JP2003269308A - Ignition device of internal-combustion engine - Google Patents

Ignition device of internal-combustion engine

Info

Publication number
JP2003269308A
JP2003269308A JP2002073472A JP2002073472A JP2003269308A JP 2003269308 A JP2003269308 A JP 2003269308A JP 2002073472 A JP2002073472 A JP 2002073472A JP 2002073472 A JP2002073472 A JP 2002073472A JP 2003269308 A JP2003269308 A JP 2003269308A
Authority
JP
Japan
Prior art keywords
ion current
circuit
output
ignition
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002073472A
Other languages
Japanese (ja)
Other versions
JP3854880B2 (en
Inventor
Katsuaki Fukatsu
克明 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2002073472A priority Critical patent/JP3854880B2/en
Publication of JP2003269308A publication Critical patent/JP2003269308A/en
Application granted granted Critical
Publication of JP3854880B2 publication Critical patent/JP3854880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ignition device for an internal-combustion engine as improvement of the conventional publicly known technique including an ion current sensing method and/or a processing circuit in which the ion current sensing wave form is amplified and the obtained signals are turned into rectangular waves and outputted using an integrator circuit, being generally formed with an operational amplifier, wherein, however the offset voltage and/or the bias current of the operational amplifier may cause the hold of the integral output at the time of ignition and the sprung voltage of the integral output at the time of misfire to influence the operational amplifier accuracy to constitute the integrator circuit to result in difficulty in the setting of the circuit. <P>SOLUTION: The integral time constant of the integrator circuit to be formed with the operational amplifier is changed over using an integration period setting signal, and thereby the produced circuit wherein integration is easily performed, and in holding the output and suppressing the sprung voltage are excellent. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の燃焼状
態を燃焼室内のイオン電流に基づいて検出するイオン電
流検出機能を有する内燃機関点火装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine ignition device having an ion current detection function for detecting the combustion state of an internal combustion engine based on the ion current in the combustion chamber.

【0002】[0002]

【従来の技術】イオン電流による内燃機関の燃焼状態を
検出する方法は広く知られている。例えば、特開平4−
194367号公報はイオン電流検出装置の一例を開示
するものである。この装置は、点火コイルの一次電流の
遮断時に生ずる二次電流によりコンデンサを一定電圧に
充電し、火花放電後このコンデンサと点火コイル二次巻
線と点火プラグとイオン電流検出抵抗器とからなる閉回
路に流れる電流をイオン電流検出抵抗器を介して測定す
る事が出来るように構成されている。
2. Description of the Related Art A method of detecting a combustion state of an internal combustion engine by an ion current is widely known. For example, JP-A-4-
Japanese Patent Publication No. 194367 discloses an example of an ion current detection device. This device charges the capacitor to a constant voltage by the secondary current generated when the primary current of the ignition coil is interrupted, and after spark discharge, it is a closed circuit consisting of this capacitor, the ignition coil secondary winding, the ignition plug and the ion current detection resistor. The current flowing through the circuit can be measured via the ion current detection resistor.

【0003】[0003]

【発明が解決しようとする課題】従来広く知られる技術
では、イオン電流の検知方法や処理の回路については広
く検討されている。イオン電流検出波形を波形整形を増
幅し、その信号を積分回路を用いて矩形波出力する方法
も公知である。積分回路を構成する方法としてはオペア
ンプを用いる事が一般的だが、オペアンプのオフセット
電圧やバイアス電流の影響により、着火時の積分HIG
H出力の保持や失火時の積分LOW出力の湧き出しが問
題になり、設定が難しい。
In the conventionally widely known technology, a method of detecting an ion current and a circuit for processing have been widely studied. A method is also known in which the ion current detection waveform is amplified by waveform shaping and the signal is output as a rectangular wave using an integrating circuit. It is common to use an operational amplifier as the method of constructing the integrating circuit, but due to the influence of the offset voltage and bias current of the operational amplifier, the integration HIG at the time of ignition is
It is difficult to set the H output and the emergence of the integrated LOW output at the time of misfire.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、積分回路の放電時定数を積分期間と積分期間以外で
積分期間設定回路の出力を用いて切り替える事を可能と
する。
In order to solve the above problems, it is possible to switch the discharge time constant of the integration circuit by using the output of the integration period setting circuit during the integration period and other than the integration period.

【0005】[0005]

【発明の実施の形態】以下、添付の図面を用いて本発明
の実施形態について説明する。図1に本発明の一実施例
の構成を示す。1はバッテリ、2は点火コイルであり、
ECUから出力される点火信号によりイグナイタ3は点
火コイル2の一次コイル2aに電流を通電遮断し二次コ
イル2bに高電圧を発生させ、点火プラグ4により放電
する。一方、二次コイルの低圧側にはイオン電流検出回
路6がコンデンサ6a,ダイオード6b,ツェナーダイ
オード6c,抵抗6dにより構成されている。波形処理
回路7はイオン電流検出回路で検出したイオン電流波形
を矩形波に処理し出力する。本発明ではイオン電流処理
ユニット5としてイオン電流検出回路6と波形処理回路
7を1つにパッケージしイグナイタ3とともに点火コイ
ルに内蔵し点火コイルASSY8とする事を特徴として
いる。図1の回路動作について図3を用いて説明する。
ECUからの点火信号のHIGHに同期してイグナイタ
3はONし、点火コイル2の一次コイル2aに一次電流
Icを通電する。通電開始時A部にはプラスのON電圧
が発生する。一次電流Icが遮断すると点火コイルの二
次側にマイナスの高電圧を発生し、点火プラグ4により
放電される。この時、内燃機関のシリンダ内で着火し燃
焼すると点火プラグの電極間はイオン化される。点火プ
ラグの放電により点火コイルの二次側には二次電流が流
れイオン電流検出回路6のツェナーダイオード6cでク
ランプされる電圧がコンデンサ6aに充電される。前記
のように、点火プラグの電極間がイオン化されると、コ
ンデンサ6aにチャージされた電圧により点火コイルの
二次側にイオン電流を流す。イオン電流は抵抗6dによ
りマイナス電圧として検出される。失火時にはイオン電
流が流れないため検出されない。このイオン電流検出回
路出力は、波形処理回路により反転及び波形整形され積
分回路を用いて矩形波として出力される。積分回路を用
いるのは、微小のイオン波形でも確実に信号出力するた
めである。この積分出力は、点火信号により点火毎にリ
セットされ点火毎の燃焼状態をモニタできるものとして
いる。また、イオン電流の波形は着火によるイオン電流
波形が出力される前に、点火の容量放電による出力が発
生する為、この容量放電部をマスクし、より正確な燃焼
状態を確認できるものとしている。次に、本発明の積分
回路について図6と図7を用いて説明する。イオン電流
検知部出力には容量放電により発生する波形とイオン電
流が流れる事により発生するイオン電流波形が発生す
る。イオン電流波形は、燃焼の状態や運転条件により発
生電圧やタイミングが異なり、失火時には発生しない。
このイオン電流検知部出力は信号反転回路に入力され増
幅出力される。反転回路には、一例としてオペアンプを
用いる。反転回路出力はオペアンプ(比較器)101に入
力され基準電圧と比較出力される。この時、容量放電部
は容量放電時の振動周波数分のON,OFF波形とな
り、イオン電流波形は着火時HIGH、失火時LOW出
力となる。この比較器101の出力でSW1をON,O
FFしSW1がONでコンデンサ32を充電し、SW1
がOFFでコンデンサ32に充電した電荷を抵抗31を
介し放電する。その放電波形と抵抗33と抵抗34でつ
くる基準電圧とを比較器102で比較し、マスク時間を
決定する。この時、容量放電により発生する高周波のO
N,OFF波形では時定数回路の放電がされきらないの
で、容量放電中は時定数回路の放電電圧は基準電圧に達
しない。これにより、本発明の回路では、確実にマスク
したい容量放電波形後に一定時間のマスクを作る為、確
実でかつ精度の良いマスク回路構成とする事が出来る。
この比較器102の出力はSW2のゲートに入力され設
定された積分期間のみオペアンプ101の反転端子に信
号反転回路の出力、即ちイオン電流出力が入力されるよ
う動作する。オペアンプ101はその出力と反転端子間
にコンデンサ41を配し、反転端子とGND間に抵抗を
介し積分回路を構成している。コンデンサ41とは並列
にアナログSW42を配し、アナログSW42は点火信
号によりON,OFFし、点火周期毎にコンデンサ41
の電荷を放電することにより、積分回路の出力をリセッ
トする。本発明ではこの積分回路を構成するオペアンプ
とGND間に挿入される抵抗を2系統に分け、比較器1
02の出力の積分期間設定信号を反転させSW3をON
する事で、積分期間には抵抗43と抵抗44の並列接続
で決定する抵抗値の時定数回路を有する積分回路とし、
積分期間以外はSW3をOFFし抵抗44のみの時定数
回路を有する積分回路構成に切り替える。この時、抵抗
13と抵抗44の関係は、抵抗43≪抵抗44の抵抗値
とする。着火時でも小さな電圧や短い時間で積分出力を
立ち上げるには、時定数が小さい方が良いが、積分の入
力が無い期間(積分期間以外)は、時定数が小さいと積
分出力を保持できない。また、失火時には、オペアンプ
のオフセットやバイアス電流により、積分入力が無いの
に積分回路出力が徐々に増加する湧き出し電圧が発生し
てしまう。これを防ぐにも、時定数は多き方が良い。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the configuration of an embodiment of the present invention. 1 is a battery, 2 is an ignition coil,
The ignition signal output from the ECU causes the igniter 3 to interrupt the current flow in the primary coil 2a of the ignition coil 2 to generate a high voltage in the secondary coil 2b, and the spark plug 4 discharges the high voltage. On the other hand, on the low voltage side of the secondary coil, the ion current detection circuit 6 is composed of a capacitor 6a, a diode 6b, a zener diode 6c and a resistor 6d. The waveform processing circuit 7 processes the ion current waveform detected by the ion current detection circuit into a rectangular wave and outputs it. The present invention is characterized in that an ion current detection circuit 6 and a waveform processing circuit 7 are packaged as one as the ion current processing unit 5 and built in an ignition coil together with the igniter 3 to form an ignition coil ASSY8. The circuit operation of FIG. 1 will be described with reference to FIG.
The igniter 3 is turned on in synchronization with HIGH of the ignition signal from the ECU, and the primary current Ic is supplied to the primary coil 2a of the ignition coil 2. At the start of energization, a positive ON voltage is generated in the A section. When the primary current Ic is cut off, a negative high voltage is generated on the secondary side of the ignition coil, and the spark plug 4 discharges it. At this time, when ignition and combustion occur in the cylinder of the internal combustion engine, the electrodes of the spark plug are ionized. A secondary current flows through the secondary side of the ignition coil due to the discharge of the spark plug, and the capacitor 6a is charged with a voltage clamped by the Zener diode 6c of the ion current detection circuit 6. As described above, when the space between the electrodes of the spark plug is ionized, an ionic current flows through the secondary side of the ignition coil due to the voltage charged in the capacitor 6a. The ionic current is detected as a negative voltage by the resistor 6d. At the time of misfire, the ion current does not flow, so it is not detected. The output of the ion current detection circuit is inverted and shaped by the waveform processing circuit and output as a rectangular wave using the integration circuit. The reason why the integrating circuit is used is to reliably output a signal even with a minute ion waveform. The integrated output is reset for each ignition by the ignition signal so that the combustion state for each ignition can be monitored. Further, since the waveform of the ion current is output by the capacity discharge of ignition before the ion current waveform due to ignition is output, this capacity discharge part is masked, and a more accurate combustion state can be confirmed. Next, the integrating circuit of the present invention will be described with reference to FIGS. 6 and 7. A waveform generated by capacitive discharge and an ion current waveform generated by the flow of ion current are generated at the output of the ion current detector. The ionic current waveform differs in generated voltage and timing depending on the combustion state and operating conditions, and does not occur at misfire.
The output of the ion current detector is input to the signal inversion circuit and amplified and output. An operational amplifier is used as the inverting circuit, for example. The output of the inverting circuit is input to the operational amplifier (comparator) 101, and is compared and output with the reference voltage. At this time, the capacitive discharge section has ON and OFF waveforms corresponding to the vibration frequency during capacitive discharge, and the ion current waveform has a HIGH output during ignition and a LOW output during misfire. SW1 is turned on and off by the output of this comparator 101.
The capacitor 32 is charged when FF is performed and SW1 is turned on, and SW1
Is off, the electric charge charged in the capacitor 32 is discharged through the resistor 31. The discharge waveform and the reference voltage generated by the resistors 33 and 34 are compared by the comparator 102 to determine the mask time. At this time, high-frequency O generated by capacitive discharge
Since the time constant circuit is not completely discharged with the N and OFF waveforms, the discharge voltage of the time constant circuit does not reach the reference voltage during the capacity discharge. As a result, in the circuit of the present invention, a mask is formed for a certain period of time after the capacitive discharge waveform that one wants to mask with certainty, so that a reliable and accurate mask circuit configuration can be achieved.
The output of the comparator 102 is input to the gate of SW2 and operates so that the output of the signal inverting circuit, that is, the ion current output is input to the inverting terminal of the operational amplifier 101 only during the set integration period. The operational amplifier 101 has a capacitor 41 between its output and an inverting terminal, and constitutes an integrating circuit via a resistor between the inverting terminal and GND. An analog SW 42 is arranged in parallel with the capacitor 41, and the analog SW 42 is turned on and off by an ignition signal, and the capacitor 41 is provided for each ignition cycle.
The output of the integrating circuit is reset by discharging the electric charge of. In the present invention, the resistor inserted between the operational amplifier and the GND which constitutes this integrating circuit is divided into two systems, and the comparator 1
Invert the integration period setting signal of 02 output and turn on SW3
By doing so, an integration circuit having a time constant circuit of the resistance value determined by the parallel connection of the resistor 43 and the resistor 44 during the integration period,
During the period other than the integration period, SW3 is turned off to switch to an integration circuit configuration having a time constant circuit including only the resistor 44. At this time, the relationship between the resistors 13 and 44 is the resistance value of the resistor 43 << the resistance 44. In order to raise the integrated output with a small voltage or a short time even at the time of ignition, it is better to have a smaller time constant, but during the period when there is no input for integration (other than the integration period), the integrated output cannot be held if the time constant is small. In addition, at the time of misfire, due to the offset and bias current of the operational amplifier, a source voltage that gradually increases the output of the integrating circuit occurs even though there is no integrating input. To prevent this, it is better to have a large time constant.

【0006】図2には、従来の構成を示す。本発明と同
じ回路構成を用いたとして、従来は、点火コイル2とイ
グナイタ3のみを一体とした点火コイルASSY11と
点火コイルとは別体にイオン電流検出回路6,波形処理
回路7を配置するか、または、点火コイル2とイグナイ
タ3及びイオン電流検出回路6を一体とした点火コイル
ASSY10と別体に配置した波形処理回路7で構成し
ていた。この場合、点火コイルの二次側2b〜イオン電
流検出回路6やイオン電流検出回路6〜波形処理回路間
は微小電流のため、配線の引き回しなどのインピーダン
ス、インダクタンスや浮遊容量により出力が減衰し検知
精度が悪化してしまう。本発明のように、点火コイルに
波形処理回路まで一体化する事で、配線による影響が無
くなり精度の良い失火検知が可能となる。図4は本発明
に用いる波形処理回路構成のブロック図を示す。点火コ
イル二次の巻き始めから、イオン電流検知部でイオン電
流波形を電圧変換し、波形整形回路により反転及びレベ
ル検出し波形を整形する。波形整形回路出力は、積分回
路により、着火時のみ出力されるイオン電流波形を積分
する。この時、点火時の容量放電波形により全て着火と
出力されてしまうので、この容量放電部分をマスク回路
によりマスクする。また、積分出力は、点火信号により
点火毎にリセットされる。図5は、本発明の実装状態を
示す。イグナイタ3とイオン電流検知部,波形処理回路
を一体としたイオン電流処理ユニット5は点火コイルの
ケース21の頭部ににセットされコイルの巻線部の絶縁
用エポキシ樹脂により一体封止される。外部からはコネ
クタ端子22により点火信号,電源,GNDが入力さ
れ、処理信号が出力される。コネクタ端子22は断面図
のため1本しか図示していないが、当然、各入出力端子
が存在する。端子24の様に、点火コイルからは、一次
コイルからイグナイタ3のコレクタ端子と、二次コイル
からイオン電流処理ユニット内のイオン電流検知部と接
続する2本がある。25はセンターコア、26は一次ボ
ビン、27は一次巻線、28は二次ボビン、29は二次
巻線を示している。高圧部構造は省略する。
FIG. 2 shows a conventional structure. Assuming that the same circuit configuration as that of the present invention is used, conventionally, the ion current detection circuit 6 and the waveform processing circuit 7 are arranged separately from the ignition coil ASSY 11 and the ignition coil in which only the ignition coil 2 and the igniter 3 are integrated. Alternatively, the ignition coil 2, the igniter 3, and the ion current detection circuit 6 are integrated into the ignition coil ASSY 10, and the waveform processing circuit 7 is provided separately. In this case, since a small current flows between the secondary side 2b of the ignition coil 2 to the ion current detection circuit 6 and the ion current detection circuit 6 to the waveform processing circuit, the output is attenuated due to impedance such as wiring wiring, inductance and stray capacitance, and detection is performed. Accuracy deteriorates. By integrating the waveform processing circuit into the ignition coil as in the present invention, the influence of wiring is eliminated, and accurate misfire detection becomes possible. FIG. 4 shows a block diagram of a waveform processing circuit configuration used in the present invention. From the start of the secondary winding of the ignition coil, the ionic current detection section converts the ionic current waveform into a voltage, and the waveform shaping circuit detects the inversion and level to shape the waveform. The output of the waveform shaping circuit integrates the ion current waveform output only at the time of ignition by the integrating circuit. At this time, since all ignition is output due to the capacity discharge waveform at the time of ignition, this capacity discharge portion is masked by the mask circuit. Further, the integrated output is reset every ignition by the ignition signal. FIG. 5 shows a mounting state of the present invention. An ionic current processing unit 5 in which the igniter 3, the ionic current detecting portion, and the waveform processing circuit are integrated is set on the head of the case 21 of the ignition coil, and is integrally sealed with an insulating epoxy resin for the coil winding portion. An ignition signal, a power supply, and GND are input from the outside through the connector terminal 22, and a processing signal is output. Although only one connector terminal 22 is shown because it is a cross-sectional view, each input / output terminal naturally exists. Like the terminal 24, from the ignition coil, there are two connecting from the primary coil to the collector terminal of the igniter 3 and from the secondary coil to the ion current detector in the ion current processing unit. Reference numeral 25 is a center core, 26 is a primary bobbin, 27 is a primary winding, 28 is a secondary bobbin, and 29 is a secondary winding. The high pressure part structure is omitted.

【0007】図8には、本発明を用いたイオン電流処理
ユニットとイグナイタを点火コイルに内蔵したアッセン
ブリの一例を示す。コネクタ端子がインサートされたコ
イルケースに、放熱板を取り付けたイグナイタをセット
し、そのイグナイタとコネクタ端子の点火信号端子及び
GND端子をはんだ付けまたは溶接等により電気的接続
を行う。イグナイタのコレクタ端子は、点火コイルの一
次巻線の巻終りと中継用端子を持って接続され、上記接
続端子と同様にはんだ付けまたは溶接等により接続す
る。ここで、点火信号とGND端子は、イオン電流処理
ユニットと共用の端子であり、イオン電流処理ユニット
の端子もはんだ付けまたは溶接により接続する。イグナ
イタの端子接続後、イオン電流処理ユニットをコイルケ
ースにセットし、各端子にはんだ付けまたは溶接により
接続する。ここで点火コイルの二次巻線の巻始めとの接
続は、イグナイタのコレクタ端子と同様に中継用端子を
用いて接続される。イグナイタ,イオン電流処理ユニッ
トの順でコイルケースにセットし、各端子をはんだ付け
または溶接等で接続し、コイルケース内に固定した後、
点火コイルに注形する絶縁用エポキシ樹脂により一体固
定される。
FIG. 8 shows an example of an assembly in which an ion current processing unit and an igniter according to the present invention are built in an ignition coil. An igniter with a heat sink attached is set in the coil case in which the connector terminals are inserted, and the igniter and the ignition signal terminals and GND terminals of the connector terminals are electrically connected by soldering or welding. The collector terminal of the igniter is connected to the end of the primary winding of the ignition coil with a relay terminal, and is connected by soldering or welding in the same manner as the connection terminal. Here, the ignition signal and the GND terminal are terminals shared with the ion current processing unit, and the terminals of the ion current processing unit are also connected by soldering or welding. After connecting the igniter terminals, set the ion current processing unit in the coil case and connect it to each terminal by soldering or welding. Here, the connection of the ignition coil to the winding start of the secondary winding is made by using the relay terminal similarly to the collector terminal of the igniter. Set the igniter and the ion current processing unit in this order in the coil case, connect the terminals by soldering or welding, etc., and fix them in the coil case.
It is integrally fixed by an insulating epoxy resin cast on the ignition coil.

【0008】[0008]

【発明の効果】本発明によればイオン電流を用いた失火
検知方式において、検出された情報をより正確に出力で
き、その出力の処理をし易くできシステムのトータルコ
ストを低減する事も可能となる。
According to the present invention, in the misfire detection method using the ion current, the detected information can be output more accurately, the output can be easily processed, and the total cost of the system can be reduced. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を盛り込んだ点火装置の構
成。
FIG. 1 is a configuration of an ignition device incorporating an embodiment of the present invention.

【図2】従来の点火装置の構成例。FIG. 2 is a configuration example of a conventional ignition device.

【図3】本発明を用いた場合の動作タイミング。FIG. 3 is an operation timing when the present invention is used.

【図4】本発明の波形処理回路ブロック図。FIG. 4 is a block diagram of a waveform processing circuit according to the present invention.

【図5】本発明の実装の一実施例。FIG. 5 is an example of implementation of the invention.

【図6】本発明の動作タイミング詳細。FIG. 6 is a detailed operation timing of the present invention.

【図7】本発明の具体的回路例。FIG. 7 is a specific circuit example of the present invention.

【図8】本発明の実装の一実施例。FIG. 8 shows an example of implementation of the present invention.

【符号の説明】[Explanation of symbols]

1…バッテリ、2…点火コイル、2a…一次コイル、2
b…二次コイル、3…イグナイタ、4…点火プラグ、5
…イオン電流処理ユニット、6…イオン電流検出回路、
6a,32,41…コンデンサ、6b…ダイオード、6
c…ツェナーダイオード、6d,31,33,34,3
5,36,43,44,45,47…抵抗、7…波形処
理回路、8…点火コイルASSY、21…コイルケー
ス、22…コネクタ端子、23…絶縁用エポキシ樹脂、
24…接続端子、25…センターコア、26…一次ボビ
ン、27…一次巻線、28…二次ボビン、29…二次巻
線、42…アナログスイッチ、46…反転バッファ。
1 ... Battery, 2 ... Ignition coil, 2a ... Primary coil, 2
b ... secondary coil, 3 ... igniter, 4 ... spark plug, 5
... ion current processing unit, 6 ... ion current detection circuit,
6a, 32, 41 ... Capacitor, 6b ... Diode, 6
c ... Zener diode, 6d, 31, 33, 34, 3
5, 36, 43, 44, 45, 47 ... Resistance, 7 ... Waveform processing circuit, 8 ... Ignition coil ASSY, 21 ... Coil case, 22 ... Connector terminal, 23 ... Insulating epoxy resin,
24 ... Connection terminal, 25 ... Center core, 26 ... Primary bobbin, 27 ... Primary winding, 28 ... Secondary bobbin, 29 ... Secondary winding, 42 ... Analog switch, 46 ... Inversion buffer.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】点火プラグと点火コイルの二次側を含む二
次電流経路に直列に挿入されたコンデンサ及び順方向ダ
イオードと、前記コンデンサに並列に接続され、二次電
流により充電される前記コンデンサの充電電圧を一定値
に制限するツェナーダイオードと、混合気の燃焼時にシ
リンダ内にイオンが生成されること及び前記コンデンサ
の充電電圧が前記点火プラグに印加される事により生ず
るイオン電流を検出すべく、前記順方向ダイオードに並
列に接続された電流検出用抵抗器とを有するイオン電流
検出回路とイオン電流を検出しイオン電流が流れた時H
IGH信号の矩形波を出力する波形処理回路を備えた失
火検知装置において、 上記波形処理回路にイオン電流出力を積分する積分回路
と前記イオン電流出力を積分する積分期間設定回路有
し、積分期間設定回路の出力により前記積分回路の積分
時定数を積分期間と積分期間以外で切り替える事を特徴
とするイオン電流を用いた失火検知装置。
1. A capacitor and a forward diode inserted in series in a secondary current path including a secondary side of an ignition plug and an ignition coil, and the capacitor connected in parallel to the capacitor and charged by the secondary current. Zener diode for limiting the charging voltage of the capacitor to a constant value, and for detecting the ion current generated when ions are generated in the cylinder when the mixture is burned and the charging voltage of the capacitor is applied to the spark plug. , An ion current detection circuit having a current detection resistor connected in parallel to the forward diode and an ion current detected, and when the ion current flows, H
In a misfire detection device including a waveform processing circuit that outputs a rectangular wave of an IGH signal, the waveform processing circuit includes an integration circuit that integrates an ion current output and an integration period setting circuit that integrates the ion current output. A misfire detection device using an ion current, characterized in that the integration time constant of the integration circuit is switched between an integration period and a period other than the integration period according to the output of the circuit.
【請求項2】請求項1のイオン電流検出回路と波形処理
回路は一体のパッケージで構成され、上記点火コイルの
一次電流の通電・遮断するスイッチング素子を有する点
火装置(以下イグナイタ)とともに点火コイルに内蔵さ
れる事を特徴としたイオン電流を用いた失火検知装置。
2. An ion current detection circuit and a waveform processing circuit according to claim 1 are formed in an integrated package, and are provided in an ignition coil together with an ignition device (hereinafter, an igniter) having a switching element for turning on / off the primary current of the ignition coil. A misfire detection device using ion current, which is characterized by being built-in.
【請求項3】請求項1の点火コイルは、電源端子と点火
信号入力端子とGND端子とイオン電流処理信号出力端
子の4本の入出力端子を一体のコネクタで形成し、該イ
オン電流処理信号出力端子の出力は、矩形波出力である
事を特徴としたイオン電流を用いた失火検知装置。
3. The ignition coil according to claim 1, wherein four input / output terminals of a power supply terminal, an ignition signal input terminal, a GND terminal and an ion current processing signal output terminal are formed by an integrated connector, and the ion current processing signal is formed. The output of the output terminal is a rectangular wave output. A misfire detection device using ion current.
【請求項4】請求項2のイオン電流検出回路と波形処理
回路は上記イグナイタと一体のパッケージで構成され、
点火コイルに内蔵される事を特徴とした失火検知装置。
4. The ion current detection circuit and the waveform processing circuit according to claim 2 are formed in a package integrated with the igniter,
A misfire detection device characterized by being built into an ignition coil.
【請求項5】内燃機関のシリンダ内のイオン電流を検出
する検出手段と、 検出したイオン電流に基づいて矩形波を出力する出力手
段と、を備えた失火検知装置であって、 前記検出したイオン電流を積分する手段と、 前記積分の時定数を、ある期間と他の期間とで切り替え
る切替手段と、を備えたことを特徴とする失火検知装
置。
5. A misfire detection device comprising: detection means for detecting an ion current in a cylinder of an internal combustion engine; and output means for outputting a rectangular wave based on the detected ion current. A misfire detection device comprising: a unit that integrates a current; and a switching unit that switches the integration time constant between a certain period and another period.
【請求項6】内燃機関のシリンダ内のイオン電流を検出
し、 前記検出したイオン電流を積分し、 前記積分された値に基づいて矩形波を出力する失火検知
方法であって、 前記積分の時定数を、ある期間と他の期間とで切り替え
ることを特徴とする失火検知方法。
6. A misfire detection method for detecting an ionic current in a cylinder of an internal combustion engine, integrating the detected ionic current, and outputting a rectangular wave based on the integrated value. A misfire detection method characterized by switching a constant between a certain period and another period.
JP2002073472A 2002-03-18 2002-03-18 Misfire detection device Expired - Fee Related JP3854880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073472A JP3854880B2 (en) 2002-03-18 2002-03-18 Misfire detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073472A JP3854880B2 (en) 2002-03-18 2002-03-18 Misfire detection device

Publications (2)

Publication Number Publication Date
JP2003269308A true JP2003269308A (en) 2003-09-25
JP3854880B2 JP3854880B2 (en) 2006-12-06

Family

ID=29203129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073472A Expired - Fee Related JP3854880B2 (en) 2002-03-18 2002-03-18 Misfire detection device

Country Status (1)

Country Link
JP (1) JP3854880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270755A (en) * 2006-03-31 2007-10-18 Diamond Electric Mfg Co Ltd Ion current detection device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270755A (en) * 2006-03-31 2007-10-18 Diamond Electric Mfg Co Ltd Ion current detection device for internal combustion engine

Also Published As

Publication number Publication date
JP3854880B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US6557537B2 (en) Ion current detection system and method for internal combustion engine
JP3505419B2 (en) Device for detecting combustion state of internal combustion engine
EP1316723A2 (en) Ignition device for internal combustion engine
JP3676899B2 (en) Ion current detector for internal combustion engine
JP2004316469A (en) Ignition device for internal combustion engine and its igniter
JP3488405B2 (en) Device for detecting combustion state of internal combustion engine
US5349299A (en) Fuel supply misfire-detecting system for internal combustion engines
JP3176316B2 (en) Knock detection device for internal combustion engine
JPH09195913A (en) Combustion state detecting device of internal combustion engine
US5388560A (en) Misfire-detecting system for internal combustion engines
US6281682B1 (en) Sensor for detecting ignition current and ion current in ignition secondary circuit
US7251571B2 (en) Methods of diagnosing open-secondary winding of an ignition coil using the ionization current signal
JP2002364509A (en) Knock detector for internal combustion engine
JP3854880B2 (en) Misfire detection device
JP2754503B2 (en) Misfire detection device for internal combustion engine
JP3831640B2 (en) Internal combustion engine ignition device
JP2002180949A (en) Ignition device of internal combustion engine having ion current detecting device
JP3831641B2 (en) Internal combustion engine ignition device
JP2004100485A (en) Knocking detection device for internal combustion engine
JP3120392B1 (en) Ignition device having engine misfire detection function
JP4567878B2 (en) Ignition device for internal combustion engine
JP2875447B2 (en) Misfire determination device for internal combustion engine
JP3342303B2 (en) Ignition device for internal combustion engine
JP2754504B2 (en) Misfire detection device for internal combustion engine
JP2004257332A (en) Knocking detection device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3854880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees