JP3854880B2 - Misfire detection device - Google Patents

Misfire detection device Download PDF

Info

Publication number
JP3854880B2
JP3854880B2 JP2002073472A JP2002073472A JP3854880B2 JP 3854880 B2 JP3854880 B2 JP 3854880B2 JP 2002073472 A JP2002073472 A JP 2002073472A JP 2002073472 A JP2002073472 A JP 2002073472A JP 3854880 B2 JP3854880 B2 JP 3854880B2
Authority
JP
Japan
Prior art keywords
ion current
circuit
output
ignition
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002073472A
Other languages
Japanese (ja)
Other versions
JP2003269308A (en
Inventor
克明 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2002073472A priority Critical patent/JP3854880B2/en
Publication of JP2003269308A publication Critical patent/JP2003269308A/en
Application granted granted Critical
Publication of JP3854880B2 publication Critical patent/JP3854880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の燃焼状態を燃焼室内のイオン電流に基づいて検出するイオン電流検出機能を有する内燃機関点火装置に関する。
【0002】
【従来の技術】
イオン電流による内燃機関の燃焼状態を検出する方法は広く知られている。例えば、特開平4−194367号公報はイオン電流検出装置の一例を開示するものである。この装置は、点火コイルの一次電流の遮断時に生ずる二次電流によりコンデンサを一定電圧に充電し、火花放電後このコンデンサと点火コイル二次巻線と点火プラグとイオン電流検出抵抗器とからなる閉回路に流れる電流をイオン電流検出抵抗器を介して測定する事が出来るように構成されている。
【0003】
【発明が解決しようとする課題】
従来広く知られる技術では、イオン電流の検知方法や処理の回路については広く検討されている。イオン電流検出波形を波形整形を増幅し、その信号を積分回路を用いて矩形波出力する方法も公知である。積分回路を構成する方法としてはオペアンプを用いる事が一般的だが、オペアンプのオフセット電圧やバイアス電流の影響により、着火時の積分HIGH出力の保持や失火時の積分LOW出力の湧き出しが問題になり、設定が難しい。
【0004】
【課題を解決するための手段】
上記課題は、点火プラグと点火コイルの二次側を含む二次電流経路に直列に挿入されたコンデンサ及び順方向ダイオードと、前記コンデンサに並列に接続され、二次電流により充電される前記コンデンサの充電電圧を一定値に制限するツェナーダイオードと、混合気の燃焼時にシリンダ内にイオンが生成されること及び前記コンデンサの充電電圧が前記点火プラグに印加されることにより生ずるイオン電流を検出すべく、前記順方向ダイオードに並列に接続された電流検出用抵抗器とを有するイオン電流検出回路と、イオン電流を検出しイオン電流が流れた時HIGH信号の矩形波を出力する波形処理回路とを備えた失火検知装置において、前記波形処理回路に、イオン電流出力をマスクする回路と、前記マスクの期間後にイオン電流出力を積分する積分回路と、前記イオン電流出力を積分する積分期間設定回路とを有し、前記積分期間設定回路の出力により前記積分回路の積分時定数を、積分期間よりも積分期間後に大きくなるように切り替えることを特徴とするイオン電流を用いた失火検知装置によって達成される。
【0005】
【発明の実施の形態】
以下、添付の図面を用いて本発明の実施形態について説明する。図1に本発明の一実施例の構成を示す。1はバッテリ、2は点火コイルであり、ECUから出力される点火信号によりイグナイタ3は点火コイル2の一次コイル2aに電流を通電遮断し二次コイル2bに高電圧を発生させ、点火プラグ4により放電する。一方、二次コイルの低圧側にはイオン電流検出回路6がコンデンサ6a,ダイオード6b,ツェナーダイオード6c,抵抗6dにより構成されている。波形処理回路7はイオン電流検出回路で検出したイオン電流波形を矩形波に処理し出力する。本発明ではイオン電流処理ユニット5としてイオン電流検出回路6と波形処理回路7を1つにパッケージしイグナイタ3とともに点火コイルに内蔵し点火コイルASSY8とする事を特徴としている。図1の回路動作について図3を用いて説明する。ECUからの点火信号のHIGHに同期してイグナイタ3はONし、点火コイル2の一次コイル2aに一次電流Icを通電する。通電開始時A部にはプラスのON電圧が発生する。一次電流Icが遮断すると点火コイルの二次側にマイナスの高電圧を発生し、点火プラグ4により放電される。この時、内燃機関のシリンダ内で着火し燃焼すると点火プラグの電極間はイオン化される。点火プラグの放電により点火コイルの二次側には二次電流が流れイオン電流検出回路6のツェナーダイオード6cでクランプされる電圧がコンデンサ6aに充電される。前記のように、点火プラグの電極間がイオン化されると、コンデンサ6aにチャージされた電圧により点火コイルの二次側にイオン電流を流す。イオン電流は抵抗6dによりマイナス電圧として検出される。失火時にはイオン電流が流れないため検出されない。このイオン電流検出回路出力は、波形処理回路により反転及び波形整形され積分回路を用いて矩形波として出力される。積分回路を用いるのは、微小のイオン波形でも確実に信号出力するためである。この積分出力は、点火信号により点火毎にリセットされ点火毎の燃焼状態をモニタできるものとしている。また、イオン電流の波形は着火によるイオン電流波形が出力される前に、点火の容量放電による出力が発生する為、この容量放電部をマスクし、より正確な燃焼状態を確認できるものとしている。次に、本発明の積分回路について図6と図7を用いて説明する。イオン電流検知部出力には容量放電により発生する波形とイオン電流が流れる事により発生するイオン電流波形が発生する。イオン電流波形は、燃焼の状態や運転条件により発生電圧やタイミングが異なり、失火時には発生しない。このイオン電流検知部出力は信号反転回路に入力され増幅出力される。反転回路には、一例としてオペアンプを用いる。反転回路出力はオペアンプ(比較器)101に入力され基準電圧と比較出力される。この時、容量放電部は容量放電時の振動周波数分のON,OFF波形となり、イオン電流波形は着火時HIGH、失火時LOW出力となる。この比較器101の出力でSW1をON,OFFしSW1がONでコンデンサ32を充電し、SW1がOFFでコンデンサ32に充電した電荷を抵抗31を介し放電する。その放電波形と抵抗33と抵抗34でつくる基準電圧とを比較器102で比較し、マスク時間を決定する。この時、容量放電により発生する高周波のON,OFF波形では時定数回路の放電がされきらないので、容量放電中は時定数回路の放電電圧は基準電圧に達しない。これにより、本発明の回路では、確実にマスクしたい容量放電波形後に一定時間のマスクを作る為、確実でかつ精度の良いマスク回路構成とする事が出来る。この比較器102の出力はSW2のゲートに入力され設定された積分期間のみオペアンプ101の反転端子に信号反転回路の出力、即ちイオン電流出力が入力されるよう動作する。オペアンプ101はその出力と反転端子間にコンデンサ41を配し、反転端子とGND間に抵抗を介し積分回路を構成している。コンデンサ41とは並列にアナログSW42を配し、アナログSW42は点火信号によりON,OFFし、点火周期毎にコンデンサ41の電荷を放電することにより、積分回路の出力をリセットする。本発明ではこの積分回路を構成するオペアンプとGND間に挿入される抵抗を2系統に分け、比較器102の出力の積分期間設定信号を反転させSW3をONする事で、積分期間には抵抗43と抵抗44の並列接続で決定する抵抗値の時定数回路を有する積分回路とし、積分期間以外はSW3をOFFし抵抗44のみの時定数回路を有する積分回路構成に切り替える。この時、抵抗13と抵抗44の関係は、抵抗43≪抵抗44の抵抗値とする。着火時でも小さな電圧や短い時間で積分出力を立ち上げるには、時定数が小さい方が良いが、積分の入力が無い期間(積分期間以外)は、時定数が小さいと積分出力を保持できない。また、失火時には、オペアンプのオフセットやバイアス電流により、積分入力が無いのに積分回路出力が徐々に増加する湧き出し電圧が発生してしまう。これを防ぐにも、時定数は多き方が良い。
【0006】
図2には、従来の構成を示す。本発明と同じ回路構成を用いたとして、従来は、点火コイル2とイグナイタ3のみを一体とした点火コイルASSY11と点火コイルとは別体にイオン電流検出回路6,波形処理回路7を配置するか、または、点火コイル2とイグナイタ3及びイオン電流検出回路6を一体とした点火コイルASSY10と別体に配置した波形処理回路7で構成していた。この場合、点火コイルの二次側2b〜イオン電流検出回路6やイオン電流検出回路6〜波形処理回路間は微小電流のため、配線の引き回しなどのインピーダンス、インダクタンスや浮遊容量により出力が減衰し検知精度が悪化してしまう。本発明のように、点火コイルに波形処理回路まで一体化する事で、配線による影響が無くなり精度の良い失火検知が可能となる。図4は本発明に用いる波形処理回路構成のブロック図を示す。点火コイル二次の巻き始めから、イオン電流検知部でイオン電流波形を電圧変換し、波形整形回路により反転及びレベル検出し波形を整形する。波形整形回路出力は、積分回路により、着火時のみ出力されるイオン電流波形を積分する。この時、点火時の容量放電波形により全て着火と出力されてしまうので、この容量放電部分をマスク回路によりマスクする。また、積分出力は、点火信号により点火毎にリセットされる。図5は、本発明の実装状態を示す。イグナイタ3とイオン電流検知部,波形処理回路を一体としたイオン電流処理ユニット5は点火コイルのケース21の頭部ににセットされコイルの巻線部の絶縁用エポキシ樹脂により一体封止される。外部からはコネクタ端子22により点火信号,電源,GNDが入力され、処理信号が出力される。コネクタ端子22は断面図のため1本しか図示していないが、当然、各入出力端子が存在する。端子24の様に、点火コイルからは、一次コイルからイグナイタ3のコレクタ端子と、二次コイルからイオン電流処理ユニット内のイオン電流検知部と接続する2本がある。25はセンターコア、26は一次ボビン、27は一次巻線、28は二次ボビン、29は二次巻線を示している。高圧部構造は省略する。
【0007】
図8には、本発明を用いたイオン電流処理ユニットとイグナイタを点火コイルに内蔵したアッセンブリの一例を示す。コネクタ端子がインサートされたコイルケースに、放熱板を取り付けたイグナイタをセットし、そのイグナイタとコネクタ端子の点火信号端子及びGND端子をはんだ付けまたは溶接等により電気的接続を行う。イグナイタのコレクタ端子は、点火コイルの一次巻線の巻終りと中継用端子を持って接続され、上記接続端子と同様にはんだ付けまたは溶接等により接続する。ここで、点火信号とGND端子は、イオン電流処理ユニットと共用の端子であり、イオン電流処理ユニットの端子もはんだ付けまたは溶接により接続する。イグナイタの端子接続後、イオン電流処理ユニットをコイルケースにセットし、各端子にはんだ付けまたは溶接により接続する。ここで点火コイルの二次巻線の巻始めとの接続は、イグナイタのコレクタ端子と同様に中継用端子を用いて接続される。イグナイタ,イオン電流処理ユニットの順でコイルケースにセットし、各端子をはんだ付けまたは溶接等で接続し、コイルケース内に固定した後、点火コイルに注形する絶縁用エポキシ樹脂により一体固定される。
【0008】
【発明の効果】
本発明によればイオン電流を用いた失火検知方式において、検出された情報をより正確に出力でき、その出力の処理をし易くできシステムのトータルコストを低減する事も可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を盛り込んだ点火装置の構成。
【図2】従来の点火装置の構成例。
【図3】本発明を用いた場合の動作タイミング。
【図4】本発明の波形処理回路ブロック図。
【図5】本発明の実装の一実施例。
【図6】本発明の動作タイミング詳細。
【図7】本発明の具体的回路例。
【図8】本発明の実装の一実施例。
【符号の説明】
1…バッテリ、2…点火コイル、2a…一次コイル、2b…二次コイル、3…イグナイタ、4…点火プラグ、5…イオン電流処理ユニット、6…イオン電流検出回路、6a,32,41…コンデンサ、6b…ダイオード、6c…ツェナーダイオード、6d,31,33,34,35,36,43,44,45,47…抵抗、7…波形処理回路、8…点火コイルASSY、21…コイルケース、22…コネクタ端子、23…絶縁用エポキシ樹脂、24…接続端子、25…センターコア、26…一次ボビン、27…一次巻線、28…二次ボビン、29…二次巻線、42…アナログスイッチ、46…反転バッファ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine ignition device having an ion current detection function for detecting a combustion state of an internal combustion engine based on an ion current in a combustion chamber.
[0002]
[Prior art]
A method for detecting the combustion state of an internal combustion engine by an ionic current is widely known. For example, Japanese Patent Laid-Open No. 4-194367 discloses an example of an ion current detection device. This device charges a capacitor to a constant voltage by a secondary current generated when the primary current of the ignition coil is interrupted, and after spark discharge, closes the capacitor, the secondary winding of the ignition coil, a spark plug, and an ion current detection resistor. The current flowing in the circuit can be measured via an ion current detection resistor.
[0003]
[Problems to be solved by the invention]
Conventionally well-known techniques have been extensively studied on ion current detection methods and processing circuits. A method of amplifying waveform shaping of an ion current detection waveform and outputting the signal to a rectangular wave using an integration circuit is also known. As a method of constructing an integration circuit, it is common to use an operational amplifier. However, due to the effects of the offset voltage and bias current of the operational amplifier, holding of the integrated HIGH output at the time of ignition and the output of the integrated LOW output at the time of misfiring become problems. , Difficult to set.
[0004]
[Means for Solving the Problems]
The above problem is that a capacitor and a forward diode inserted in series in a secondary current path including a secondary side of a spark plug and an ignition coil, and a capacitor connected in parallel to the capacitor and charged by a secondary current. A zener diode that limits the charging voltage to a constant value, and to detect ion current generated when ions are generated in the cylinder during combustion of the air-fuel mixture and the charging voltage of the capacitor is applied to the spark plug, An ion current detection circuit having a current detection resistor connected in parallel to the forward diode, and a waveform processing circuit that detects the ion current and outputs a rectangular wave of a HIGH signal when the ion current flows. In the misfire detection device, the waveform processing circuit includes a circuit for masking an ion current output, and an ion current output after a period of the mask. And an integration period setting circuit for integrating the ionic current output, so that the integration time constant of the integration circuit becomes larger after the integration period than the integration period by the output of the integration period setting circuit. This is achieved by a misfire detection device using an ionic current characterized by switching.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows the configuration of an embodiment of the present invention. 1 is a battery, 2 is an ignition coil, and an ignition signal output from the ECU causes the igniter 3 to cut off current from the primary coil 2a of the ignition coil 2 to generate a high voltage in the secondary coil 2b. Discharge. On the other hand, on the low voltage side of the secondary coil, an ion current detection circuit 6 is constituted by a capacitor 6a, a diode 6b, a Zener diode 6c, and a resistor 6d. The waveform processing circuit 7 processes the ion current waveform detected by the ion current detection circuit into a rectangular wave and outputs it. The present invention is characterized in that an ion current detection circuit 6 and a waveform processing circuit 7 are packaged as one as the ion current processing unit 5 and are built in the ignition coil together with the igniter 3 as the ignition coil ASSY 8. The circuit operation of FIG. 1 will be described with reference to FIG. The igniter 3 is turned ON in synchronization with the ignition signal HIGH from the ECU, and the primary current Ic is supplied to the primary coil 2a of the ignition coil 2. A positive ON voltage is generated in the A part at the start of energization. When the primary current Ic is cut off, a negative high voltage is generated on the secondary side of the ignition coil and is discharged by the spark plug 4. At this time, when ignition occurs in the cylinder of the internal combustion engine and combustion, the electrodes of the spark plug are ionized. Due to the discharge of the spark plug, a secondary current flows to the secondary side of the ignition coil, and the voltage clamped by the Zener diode 6c of the ion current detection circuit 6 is charged in the capacitor 6a. As described above, when the electrode between the electrodes of the spark plug is ionized, an ion current is caused to flow to the secondary side of the ignition coil by the voltage charged in the capacitor 6a. The ion current is detected as a negative voltage by the resistor 6d. It is not detected at the time of misfire because the ionic current does not flow. The output of the ion current detection circuit is inverted and shaped by a waveform processing circuit and output as a rectangular wave using an integration circuit. The reason for using the integration circuit is to reliably output a signal even with a small ion waveform. This integral output is reset for each ignition by an ignition signal, and the combustion state for each ignition can be monitored. Further, since the output of the ignition current is generated before the output of the ion current waveform due to the ignition, the capacity discharge portion is masked so that a more accurate combustion state can be confirmed. Next, the integrating circuit of the present invention will be described with reference to FIGS. A waveform generated by capacitive discharge and an ion current waveform generated by the flow of ion current are generated at the output of the ion current detector. The ion current waveform differs in the generated voltage and timing depending on the state of combustion and operating conditions, and does not occur during a misfire. The output of the ion current detector is input to the signal inversion circuit and amplified. As an example, an operational amplifier is used for the inverting circuit. The output of the inverting circuit is input to the operational amplifier (comparator) 101 and compared with the reference voltage. At this time, the capacitive discharge portion has ON and OFF waveforms corresponding to the vibration frequency during capacitive discharge, and the ion current waveform becomes HIGH at ignition and LOW output at misfire. The SW1 is turned on and off by the output of the comparator 101, and the capacitor 32 is charged when the SW1 is turned on. The charge charged in the capacitor 32 when the SW1 is turned off is discharged through the resistor 31. The comparator 102 compares the discharge waveform with the reference voltage generated by the resistor 33 and the resistor 34 to determine the mask time. At this time, the discharge of the time constant circuit does not reach the reference voltage during the capacity discharge because the high-frequency ON / OFF waveform generated by the capacity discharge cannot completely discharge the time constant circuit. As a result, in the circuit of the present invention, a mask of a certain time is created after the capacity discharge waveform to be surely masked, so that a reliable and accurate mask circuit configuration can be obtained. The output of the comparator 102 is input to the gate of SW2, and operates so that the output of the signal inverting circuit, that is, the ionic current output is input to the inverting terminal of the operational amplifier 101 only during the set integration period. The operational amplifier 101 includes a capacitor 41 between its output and the inverting terminal, and constitutes an integrating circuit via a resistor between the inverting terminal and GND. An analog SW 42 is arranged in parallel with the capacitor 41. The analog SW 42 is turned on and off by an ignition signal, and the charge of the capacitor 41 is discharged every ignition cycle, thereby resetting the output of the integrating circuit. In the present invention, the resistor inserted between the operational amplifier and the GND constituting this integration circuit is divided into two systems, the integration period setting signal of the output of the comparator 102 is inverted and SW3 is turned on, so that the resistance 43 in the integration period is turned on. And an integration circuit having a time constant circuit having a resistance value determined by the parallel connection of the resistor 44, and switching to an integration circuit configuration having a time constant circuit of only the resistor 44 by turning off SW3 except during the integration period. At this time, the relationship between the resistor 13 and the resistor 44 is the resistance value of the resistor 43 << the resistor 44. In order to start up the integral output with a small voltage or a short time even at the time of ignition, it is better that the time constant is small. However, during a period when there is no integral input (other than the integral period), the integral output cannot be held if the time constant is small. In addition, when a misfire occurs, due to the offset and bias current of the operational amplifier, a spring-out voltage is generated in which the integration circuit output gradually increases without the integration input. To prevent this, a larger time constant is better.
[0006]
FIG. 2 shows a conventional configuration. Assuming that the same circuit configuration as that of the present invention is used, conventionally, the ionic current detection circuit 6 and the waveform processing circuit 7 are arranged separately from the ignition coil ASSY 11 in which only the ignition coil 2 and the igniter 3 are integrated. Alternatively, the ignition coil 2, the igniter 3, and the ion current detection circuit 6 are integrated with the ignition coil ASSY 10 and the waveform processing circuit 7 arranged separately. In this case, since the secondary side 2b of the ignition coil to the ion current detection circuit 6 and the ion current detection circuit 6 to the waveform processing circuit are very small currents, the output is attenuated and detected by impedance such as wiring routing, inductance, and stray capacitance. Accuracy will deteriorate. By integrating the ignition coil and the waveform processing circuit as in the present invention, the influence of the wiring is eliminated and accurate misfire detection becomes possible. FIG. 4 shows a block diagram of a waveform processing circuit configuration used in the present invention. From the beginning of the secondary winding of the ignition coil, the ion current detector converts the voltage of the ion current waveform, and the waveform shaping circuit inverts and detects the level to shape the waveform. The waveform shaping circuit output integrates the ion current waveform output only at the time of ignition by an integration circuit. At this time, since all of the ignition is output by the capacity discharge waveform at the time of ignition, this capacity discharge portion is masked by the mask circuit. Further, the integral output is reset for each ignition by the ignition signal. FIG. 5 shows a mounting state of the present invention. An ionic current processing unit 5 in which an igniter 3, an ionic current detection unit, and a waveform processing circuit are integrated is set on the head of a case 21 of an ignition coil and is integrally sealed with an insulating epoxy resin in a coil winding portion. From the outside, an ignition signal, a power supply, and GND are input by the connector terminal 22 and a processing signal is output. Although only one connector terminal 22 is shown because of a cross-sectional view, naturally, there are input / output terminals. Like the terminal 24, there are two ignition coils that are connected from the primary coil to the collector terminal of the igniter 3, and from the secondary coil to the ion current detector in the ion current processing unit. Reference numeral 25 denotes a center core, 26 denotes a primary bobbin, 27 denotes a primary winding, 28 denotes a secondary bobbin, and 29 denotes a secondary winding. The high pressure part structure is omitted.
[0007]
FIG. 8 shows an example of an assembly in which an ion current processing unit and an igniter using the present invention are built in an ignition coil. An igniter with a heat sink is set in the coil case in which the connector terminal is inserted, and the igniter and the ignition signal terminal and the GND terminal of the connector terminal are electrically connected by soldering or welding. The collector terminal of the igniter is connected with the end of the primary winding of the ignition coil and a relay terminal, and is connected by soldering or welding in the same manner as the connection terminal. Here, the ignition signal and the GND terminal are terminals shared with the ion current processing unit, and the terminals of the ion current processing unit are also connected by soldering or welding. After connecting the igniter terminals, the ion current processing unit is set in the coil case and connected to each terminal by soldering or welding. Here, the connection with the winding start of the secondary winding of the ignition coil is performed using a relay terminal in the same manner as the collector terminal of the igniter. Set in the coil case in the order of the igniter and ion current processing unit, connect each terminal by soldering or welding, etc., fix it in the coil case, and then fix it integrally with the insulating epoxy resin cast into the ignition coil .
[0008]
【The invention's effect】
According to the present invention, in the misfire detection method using an ionic current, the detected information can be output more accurately, the output can be easily processed, and the total cost of the system can be reduced.
[Brief description of the drawings]
FIG. 1 shows a configuration of an ignition device incorporating an embodiment of the present invention.
FIG. 2 is a configuration example of a conventional ignition device.
FIG. 3 is an operation timing when the present invention is used.
FIG. 4 is a block diagram of a waveform processing circuit according to the present invention.
FIG. 5 shows an embodiment of the implementation of the present invention.
FIG. 6 shows details of the operation timing of the present invention.
FIG. 7 shows a specific circuit example of the present invention.
FIG. 8 shows an embodiment of the implementation of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Battery, 2 ... Ignition coil, 2a ... Primary coil, 2b ... Secondary coil, 3 ... Igniter, 4 ... Ignition plug, 5 ... Ion current processing unit, 6 ... Ion current detection circuit, 6a, 32, 41 ... Capacitor , 6b ... diode, 6c ... Zener diode, 6d, 31, 33, 34, 35, 36, 43, 44, 45, 47 ... resistance, 7 ... waveform processing circuit, 8 ... ignition coil ASSY, 21 ... coil case, 22 Connector terminal 23 Epoxy resin for insulation 24 Connection terminal 25 Core core 26 Primary bobbin 27 Primary winding 28 Secondary bobbin 29 Secondary winding 42 Analog switch 46: Inversion buffer.

Claims (4)

点火プラグと点火コイルの二次側を含む二次電流経路に直列に挿入されたコンデンサ及び順方向ダイオードと、
前記コンデンサに並列に接続され、二次電流により充電される前記コンデンサの充電電圧を一定値に制限するツェナーダイオードと、
混合気の燃焼時にシリンダ内にイオンが生成されること及び前記コンデンサの充電電圧が前記点火プラグに印加されることにより生ずるイオン電流を検出すべく、前記順方向ダイオードに並列に接続された電流検出用抵抗器とを有するイオン電流検出回路とイオン電流を検出しイオン電流が流れた時HIGH信号の矩形波を出力する波形処理回路を備えた失火検知装置において、
前記波形処理回路に、イオン電流出力をマスクする回路と、前記マスクの期間後にイオン電流出力を積分する積分回路と、前記イオン電流出力を積分する積分期間設定回路とを有し、
前記積分期間設定回路の出力により前記積分回路の積分時定数を積分期間よりも積分期間後に大きくなるように切り替えることを特徴とするイオン電流を用いた失火検知装置。
A capacitor and a forward diode inserted in series in a secondary current path including the spark plug and the secondary side of the ignition coil;
A Zener diode connected in parallel to the capacitor and configured to limit a charging voltage of the capacitor charged by a secondary current to a constant value;
During combustion of the mixture in order to detect the ion current generated by the charge voltage of that and the capacitor ions in the cylinder is produced it is applied to the spark plug, connected to the current detection in parallel with the forward diode an ion current detection circuit and a use resistor, the misfire detection apparatus that includes a waveform processing circuit for outputting a rectangular wave of a HIGH signal when the flow ion current detecting an ion current,
Wherein the waveform processing circuit comprises a circuit for masking the ionic current output, an integrating circuit for integrating the ion current output after a period of the mask, an integration period setting circuit for integrating said ion current output,
Misfire detecting device using an ion current and switches the integration time constant of the integrating circuit by the output of the integration period setting circuit, so as to increase after the integration period than the integration period.
請求項1のイオン電流検出回路と波形処理回路は一体のパッケージで構成され、
上記点火コイルの一次電流の通電・遮断するスイッチング素子を有する点火装置(以下イグナイタ)とともに点火コイルに内蔵される事を特徴としたイオン電流を用いた失火検知装置。
The ion current detection circuit and the waveform processing circuit of claim 1 are configured as an integral package,
A misfire detection device using an ionic current, characterized in that it is built in an ignition coil together with an ignition device (hereinafter referred to as an igniter) having a switching element for energizing / cutting off the primary current of the ignition coil.
請求項1の点火コイルは、電源端子と点火信号入力端子とGND端子とイオン電流処理信号出力端子の4本の入出力端子を一体のコネクタで形成し、
該イオン電流処理信号出力端子の出力は、矩形波出力である事を特徴としたイオン電流を用いた失火検知装置。
The ignition coil according to claim 1 includes four input / output terminals including a power supply terminal, an ignition signal input terminal, a GND terminal, and an ion current processing signal output terminal as an integrated connector,
A misfire detection device using ion current, characterized in that the output of the ion current processing signal output terminal is a rectangular wave output.
請求項2のイオン電流検出回路と波形処理回路は上記イグナイタと一体のパッケージで構成され、点火コイルに内蔵されることを特徴とした失火検知装置。Ion current detection circuit and the waveform processing circuit according to claim 2 is constituted by the igniter integral package misfire detection apparatus characterized in that it is incorporated in the ignition coil.
JP2002073472A 2002-03-18 2002-03-18 Misfire detection device Expired - Fee Related JP3854880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073472A JP3854880B2 (en) 2002-03-18 2002-03-18 Misfire detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073472A JP3854880B2 (en) 2002-03-18 2002-03-18 Misfire detection device

Publications (2)

Publication Number Publication Date
JP2003269308A JP2003269308A (en) 2003-09-25
JP3854880B2 true JP3854880B2 (en) 2006-12-06

Family

ID=29203129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073472A Expired - Fee Related JP3854880B2 (en) 2002-03-18 2002-03-18 Misfire detection device

Country Status (1)

Country Link
JP (1) JP3854880B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270755A (en) * 2006-03-31 2007-10-18 Diamond Electric Mfg Co Ltd Ion current detection device for internal combustion engine

Also Published As

Publication number Publication date
JP2003269308A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US6557537B2 (en) Ion current detection system and method for internal combustion engine
JP3505419B2 (en) Device for detecting combustion state of internal combustion engine
JP4528469B2 (en) Ignition device for internal combustion engine
JP2002089426A (en) Misfiring detector for internal combustion engine
US5349299A (en) Fuel supply misfire-detecting system for internal combustion engines
JPH09195913A (en) Combustion state detecting device of internal combustion engine
US5388560A (en) Misfire-detecting system for internal combustion engines
US6281682B1 (en) Sensor for detecting ignition current and ion current in ignition secondary circuit
JPH10318116A (en) Knocking detecting device for internal combustion engine
US5418461A (en) Device for detecting abnormality of spark plugs for internal combustion engines and a misfire-detecting system incorporating the same
US7251571B2 (en) Methods of diagnosing open-secondary winding of an ignition coil using the ionization current signal
JP2002364509A (en) Knock detector for internal combustion engine
JP3854880B2 (en) Misfire detection device
JP2006077762A (en) Ion current detecting device for internal combustion engine
US5294888A (en) Device for detecting misfire of an internal combustion engine by comparing voltage waveforms associated with ignition system
JP2754503B2 (en) Misfire detection device for internal combustion engine
JP3449972B2 (en) Misfire detection device for internal combustion engine
JP3831640B2 (en) Internal combustion engine ignition device
JP2002180949A (en) Ignition device of internal combustion engine having ion current detecting device
JP3831641B2 (en) Internal combustion engine ignition device
JPH07286552A (en) Misfire detecting device of internal combustion engine
JP3342303B2 (en) Ignition device for internal combustion engine
JP4567878B2 (en) Ignition device for internal combustion engine
JP2003286933A (en) Ignition device for internal combustion engine
JP3120392B1 (en) Ignition device having engine misfire detection function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3854880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees