11間には、軌道分岐部D5を列車が通過することを検知する列車通過検知センサV1が設けられている。
【0054】
第2の実施の形態では、2つの軌道分岐部D5、D11の異物除去装置における圧縮空気源装置44を共有化している。そして、軌道分岐部D5での圧縮空気の噴射は、前記列車通過検知センサV1により軌道分岐部D5を列車が通過したことが検知された際、及び軌道分岐部D5で不図示のトングレールの不転換が生じたことが前記転換検知センサで検出された際に行われ、一方、軌道分岐部D11での圧縮空気の噴射は、軌道分岐部D11側の転換検知センサで当該軌道分岐部D11のトングレールの不転換が生じたことが検出された際に行われるようになっている。
【0055】
これは、軌道分岐部D5は、上り本線A3と、追越し用等に用いられる上下副本線B3との間のポイントの切換を行うものであり、転換動作の頻度が比較的高いため、実際に不転換が生じた場合のみでなく、列車が通過する度にそれ以後の転換時における不転換の予防用に圧縮空気の噴射を行うことが好ましいのに対して、軌道分岐部D11は上り本線A3と貨物車用の引き込み線Eとの間のポイントの切換を行うものであるから、転換動作の頻度が比較的低く、実際に不転換が生じた際に圧縮空気を噴射すれば十分な点を考慮したためである。
【0056】
また、軌道分岐部D5は転換動作の頻度の比較的大きいものの、軌道分岐部D11は転換動作の頻度が比較的小さいため、圧縮空気源装置44を両分岐部D5、D11で共通化しても圧縮空気の供給能力の点で何ら問題が生じないことも考慮している。
【0057】
なお、上記図7に示すような駅構内の配置においては、例えば、2つの軌道分岐部D10及びD13の圧縮空気源装置45を共通化することもできる。ここでは、軌道分岐部D10及びD13は、前述したように双動式であり、両分岐部D10及びD13とも転換動作の頻度が比較的高くなる。
【0058】
しかし、軌道分岐部D10及びD13を通過する車両は下り副本線B4から下り本線A4に進入する車両であり、係る車両は下り側プラットホーム42で一旦停車した後、発車する車両であるため、軌道分岐部D10及びD13を通過する際の車両走行速度が比較的低いため、上記軌道分岐部D10及びD13では、コーナ部のレールの曲率半径を比較的小さくできることから、トングレール(具体的に図示せず)の長さを上記軌道分岐部D5や上記第1の実施の形態におけるトングレール5、6より短くできる。
【0059】
従って、各軌道分岐部D10及びD13における圧縮空気の噴射量は軌道分岐部D5等での噴射量に比べてかなり小量でよいため、比較的転換動作の頻度の高い2つの軌道分岐部D10、D13で圧縮空気源装置45を併用しても、圧縮空気の噴射能力等に問題は生じない。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る軌道分岐部の異物除去装置が設けられた軌道の配置を示す概略平面図。
【図2】上記実施の形態における一つの軌道分岐部を示す平面図。
【図3】上記軌道分岐部の基本レールを示す概略垂直断面図。
【図4】上記軌道分岐部等に圧縮空気を供給する圧縮空気源装置の内部構成を示す空気圧回路図。
【図5】上記異物除去装置の制御系の構成を示す説明図。
【図6】上記実施の形態における自動による圧縮空気の噴射制御手順を示すフローチャート。
【図7】本発明の第2の実施の形態における軌道分岐部異物除去装置が設けられた駅構内の軌道の配置を示す概略平面図。
【符号の説明】
D1、D2、D5、D10、D11、D13 軌道分岐部
3、4 基本レール
5、6 トングレール
22 配管ユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foreign matter removing device for a track branching portion that removes foreign matter dropped between a basic rail of a railroad track branching portion and a tongrel by injection of compressed air.
[0002]
[Prior art]
At the track branching part in the snowfall region etc., there is a problem that the inversion of the Tongleil occurs due to the falling of snow etc. in the gap between the basic rail and the point switching Tonglele provided between the basic rails. is there. For this reason, conventionally, snow melting devices of electric heating type, hot air type, hot water type and the like are installed in the track branching part in the snowfall region or the like.
[0003]
However, such a snow melting device requires a certain amount of time for melting snow, so when it is necessary to switch the point immediately after passing the vehicle, the snow lump etc. that has fallen brought in by the vehicle is not yet melted. In many cases, the inversion of the Tongrel is likely to occur. Furthermore, when a stepping stone or the like generated by a snow mass falling on the ballast is sandwiched between the Tongrel and the basic rail, there is a problem that the stepping stone or the like cannot be removed by the snow melting device.
[0004]
Therefore, conventionally, a piping unit is provided on the inner surface of the basic rail facing the Tongrel, and this piping unit is connected to a compressed air source device via a supply passage, and is arranged in a longitudinal direction on the piping unit. Foreign matter removing device for track branching part that blows away and removes foreign matter such as snow blocks and stepping stones sandwiched between the basic rail and tongrel by injecting compressed air from the nozzle part toward the tip side of the tongrel Has been proposed (see JP-A-7-54317).
[0005]
[Problems to be Solved by the Invention]
However, in the above foreign matter removing device, since the piping unit and the compressed air source device are individually provided for each track branching portion, when there are a plurality of track branching portions, construction for the mounting is provided. There was a problem that work and maintenance were troublesome.
[0006]
In particular, a compressed air source device including an air compressor and an air tank is provided in a hut installed near the track branching portion. At that time, when the plurality of track branching portions and the foreign matter removing devices are provided so as to be dense within a narrow range, the huts for the compressed air source devices are installed by the number of the foreign matter removing devices. These huts would be an obstacle when bringing snow to the side of the track, so we wanted to make them as small or as small as possible.
[0007]
[Means for Solving the Problems]
The present invention solves the above-mentioned problem, and when there are a plurality of track branching portions, the track branching portion capable of reducing the number of components while effectively preventing non-conversion in each track branching portion. It is an object to provide a foreign matter removing apparatus.
Therefore, the foreign matter removing apparatus for the track branching portion of claim 1 is provided at each connection point between two main lines extending substantially in parallel and two sub main lines that connect the two main lines and intersect between the main lines. Injecting compressed air supplied from a compressed air source device from a piping unit arranged on the inner side of the basic rail to the foreign matter that has fallen between the basic rail and the tongrel installed in the installed track branch. The foreign matter removing device for removing the pipe unit of the two foreign matter removing devices located on the same side in the direction along the main line among the foreign matter removing devices provided on each of the main lines. The compressed air source device is connected to the compressed air source device, and the compressed air source device of these foreign matter removing devices is shared.
[0008]
Here, in the present invention, normally, point switching is not performed at the same time in two orbit branching portions located on the same side in the direction along the main line, and therefore, compressed air is simultaneously injected by these two foreign matter removing devices. Focusing on the fact that there is no such thing, the compressed air source device is shared for the two foreign matter removing devices. Thereby, the number of compressed air source devices as a whole can be reduced, and the configuration of the foreign matter removing device can be simplified.
[0009]
The foreign matter removing device for a track branching portion according to claim 2 is the configuration according to claim 1, wherein the injection operation by each foreign matter removing device is performed based on train passage detection and non-conversion detection in each track branching portion. It is what.
[0010]
In this case, the compressed air injection operation from the piping unit is performed not only at the time of non-conversion detection when the inversion of the tongler has actually occurred, but also at the time of train passage detection. Further inversion can be prevented by preventing foreign matters in advance and removing foreign matter even when inversion has actually occurred.
[0011]
The foreign matter removing device for the track branching portion according to claim 3 is configured by injecting compressed air from a piping unit arranged on the inner side of the basic rail, with the foreign matter dropped between the basic rail and the tongrel of the track branching portion. In the foreign matter removing device to be removed, a pipe unit connected to a single compressed air source device is provided in each of the plurality of track branch portions, and the injection operation of the pipe unit provided in one track branch portion is Is performed based on the train passage detection and the non-conversion detection of the Tongleil, and the injection operation of the piping unit provided in the other track branching unit is performed based on the non-conversion detection of the Tongleil in the track branching unit.
[0012]
Here, when there are a plurality of orbit branching portions at relatively close positions, the frequency of the switching operation in one of the track branching portions is relatively high, and the frequency of the switching operation in the other track branching portion is relatively low, The compressed air source device is shared.
[0013]
In one of the above-mentioned track branch portions where the frequency of conversion operation is relatively high, by performing the compressed air injection operation from the piping unit not only at the time of non-conversion detection in which non-conversion has actually occurred, but also at the time of train passage detection, Further inversion can be prevented by preventing the inversion in advance at the orbital branch portion where the frequency of the conversion operation is high, and removing foreign matter even when the inversion actually occurs. In addition, in the other orbital branch portion where the frequency of the conversion operation is relatively low, the occurrence of further non-conversion is prevented by injecting compressed air only when non-conversion is actually detected, and the conversion operation is performed. The switching operation of the points in the orbital branching portion with a low frequency of the frequency can be performed reliably.
[0014]
According to a fourth aspect of the present invention, there is provided a foreign matter removing apparatus for a track branching section, wherein the piping unit provided in the one track branching section is compressed air for a predetermined time based on a train passing detection of the track branching section. And the compressed air is injected for a predetermined time based on the non-conversion detection of the track branching portion. Thus, by controlling the injection amount of compressed air with time, it is possible to make the control simpler.
[0015]
According to a fifth aspect of the present invention, there is provided a foreign matter removing apparatus for a track branching section, wherein the piping unit provided in the other track branching section is compressed air for a predetermined time based on the non-conversion detection of the track branching section. Is to inject. According to this, it is possible to make the control simpler by controlling the injection amount of the compressed air with time.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 shows an arrangement example of the track near the track branching portion. The upstream main line A1 and the downward main line A2 extend substantially parallel to each other. Two sub-main lines B1 and B2 are provided which connect the main lines A1 and A2 and intersect between the main lines A1 and A2. Connection points between both ends of each of the main lines B1 and B2 and each of the main lines A1 and A2 constitute track branch portions D1 to D4, respectively.
[0017]
Each track branching portion D1 to D4 is provided with a foreign substance removing device (not specifically shown in FIG. 1), but here, the same side in the direction along main lines A1 and A2, that is, the left side in FIG. The compressed air source device 1 of the foreign matter removing device is shared by the two track branch portions D1 and D2 positioned at the same position, and the compressed air source device of the other two track branch portions D3 and D4 positioned on the right side of FIG. 2 is also shared.
[0018]
Hereinafter, the configuration of the track branching portion D1, which is a connection point between the main line A1 and the sub-main line B1, will be described. The configurations of the other track branching portions D2 to D4 are the same as those of the track branching portion D1. As shown in FIG. 2, in the track branch portion D1, two tongrels 5 and 6 are arranged between the two basic rails 3 and 4, and the other two so as to be continuous to the right end side of the tongrels 5 and 6 in the drawing. Two basic rails 7, 8 are arranged. The main line A1 is composed of the basic rails 3 and 4 on the left side in the drawing from the track branching portion D1, and is composed of the basic rails 7 and 4 on the right side in the drawing from the track branching portion D1. The secondary main line B1 is composed of basic rails 3 and 8.
[0019]
In the state of FIG. 2, the front end side (left end side in the figure) of the tongrel 5 is brought into contact with the inner surface of the basic rail 3 and the front end side of the tongrel 6 is separated from the basic rail 4. As a result, the basic rail 7 is connected to the basic rail 3, and the main rail A1 is switched to the stationary side where the vehicle can go straight on the main line A1.
[0020]
On the other hand, although not shown, the tongrels 5 and 6 are rotated around the base end (the right end in FIG. 2), and the tip side of the tongrel 6 is brought into contact with the inner surface of the basic rail 4 contrary to the above. When the tip side of the tongue rail 5 is separated from the basic rail 3, the basic rail 8 is connected to the basic rail 4 through the tongrel 6 and is converted to the reverse side where the main line A1 and the sub main line B1 are connected. .
[0021]
For the sake of convenience, the basic rail 3 and the Tongrel 5 are referred to as a localization side rail, and the basic rail 4 and the Tongrel 6 are referred to as an inversion side rail. The inner side surfaces of the basic rails 3 and 4 corresponding to the tip portions of the respective Tongrels 5 and 6 are switched by the tips of any of the Tongle rails 5 and 6 coming into contact with the inner surface of the corresponding basic rails 3 and 4. A contact-type conversion detection sensor V2 (only the sensor V2 on the opposite side is shown in FIG. 2) is provided to detect that the operation is being performed reliably.
[0022]
As shown in a schematic cross section of the basic rail 4 in FIG. 3, a plurality of mounting holes 4 a are provided at a substantially intermediate portion in the height direction of the basic rail 4 at a predetermined interval in the longitudinal direction of the basic rail 4. . A hollow compressed air supply pipe 10 is inserted into these attachment holes 4 a and attached via attachment fittings 11 and attachment nuts 12.
[0023]
A hollow piping unit 22 having a substantially rectangular cross section is fixed to the inner surface of the basic rail 4. The piping unit 22 is provided on the inner surface of the basic rail 4 from the longitudinal intermediate portion to the tip portion of the tongrel 6 and is connected to the piping unit 22 from the compressed air source device 20 via the supply pipeline 13 and the compressed air supply tube 10. Compressed air is supplied into 22. A plurality of injection nozzles 24 and 25 are attached to the inner side surface of the piping unit 22 with screws 26 or the like at predetermined intervals in the longitudinal direction.
[0024]
In addition, the piping unit 22 and the injection nozzles 24 and 25 can be accommodated in a gap between the basic rail 4 and the tongrel 6 in a state where the tongrel 6 is in contact with the basic rail 4 as indicated by phantom lines in FIG. It is the width dimension. 21 is a floor board which is provided on the sleeper 15 and guides the rotation accompanying the change of the Tongrel 6.
[0025]
In the above description, the piping unit 22 and the injection nozzles 24 and 25 between the basic rail 4 and the Tongler 6 in the track branching section D1 have been described, but the piping unit 22 ′ and the injection nozzle between the basic rail 3 and the Tongler 5 are also described. 24 ', 25', etc. are provided symmetrically with those described above, and are connected to the compressed air source device 1 through the supply pipe 13 similar to the above. Each injection nozzle 24, 25, 24 ', 25' injects compressed air in the direction shown by arrows P and Q in FIG.
[0026]
The track branch portion D2 is also configured in the same manner as the track branch portion D1, and the same piping unit and injection nozzle as those described above are provided on the inner surface of the basic rail. And the piping unit of the localization side and the reverse side of this track branching part D2 is connected to the same compressed air source device 1 as above through a supply pipe line 26 (see FIG. 2) similar to the above, and compressed air Compressed air can be supplied from the source device 1 to both the orbit branching portions D1 and D2.
[0027]
Next, the internal configuration of the compressed air source device 1 will be described. As shown in FIG. 4, in the compressed air source device 1, compressed air is supplied from the tank 30 a of the air compressor 30 to the pair of tanks 33 and 34 via the check valves 31 and 32. These tanks 33 and 34 are provided with tank pressure sensors 33a and 34a.
[0028]
The tanks 33 and 34 are respectively connected to injection electromagnetic valves 35 and 36 used for injection at the track branching portion D1, and also connected to injection electromagnetic valves 37 and 38 used for injection at the track branching portion D2. ing. The injection solenoid valve 35 for the track branching portion D1 is connected to the basic rail 3 side, that is, the localization side piping unit 22 via the supply pipe 13, while the injection solenoid valve 36 is also connected to the supply pipe. It is connected via a path 13 to the basic rail 4 side, that is, to the piping unit 22 'on the opposite side.
[0029]
Further, the injection solenoid valve 37 for the track branching portion D2 is connected to a piping unit (not shown) of the localization side basic rail in the track branching portion D2 via the supply pipe 26, while the injection electromagnetic valve. The valve 38 is connected to the piping unit of the basic rail on the opposite side in the track branching portion D2 through the supply pipeline 26.
[0030]
In the state shown in FIG. 4, all of the electromagnetic solenoid valves 35 to 38 for injection are in the neutral position X, and the compressed air in the tanks 33 and 34 is not supplied to any of the track branch portions D1 and D2. For example, when the injection solenoid valves 35 and 36 for the track branch portion D1 are switched to the localization position Y, the compressed air in the tanks 33 and 34 is moved to the localization side of the track branch portion D1, that is, the basic rail 3 side. And the compressed air is injected from the injection nozzles 24 and 25 on the localization side of the track branching section D1.
[0031]
Further, when the injection solenoid valves 35 and 36 for the track branch portion D1 are moved upward in FIG. 4 and switched to the reverse position Z, the compressed air in the tanks 33 and 34 is shifted to the reverse side of the track branch portion D1. That is, the air is supplied to the piping unit 22 ′ on the basic rail 4 side, and compressed air is injected from the injection nozzles 24 ′ and 25 ′ on the opposite side of the track branching portion D1. Even when the injection solenoid valves 37 and 38 of the orbit branching portion D2 are switched to the localization side position Y or the inversion side position Z, the compressed air is not detected on the localization or inversion side of the orbital branching portion D2 as described above. Injection is performed. The compressed air source device 2 is also configured in the same manner as the compressed air source device 1 so that compressed air can be supplied to the track branch portions D3 and D4.
[0032]
Next, the configuration of the control system of the pneumatic circuit of the two track branching portions D1 and D2 including the common compressed air source device 1 will be described. As shown in FIG. 5, the control panel 40 provided in the station premises, etc. includes the train passage detection sensors V1 and V1 ′, the conversion detection sensor V2 provided in each of the track branch portions D1 and D2, and the compressed air source device 1. The tank pressure sensors 33a, 34a of the tanks 33, 34, the tank pressure switch 30b of the air compressor 30, and the like are connected. The control panel 40 performs on / off control of the air compressor 30 and switching control of the injection solenoid valves 35 to 38 based on signals from these sensors and switches.
[0033]
The train passage detection sensors V1, V1 ′ are arranged along the main lines A1, A2 in the vicinity of the track branch portions D1, D2 (see FIG. 1). Each train passage detection sensor V1, V1 ′ is composed of, for example, a transmission coil V1a that constantly generates an alternating magnetic field having a constant strength and a reception coil V1b that receives a magnetic field from the transmission coil V1a. The passage of the train is detected by a change in the magnetic field intensity based on the induced magnetic field generated when passing between V1a and the receiving coil V1b. Instead of the magnetic field type train passage detection sensors V1 and V1 ′, for example, an optical type may be used.
[0034]
The control panel 40 controls the injection solenoid valves 35 to 38 so as to inject compressed air from the inner surfaces of the basic rails 3 and 4 on the stationary side and the reverse side of the track branch portions D1 and D2 at a predetermined timing. Thus, the foreign matter dropped between the basic rails 3 and 4 and the Tongrel 5 and 6 is removed.
[0035]
In that case, the jet of compressed air from the compressed air source device 1 at the track branch part D1 is detected when the train has passed through the track branch part D1 by the train passage detection sensor V1, and 6 is performed when the conversion detection sensor V2 detects that non-conversion has occurred. On the other hand, when jetting of compressed air from the compressed air source device 1 at the track branch portion D2 is detected by the train passage detection sensor V1 ′ on the track branch portion D2 side that the train has passed through the track branch portion D2. It is performed when the change detection sensor V2 ′ on the side of the track branching part D2 detects that the tongler (not shown) of the branching part D2 has been converted.
[0036]
In the present embodiment, the compressed air source device 1 of the orbit branching portions D1 and D2 is shared because it is not assumed that compressed air is injected simultaneously at the two orbit branching portions D1 and D2. That is, as described above, the jet of compressed air is first performed when the train passes. Actually, however, a train that travels on the two main lines A1 and A2 has two track branching portions for safety reasons. It does not pass through D1 and D2 at the same time. Usually, after the train passes through one of the track branch portions D1 or D2, the compressed air is injected into the tanks 33 and 34 by the air compressor 30 of the compressed air source device 1 for a predetermined period of time (once the compressed air is once injected). The train does not pass the other track branch within the time required for replenishment).
[0037]
In addition, the jet of compressed air is also performed when the tongrails 5 and 6 are not converted at the track branch portions D1 and D2, but the train does not pass through the secondary main lines B1 and B2 at the same time. Since point switching is not performed at the same time at the track branch portions D1 and D2, it is unlikely that the inversion occurs at the same time at the track branch portions D1 and D2. Accordingly, since the jet of compressed air is not required simultaneously at the two track branch portions D1 and D2, there is no problem even if the compressed air source device 1 is shared by the track branch portions D1 and D2 as described above. Does not occur.
[0038]
The compressed air injection mode includes an automatic injection mode by the control panel 40 and a manual injection mode. The injection mode is switched by an automatic / manual switch (not shown) provided on the control panel 40. Yes. Hereinafter, the control procedure of the control panel 40 when injecting in the automatic injection mode, that is, the procedure of switching control of the electromagnetic solenoid valves 35 and 36 for injection will be described based on the flowchart of FIG.
[0039]
After the tongrels 5 and 6 are switched to the localization side or the reverse side in step W0, when the train passage detection sensor V1 is turned on (step W1), the train starts to pass the track branching part D1 or D2 (W2). When the train passage detection sensor V1 or V1 ′ returns to OFF (W3), the train has finished passing through the track branching portion D1 or D2.
[0040]
After passing the train, it is determined based on signals from the tank pressure sensors 33a and 34a whether the pressure value in the tanks 33 and 34 is a predetermined pressure sufficient for jetting compressed air, for example, 0.78 MPa or more. If the pressure is less than the predetermined pressure, the flow returns to W1. Here, the predetermined pressure is not limited to 0.78 MPa, and is appropriately determined according to conditions such as the amount of snowfall and the lengths of the Tongrels 5 and 6 (the range in which foreign matter should be blown off by the injection of compressed air). The
[0041]
If the pressure value in the tanks 33 and 34 is equal to or higher than the predetermined pressure, then a predetermined time T, for example, about 10 seconds is counted by a timer (not shown) built in the control panel 40 (W5). Prior to the injection of compressed air, a buzzer (not shown) is sounded for alarm for a predetermined time, for example, 3 seconds (W6). Thereafter, the injection solenoid valves 35 and 36 are turned on and switched to the localization side position Y or the reverse side position Z (W7), and piping on the inner surface of the basic rails 3 and 4 on the localization side or the reverse side is performed. After the compressed air is injected from the unit 22 or 22 'for a predetermined time, for example, 3 seconds (W8), the electromagnetic solenoid valves 35 and 36 for injection are returned to the neutral position X and turned off (W9).
[0042]
Thereafter, when a point change command (W10) is issued according to the scheduled passage time of the train, the tonglers 5 and 6 start changing by driving a conversion motor (not shown). A conversion motor operation detection timer (not shown) is turned on (W11), and a predetermined time (for example, about 12 seconds) required for conversion is counted by the conversion motor operation detection timer (W11).
[0043]
Then, it is determined whether or not the conversion motor has been stopped within the predetermined time (W12). If the conversion motor has been stopped within the predetermined time, it is determined that the conversion of the Tongrels 5 and 6 has been normally completed ( W13) If the conversion motor has not stopped within the predetermined time, it is determined that non-conversion has occurred (W14), and a point return command is issued (W15).
[0044]
As a result, the conversion motor is reversely rotated to return the Tongrel 5 and 6 to their original positions (W16). Then, it is determined whether or not the reverse rotation of the conversion motor is finished and the conversion motor is stopped (W17). If not, the process returns to W16. On the other hand, if the conversion motor is stopped, the tongrels 5 and 6 have returned to their original positions, so that the pressure value in the tanks 33 and 34 is a predetermined value, for example, 0.78 MPa or more. (W18), if it is less than the predetermined value, it is impossible to inject compressed air. Therefore, the process returns to W10 and point switching is immediately executed again.
[0045]
On the other hand, if the pressure value in the tanks 33 and 34 is greater than or equal to a predetermined value at W18, a buzzer (not shown) is sounded for warning for a predetermined time, for example, 3 seconds, prior to the injection of compressed air (W19). Thereafter, the injection solenoid valves 35 and 36 are turned on and switched to the localization side position Y or the reverse side position Z (W20), and piping on the inner side surfaces of the basic rails 3 and 4 on the localization side or the reverse side is performed. After compressed air is injected from the unit 22 or 22 'for a predetermined time, for example, 3 seconds (W21) to remove foreign matter, the electromagnetic solenoid valves 35 and 36 for injection are returned to the neutral position X and turned off (W22). ).
[0046]
Thereafter, a point conversion command is issued (W23), a conversion motor operation detection timer (not shown) in the control panel 40 is turned on (W24), and a predetermined time (for example, about 12 seconds) required for the conversion is converted. It is counted by the motion detection timer. Then, it is determined whether or not the conversion motor has stopped within the predetermined time (W25). If the conversion motor has stopped within the predetermined time, the conversion of the tonglers 5 and 6 is completed and the non-conversion is resolved. Determination is made (W26). On the other hand, if the conversion motor has not stopped within the predetermined time, it is determined that the non-conversion state continues (W27), and the process returns to W15 and the same procedure as described above is repeated.
[0047]
Next, a second embodiment of the present invention will be described. As shown in FIG. 7, an up platform 41 and a down platform 42 are arranged at opposing positions in a railway station, and a crossover bridge 43 is provided between the platforms 41, 42. The trajectory of the upstream main line A3 extends substantially linearly along the ascending platform 41, while the trajectory of the descending main line A4 extends substantially linearly along the descending platform 42.
[0048]
An upper and lower secondary line B3 is provided between the upstream main line A3 and the downward main line A4 so as to be substantially parallel to the two main lines. The left end of the upper and lower secondary line B3 in FIG. 1 can be connected to the upstream main line A1 at the track branching portion D5. On the other hand, the right end portion in FIG. 1 of the track of the upper and lower secondary lines B3 is connected to the upstream main line A1 via the track branch portion D6, the first branch line B3a and the track branch portion D7, or the track branch portion. It is possible to be connected to the down main line A4 via D6, the second branch line B3b, and the track branch part D8.
[0049]
On the opposite side of the down platform 42 from the down main line A4, a down sub main line B4 is provided, and both ends of the down sub main line B4 can be connected to the down main line A4 via the track branch portions D9 and D10, respectively. .
[0050]
In addition, a track branching part D11 is provided on the opposite side of the track branching part D5 from the ascending platform 41, and at this track branching part D11, a lead-in line E for a cargo vehicle branches off from the ascending main line A3. Further, the track branching portions D12 and D13 are respectively provided at the corners on the upstream platform 41 side of the track branching portion D5 and the front side in the traveling direction on the descending secondary main line B4. Each of the safety side lines F1 and F2 branches from the upstream main line A3 and the downstream auxiliary main line B4.
[0051]
The two adjacent track branch portions D5 and D12 are double-acting (interlocking), and when the track branch portion D5 is converted to the straight traveling side of the up main line A3, the track branch portion D12 is also switched to the straight traveling side. When the track branch portion D5 is switched to the upper and lower secondary line B3 side, the track branch portion D12 is also switched to the safe side line F1 side.
[0052]
As a result, when the first train from the upper and lower secondary lines B3 passes through the track branching portion D5 and enters the upstream main line A3, the second train on the upstream main line A3 is mistakenly described above from the upstream platform 41. Even when the vehicle is going to travel in the direction of the track branch portion D5, the second vehicle is guided from the track branch portion D12 to the safety side line F1 side, thereby preventing a collision accident between the vehicles.
[0053]
Similarly to the above, the track branching portions D10 and D13 are also double-acting, and when the track branching portion D10 is converted to the straight traveling side, the track branching portion D13 is switched to the safe side line F2 side and passes the down main line A4. A collision between the vehicle and the vehicle passing through the descending sub main line B4 is prevented. Note that a train passage detection sensor V1 is provided between the track branch portion D5 and the track branch portion D11 to detect that the train passes through the track branch portion D5.
[0054]
In the second embodiment, the compressed air source device 44 in the foreign matter removing device of the two track branch portions D5 and D11 is shared. The jet of compressed air at the track branching portion D5 is detected when the train passing detection sensor V1 detects that the train has passed through the track branching portion D5, and at the track branching portion D5. On the other hand, the occurrence of conversion is detected by the conversion detection sensor. On the other hand, the injection of compressed air at the track branching portion D11 is performed by the change detection sensor on the track branching portion D11 side. This is done when it is detected that a rail inversion has occurred.
[0055]
This is because the orbit branching section D5 switches the points between the up main line A3 and the upper and lower sub main lines B3 used for overtaking, etc. It is preferable to inject compressed air every time a train passes, not only when a train passes, but to prevent non-conversion at the time of a subsequent conversion, whereas the track branching section D11 is connected to the upstream main line A3. Since the point is switched to and from the lead-in line E for the freight vehicle, the frequency of conversion operation is relatively low, and it is sufficient to inject compressed air when an actual conversion does not occur This is because.
[0056]
Further, although the orbital branching portion D5 has a relatively high frequency of conversion operation, the orbital branching portion D11 has a comparatively low frequency of conversion operation. Therefore, even if the compressed air source device 44 is shared by both the branching portions D5 and D11, the compression is performed. It is also considered that no problem occurs in terms of air supply capacity.
[0057]
In addition, in the arrangement | positioning in a station yard as shown in the said FIG. 7, the compressed air source device 45 of two track branch parts D10 and D13 can also be made shared, for example. Here, the orbital branching portions D10 and D13 are double-acting as described above, and the frequency of the switching operation is relatively high in both the branching portions D10 and D13.
[0058]
However, since the vehicle passing through the track branching portions D10 and D13 is a vehicle entering from the descending sub main line B4 to the descending main line A4, and the vehicle is a vehicle that stops once on the descending platform 42 and then departs, Since the vehicle traveling speed when passing through the parts D10 and D13 is relatively low, the radius of curvature of the rail of the corner part can be made relatively small in the track branch parts D10 and D13. ) Can be made shorter than the orbital branching portion D5 and the tongrels 5 and 6 in the first embodiment.
[0059]
Therefore, since the injection amount of the compressed air in each of the track branch portions D10 and D13 may be much smaller than the injection amount in the track branch portion D5 or the like, the two track branch portions D10 having a relatively high frequency of conversion operations, Even if the compressed air source device 45 is used in combination at D13, there is no problem with the compressed air injection capability.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing an arrangement of a track provided with a foreign matter removing device for a track branching portion according to a first embodiment of the present invention.
FIG. 2 is a plan view showing one orbit branching portion in the embodiment.
FIG. 3 is a schematic vertical sectional view showing a basic rail of the track branching portion.
FIG. 4 is a pneumatic circuit diagram showing an internal configuration of a compressed air source device that supplies compressed air to the track branching section and the like.
FIG. 5 is an explanatory diagram showing a configuration of a control system of the foreign matter removing apparatus.
FIG. 6 is a flowchart showing an automatic compressed air injection control procedure in the embodiment.
FIG. 7 is a schematic plan view showing the arrangement of tracks in a station premises provided with a track branching portion foreign matter removing device according to a second embodiment of the present invention.
[Explanation of symbols]
D1, D2, D5, D10, D11, D13 Orbital branch
3, 4 Basic rail
5, 6 Tongue rail
22 Piping unit

Claims (5)

ほぼ平行に延びる2つの本線と、それら2つの本線をつなぎ、かつそれらの本線の間で交差する2つの副本線との各連結点に設置された軌道分岐部に備え付けられ、基本レールとトングレールとの間に落下した異物を、圧縮空気源装置から供給される圧縮空気を上記基本レールの内側部に配置した配管ユニットから噴射することにより除去する異物除去装置であって、
前記各本線のそれぞれに備えられた異物除去装置のうち、前記本線に沿う方向で同じ側に位置する2つの異物除去装置の前記配管ユニットを単一の前記圧縮空気源装置に接続し、それらの異物除去装置の圧縮空気源装置を共有化した、軌道分岐部の異物除去装置。
The basic rail and Tongleil are installed at the track branching point installed at each connecting point between two main lines extending in parallel and the two main lines that connect and intersect the two main lines. A foreign matter removing device that removes the foreign matter dropped between and by ejecting compressed air supplied from a compressed air source device from a piping unit disposed inside the basic rail,
Of the foreign matter removing devices provided in each of the main lines, the piping units of two foreign matter removing devices located on the same side in the direction along the main line are connected to a single compressed air source device, A foreign matter removing device for a track branching portion that shares a compressed air source device of the foreign matter removing device.
前記各異物除去装置による噴射動作は、それぞれの軌道分岐部における列車通過検知及び不転換検知に基づいて行う、請求項1記載の軌道分岐部の異物除去装置。2. The foreign matter removing device for a track branching unit according to claim 1, wherein the ejection operation by each of the foreign matter removing devices is performed based on train passage detection and non-conversion detection in each track branching unit. 軌道分岐部の基本レールとトングレールとの間に落下した異物を、上記基本レールの内側部に配置した配管ユニットから圧縮空気を噴射することにより除去する異物除去装置において、
単一の圧縮空気源装置に接続された配管ユニットを複数の軌道分岐部のそれぞれに備え、一方の軌道分岐部に備えた配管ユニットの噴射動作は、当該軌道分岐部における列車通過検知及びトングレールの不転換検知に基づいて行い、他方の軌道分岐部に備えた配管ユニットの噴射動作は、当該軌道分岐部におけるトングレールの不転換検知に基づいて行う、軌道分岐部の異物除去装置。
In the foreign matter removing apparatus that removes the foreign matter dropped between the basic rail of the track branching portion and the tongrel by injecting compressed air from the piping unit arranged inside the basic rail,
A piping unit connected to a single compressed air source device is provided in each of the plurality of track branching portions, and the injection operation of the piping unit provided in one of the track branching portions is the train passage detection and the Tongleil in the track branching portion. The foreign matter removing device for the track branching section, which is based on the non-converting detection and the injection operation of the piping unit provided in the other track branching section is performed based on the non-conversion detection of the tongrel in the track branching section.
上記一方の軌道分岐部に備えた配管ユニットは、当該軌道分岐部の列車通過検知に基づいて、所定時間だけ圧縮空気を噴射するとともに、当該軌道分岐部の上記不転換検知に基づいて所定時間だけ圧縮空気を噴射する、請求項3記載の軌道分岐部の異物除去装置。The piping unit provided in the one track branching portion injects compressed air for a predetermined time based on the train passage detection of the track branching portion, and only for a predetermined time based on the non-conversion detection of the track branching portion. The foreign matter removing apparatus for a track branching portion according to claim 3, which injects compressed air. 上記他方の軌道分岐部に備えた配管ユニットは、当該軌道分岐部の上記不転換検知に基づいて所定時間だけ圧縮空気を噴射する、請求項3記載の軌道分岐部の異物除去装置。4. The foreign matter removing device for a track branch part according to claim 3, wherein the piping unit provided in the other track branch part injects compressed air for a predetermined time based on the non-conversion detection of the track branch part.
JP31855699A 1999-11-09 1999-11-09 Foreign matter removal device for track branch Expired - Fee Related JP3855144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31855699A JP3855144B2 (en) 1999-11-09 1999-11-09 Foreign matter removal device for track branch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31855699A JP3855144B2 (en) 1999-11-09 1999-11-09 Foreign matter removal device for track branch

Publications (2)

Publication Number Publication Date
JP2001131935A JP2001131935A (en) 2001-05-15
JP3855144B2 true JP3855144B2 (en) 2006-12-06

Family

ID=18100459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31855699A Expired - Fee Related JP3855144B2 (en) 1999-11-09 1999-11-09 Foreign matter removal device for track branch

Country Status (1)

Country Link
JP (1) JP3855144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240449A (en) * 2007-03-28 2008-10-09 Hokkaido Railway Co Turnout snow-melting pit for elevated railway
EP3564442A4 (en) * 2016-12-28 2020-08-26 Nabtesco Corporation Monitoring system for foreign substance removal device, foreign substance removal system, and monitoring method for foreign substance removal device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685606B2 (en) * 2005-11-22 2011-05-18 財団法人鉄道総合技術研究所 Orbital short-circuit improvement method and apparatus
JP5271617B2 (en) * 2008-06-30 2013-08-21 東日本旅客鉄道株式会社 Foreign matter removal device for track branch
JP6093024B2 (en) * 2013-10-03 2017-03-08 東日本旅客鉄道株式会社 Foreign matter removal system for track branch and foreign matter removal device for track branch
RU2615233C1 (en) * 2015-11-11 2017-04-04 Набтеско Корпорейшн Device to remove foreign material to use in pointwork, and method to install device to remove foreign material for use in pointwork

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240449A (en) * 2007-03-28 2008-10-09 Hokkaido Railway Co Turnout snow-melting pit for elevated railway
EP3564442A4 (en) * 2016-12-28 2020-08-26 Nabtesco Corporation Monitoring system for foreign substance removal device, foreign substance removal system, and monitoring method for foreign substance removal device

Also Published As

Publication number Publication date
JP2001131935A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP3855144B2 (en) Foreign matter removal device for track branch
CN113650657A (en) Full-automatic train reverse running protection control method
US3838271A (en) Failure detection for highway grade crossing signal systems
CA1077612A (en) Transmitting loop arrangement for railroad cab signal and speed control system
CN110525485B (en) Back-off locking control method and control system
US3927619A (en) Double tiered conveyor track and safety switch
US4046342A (en) Wayside signaling system for railroad cab signals and speed control
JP2003011819A (en) Track vehicle automatic control system
KR100936683B1 (en) Platform screen door control apparatus interlocked enterence door for train
KR100817306B1 (en) Train-borne system for improving railway signalling system performance and maintenance service efficiency
US1797561A (en) Railway-traffic-controlling apparatus
US4022407A (en) Railroad traffic control signaling system
SK500542012A3 (en) Device for detecting poor conductivity between wheel of rail vehicle and rail
KR102662823B1 (en) KTCS-2 and ATC/ATS STM level switching devices and their methods
US2092863A (en) Railway traffic controlling apparatus
US2315038A (en) Railway traffic controlling apparatus
US1575296A (en) Railway-traffic-controlling apparatus
US1712315A (en) Railway-traffic-controlling apparatus
US2681985A (en) Highway crossing signal control system
US1466055A (en) Railway-traffic-controlling apparatus
US1664532A (en) Railway-traffic-controlling apparatus
US1824619A (en) Railway traffic controlling apparatus
US1795444A (en) Signaling apparatus
US1784868A (en) Apparatus for the control of highway-crossing signals
US1418663A (en) A corpora

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R150 Certificate of patent or registration of utility model

Ref document number: 3855144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees