JP3855111B2 - Electrodeposition coating method of magnet material - Google Patents

Electrodeposition coating method of magnet material Download PDF

Info

Publication number
JP3855111B2
JP3855111B2 JP05224897A JP5224897A JP3855111B2 JP 3855111 B2 JP3855111 B2 JP 3855111B2 JP 05224897 A JP05224897 A JP 05224897A JP 5224897 A JP5224897 A JP 5224897A JP 3855111 B2 JP3855111 B2 JP 3855111B2
Authority
JP
Japan
Prior art keywords
magnet material
electrodeposition coating
coating
magnet
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05224897A
Other languages
Japanese (ja)
Other versions
JPH10233310A (en
Inventor
学 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Electronics Co Ltd
Original Assignee
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Electronics Co Ltd filed Critical Daido Electronics Co Ltd
Priority to JP05224897A priority Critical patent/JP3855111B2/en
Publication of JPH10233310A publication Critical patent/JPH10233310A/en
Application granted granted Critical
Publication of JP3855111B2 publication Critical patent/JP3855111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電着塗装が施されるリング状の磁石素材の電着塗装方法に関するものである。
【0002】
【従来の技術】
金属粉末をプレスで所要形状に成形した後、これを焼結して得られる例えばモータのロータ等をなすリング状の磁石素材(粉末成形体)は、経時的に錆がその表面に発生し易い。従ってモータ部品等にそのまま使用すると、耐久性の低下や故障の原因を招くことになる。そこで錆止めのために、電着塗装方法により磁石素材の表面を樹脂被膜で被覆する対策が一般に採られている。
【0003】
前記電着塗装方法は、電着材料(樹脂)を溶かした溶液を貯溜槽に所要レベルで貯溜し、該溶液中に保持用電極で保持した磁石素材を浸漬する。そして、貯溜槽中に臨ませた電極に所定の電圧を印加することにより、保持用電極との接触部を介して磁石素材に通電されて、該磁石素材の表面に所定厚みで樹脂被膜が電着されるものである。
【0004】
【発明が解決しようとする課題】
前述した電着塗装に際し、リング状の磁石素材は、保持用電極が外周面または内周面に接触する状態で保持されていた。この場合に、保持用電極と磁石素材との接触部においては電極部分まで被膜が電着してしまい、該部分では予め設定されている厚みの被膜面から径方向に更に被膜が盛上がることとなっていた。
【0005】
ここで、電着塗装の施された磁石素材を着磁する場合やモータに組付ける場合には、径方向の高い寸法精度が要求されている。例えば磁石素材を着磁する場合は、着磁体に所要の隙間を存して外装した磁石素材の径方向の外側に所要の隙間を存してヨークを配置した状態で着磁がなされるが、このときの磁石素材と着磁体またはヨークとの隙間は極めて小さく設定されている。従って、着磁装置に磁石素材を装着する際に、前述したように径方向に盛上がっている被膜が着磁体やヨーク等によって削られる事態が発生し、コンタミネイションの原因となる問題がある。また、着磁のなされた磁石素材をモータに組付ける際にも、径方向に盛上がっている被膜が削られてしまうことがある。そして、被膜が削られた部分から錆が発生し易くなる難点が指摘される。更に、一部の被膜が削られることによって、磁石素材の回転バランスが悪くなって回転が不安定となる問題も招く。
【0006】
【発明の目的】
本発明は、前述した従来の技術に内在している前記欠点に鑑み、これを好適に解決するべく提案されたものであって、磁石素材の周面や端面から一部の被膜が突出するのを防止し、その被膜が削れることに起因するコンタミネイションや錆の発生を好適に抑制し得る磁石素材の電着塗装方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前述した課題を克服し、所期の目的を好適に達成するため本発明に係る磁石素材の電着塗装方法は、
リング状の磁石素材に電着塗装を施す方法であって、
前記磁石素材の表面に形成した凹部と対応する位置を、保持用電極で保持した状態で、該磁石素材を電着材料の溶液中に浸漬して電着塗装を行なうことを特徴とする。
【0011】
【発明の実施の形態】
次に、本発明に係る磁石素材の電着塗装方法につき、好適な実施例を挙げて、添付図面を参照しながら以下詳細に説明する。
【0012】
【第1実施例について】
図1は、第1実施例に係る磁石素材を示すものであって、該磁石素材10は、所要径のリング状に成形されると共に、その軸方向の両端面には、夫々周方向に等間隔(90°の間隔)で4つの凹部12が形成されている。この凹部12は、端面における径方向の全体に延在するよう形成された角溝であって、両端面の各凹部12,12は軸方向に対向するよう設定されている。また凹部12の深さ寸法は、後述する電着塗装に際して保持用電極14に起因して生ずる被膜16の盛上がり部16aが、磁石素材10の端面から軸方向に突出しない値に設定される(図3参照)。なお、磁石素材10の凹部12は、当該素材10を成形する際に一体的に形成したり、あるいは成形後に別工程で形成する。
【0013】
前記第1実施例に係る磁石素材10に電着塗装を施す場合は、図2に示す如く、軸方向に対向する任意位置の凹部12,12に保持用電極14,14を接触させた状態で保持し、この磁石素材10を保持用電極14,14と共に貯溜槽(図示せず)に所要レベルで貯溜した溶液中に浸漬する。そして、貯溜槽中に臨ませた電極に所定の電圧を印加することにより、保持用電極14,14との接触部を介して磁石素材10に通電されて、該磁石素材10の表面に所定厚みで被膜16が電着される。この場合において、各保持用電極14は磁石素材10に対して対応する凹部12で接触するので、該電極14の外側に電着されて盛上がった被膜16の盛上がり部16aは、図3に示す如く、磁石素材10の端面から外方に突出することはない。
【0014】
すなわち、保持用電極14,14を磁石素材10の軸方向の端面(凹部12)に接触させて軸方向から保持するので、保持用電極14,14に起因して発生する被膜16の盛上がり部16aは当該磁石素材10の外周面や内周面には形成されず、高い寸法精度が要求される外周面および内周面には均一な厚みで被膜16が形成される。従って、電着塗装が施された磁石素材10を着磁する場合やモータに組付ける場合に、その被膜16が剥がれることはなく、コンタミネイションや錆の発生を好適に防止し得る。しかも、被膜16の盛上がり部16aは、磁石素材10の端面から外方に突出しないから、該素材10のモータへの組付け精度に影響を及ぼすこともない。また、複数の凹部12は周方向に等間隔で形成されているから、回転バランスが悪くなることはなく、磁石素材10の安定した回転を達成し得る。
【0015】
図4は、第1実施例に係る磁石素材の変形例を示すものであって、この磁石素材18の各端面に形成されている凹部20の形状を円弧状にしたものである。
【0016】
【第2実施例について】
図5は、第2実施例に係る磁石素材を示すものであって、リング状に成形された磁石素材22における軸方向の両端面には、夫々周方向に等間隔(90°の間隔)で4つの凹部24が形成されている。この凹部24は、図に示す如く、径方向の所要個所に形成された半球状の凹部であって、第1実施例と同様に両端面の各凹部24,24は軸方向に対向するよう設定されている。また凹部24の深さ寸法は、電着塗装に際して保持用電極14に起因して盛上がった被膜16の盛上がり部16aが、磁石素材22の端面から軸方向に突出しない値に設定される。
【0017】
前記第2実施例に係る磁石素材22に電着塗装を施す場合は、前記第1実施例と同様に、図6に示す如く、保持用電極14,14により磁石素材22の対向する凹部24,24を軸方向から保持した状態で電着塗装を行なう。これにより、磁石素材22の外周面や内周面には均一な厚みで被膜16が形成されると共に、保持用電極14に起因して生ずる被膜16の盛上がり部16aは端面から突出しない。従って、電着塗装が施された磁石素材22を着磁する場合やモータに組付ける場合に、被膜16が剥がれることはなく、コンタミネイションや錆の発生を好適に防止し得ると共に、盛上がり部16aが組付け精度に影響を及ぼすことはない。なお、複数の凹部24は周方向に等間隔で形成されているから、磁石素材22の安定した回転を達成し得る。
【0018】
また第2実施例のように磁石素材22の端面の一部に凹部24を形成した形態では、保持用電極14,14により磁石素材22を確実に保持することができ、該電極14,14から磁石素材22が脱落するのを有効に防止し得る。
【0019】
なお、前記第1実施例および第2実施例に示すように磁石素材における軸方向の端面に凹部を形成する形態においては、実施例のように周方向に4つの凹部を設けるものに限らず、1つまたは2つ以上の凹部を設ける構成であってもよい。また磁石素材の使用形態によって、一方の端面から被膜の盛上がり部が突出していても差支えない場合には、一方の端面にのみ凹部を設けた構成を採用することができる。
【0020】
【第3実施例について】
図7は、第3実施例に係る磁石素材を示すものであって、リング状に成形された磁石素材26の外周面に、周方向に等間隔(120°の間隔)で3つの凹部28が形成されている。この凹部28は、軸方向の全長に亘って延在するよう形成された角溝であって、その深さ寸法は、電着塗装に際して保持用電極14に起因して盛上がった被膜16の盛上がり部16aが、磁石素材26の外周面から径方向に突出しない値に設定される。
【0021】
前記第3実施例に係る磁石素材26に電着塗装を施す場合は、図8に示す如く、外周面に形成した3つの凹部28,28,28に保持用電極14,14,14を接触した状態で径方向外方から保持し、この磁石素材26を電極14と共に貯溜槽に貯溜した溶液中に浸漬することにより、該磁石素材26の表面に所定厚みで被膜16が電着される。この場合において、保持用電極14の磁石素材26との接触部近傍には被膜16の盛上がり部16aを生ずるが、該電極14は凹部28内で磁石素材26と接触しているので、図9に示す如く、この盛上がり部16aは磁石素材26の外周面から外方に突出しない。従って、電着塗装が施された磁石素材26を着磁する場合やモータに組付ける場合に、その被膜16の一部が剥がれることはなく、コンタミネイションや錆の発生を好適に防止し得る。なお、複数の凹部28は周方向に等間隔で形成されているから、回転バランスが悪くなることはなく、磁石素材26の安定した回転が達成される。
【0022】
図10は、第3実施例に係る磁石素材の変形例を示すものであって、図に示す磁石素材30の外周面に形成されている凹部32の形状を、円弧状にしたものである。
【0023】
【第4実施例について】
図11は、第4実施例に係る磁石素材を示すものであって、リング状に成形された磁石素材34の外周面に、周方向に等間隔(120°の間隔)で3つの凹部36を形成したものである。この凹部36は、軸方向の所要個所に形成された半球状の凹部であって、その深さ寸法は、電着塗装に際して保持用電極14に起因して盛上がった被膜16の盛上がり部16aが、磁石素材22の外周面から径方向に突出しない値に設定される。
【0024】
この第4実施例に係る磁石素材34においても、前述した第3実施例と同様に各保持用電極14を対応の凹部36で磁石素材34と接触させた状態で保持して電着塗装を施すことにより、保持用電極14に電着される被膜16の盛上がり部16aが径方向に突出するのを防止し得る。従って、磁石素材34を着磁する場合やモータに組付ける場合に被膜16が剥がれることはなく、コンタミネイションや錆の発生を好適に防止し得る。
【0025】
なお、前記第3実施例および第4実施例に示すように、磁石素材における外周面に凹部を形成する形態においては、実施例のように周方向に3つの凹部を設けるものに限らず、保持用電極によって安定して保持し得るものであれば、2つまたは4つ以上の凹部を周方向に等間隔で設けたものであってもよい。
【0026】
【第5実施例について】
図12は、第5実施例に係る磁石素材を示すものであって、リング状に成形された磁石素材38の内周面に、周方向に等間隔(120°の間隔)で3つの凹部40を形成したものである。この凹部40は、軸方向の全長に亘って形成された角溝であって、その深さ寸法は、被膜16の盛上がり部16aが内周面から径方に突出しないよう設定されている。
【0027】
前記第5実施例に係る磁石素材38に電着塗装を施す場合は、各保持用電極14を凹部40で該素材38と接触するよう径方向内方から保持した状態で電着塗装を施す。この場合に、保持用電極14に電着される被膜16の盛上がり部16aは、凹部40内に臨んで径方向には突出しないので、電着塗装が施された磁石素材38を着磁する場合やモータに組付ける場合に、その被膜16が剥がれることはなく、コンタミネイションや錆の発生を好適に防止し得る。なお、第5実施例に係る磁石素材38においても複数の凹部40は周方向に等間隔で形成されているから、磁石素材38の安定した回転が達成される。
【0028】
なお、第5実施例のように磁石素材の内周面に凹部を形成する形態においては、周方向に3つの凹部を設けるものに限らず、保持用電極によって安定して保持し得るものであれば、2つまたは4つ以上の凹部を周方向に等間隔で設ける構成であってもよい。また凹部の形状は、軸方向の全長に亘って形成されるものに限らず、軸方向の所要個所に形成された半球状等の任意の形状を採用し得る。
【0029】
【発明の効果】
以上述べたように、本発明に係る磁石素材の電着塗装方法によれば、磁石素材の端面または周面に凹部を形成したので、電着塗装に際して保持用電極で該凹部と対応する位置を保持させることで、該電極に起因して生ずる被膜の盛上がり部が端面または周面から外方に突出するのを防ぐことができる。すなわち、電着塗装が施された磁石素材を着磁する場合やモータ等に組付ける場合に、被膜が削られるのを防止することができ、コンタミネイションや錆が発生するのを好適に防ぐことができる。また、複数の凹部を周方向に等間隔で形成することにより、磁石素材の回転バランスが悪くなることはなく、該素材の安定した回転を達成し得る。
【図面の簡単な説明】
【図1】 1実施例に係る磁石素材を示す概略斜視図である。
【図2】 第1実施例に係る磁石素材を保持用電極で保持した状態で示す概略断面図である。
【図3】 電着塗装を施した第1実施例に係る磁石素材を示す概略断面図である。
【図4】 第1実施例の変形例に係る磁石素材を示す概略斜視図である。
【図5】 2実施例に係る磁石素材を示す概略斜視図である。
【図6】 第2実施例に係る磁石素材を保持用電極で保持した状態で示す概略断面図である。
【図7】 3実施例に係る磁石素材を示す概略斜視図である。
【図8】 第3実施例に係る磁石素材を保持用電極で保持した状態で示す概略正面図である。
【図9】 電着塗装を施した第3実施例に係る磁石素材を示す概略正面図である。
【図10】 第3実施例の変形例に係る磁石素材を示す概略斜視図である。
【図11】 4実施例に係る磁石素材を示す概略斜視図である。
【図12】 5実施例に係る磁石素材を保持用電極で保持した状態で示す概略正面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention, electrodeposition coating is related to the electrodeposition coating method of the ring-shaped magnet Material to be applied.
[0002]
[Prior art]
For example, a ring-shaped magnet material (powder compact) that forms a metal powder into a required shape with a press and then sinters it, such as a motor rotor, is likely to rust on its surface over time. . Therefore, if it is used as it is for a motor part or the like, it will cause a decrease in durability or cause of failure. Therefore, in order to prevent rust, a measure is generally taken to coat the surface of the magnet material with a resin film by an electrodeposition coating method.
[0003]
In the electrodeposition coating method, a solution in which an electrodeposition material (resin) is dissolved is stored in a storage tank at a required level, and a magnet material held by a holding electrode is immersed in the solution. Then, by applying a predetermined voltage to the electrode exposed in the storage tank, the magnet material is energized through the contact portion with the holding electrode, and a resin film having a predetermined thickness is applied to the surface of the magnet material. It is to be worn.
[0004]
[Problems to be solved by the invention]
In the above-described electrodeposition coating, the ring-shaped magnet material is held in a state where the holding electrode is in contact with the outer peripheral surface or the inner peripheral surface. In this case, at the contact portion between the holding electrode and the magnet material, the coating is electrodeposited up to the electrode portion, and the coating further swells in the radial direction from the coating surface having a preset thickness. It was.
[0005]
Here, when magnetizing the electrodeposited magnet material or assembling the magnet material, high dimensional accuracy in the radial direction is required. For example, when magnetizing a magnet material, the magnet is magnetized in a state in which the yoke is arranged with the required gap on the outer side in the radial direction of the magnet material which is provided with the required gap in the magnetized body, At this time, the gap between the magnet material and the magnetized body or yoke is set to be extremely small. Therefore, when a magnet material is attached to the magnetizing device, there is a problem that, as described above, the coating that is bulging in the radial direction is scraped off by the magnetized body, the yoke, or the like, which causes contamination. Also, when a magnetized magnet material is assembled to a motor, the coating that is bulging in the radial direction may be scraped off. And the difficulty which becomes easy to generate | occur | produce rust from the part from which the film was shaved is pointed out. Furthermore, a part of the coating film is scraped, resulting in a problem that the rotation balance of the magnet material is deteriorated and the rotation becomes unstable.
[0006]
OBJECT OF THE INVENTION
The present invention has been proposed in view of the above-mentioned drawbacks inherent in the prior art described above, and it has been proposed to suitably solve this problem, and a part of the film protrudes from the peripheral surface and end surface of the magnet material. prevented, and an object thereof is to provide an electrodeposition coating method of contamination Nation and rust magnet material that may suitably suppress the occurrence of that caused by the coating scraped.
[0008]
[Means for Solving the Problems]
In order to overcome the above-mentioned problems and achieve the desired purpose suitably, the electrodeposition coating method of the magnet material according to the present invention is:
A method of applying electrodeposition coating to a ring-shaped magnet material,
The position corresponding to the recess formed on the front surface of the magnetic material, while retained by the holding electrode, and performing solution immersed in electrodeposition coating while the magnet material of the electrodeposition material .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, a electrodeposition coating method of the magnet Material according to the present invention, by way of preferred embodiments will be described in detail with reference to the accompanying drawings.
[0012]
[About the first embodiment]
1, there is shown a magnetic material according to the first embodiment, the magnet material 10 is molded and the ring of the required diameter, the both end surfaces in the axial direction, respectively circumferentially equal Four recesses 12 are formed at intervals (90 ° intervals). The concave portion 12 is a square groove formed so as to extend in the entire radial direction on the end face, and the concave portions 12 and 12 on both end faces are set to face each other in the axial direction. In addition, the depth dimension of the recess 12 is set to a value at which the swelled portion 16a of the coating film 16 resulting from the holding electrode 14 during electrodeposition coating described later does not protrude in the axial direction from the end face of the magnet material 10 (FIG. 3). The concave portion 12 of the magnet material 10 is formed integrally when the material 10 is molded, or formed in a separate process after molding.
[0013]
When the electrodeposition coating is applied to the magnet material 10 according to the first embodiment, as shown in FIG. 2, the holding electrodes 14 and 14 are in contact with the recesses 12 and 12 at arbitrary positions facing each other in the axial direction. The magnet material 10 is dipped in a solution stored at a required level in a storage tank (not shown) together with the holding electrodes 14 and 14. Then, by applying a predetermined voltage to the electrode exposed in the storage tank, the magnet material 10 is energized through the contact portion with the holding electrodes 14, 14, and the surface of the magnet material 10 has a predetermined thickness. The film 16 is electrodeposited. In this case, each holding electrode 14 comes into contact with the magnet material 10 at the corresponding recess 12, and therefore the raised portion 16 a of the coating 16 that is electrodeposited on the outside of the electrode 14 and rises is shown in FIG. 3. Thus, it does not protrude outward from the end face of the magnet material 10.
[0014]
That is, since the holding electrodes 14 and 14 are brought into contact with the axial end face (recess 12) of the magnet material 10 and are held from the axial direction, the swelled portion 16a of the coating film 16 generated due to the holding electrodes 14 and 14 is retained. Is not formed on the outer peripheral surface or the inner peripheral surface of the magnet material 10, and the coating film 16 is formed with a uniform thickness on the outer peripheral surface and the inner peripheral surface where high dimensional accuracy is required. Accordingly, when the magnet material 10 that has been subjected to electrodeposition coating is magnetized or assembled to a motor, the coating 16 is not peeled off, and contamination and rusting can be suitably prevented. In addition, the raised portion 16a of the coating film 16 does not protrude outward from the end face of the magnet material 10, and therefore does not affect the accuracy of assembly of the material 10 to the motor. Moreover, since the several recessed part 12 is formed at equal intervals in the circumferential direction, rotation balance does not worsen and the stable rotation of the magnet raw material 10 can be achieved.
[0015]
FIG. 4 shows a modification of the magnet material according to the first embodiment, in which the shape of the recess 20 formed on each end face of the magnet material 18 is an arc.
[0016]
[About the second embodiment]
FIG. 5 shows a magnet material according to the second embodiment, in which both end surfaces in the axial direction of the magnet material 22 formed into a ring shape are equally spaced in the circumferential direction (90 ° intervals). Four recesses 24 are formed. As shown in the figure, the recess 24 is a hemispherical recess formed at a required location in the radial direction, and the recesses 24, 24 on both end faces are set so as to face each other in the axial direction as in the first embodiment. Has been. Further, the depth dimension of the recess 24 is set to a value at which the raised portion 16 a of the coating 16 that has risen due to the holding electrode 14 during electrodeposition coating does not protrude in the axial direction from the end face of the magnet material 22.
[0017]
When the electrodeposition coating is applied to the magnet material 22 according to the second embodiment, as in the first embodiment, as shown in FIG. Electrodeposition coating is performed with 24 held from the axial direction. Thereby, the coating film 16 is formed with a uniform thickness on the outer peripheral surface and the inner peripheral surface of the magnet material 22, and the raised portion 16 a of the coating film 16 caused by the holding electrode 14 does not protrude from the end surface. Therefore, when the magnet material 22 that has been electrodeposited is magnetized or assembled to a motor, the coating film 16 is not peeled off, and contamination and rust can be suitably prevented, and the raised portion 16a can be prevented. Does not affect the assembly accuracy. In addition, since the several recessed part 24 is formed in the circumferential direction at equal intervals, the stable rotation of the magnet raw material 22 can be achieved.
[0018]
Further, in the embodiment in which the concave portion 24 is formed in a part of the end face of the magnet material 22 as in the second embodiment, the magnet material 22 can be reliably held by the holding electrodes 14, 14, It is possible to effectively prevent the magnet material 22 from falling off.
[0019]
As shown in the first and second embodiments, the embodiment in which the recesses are formed in the axial end surface of the magnet material is not limited to the four recesses in the circumferential direction as in the embodiment. The structure which provides one or two or more recessed parts may be sufficient. In addition, depending on how the magnet material is used, in the case where the raised portion of the coating protrudes from one end face, a configuration in which a recess is provided only on one end face can be employed.
[0020]
[About the third embodiment]
7, there is shown a magnetic material according to the third embodiment, the outer peripheral surface of the magnetic material 26 formed into a ring shape, three recesses 28 at equal intervals (intervals of 120 °) in the circumferential direction Is formed. The concave portion 28 is a square groove formed so as to extend over the entire length in the axial direction, and the depth dimension of the concave portion 28 rises due to the holding electrode 14 during electrodeposition coating. The part 16 a is set to a value that does not protrude in the radial direction from the outer peripheral surface of the magnet material 26.
[0021]
When the electrodeposition coating is applied to the magnet material 26 according to the third embodiment, as shown in FIG. 8, the holding electrodes 14, 14, 14 are brought into contact with the three recesses 28, 28, 28 formed on the outer peripheral surface. By holding the magnet material 26 in the state from the outside in the radial direction and immersing the magnet material 26 in the solution stored in the storage tank together with the electrode 14, the coating 16 is electrodeposited on the surface of the magnet material 26 with a predetermined thickness. In this case, the swelled portion 16a of the coating 16 is formed in the vicinity of the contact portion of the holding electrode 14 with the magnet material 26, but the electrode 14 is in contact with the magnet material 26 in the recess 28. As shown, the raised portion 16 a does not protrude outward from the outer peripheral surface of the magnet material 26. Therefore, when magnetized electrode material 26 is magnetized or assembled to a motor, a part of the coating film 16 is not peeled off, and the occurrence of contamination and rust can be suitably prevented. In addition, since the several recessed part 28 is formed in the circumferential direction at equal intervals, a rotation balance does not worsen and the stable rotation of the magnet raw material 26 is achieved.
[0022]
FIG. 10 shows a modification of the magnet material according to the third embodiment, in which the shape of the recess 32 formed on the outer peripheral surface of the magnet material 30 shown in the figure is an arc.
[0023]
[About the fourth embodiment]
FIG. 11 shows a magnet material according to the fourth embodiment, in which three concave portions 36 are provided at equal intervals in the circumferential direction (at intervals of 120 °) on the outer peripheral surface of the magnet material 34 formed in a ring shape. Formed. The concave portion 36 is a hemispherical concave portion formed at a required position in the axial direction, and the depth dimension of the concave portion 36 is that of the raised portion 16a of the coating film 16 raised due to the holding electrode 14 during electrodeposition coating. The value is set so as not to protrude in the radial direction from the outer peripheral surface of the magnet material 22.
[0024]
Also in the magnet material 34 according to the fourth embodiment, as in the third embodiment described above, each holding electrode 14 is held in contact with the magnet material 34 at the corresponding concave portion 36 and applied with electrodeposition. Thus, it is possible to prevent the raised portion 16a of the coating film 16 electrodeposited on the holding electrode 14 from protruding in the radial direction. Therefore, when magnet material 34 is magnetized or assembled to a motor, coating 16 is not peeled off, and contamination and rust can be suitably prevented.
[0025]
As shown in the third and fourth embodiments, the configuration in which the concave portions are formed on the outer peripheral surface of the magnet material is not limited to the configuration in which three concave portions are provided in the circumferential direction as in the embodiment. As long as it can be stably held by the electrode for use, two or four or more concave portions may be provided at equal intervals in the circumferential direction.
[0026]
[About the fifth embodiment]
FIG. 12 shows a magnet material according to the fifth embodiment, in which three concave portions 40 are formed at equal intervals in the circumferential direction (at intervals of 120 °) on the inner peripheral surface of the magnet material 38 formed in a ring shape. Is formed. The concave portion 40 is a rectangular groove formed over the entire length in the axial direction, and the depth dimension thereof is set so that the raised portion 16a of the coating film 16 does not protrude radially from the inner peripheral surface.
[0027]
When the electrodeposition coating is applied to the magnet material 38 according to the fifth embodiment, the electrodeposition coating is performed in a state where each holding electrode 14 is held from the inside in the radial direction so as to be in contact with the material 38 in the recess 40. In this case, since the swelled portion 16a of the coating film 16 electrodeposited on the holding electrode 14 faces the recess 40 and does not protrude in the radial direction, the magnet material 38 subjected to electrodeposition coating is magnetized. When assembled to a motor, the film 16 is not peeled off, and contamination and rust can be suitably prevented. In the magnet material 38 according to the fifth embodiment, since the plurality of recesses 40 are formed at equal intervals in the circumferential direction, stable rotation of the magnet material 38 is achieved.
[0028]
In addition, in the form in which the concave portions are formed on the inner peripheral surface of the magnet material as in the fifth embodiment, the configuration is not limited to the three concave portions provided in the circumferential direction, and the magnet material can be stably held by the holding electrodes. For example, the structure which provides two or four or more recessed parts in the circumferential direction at equal intervals may be sufficient. Further, the shape of the recess is not limited to the one formed over the entire length in the axial direction, and any shape such as a hemisphere formed at a required portion in the axial direction can be adopted.
[0029]
【The invention's effect】
As described above, according to the electrodeposition coating method of the magnet Material according to the present invention, since a recess on the end face or circumferential surface of the magnet material, a position corresponding to the recess in the holding electrode during electrodeposition coating It is possible to prevent the swelled portion of the coating caused by the electrode from protruding outward from the end surface or the peripheral surface. That is, when magnetizing a magnet material that has been electrodeposited or when it is assembled to a motor or the like, it is possible to prevent the coating from being scraped off, and to suitably prevent contamination and rusting. Can do. Further, by forming the plurality of concave portions at equal intervals in the circumferential direction, the rotation balance of the magnet material is not deteriorated, and stable rotation of the material can be achieved.
[Brief description of the drawings]
1 is a schematic perspective view of a magnetic material according to the first embodiment.
FIG. 2 is a schematic cross-sectional view showing a state in which the magnet material according to the first embodiment is held by holding electrodes.
FIG. 3 is a schematic cross-sectional view showing a magnet material according to a first embodiment subjected to electrodeposition coating.
FIG. 4 is a schematic perspective view showing a magnet material according to a modification of the first embodiment.
5 is a schematic perspective view of a magnetic material according to the second embodiment.
FIG. 6 is a schematic cross-sectional view showing a state in which a magnet material according to a second embodiment is held by holding electrodes.
7 is a schematic perspective view of a magnetic material according to the third embodiment.
FIG. 8 is a schematic front view showing a state in which a magnet material according to a third embodiment is held by holding electrodes.
FIG. 9 is a schematic front view showing a magnet material according to a third embodiment subjected to electrodeposition coating.
FIG. 10 is a schematic perspective view showing a magnet material according to a modification of the third embodiment.
11 is a schematic perspective view of a magnetic material according to the fourth embodiment.
12 is a schematic front view showing a state of holding the magnetic material in the holding electrode according to the fifth embodiment.

Claims (3)

リング状の磁石素材に電着塗装を施す方法であって、
前記磁石素材(10,18,22,26,30,34,38)の表面に形成した凹部(12,20,24,28,32,36,40)と対応する位置を、保持用電極(14,14)で保持した状態で、該磁石素材(10,18,22,26,30,34,38)を電着材料の溶液中に浸漬して電着塗装を行なう
ことを特徴とする磁石素材の電着塗装方法。
A method of applying electrodeposition coating to a ring-shaped magnet material,
Said magnetic material (10,18,22, 26,30,34,38) recess formed on the front surface of (12,20,24, 28,32,36,40) the position corresponding to the holding electrode ( while retained by 14 and 14), the magnet material (10,18,22, and performing immersed in electrodeposition painting 26,30,34,38) in a solution of the electrodeposition material Electrodeposition coating method for magnet materials.
前記凹部が、前記リング状の磁石素材The concave portion is the ring-shaped magnet material. (10,18,22)(10,18,22) における軸方向の端面に形成した凹部Recesses formed in the axial end face of (12,20,24)(12,20,24) であり、前記保持用電極The holding electrode (14,14)(14,14) が凹部Recessed (12,20,24)(12,20,24) と対応する位置を軸方向から保持するようにした請求項1記載の磁石素材の電着塗装方法。The method for electrodeposition coating of a magnet material according to claim 1, wherein the position corresponding to is held from the axial direction. 前記凹部が、前記リング状の磁石素材The concave portion is the ring-shaped magnet material. (26,30,34,38)(26,30,34,38) の周面に形成した複数の凹部A plurality of recesses formed on the peripheral surface of (28,32,36,40)(28,32,36,40) であり、前記保持用電極The holding electrode (14,14,14)(14,14,14) が凹部Recessed (28,32,36,40)(28,32,36,40) と対応する位置を径方向から保持するようにした請求項1記載の磁石素材の電着塗装方法。The method for electrodeposition coating of a magnet material according to claim 1, wherein the position corresponding to is held from the radial direction.
JP05224897A 1997-02-19 1997-02-19 Electrodeposition coating method of magnet material Expired - Fee Related JP3855111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05224897A JP3855111B2 (en) 1997-02-19 1997-02-19 Electrodeposition coating method of magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05224897A JP3855111B2 (en) 1997-02-19 1997-02-19 Electrodeposition coating method of magnet material

Publications (2)

Publication Number Publication Date
JPH10233310A JPH10233310A (en) 1998-09-02
JP3855111B2 true JP3855111B2 (en) 2006-12-06

Family

ID=12909441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05224897A Expired - Fee Related JP3855111B2 (en) 1997-02-19 1997-02-19 Electrodeposition coating method of magnet material

Country Status (1)

Country Link
JP (1) JP3855111B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320842A (en) * 2000-05-10 2001-11-16 Sankyo Seiki Mfg Co Ltd Laminated core and method for manufacturing it

Also Published As

Publication number Publication date
JPH10233310A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
EP3190301B1 (en) Bearing with magnetic fluid seal
JP2007024641A (en) Magnetostrictive torque sensor and formation method of magnetostrictive film thereof
JP3855111B2 (en) Electrodeposition coating method of magnet material
EP0920946A3 (en) Part fabricating method and part fabricating apparatus
US5315196A (en) Shaft with grooves for dynamic pressure generation and motor employing the same
GB2111410A (en) Yoke assembly manufacturing method
US20040212265A1 (en) Motor rotor and manufacturing method thereof
JP2003097543A (en) Dynamic pressure bearing and its manufacturing method
JP2003269459A (en) Sintering bearing manufacturing method
US6446324B1 (en) Stacked layered core and method for manufacturing the same
JPS6011745Y2 (en) motor case
EP0527450B1 (en) Method of forming grooves on a shaft
JPH06175504A (en) Magnet roll
JPS6241578Y2 (en)
JPS5828059A (en) Magnetic fluid seal
JPS5923449B2 (en) Retaining structure of elastic magnet fixing bush
JP2005003622A (en) Method for forming magnetostrictive film in magnetostrictive torque sensor
JP4052037B2 (en) Magnetic encoder
JP2529325Y2 (en) Anti-corrosion bearing
JPH10285881A (en) Magnet in permanent magnet motor and its formation method
JPH0633485Y2 (en) Magnetic control
JP2004251299A (en) Seal device
JP2004144184A (en) Electrocorrosion preventive rolling bearing
JP3542933B2 (en) Latching solenoid
CN115824012A (en) Method for detecting journal contact rate of marine crankshaft

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees