JP3853894B2 - Process for producing a reduced hydrogen chloride mixture - Google Patents

Process for producing a reduced hydrogen chloride mixture Download PDF

Info

Publication number
JP3853894B2
JP3853894B2 JP00823497A JP823497A JP3853894B2 JP 3853894 B2 JP3853894 B2 JP 3853894B2 JP 00823497 A JP00823497 A JP 00823497A JP 823497 A JP823497 A JP 823497A JP 3853894 B2 JP3853894 B2 JP 3853894B2
Authority
JP
Japan
Prior art keywords
hydrogen chloride
reaction
hydrochlorinated
gas
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00823497A
Other languages
Japanese (ja)
Other versions
JPH09263405A (en
Inventor
智 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP00823497A priority Critical patent/JP3853894B2/en
Publication of JPH09263405A publication Critical patent/JPH09263405A/en
Application granted granted Critical
Publication of JP3853894B2 publication Critical patent/JP3853894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塩化水素を含む水素化塩素化シランの混合物から塩化水素の減少した混合物を製造する方法に関する。さらに詳しくは、例えば水素化塩素化シランを原料とする多結晶シリコン製造プロセスにおいて発生する、ジクロロシランの如き水素化塩素化シラン類と塩化水素とを含む混合物から、トリクロロシランまたは四塩化珪素を製造する方法に関する。
【0002】
【従来の技術】
加熱した棒状または粒子状のシリコン基質上に、水素化塩素化シラン例えばトリクロロシランやジクロロシランを化学蒸着させて多結晶シリコンを製造するプロセスにおいて、主反応によってはシリコンを析出しながら塩化水素を発生し、また一方では副反応によって、原料水素化塩素化シラン類より塩素含有量の減少した水素化塩素化シラン類、塩素化シラン類および原料水素化塩素化シランの二量化物等が生成される。生成した塩化水素は、装置材料等からの好ましくない不純物の発生原因となり、また原料より塩素含有量の少ない水素化塩素化シランの増加は、蒸留塔効率の悪化要因になるばかりでなく、貯留用タンクの安全性にも影響を及ぼす可能性がある。
【0003】
これらの塩化水素や他の副生成物は蒸留や吸着によって分離し、最終的には廃棄物としてアルカリ中和して処分することが通例となっている。しかしながら、これらの中和処理に要する設備および処理コストは非常に大きく、多結晶シリコンの製造コストを上昇させる大きな要因の一つとなっている。また、廃棄物を減少させることは環境保護の面からも重要なことである。
【0004】
【発明が解決しようとする課題】
上記従来技術を解決する技術、すなわち、多結晶シリコンの製造プロセスにおいて発生する、塩化水素および塩素含有量の減少した水素化塩素化シランまたは原料水素化塩素化シランの二量化物等を、効率良く多結晶シリコンの製造に有用な物質へ変換するという技術の開発が望まれていた。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意研究を行ってきた結果、驚くべきことに、塩化水素を含む水素化塩素化シランの混合物を特定の活性炭と接触させるだけで、塩化水素と塩素含有量の減少した水素化塩素化シランまたは二量化物等は反応して互いにその量が減少することを発見し、さらに研究を続けて本発明を完成させたものである。
【0006】
すなわち、本発明は、塩化水素を含む水素化塩素化シランの混合物を、水蒸気吸着法によって得られる細孔分布曲線において最大ピークを示す細孔半径(R)が1.2×10 −9 〜4×10−9mの細孔径分布特性を有する活性炭と接触させて、該塩化水素と水素化塩素化シランとを反応せしめることを特徴とする、塩化水素の減少した混合物の製造法である。
【0007】
尚、本発明において、水蒸気吸着法によって得られる細孔分布曲線において最大ピークを示す細孔半径(R)は、下記の方法に準じて導かれたものである。
すなわち、水蒸気吸着法によって吸着等温線を基に吸着平衡相対圧からケルビン(Kelvin)の式により細孔半径(r)を計算し、水蒸気吸着量を液体換算した値より細孔容積(V)を求め、該細孔半径(r)と細孔容積(V)より、logrをX軸とし、△V/△logrをY軸として細孔分布曲線を作成し、この細孔径分布曲線の最大ピークを示す細孔半径(r)を最大ピークを示す細孔半径(R)とした。
【0008】
以下に本発明を詳細に説明する。
本発明にいう多結晶シリコンの析出反応は、SiH2Cl2(ジクロロシラン)またはSiHCl3(トリクロロシラン)等の水素化塩素化シラン類を原料として、高温の基質上に原料シランを熱分解させてシリコンを析出させる方法である。この際、原料となる水素化塩素化シラン類は水素等で希釈して析出反応器へ供給されるが、その析出温度は約1000℃と非常に高いため、析出反応のほかに種々の副反応が起こり、この反応器から排出されるガスは水素、塩化水素、種々の水素化塩素化シランおよび塩素化シランを含んだ混合ガスであることが一般的である。
【0009】
本発明にいう水素化塩素化シランとは、例えばSiH2Cl2、SiHCl3、Si2HCl5、Si22Cl4等のように、分子中に水素原子と塩素原子を含有している珪素化合物である。またこれらを含有する混合物とは、上記水素化塩素化シランのみの混合物、あるいは上記水素化塩素化シランの一種類以上と水素等の他のガスとの混合ガスをいう。
また、本発明にいう二量化物とは、原料の水素化塩素化シランが水素や塩化水素等を発生しながら縮合して生成する、例えばSi2HCl5、Si22Cl4、Si2Cl6等のジシラン類をいう。これらの物質は通常、四塩化珪素よりも沸点が高い。
【0010】
本発明で用いる活性炭は、水蒸気吸着法によって得られる細孔分布曲線において最大ピークを示す細孔半径(R)が1.2×10 −9 〜4×10−9mの細孔径分布特性を有することが重要である。すなわち、上記細孔半径が1.2×10 −9 mより小さい場合或いは4×10−9mより大きい場合は、活性がほとんどなく、前記反応を行うことができない。この理由は明らかではないが、上記細孔半径が1.2×10 −9 mより小さい場合は、反応によって生成した四塩化珪素等が細孔内で強固に吸着され、細孔内に新たな反応原料が入り込めないために活性が低下もしくは消失するものと推察される。また、上記細孔半径が4×10−9mより大きい場合は、細孔内に新たな反応原料が入り込めたとしても、該細孔の活性がほとんどないものと推察される。
【0011】
本発明で使用する活性炭の最大ピークを示す細孔半径(R)は1.2×10 −9 〜4×10−9mであればよいが、特に、500m/g程度以上の表面積を有するものが好適に使用される。
また、他の特性、すなわち、形状、比表面積等も特に制限されるものではない。例えば、形状は、粒状、ハニカム状、繊維状であることができる。
【0012】
本発明の反応温度は、特に制限されないが、工業的に効率良く反応を実施するためには0℃以上、さらには30℃以上であることが好ましい。原料混合物に分子量の大きい二量化物等が多く含まれる場合には、反応温度を好ましくは100℃以上、さらに好ましくは150℃以上にするのが望ましい。それにより、高沸点成分の強固な吸着を防止でき、反応速度および活性炭の寿命の点で有利となる。反応温度の上限は、活性炭の変質がない範囲であれば特に制限されない。本発明によれば、常温付近の反応温度で、しかも1〜3秒程度の短時間の反応時間によって、平衡組成に十分に近づいたガス生成物が得られる。このことは、本発明の非常に有利な特徴である。本発明の反応温度は、それ故、例えば0〜150℃であることができる。
【0013】
活性炭は一般的に空気中の水分等をよく吸着するので、容器に充填する際等に水分を吸着し易い。水分は水素化塩素化シラン類と反応して細孔内で二酸化珪素等を発生し、反応活性を低下させる要因となる。
従って、本発明において、活性炭は水分吸着量が比較的少量であればそのまま反応に使用しても特に差し支えないが、多量の水分、一般には、5重量%以上を吸着している場合には、水素化塩素化シラン類を供給する以前に該活性炭の水分量を5重量%未満、好ましくは1重量%以下に低下させておくことが好ましい。上記水分量の低下方法には、温度上昇、減圧化、乾燥ガスの流通等どのような方法を用いてもよい。
【0014】
本発明における反応の例を以下に説明する。
ジクロロシラン(SiH2Cl2)やトリクロロシラン(SiHCl3)と塩化水素の混合物は、互いに反応して水素を発生しながら塩素の増加した水素化塩素化シランまたは塩素化シランを生成し、混合物中の塩化水素は減少する。このとき生成するガスの組成は、供給するガス中の塩化水素と水素化塩素化シラン類の混合割合によって影響され、その平衡組成に近づくように反応する。例えばジクロロシランと塩化水素の反応の場合、その主反応は、
【0015】
SiH2Cl2 + HCl → SiHCl3 + H2
SiH2Cl2 + 2HCl → SiCl4 + 2H2
となる。一方、二量化物と塩化水素の反応については、塩化水素が二量化物中のSi−Si結合を切断し、より安定な物質を生成する。例えば、
【0016】
Si2HCl5 + HCl → 2SiHCl3
Si2Cl6 + HCl → SiHCl3 + SiCl4
等の反応がある。この場合も生成するガスの組成は、供給するガス中の塩化水素の混合割合によって影響され、平衡組成に近づくように反応する。
【0017】
以下に本発明の反応を好適に行う、より具体的な方法について説明する。図1は多結晶シリコン製造プロセスの概略のプロセスフローである。本発明の反応を行うための活性炭を充填した容器の設置位置は、その目的によって少なくともA〜Eの5ヶ所のいずれであることもできる。図1中のA〜Dは多結晶シリコン析出反応器からの排出ガスが循環するラインである。A、Bの位置はジクロロシランや二量化物が多く含まれており、反応としては好都合であるが、圧力が高くないために3秒程度の滞在時間を得るためにはかなり大きな反応容器が必要となる。
【0018】
一方、Cの位置はBとガス組成は同じであるが、圧力を高めているために非常にコンパクトな反応容器でよい。Dの位置は高圧下の深冷系を通過しているために、かなり低沸点の水素化塩素化シラン類まで除去されており、塩化水素を十分に減少させることができないが、残留した低沸点の水素化塩素化シラン類は十分に減少させることができる。以上の4ヶ所において本発明の反応を好適に使い分けることもできるし、さらに効果的に用いるために、途中で新たに塩化水素等を供給して2ヶ所以上に設置することもできる。Eの位置では、析出反応の反応器からの排出ガスは用いないが、蒸留系で分離される高沸点の二量化物等に、新たに塩化水素と希釈ガスを加えて反応させ、有用なトリクロロシランや四塩化珪素として回収することができる。
【0019】
【作用】
前記特定の細孔ピークを有する活性炭はその細孔内で塩化水素と水素化塩素化シラン等を反応させる特殊な触媒として作用している。
【0020】
【発明の効果】
多結晶シリコンの製造プロセスにおいて発生する、塩化水素と塩素含有量の減少した水素化塩素化シランまたは原料水素化塩素化シランの二量化物等を、前記した特定の活性炭と接触させるだけで、効率良くトリクロロシランや四塩化珪素物質へ変換することができ、多結晶シリコン製造コストの低減および廃棄物の減少を達成することができる。
【0021】
【実施例】
以下、本発明を更に具体的に説明するため、実施例を示すが本発明はこれらの実施例に限定されるものではない。
尚、実施例および比較例において、活性炭の最大ピークを示す細孔半径(R)は次の方法により行った。
すなわち、25℃において、活性炭の水蒸気の等温吸着線を作成し、これを基にして求めた吸着平衡相対圧から細孔半径(r)をKelvin式により算出し、水蒸気吸着量を液体換算して細孔容積(V)を算出する。
次いで、X軸にrを、Y軸に△V/△logrをプロットして細孔分布曲線を作成し、この細孔径分布曲線の最大ピーク位置に該当する細孔半径(r)を最大ピークを示す細孔半径(R)として示した。
【0022】
実施例1
内径27mm、長さ100mmのステンレス製容器に、最大ピークを示す細孔半径(R)が1.2×10-9m、比表面積が1300m2/g、平均粒径が3mmの粒状活性炭を10g充填した。活性炭に吸着している水分を除去するため、温度150℃、窒素流通下で10時間乾燥させた。その後反応容器を水素で置換しながら30℃まで冷却させて、塩化水素とジクロロシランをそれぞれ0.5%含有する水素を、圧力1kPaG、流速320Nml/minで流通させた。充填容器の出口ガスはガスクロマトグラフィーを用いてその組成を測定した。ガスの流通開始からしばらくの間は、活性炭の吸着剤としての作用によって反応容器の出口では水素以外の成分は観測されないが、その後クロロシラン類が破過を始めた。出口濃度が一定になったときのガス組成を表1に示す。
【0023】
比較例1
実施例1の活性炭に代えて、1/16”ペレット状の13X型モレキュラーシーブを10g充填して同様の実験を行なった。なお、該モレキュラーシーブは反応用ガスを供給する前に、予め、温度250℃、水素流通下で10時間乾燥させた。出口濃度が一定になったときのガス組成を表1に併記する。
【0024】
比較例2
実施例1の活性炭にかえて、細孔容積0.80ml/g、比表面積450m2/g、平均粒径が3mmの多孔性シリカゲルを10g充填して同様の実験を行なった。なお、該シリカゲルは反応用ガスを供給する前に、予め、温度150℃、窒素流通下で10時間乾燥させた。出口濃度が一定になったときのガス組成を表1に併記する。
【0025】
比較例3
実施例1の活性炭にかえて、細孔容積0.35ml/g、比表面積250m2/g、平均粒径が3mmの活性アルミナを10g充填して同様の実験を行なった。なお、該活性アルミナは反応用ガスを供給する前に、予め、温度250℃、水素流通下で10時間乾燥させた。出口濃度が一定になったときのガス組成を表1に併記する。
【0026】
比較例4、5
実施例1で使用した活性炭に対して、最大ピークの細孔半径が4×10−10m、平均粒径が3mmの粒状活性炭(比較例4)、最大ピークの細孔半径が8×10 −9 m、平均粒径が3mmの粒状活性炭(比較例5)をそれぞれ10g充填した以外は、同様の実験をそれぞれについて行った。
尚、該活性炭は反応ガスを供給する前に、予め温度150℃、窒素流通下で10時間乾燥させた。出口濃度が一定となったときのガス組成を表1に併記する。
【0027】
【表1】

Figure 0003853894
【0028】
実施例2
内径27mm、長さ100mmのステンレス製容器に、表2に示す分析値を持つ平均粒径が3〜4mmの種々の粒状活性炭を約10g充填し、温度150℃、窒素流通下で24時間活性炭を乾燥させた後、塩化水素および種々の水素化塩素化シランを含有する混合ガスを、温度30〜150℃、圧力1kPaGの条件下で、ガスの滞在時間が1〜3秒になるように流量を320〜960Nml/minに調整しながらガスを流通させた。供給ガスの組成および反応容器出口ガスの組成を表3に示す。
【0029】
【表2】
Figure 0003853894
【0030】
【表3】
Figure 0003853894
【0031】
実施例3
内径70mm、長さ380mmのステンレス製容器3つに、実施例2で用いた表2に示す3種類の活性炭をそれぞれ700〜800gずつ充填し、温度150℃、窒素流通下で45時間活性炭を乾燥させた後、実施例2で用いた供給ガスと同様の塩化水素と種々の水素化塩素化シランを含有する混合ガスを、温度30℃、圧力0.4MPaGの条件下で、流量9Nm3/Hrで40日間流通させ、その後温度を120℃に上昇させて更に10日間流通させた。反応容器出口ガス中の塩化水素濃度の経時変化を表4に示す。
【0032】
【表4】
Figure 0003853894
【0033】
実施例4
図1に示した蒸留精製系で高沸点成分として分離された、四塩化珪素を主成分とする液体を採取してその組成をガスクロマトグラフィーを用いて分析したところ、SiCl約95mol%、SiHCl約1.5mol%、SiCl約3.5mol%であった。この液体約10kg/minを150℃で気化させた後、圧力を0.2MPaGに調整しながら、塩化水素を3mol%含有する水素2Nm/minと混合した。該混合ガスを温度150℃に保ちながら、粒径4mm、細孔径18×10 −10 、比表面積1350m/gの活性炭を0.1m充填した反応容器に供給した。ガスクロマトグラフィーで測定した反応容器前後のガス組成を表5に示す。
【0034】
【表5】
Figure 0003853894

【図面の簡単な説明】
【図1】本発明の反応を行う反応容器の設置例を説明するための、多結晶シリコン製造プロセスの簡略的なプロセスフロー図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a reduced hydrogen chloride mixture from a mixture of hydrogenated chlorinated silanes containing hydrogen chloride. More specifically, for example, trichlorosilane or silicon tetrachloride is produced from a mixture containing hydrogenated chlorinated silanes such as dichlorosilane and hydrogen chloride generated in a polycrystalline silicon production process using, for example, hydrogenated chlorinated silane. On how to do.
[0002]
[Prior art]
In the process of producing polycrystalline silicon by chemical vapor deposition of hydrochlorinated silanes such as trichlorosilane and dichlorosilane on a heated rod-like or particulate silicon substrate, hydrogen chloride is generated while silicon is precipitated depending on the main reaction. On the other hand, by side reactions, hydrogenated chlorinated silanes having a lower chlorine content than raw material hydrogenated chlorinated silanes, dimers of chlorinated silanes, raw material hydrogenated chlorinated silanes, and the like are generated. . The generated hydrogen chloride causes undesired impurities from the equipment materials and the like, and the increase in hydrochlorinated silanes, which have a lower chlorine content than the raw materials, not only causes deterioration of the distillation column efficiency, but also for storage. It may affect the safety of the tank.
[0003]
It is customary to separate these hydrogen chloride and other by-products by distillation or adsorption, and finally dispose of them after neutralizing with alkali as waste. However, the equipment and processing costs required for these neutralization treatments are very large, and this is one of the major factors that increase the production cost of polycrystalline silicon. Also, reducing waste is important from the viewpoint of environmental protection.
[0004]
[Problems to be solved by the invention]
The technology that solves the above prior art, that is, the hydrogen chloride chlorinated silane having a reduced content of hydrogen chloride and chlorine, or the dimerized product of the raw material hydrogen chlorinated silane, which is generated in the polycrystalline silicon manufacturing process, can be efficiently used. There has been a demand for the development of a technology for converting into a material useful for the production of polycrystalline silicon.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that hydrogen chloride and chlorine can be obtained simply by bringing a mixture of hydrochlorinated silanes containing hydrogen chloride into contact with a specific activated carbon. It has been discovered that hydrochlorinated silanes or dimers having a reduced content react with each other to reduce their amounts, and further research has been completed to complete the present invention.
[0006]
That is, according to the present invention, a mixture of hydrochlorinated silanes containing hydrogen chloride has a pore radius (R) showing a maximum peak in a pore distribution curve obtained by a water vapor adsorption method of 1.2 × 10 −9 to 4. A method for producing a mixture with reduced hydrogen chloride, wherein the hydrogen chloride and hydrogenated chlorinated silane are reacted with activated carbon having a pore size distribution characteristic of × 10 −9 m.
[0007]
In the present invention, the pore radius (R) showing the maximum peak in the pore distribution curve obtained by the water vapor adsorption method is derived according to the following method.
That is, the pore radius (r) is calculated from the adsorption equilibrium relative pressure using the Kelvin equation based on the adsorption isotherm by the water vapor adsorption method, and the pore volume (V) is calculated from the value obtained by converting the water vapor adsorption amount into a liquid. From the pore radius (r) and the pore volume (V), create a pore distribution curve with logr as the X axis and ΔV / Δlogr as the Y axis, and calculate the maximum peak of this pore diameter distribution curve. The pore radius (r) shown was taken as the pore radius (R) showing the maximum peak.
[0008]
The present invention is described in detail below.
The polycrystalline silicon precipitation reaction referred to in the present invention is performed by thermally decomposing raw silane on a high-temperature substrate using hydrochlorinated silanes such as SiH 2 Cl 2 (dichlorosilane) or SiHCl 3 (trichlorosilane) as raw materials. This is a method of depositing silicon. At this time, the hydrogenated chlorinated silanes as raw materials are diluted with hydrogen or the like and supplied to the precipitation reactor. However, since the precipitation temperature is as high as about 1000 ° C., various side reactions other than the precipitation reaction are performed. The gas discharged from the reactor is generally a mixed gas containing hydrogen, hydrogen chloride, various hydrogenated chlorinated silanes and chlorinated silanes.
[0009]
The hydrogenated chlorinated silane referred to in the present invention contains hydrogen atoms and chlorine atoms in the molecule, such as SiH 2 Cl 2 , SiHCl 3 , Si 2 HCl 5 , Si 2 H 2 Cl 4 , and the like. It is a silicon compound. The mixture containing these refers to a mixture of only the above-mentioned hydrogenated chlorinated silanes, or a mixed gas of one or more of the above-mentioned hydrogenated chlorinated silanes with another gas such as hydrogen.
The dimerized product as used in the present invention is produced by condensing a raw material hydrogenated chlorinated silane while generating hydrogen, hydrogen chloride, etc., for example, Si 2 HCl 5 , Si 2 H 2 Cl 4 , Si 2. This refers to disilanes such as Cl 6 . These materials usually have a higher boiling point than silicon tetrachloride.
[0010]
The activated carbon used in the present invention has a pore diameter distribution characteristic of a pore radius (R) showing a maximum peak in a pore distribution curve obtained by a water vapor adsorption method of 1.2 × 10 −9 to 4 × 10 −9 m. This is very important. That is, when the pore radius is smaller than 1.2 × 10 −9 m or larger than 4 × 10 −9 m, there is almost no activity and the reaction cannot be performed. The reason for this is not clear, but when the pore radius is smaller than 1.2 × 10 −9 m, silicon tetrachloride or the like produced by the reaction is strongly adsorbed in the pores, and new pores are formed in the pores. It is presumed that the activity decreases or disappears because the reaction raw materials cannot enter. Further, when the pore radius is larger than 4 × 10 −9 m, it is presumed that there is almost no activity of the pore even if a new reaction raw material enters the pore.
[0011]
The pore radius (R) showing the maximum peak of the activated carbon used in the present invention may be 1.2 × 10 −9 to 4 × 10 −9 m, and particularly has a surface area of about 500 m 2 / g or more. Those are preferably used.
Further, other characteristics such as shape, specific surface area and the like are not particularly limited. For example, the shape can be granular, honeycomb, or fiber.
[0012]
The reaction temperature of the present invention is not particularly limited, but it is preferably 0 ° C. or higher, more preferably 30 ° C. or higher for industrially efficient reaction. When the raw material mixture contains a large amount of dimer having a large molecular weight, the reaction temperature is preferably 100 ° C. or higher, more preferably 150 ° C. or higher. Thereby, strong adsorption of high-boiling components can be prevented, which is advantageous in terms of reaction rate and activated carbon life. The upper limit of the reaction temperature is not particularly limited as long as the activated carbon is not altered. According to the present invention, a gas product that is sufficiently close to the equilibrium composition can be obtained at a reaction temperature near room temperature and in a short reaction time of about 1 to 3 seconds. This is a very advantageous feature of the present invention. The reaction temperature of the present invention can therefore be, for example, 0-150 ° C.
[0013]
Activated carbon generally adsorbs moisture and the like in the air well, and therefore easily adsorbs moisture when filling the container. Moisture reacts with hydrogenated chlorinated silanes to generate silicon dioxide and the like in the pores, causing a reduction in reaction activity.
Therefore, in the present invention, the activated carbon may be used in the reaction as it is if the moisture adsorption amount is relatively small. However, when a large amount of moisture, generally 5% by weight or more is adsorbed, Before supplying the hydrochlorinated silanes, it is preferable to reduce the water content of the activated carbon to less than 5% by weight, preferably 1% by weight or less. Any method such as increasing the temperature, reducing the pressure, or circulating the dry gas may be used as the method for reducing the water content.
[0014]
The example of reaction in this invention is demonstrated below.
A mixture of dichlorosilane (SiH 2 Cl 2 ) or trichlorosilane (SiHCl 3 ) and hydrogen chloride reacts with each other to generate hydrogen to produce hydrogen-containing chlorinated silane or chlorinated silane with increased chlorine. Of hydrogen chloride decreases. The composition of the gas produced at this time is influenced by the mixing ratio of hydrogen chloride and hydrochlorinated silanes in the supplied gas, and reacts to approach its equilibrium composition. For example, in the case of a reaction between dichlorosilane and hydrogen chloride, the main reaction is
[0015]
SiH 2 Cl 2 + HCl → SiHCl 3 + H 2
SiH 2 Cl 2 + 2HCl → SiCl 4 + 2H 2
It becomes. On the other hand, with respect to the reaction between the dimerized product and hydrogen chloride, hydrogen chloride breaks the Si—Si bond in the dimerized product, and a more stable substance is generated. For example,
[0016]
Si 2 HCl 5 + HCl → 2SiHCl 3
Si 2 Cl 6 + HCl → SiHCl 3 + SiCl 4
There are reactions such as. In this case as well, the composition of the generated gas is influenced by the mixing ratio of hydrogen chloride in the supplied gas, and reacts so as to approach the equilibrium composition.
[0017]
Hereinafter, a more specific method for suitably carrying out the reaction of the present invention will be described. FIG. 1 is a schematic process flow of a polycrystalline silicon manufacturing process. The installation position of the container filled with activated carbon for carrying out the reaction of the present invention can be any of at least five of A to E depending on the purpose. A to D in FIG. 1 are lines through which exhaust gas from the polycrystalline silicon deposition reactor circulates. The position of A and B contains a lot of dichlorosilane and dimer, which is convenient as a reaction, but since the pressure is not high, a fairly large reaction vessel is required to obtain a residence time of about 3 seconds. It becomes.
[0018]
On the other hand, the position of C is the same as that of B and the gas composition, but since the pressure is increased, a very compact reaction vessel may be used. Since the position of D passes through the refrigeration system under high pressure, even the very low boiling point hydrochlorinated silanes are removed, and hydrogen chloride cannot be reduced sufficiently. The hydrogenated chlorinated silanes can be sufficiently reduced. The reaction of the present invention can be suitably used at the above four locations, and in order to use it more effectively, hydrogen chloride or the like can be newly supplied on the way and installed at two or more locations. At position E, the exhaust gas from the reactor for the precipitation reaction is not used, but the reaction is performed by adding hydrogen chloride and a diluent gas to the high-boiling dimer separated in the distillation system and reacting them. It can be recovered as chlorosilane or silicon tetrachloride.
[0019]
[Action]
The activated carbon having the specific pore peak acts as a special catalyst for reacting hydrogen chloride with hydrochlorinated silane in the pore.
[0020]
【The invention's effect】
Efficiency can be achieved simply by contacting the hydrogenated chlorinated silane with reduced hydrogen chloride and chlorine content or the dimerized raw material hydrogenated chlorinated silane generated in the polycrystalline silicon manufacturing process with the above-mentioned specific activated carbon. It can be well converted into trichlorosilane and silicon tetrachloride material, and can reduce the production cost of polycrystalline silicon and waste.
[0021]
【Example】
EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.
In Examples and Comparative Examples, the pore radius (R) showing the maximum peak of activated carbon was measured by the following method.
That is, at 25 ° C., an isothermal adsorption line of water vapor of activated carbon is prepared, and the pore radius (r) is calculated from the adsorption equilibrium relative pressure obtained based on this by the Kelvin equation, and the water vapor adsorption amount is converted into a liquid. The pore volume (V) is calculated.
Next, a pore distribution curve is created by plotting r on the X axis and ΔV / Δlogr on the Y axis, and the pore radius (r) corresponding to the maximum peak position of the pore diameter distribution curve is set to the maximum peak. It was shown as the indicated pore radius (R).
[0022]
Example 1
In a stainless steel container having an inner diameter of 27 mm and a length of 100 mm, 10 g of granular activated carbon having a pore radius (R) showing a maximum peak of 1.2 × 10 −9 m, a specific surface area of 1300 m 2 / g, and an average particle diameter of 3 mm Filled. In order to remove the moisture adsorbed on the activated carbon, it was dried at a temperature of 150 ° C. under a nitrogen flow for 10 hours. Thereafter, while the reaction vessel was replaced with hydrogen, the reaction vessel was cooled to 30 ° C., and hydrogen containing 0.5% each of hydrogen chloride and dichlorosilane was passed at a pressure of 1 kPaG and a flow rate of 320 Nml / min. The composition of the outlet gas of the filled container was measured using gas chromatography. For a while from the start of the gas flow, no components other than hydrogen were observed at the outlet of the reaction vessel due to the action of the activated carbon as an adsorbent, but chlorosilanes began to break through. Table 1 shows the gas composition when the outlet concentration becomes constant.
[0023]
Comparative Example 1
A similar experiment was conducted by charging 10 g of 1/16 ″ pellet-shaped 13X molecular sieve in place of the activated carbon of Example 1. The molecular sieve was previously heated before supplying the reaction gas. It was dried for 10 hours under a hydrogen flow at 250 ° C. The gas composition when the outlet concentration became constant is also shown in Table 1.
[0024]
Comparative Example 2
In place of the activated carbon of Example 1, 10 g of porous silica gel having a pore volume of 0.80 ml / g, a specific surface area of 450 m 2 / g, and an average particle diameter of 3 mm was filled and a similar experiment was conducted. The silica gel was previously dried for 10 hours under a nitrogen flow at a temperature of 150 ° C. before supplying the reaction gas. The gas composition when the outlet concentration becomes constant is also shown in Table 1.
[0025]
Comparative Example 3
In place of the activated carbon of Example 1, 10 g of activated alumina having a pore volume of 0.35 ml / g, a specific surface area of 250 m 2 / g, and an average particle size of 3 mm was filled and the same experiment was conducted. The activated alumina was previously dried for 10 hours under a hydrogen flow at a temperature of 250 ° C. before supplying the reaction gas. The gas composition when the outlet concentration becomes constant is also shown in Table 1.
[0026]
Comparative Examples 4 and 5
With respect to the activated carbon used in Example 1, the maximum peak pore radius is 4 × 10 −10 m, the granular activated carbon having an average particle diameter of 3 mm (Comparative Example 4), and the maximum peak pore radius is 8 × 10 − A similar experiment was performed for each, except that 10 g of granular activated carbon (Comparative Example 5) having an average particle diameter of 9 m and 9 g was filled.
The activated carbon was dried in advance at a temperature of 150 ° C. under nitrogen flow for 10 hours before supplying the reaction gas. The gas composition when the outlet concentration becomes constant is also shown in Table 1.
[0027]
[Table 1]
Figure 0003853894
[0028]
Example 2
A stainless steel container having an inner diameter of 27 mm and a length of 100 mm is filled with about 10 g of various granular activated carbons having an average particle size of 3 to 4 mm having the analytical values shown in Table 2, and the activated carbon is heated for 24 hours at a temperature of 150 ° C. under nitrogen flow. After drying, the flow rate of the mixed gas containing hydrogen chloride and various hydrochlorinated silanes is adjusted so that the residence time of the gas is 1 to 3 seconds under the conditions of a temperature of 30 to 150 ° C. and a pressure of 1 kPaG. Gas was circulated while adjusting to 320 to 960 Nml / min. The composition of the feed gas and the composition of the reaction vessel outlet gas are shown in Table 3.
[0029]
[Table 2]
Figure 0003853894
[0030]
[Table 3]
Figure 0003853894
[0031]
Example 3
Three kinds of stainless steel containers having an inner diameter of 70 mm and a length of 380 mm are each filled with 700 to 800 g of the three kinds of activated carbon shown in Table 2 used in Example 2, and the activated carbon is dried for 45 hours under a temperature of 150 ° C. and nitrogen circulation. Then, a mixed gas containing hydrogen chloride similar to the supply gas used in Example 2 and various hydrochlorinated silanes was supplied at a flow rate of 9 Nm 3 / Hr under the conditions of a temperature of 30 ° C. and a pressure of 0.4 MPaG. For 40 days, and then the temperature was raised to 120 ° C. for 10 days. Table 4 shows changes with time in the hydrogen chloride concentration in the reaction vessel outlet gas.
[0032]
[Table 4]
Figure 0003853894
[0033]
Example 4
When a liquid mainly composed of silicon tetrachloride separated as a high boiling point component in the distillation purification system shown in FIG. 1 was collected and analyzed by gas chromatography, SiCl 4 was about 95 mol%, Si 2 HCl 5 was about 1.5 mol%, and Si 2 Cl 6 was about 3.5 mol%. About 10 kg / min of this liquid was vaporized at 150 ° C., and then mixed with 2 Nm 3 / min of hydrogen containing 3 mol% of hydrogen chloride while adjusting the pressure to 0.2 MPaG. While maintaining the mixture gas to a temperature 0.99 ° C., particle size 4 mm, pore half diameter 18 × 10 -10, the activated carbon having a specific surface area of 1350 m 2 / g was fed to the reaction vessel was 0.1 m 3 filled. Table 5 shows gas compositions before and after the reaction vessel measured by gas chromatography.
[0034]
[Table 5]
Figure 0003853894

[Brief description of the drawings]
FIG. 1 is a simplified process flow diagram of a polycrystalline silicon manufacturing process for explaining an example of installation of a reaction vessel for carrying out the reaction of the present invention.

Claims (5)

塩化水素を含む水素化塩素化シランの混合物を、水蒸気吸着法によって得られる細孔分布曲線において最大ピークを示す細孔半径(R)が1.2×10 −9 〜4×10−9mの細孔径分布特性を有する活性炭と接触させて、該塩化水素と水素化塩素化シランとを反応せしめることを特徴とする、塩化水素の減少した混合物の製造法。A mixture of hydrochlorinated silanes containing hydrogen chloride has a pore radius (R) showing a maximum peak in a pore distribution curve obtained by a water vapor adsorption method of 1.2 × 10 −9 to 4 × 10 −9 m. A method for producing a hydrogen chloride-reduced mixture, characterized by reacting the hydrogen chloride with a hydrochlorinated silane in contact with activated carbon having a pore size distribution characteristic. 水素化塩素化シランが、SiHClまたはSiHClである請求項1の方法。The method of claim 1, wherein the hydrochlorinated silane is SiH 2 Cl 2 or SiHCl 3 . 上記混合物が、SiHClまたはSiClまたはSiClの二量化物をさらに含有する請求項1の方法。The method of claim 1, wherein the mixture further comprises a dimer of Si 2 HCl 5 or Si 2 H 2 Cl 4 or Si 2 Cl 6 . 上記混合物が、水素化塩素化シランを原料とする、シリコン析出反応の反応器からの排出ガスである請求項1の方法。  The method of claim 1, wherein the mixture is an exhaust gas from a reactor for silicon deposition reaction using hydrochlorinated silane as a raw material. 塩化水素と水素化塩素化シランとの反応を0〜150℃で行う請求項1の方法。The process according to claim 1, wherein the reaction between hydrogen chloride and hydrochlorinated silane is carried out at 0 to 150 ° C.
JP00823497A 1996-01-23 1997-01-21 Process for producing a reduced hydrogen chloride mixture Expired - Lifetime JP3853894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00823497A JP3853894B2 (en) 1996-01-23 1997-01-21 Process for producing a reduced hydrogen chloride mixture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP931096 1996-01-23
JP8-9310 1996-01-23
JP00823497A JP3853894B2 (en) 1996-01-23 1997-01-21 Process for producing a reduced hydrogen chloride mixture

Publications (2)

Publication Number Publication Date
JPH09263405A JPH09263405A (en) 1997-10-07
JP3853894B2 true JP3853894B2 (en) 2006-12-06

Family

ID=26342705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00823497A Expired - Lifetime JP3853894B2 (en) 1996-01-23 1997-01-21 Process for producing a reduced hydrogen chloride mixture

Country Status (1)

Country Link
JP (1) JP3853894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025052A1 (en) 2012-08-07 2014-02-13 株式会社トクヤマ Method for producing polycrystalline silicon

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187096A1 (en) * 2001-06-08 2002-12-12 Kendig James Edward Process for preparation of polycrystalline silicon
JP4869671B2 (en) * 2004-10-05 2012-02-08 株式会社トクヤマ Method for producing silicon
DE102006009953A1 (en) 2006-03-03 2007-09-06 Wacker Chemie Ag Process for the recycling of high-boiling compounds within a chlorosilane composite
DE102006009954A1 (en) 2006-03-03 2007-09-06 Wacker Chemie Ag Recycling of high-boiling compounds within a chlorosilane composite
DE102008000052A1 (en) 2008-01-14 2009-07-16 Wacker Chemie Ag Method of depositing polycrystalline silicon
JP5258339B2 (en) * 2008-03-24 2013-08-07 株式会社トクヤマ Silicon manufacturing process
US20110250116A1 (en) * 2008-12-03 2011-10-13 Patrick James Harder Process for Producing Trichlorosilane and Tetrachlorosilane
JP5818012B2 (en) * 2012-03-29 2015-11-18 三菱マテリアル株式会社 Method for decomposing chlorosilane polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025052A1 (en) 2012-08-07 2014-02-13 株式会社トクヤマ Method for producing polycrystalline silicon

Also Published As

Publication number Publication date
JPH09263405A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP5374091B2 (en) Method for producing polycrystalline silicon
JP5632362B2 (en) Method and system for producing pure silicon
RU2368568C2 (en) Method of obtaining silicon
US5716590A (en) Catalytic hydrodehalogenation of halogen-containing compounds of group IV elements
US7790132B2 (en) Method for producing trichlorosilane and method for producing polycrystalline silicon
US20100296994A1 (en) Catalyst and method for dismutation of halosilanes containing hydrogen
JP2863774B2 (en) Vapor deposition of semiconductor silicon by CVD
US20110150739A1 (en) Method for removing boron-containing impurities from halogen silanes and apparatus for performing said method
KR101395275B1 (en) Purification method for off-gas and apparatus for purification of off-gas
JP3853894B2 (en) Process for producing a reduced hydrogen chloride mixture
US4889838A (en) Redistribution of organohalosilanes utilizing heat treated crystalline alumina catalysts
US20150123038A1 (en) Advanced off-gas recovery process and system
KR101392944B1 (en) Manufacturing method for trichlorosilane from silicon tetrachloride and Trickle bed reactor for the method
JP5914240B2 (en) Method for producing polycrystalline silicon
WO2014100705A1 (en) Conserved off gas recovery systems and processes
JPH1149508A (en) Production with decreased waste of polycrystalline silicon
JP2570409B2 (en) Purification method of chloropolysilane
US4892568A (en) Process for removing n-type impurities from liquid or gaseous substances produced in the gas-phase deposition of silicon
JP4256998B2 (en) Method for producing disproportionation reaction product of silane compound
JP3990029B2 (en) Method for producing trichlorosilane with reduced dichlorosilane content
US5869017A (en) Method of producing trichlorosilane having a reduced content of dichlorosilane
CN109467089B (en) Polycrystalline silicon production method
JPH0472764B2 (en)
JPH0218304A (en) Purification of hydrogen chloride containing acetylene and ethylene
CA1254716A (en) Chlorosilane dispropotionation catalyst and method for producing a silane compound by means of the catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150915

Year of fee payment: 9

EXPY Cancellation because of completion of term