JP3853251B2 - A quantitative feeder mechanism and a system device with the mechanism - Google Patents

A quantitative feeder mechanism and a system device with the mechanism Download PDF

Info

Publication number
JP3853251B2
JP3853251B2 JP2002140793A JP2002140793A JP3853251B2 JP 3853251 B2 JP3853251 B2 JP 3853251B2 JP 2002140793 A JP2002140793 A JP 2002140793A JP 2002140793 A JP2002140793 A JP 2002140793A JP 3853251 B2 JP3853251 B2 JP 3853251B2
Authority
JP
Japan
Prior art keywords
raw material
supply
feed
feeder mechanism
quantitative feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002140793A
Other languages
Japanese (ja)
Other versions
JP2003300211A (en
Inventor
宗克 神谷
Original Assignee
市川 十四男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 市川 十四男 filed Critical 市川 十四男
Priority to JP2002140793A priority Critical patent/JP3853251B2/en
Publication of JP2003300211A publication Critical patent/JP2003300211A/en
Application granted granted Critical
Publication of JP3853251B2 publication Critical patent/JP3853251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、射出又は押出成形機に付設する原料供給技術に係り、特に顆粒、ペレット状を含む流動性熱可塑性固形原料を定量化して供給し、かつ原料の成形機直前環境を改善して製品の成形条件を改良する製造技術に関するものである。
【0002】
【従来の技術】
この種の成形システム装置には、図5と図6に示すフィーダを設置しないで小ホッパー2から成形機の本体装置7に供給するタイプや、図7に示す該本体装置直前にフィーダ10を介して供給する従来技術がある。いずれの場合にあっても予め使用する原料を、小形に加工して空気流動下のもとに流動性を与えた樹脂等から成る熱可塑性の固形原料(以下、単に原料という)を用いる。図5に示すもの(以下、従来例1という)は、バッチ式で固形原料を供給する簡易構造型のもの、図6に示すもの(以下、従来例2という)は、連続的に原料元ホッパー4からクッションホッパー2へブロワ12が空気輸送源となり、原料供給管2Aを介し、その途中にホッパー前シャッタ9aによる制御を加えて原料を自動補給し、原料供給後は排気管2Bを介して排気している。クッションホッパー内原料は、ホッパー後シャッタ9cを介して成形機の本体装置7に供給し、その装置直前に立設する供給筒6内にセンサー13を設置し、その原料検知信号を信号線2Dを介してコントローラ14によって信号処理し、その処理によって前記ブロワを制御すると共に、本体装置加熱部11において原料を加熱、溶融することによって熱可塑性樹脂から脱離、分離するガス成分を、真空吸引管2Cを配管して真空ポンプ15によって強制排除している(資料1:「プラスチックス」2002.2月号、pp30、図2)。
ここに、図7に示すものを含め、いずれの本体装置7の内部構造も、メインシリンダ7aに内張りされたメインシリンダスリーブ7bと、メインスクリュ8aに巻装するメインスクリュブレード8bとの刃先間の空隙、片隙間S0は、通常0.1mmを保持して形成し、ホッパー2ないし供給筒6下部のフィード口4c、本体装置側受入口4dを経て原料を受け入れ、メインスクリュ8aの回転速度によって加熱部11へ搬送する原料供給量を調節する構成は変わらない。
フィーダを設置する図7に示すもの(以下、従来例3という)は、本体装置7への原料供給量を定量化する改善手法(綾井英二氏提案「飢餓的供給システム」)を示し、その定量供給を、受入口4dにおける原料の供給状態をメインスクリュが搬送できる最小量、即ち供給筒6内に原料が積み上げる現象が発生しないように、フィードスクリュー5の吐出側端部に同図(B)に示す定量フィーダ10と供給筒6を設けてフィード口4cからの原料吐出量を調整操作し、従来例1と従来例2ではできない原料供給を保持するようにしている。なおこのフィーダは水平置型で、そのフィードスクリュー5外壁に螺旋状に巻装するフィードスクリューブレード5a(外径d)とフィードシリンダ3cに内張りするフィードシリンダスリーブ3d(内径D)との間に形成する片隙間S1=(D−d)/2は、本体装置7に倣って前記S0と同じ隙間0.1mmを保持している。
【0003】
一般に、成形機で発生するガスや水分は、本体装置の受入前に充分に乾燥処理した原料でも、溶融樹脂中に再吸湿させてしまうと、成形条件が悪化する。ここにペレット状を含む原料樹脂の許容乾燥状態は、吸水率0.2%WT以下(1tonの樹脂当たり200c/c)であって、連続成形操作中に発生する水蒸気体積は無視できない容積となり、成形操作の事前に乾燥操作を継続し、充分に脱離成分を排除して、成形操作が行える場合には、成形機の最終工程に配置する金型に生じる汚れは減少する。ところで飢餓的供給法に基づく従来例3においては、本体装置7内の原料搬送状況は、メインシリンダスリーブ7b内上部に空間が出来易く、加熱操作時に溶融ペレットから生じるガスや水蒸気などの脱離成分はメインシリンダ内部を抜けて、供給筒6、フィーダ10を介して更に上昇し、その過程で加熱された気流が本体装置7供給前のペレット樹脂を乾燥させ、その乾燥効果の結果、成形機最終工程において良好な成形品を生み、製品不良率発生を低下させるという好結果をもたらす。その汚れに起因する金型の焼け、ウエルドライン及びショートショット、及び成形品の光沢など、外観不良を含む成形不良の発生率は汚れの減少により改善し、金型分解、洗浄費用等を削減できる。
【0004】
図8に示す模式図により各従来例フィーダ機構の原料搬送状態を示す。同図(A)で示す従来例1では、加熱部11で原料が溶融して減容する以外、原料の搬送カサ密度最も大であるF1手前のF2状態に調節したクッションホッパー2内では、堆積ないし原料自重によるブリッジが生じる供給過疎の恐れがある。原料に混合する充填材により加熱時に発生するガスが、フィード側に戻らずに金型に混入し、高温系樹脂原料の成形例にはメインシリンダ8aに異常摩耗を起こす。同図(B)で示す従来例2では、供給筒6とホッパー後シャッタ9cが、従来例1よりブリッジ発生の恐れは、ホッパーシャッタ下の中間スペースFSの存在によって緩和するが、バッチ供給に伴う原料粒子間摩擦や原料自重は堆積を起こし、堆積F2状態を、構造上、避けられない。
堆積を起こす従来例1と従来例2に比べて、同図(C)に示す従来例3では、フィードスクリュ5の回転操作を調節することによって、本体装置7の受入口4dに原料溜まりが生じない操作を行うことは容易である。従って本体装置7内のメインスクリュ8a回転操作の押し込み効果によって、原料カサ密度が(粗)のF4状態から、F4→F2の(粗→密)に変化する過程のF3状態を経て、F1状態にカサ密度を最大に高めることが可能になった。しかしフィーダの回転操作を制御しても、原料が大きくなると原形破壊が増える現象を抑制できず、フィードスクリュの異常摩耗も新規に生ずる。なおクッションホッパー2内には、ここに図示しないホッパー内シャッタによって槽内を上下に二分し下槽にパドル式レベル計を配置して、原料の溜まりを少な目、即ちF1状態が生じても回転操作でカサ状態を制御するので、フィードシリンダスリーブ3d内には空隙ができる。
【0005】
一般に本体装置7内部から発生する加熱原料の脱離成分をその機外へ排除し、さらにフィーダやホッパーの補助装置から成形設備外へ運び出すために、図6や図7に示す排気、ガス抜きのための配管系を設けて、成形機と付設設備全体が有機的に配設され、一つのシステム装置を構成し、その構成の価値と適正操作が、成形機の最終工程で得られる製品の価値、即ち初期費用、動力経費、製品不良率、清掃サイクル、補修サイクルのデータを決定する。
図6に示す従来例2では、ブロワ12による駆動空気源系により、ホッパー前シャッタ9aとホッパー後シャッタ9c操作によるバッチ式コントロールが、間欠的にほぼ定量化して原料供給する配管系とガス抜き用の真空吸引管2Cの、2系の配管システムを付設するシステム装置を構成する。
図7(A)に示す従来例3は、吸引式空気輸送装置9とクッションホッパー2を半循環する配管系の1系を配設してシステム装置を構成する。(資料2:日水化工(株)総合製品案内「システム輸送タイプLK型」、pp2,カタログ9510−3000)。従来例3における吸引式空気輸送装置9が発生する負圧力が原料搬送力となり、この一系配管によって従来例2のシステム装置より全体設備の初期費用と保全作業、ランニングコスト費用を安価にしている。即ち、従来例3にあっては、飢餓的供給法に従って構成した水平置き型フィーダ10とシステム装置は、成形工程を良好に操作する上で、有機的な不過分の関係にある。
【0006】
【発明が解決しようとする課題】
良品を製造する成形機の本体装置の良い成形工程操作には、付帯設備が果たす役割が重要である。従来例2において成形機と供給筒6間に形成する狭い空間はホッパー後シャッタ9cによってほぼ密閉状態にあり、発生ガスの濃い濃度分布は本体装置内部に留まり易く、供給筒6下部での搬送カサ密度が大のF1状態では、原料自重により隣接する原料同志の擦過が生じ、その結果、原料は細粒化し、細かくなった原料は加熱部11底部に滞留し、成形品の「焼け」原因となる。
従来例3について、図8(C)に示すように、水平置き型フィーダ10のフィード口4cを観察した結果、フィードスクリュ5の吐出側端部の下部部分から原料供給がF3状態で行われるのでなく、不定期に同端部の上部部分からの原料供給がF4状態で生じていることが観察された。この不定期現象によって、従来例3の定量制御操作は不正確であること、さらに供給筒6からクッションホッパー2に抜けて排気管2Bに吸引されるガス抜き効果も不十分であることが判った。
本発明は、顆粒、ペレット状を含む原料を用いて溶融操作し、その溶融材を金型に受けて成形品を製造する製造手段としての、定量フィーダとそのフィーダ付設システム装置に係る上記した問題点に鑑み、改善手段として開発したもので、飢餓的供給法によって操作するのに最適な、原料の定量フィーダ機構に改良して、フィーダから供給筒へ定量化した原料供給が行える定量フィーダ装置の構造を決定すると共に、経済性に有効で積極的なガス吸引手段を新設して、正確に定量化した原料供給によって、成形機の本体装置内部に、改善された原料環境を作り出せる搬送操作が行える成形機製造技術を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明に係る定量フィーダは、原料元ホッパーと原料供給管とクッションホッパーと排気管と吸引式空気輸送装置とを順次接続配管し、クッションホッパー下部に上向き供給式傾斜形定量フィーダ機構と成形機本体装置とを設けた上で、フィーダ機構にはフィードシリンダスリーブとフィードスクリューブレード間に原料大以上の隙間を設定し、フィードシリンダスリーブの可変速回転操作によって原料を移送する上向き先端に供給筒を垂設する定量フィーダ機構において、フィーダ機構(3)を設置する傾斜角(θ)を、原料(M)が示す安息角前後の角度に構成し、該機構内のフィードシリンダスリーブ(3d)とフィードスクリューブレード(5a、5b)間の隙間(S)を原料(M)の大きさに対応して変更可能にするフィードシリンダスリーブ(3d)を形成し、あるいは加えて供給筒(6)に硬貨ガラス管から成る透明部(6a)を設けて原料(M)の供給状態を確認可能にすることを特徴とするものである。
【0008】
そして本発明に係る定量フィーダ機構付きシステム装置は、定量フィーダ機構を付設する定量フィーダ機構付きシステム装置であって、供給筒付設のガス抜き口を吸引式空気輸送装置に接続する排気管に直接、接続配管して、供給筒内部空気の吸引操作を介して成形機本体装置内部発生ガスを常時強制吸引保持状態可能に構成することを特徴とするものである。
【0009】
【作用】
以上のように構成した本発明の定量フィーダ機構3は、クッションホッパーから受け入れた原料を、フィードスクリューの上側を回り込んで供給される原料供給量誤差が生じないように、フィードスクリューを傾斜して搬送し、その傾斜の程度を原料の安息角を基準に上方へ搬送するフィード装置の設置傾斜角を決めるとともに、その傾斜角の程度をフィードスクリューブレードとフィードシリンダスリーブ間の空隙大きさに対応させ広く空けて決めたので、原料供給時に原料の姿形を破壊せず、供給時の原料自重による圧密現象も生じない。さらに供給筒に透明部を設けて原料の供給状態を確認できるようにしたので、フィード口上側からのばらつき供給現象を生じることのない定量化回転フィード操作が視認下に行え、計量管理の誤差が減少した。その上に機械装置の各部分に生じる原料移送に伴う摩耗の発生が激減し、使用電動機出力が低減すると共に、相乗的にフィード装置自体が小型化、軽量化できた。また供給筒上部に設けたガス抜き口は、クッションホッパー内の乾燥排気流と明確に区分できたので、本体装置発生ガスがクッションホッパーへ混入するガス移動は無くなった。そして定量フィード機構の装置傾斜角を原料の安息角物性に合わせて決めたので、移送原料がフィード機構の下方へ逆流する傾向を防止でき、機構の底部や中間に堆積せず、従って原料毀損による細粒、粉末化現象が起こらず、その上にフィードスクリュー上部空間から原料が回り込むことによる計量誤差や上部空間閉塞などのスリーブ回転の駆動出力増加を起こさせる原因がない。
同様に定量機構付きシステム装置1は、供給筒ガス抜き口を直接、排気管に接続配管する常時強制吸引排気式にして、クッションホッパーを通過させない排気方式にしたので、本体装置内部発生ガス排気時の空気抵抗が最小条件下でガス抜きがし易くなり、さらに供給原料には細粒、粉末等が激減するので本体装置内で樹脂溶融状態が改善し、本体装置が製造する樹脂の成型時において、従来、金型に多く生じたデポジット発生などの不具合が減少した。さらに本発明システム装置1は、原料供給に用いる吸引式空気輸送装置を本体装置のガス抜き排気に兼用して強制吸引するので、専用の吸引手段を特設せずに済む。
【0010】
【発明の実施の形態】
以下、本発明に係る定量フィーダ機構とその機構付きシステム装置を図によって説明する。ここに、図1は、本発明の定量フィーダ機構を説明するもので、その構成を示す側断面を含む部分側面図、図2は、本発明の定量フィーダ機構付きシステム装置を説明するもので、そのシステム構成を示す側面図、図3は、本発明の定量フィーダ機構の実施例を説明するもので、(A)はその1実施例を示す部分側断面図、(B)は他の実施例を示す部分側断面図、そして図4は、本発明の定量フィーダ機構の特徴を説明するもので、(A)は原料搬送状態を示す模式図、(B)は原料搬送の内部構造を示す部分側断面図である。
【0011】
本発明の定量フィーダ機構3は、図1に示すように、クッションホッパー2下部の原料投下口4b位置からフィード口4c方向に傾けて上向かせ、その傾斜角θは原料物性の安息角前後に選択し、かつ成形機の本体装置7の受入口4dに立設する供給筒6と連結している。そして可変速可能の減速機構付きフィーダ3の動力駆動によるフィードスクリュー5の回転操作を経て、クッションホッパー2から本体装置7へほぼ閉鎖的に上向き搬送した原料を供給可能に構成している。フィードスクリュー5に巻装するフィードスクリューブレード5aの刃先と、フィードシリンダスリーブ3d間の隙間S 2は、原料大きさより充分広く形成し、さらに供給筒6の頂部には、ガス抜き口2bを付設している。
【0012】
また本発明の定量フィーダ機構付きシステム装置1は、図2に示すように、クッションホッパー2、定量フィーダ機構3、供給筒6の順に組み立て、成形機の本体装置7上側に立設する該供給筒頂部付設のガス抜き口2bを、自然換気可能に設け、あるいは強制吸引排気するために排気管2Bに配管接続して、本体装置7に連通可能に構成する。なお図4(B)に示すように、フィード構造の一部又は全区間に亘って形成する、フィードシリンダスリーブ3d内径Dとフィードスクリュブレード5a外径dとの間の隙間S2は、原料Mがペレット状であっても、錠剤、顆粒の形態であっても、それら原料の内、一番大きな形態の大きさより充分大きいことが必要である。
【0013】
【実施例】
本発明の、定量フィーダ機構3の実施例を図1ないし図3について説明する。ペレット状の成形原料に用い、定量フィード機構3を、ペレット樹脂の安息角とほぼ同じの設置傾斜角θ=π/6とし、用いたペレット大きさより充分に広く、フィードスクリュブレード5aの刃先とフィードシリンダスリーブ3d間との隙間S2=6mmを設定した。供給筒6上部駆体にガス抜き口2bを付設し、該供給筒中間部に硬質ガラス管から成る透明部6aを、該上部駆体と供給筒取付部6b間に固定する4本の支柱によって外部から締め付けて密封状に組み立てている。ここにフィードスクリューを窒化材、フィードシリンダスリーブをSUS440CHRC45で製作した。なお3bは、精密部品成形時に厳密に原料供給する上で不可欠の定量フィーダ駆動源サーボモータ用のコントローラであり、4aは原料供給口、また2aはクッションホッパーの排気口、Hは供給筒6の上部駆体下部高さで、20cmとした。なお図3に示すように、原料大きさより隙間Sを狭くしてS1にしたもの原料大きさより充分に広くした隙間S2(>S1)を設けたもの、該両隙間(S1、S2)を設けるためにフィードスクリューブレード5a及び/または5bを混在させたものなどから成る、フィードスクリュー5を形成しても良い。同図(A)に示す定量フィード機構3は、ここに図示しない供給筒のフィード口に面するフィードスクリューブレード部分をほぼ1周分、幅広に形成してペレット大きさより小さい隙間S1を形成し、その他の区間部分の隙間S2はペレット大きさより充分広く形成したもので、設置傾斜角θがペレット安息角の大きさ以下の小の場合に実施する。また同図(B)に示すものは、予め充分広い同一の隙間S2を全てに形成した上で、ここに図示しない供給筒のフィード口側フィードスクリューブレード5a、5b部分を含む他のブレード部分に対して、隙間Sを狭くするようにブレードカバーを付け加えて帳設し、又は予め巻装してほぼ1周分、前記ブレード刃先を狭い隙間S1に形成するもので、これら処置はペレットがフィード口4cの上側空隙から間欠的に落下するなどの、設置傾斜角θの傾斜不足が原因の不具合に対処するためのもので、この対処はフィールド実施テストによる確認作業に基づいて、適時、付加着装する。
【0014】
前記した定量フィーダ機構の実施例を組み込んで、本発明の定量フィーダ機構付きシステム装置を構成した実施例を図2について説明する。本実施例では、定量フィーダ機構3の供給筒6頂部に付設するガス抜き口2bを、排気管2Bに配管接続して、強制吸引排気するようにした。そして通常のテスト運転を約1年間、使用原料をペレット状にしたものを46ナイロン樹脂を主材に、添加材混合比で全体の30%をグラスファイバーを付加、含有させたものを供給して行った。本実施例と、前記した従来例1ないし従来例3を、それぞれ順次比較例1ないし比較例3として比較したものを、表1に示す。この表中において、それぞれのシステム装置は添付する図面番号又は指定図番中の記号によって適用図を示した。
【0015】
【表1】

Figure 0003853251
【0016】
本発明のシステム装置の実施例では、表1に示す以外に、フィードスクリュー5の回転により、フィーダ内部ではペレット同志が良好に摩擦接触して、終始、良好な計量状態にあった。図4(A)に示すように、クッションホッパー2内部の原料貯留状態が堆積が生じない程度のF2状態に調整される場合に、定量フィーダ機構3内部のペレットの状態は、ここに記載しないフィードスクリュの回転操作によって(粗→密)変化する過程のF3状態に保持して上向き供給され、ペレット状原料は瞬時に供給筒6に到達して原料カサ密度が(粗)のF4状態になってパラパラと落下する。本体装置7に落下した後は、体積移動速度一定状態を保持して、前記従来例3における本体装置内のペレットと同様な搬送状態を示す。すなわち供給筒6直下の本体装置7受入口4d近くのメインブレード8bの谷部には、ペレットは堆積せず良好な空間が認められた。そのために加熱部11直前部分のペレット助走区間では、加熱原料からの良好なガス成分の分離が生じた。
なお故意に定量フィード機構3の吐出口を塞いだ際、詰め込まれたペレットに、フィードスクリュー5は空転した。その空転動作はペレットの圧密を進行させず、電動機の過負荷状態は危険域に進まず、僅かにペレットに軽微な破壊が生じただけでその破壊障害発生の範囲は狭く、かつフィード装置構成材に摩耗の痕跡を認めなかった。文献引用による比較例2を除く他の実施例では補修を必要とするまで運転し、補修が必要なくとも12ヶ月間で運転を中止し、運転データを得た。
【0017】
このように構成した本発明の実施によって、充分な脱離成分の除去効果が得られて、薄肉のABS樹脂ペレットの成形品成形において、比較例3ではショートモールドが50PPM生じたが、実施例では0PPMであった。さらに分散剤に水酸化アルミニウムを添加し、高温でその混合ペレットを成形する場合に、分散剤が分解して発生する水蒸気成分の脱気除去や、エラストマー系樹脂使用時に生じる残留水の蒸気化による有効な機外排気が達成出来た。
なお本発明の好適な実施対象には、例えば1型当たり4−6個取り、1ショット総合製品重量15g程度の小形部品の精密部品成形や、特にプラスチック製品以外の熱可塑性固定原料を用いる食品加工や薬剤の製剤用に適用できる。
【0018】
【発明の効果】
本発明の、定量フィーダ機構とその機構付きシステム装置によれば、原料物性に基づき上向き搬送可能にしたフィーダ機構の傾斜配置と、原料大きさをその機構内空隙形成の設計要件とした定量フィーダ機構を構成し、この定量フィーダ機構を付設するシステム装置の配管系2A、2B、2bを有機的に組織化して、成形機内メインスクリュ8aが搬送できる最小量を、いわゆる飢餓供給法に従い定量的に供給することによって最良の成形樹脂を供給する最適なシステム化を、定量フィーダ機構を改善することによって実施可能とする条件作りを行うとともに、その総合効果として電動機出力低下を実現し、その結果、定量フィード装置は小型化、省エネ化し、定量供給は格段と安定化した。しかもシステム装置の初期費用の対費用効果は高まり、同種装置はより普及し易い価格帯に収まった。その上、本発明装置1が製造する成形品の品質は向上して不良品発生率が低減し、金型清掃やフィードスクリュー交換を含む保守・補修コストは数分の一以下になるなど、本発明技術によって非常に安定した運転操作が実現し、成形製造技術一般の向上に広く寄与する。
【図面の簡単な説明】
【図1】 本発明の定量フィーダ機構を説明するもので、その構成を示す側断面を含む部分側面図である。
【図2】 本発明の定量フィーダ機構付きシステム装置を説明するもので、そのシステム構成を示す側面図である。
【図3】 本発明の定量フィーダ機構の実施例を説明するもので、(A)はその1実施例を示す部分側断面図、(B)は他の実施例を示す部分側断面図である。
【図4】 本発明の定量フィーダ機構の特徴を説明するもので、(A)は原料搬送状態を示す模式図、(B)は原料搬送の内部構造を示す部分側断面図である。である。
【図5】 フィーダ機構に係る従来技術を説明するもので、従来例1(ホッパ直結型成形機)を示す部分側断面図である。
【図6】 システム装置に係る従来技術を説明するもので、従来例2(シャッタ開閉式フィーダ付きシステム装置)を示す部分側断面図である。
【図7】 システム装置とその付設フィーダ機構に係る他の従来技術を説明するもので、(A)は従来例3(水平置型定量フィーダ付きシステム装置)を示す側面図、(B)はその定量フィーダ(水平置型定量フィーダ)を示す部分側断面図である。
【図8】 従来技術におけるフィーダ機構の原料搬送状態を説明するもので、(A)は従来例1についての状態を示す模式図、(B)は従来例2についての状態を示す模式図、(C)は従来例3についての状態を示す模式図である。
【符号の説明】
1 システム装置
2 クッションホッパー
2a 排気口
2b ガス抜き口
2A 原料供給管
2B 排気管
2C 真空吸引管
2D 信号線
3 フィーダ
3a サーボモータ
3b コントローラ(サーボモータ用)
3c フィードシリンダ
3d フィードシリンダスリーブ
4 原料元ホッパー
4a 原料供給口
4b 原料投下口
4c フィード口
4d 受入口
5 フィードスクリュ
5a、5b フィードスクリュブレード(又は同外包線)
6 供給筒
6a 透明部
6b 供給筒取付部
7 本体装置(押出機/射出成形機)
7a メインシリンダ
7b メインシリンダスリーブ
8 減速装置(本体用)
8a メインスクリュ
8b メインスクリュブレード(又は同外包線)
9 吸引式空気輸送装置
9a ホッパー前シャッタ
9b ホッパー内シャッタ
9c ホッパー後シャッタ
10 水平置型フィーダ
11 加熱部
12 ブロワー
13 センサー
14 コントローラ
15 真空ポンプ
D スリーブ内径
d スクリュブレード外径
F1 原料搬送カサ密度大の状態、F1(密)>F2>F3>F4(粗)
F2 F1状態手前の状態
F3 F4→F2の(粗→密)変化する過程の状態
F4 原料カサ密度が(粗)の状態
FS ホッパーシャッタ下の中間スペース
H 透明筒を含む高さ
θ フィーダ装置設置傾斜角
S シリンダスリーブとスクリューブレード間の隙間、(D−d)/2
S0 同上部分の隙間(本体装置)
S1 同上部分の、原料大きさより狭い隙間(フィーダ)
S2 同上部分の、原料大きさより広い隙間(フィーダ)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a raw material supply technology attached to an injection or extrusion molding machine, and in particular, quantifies and supplies a fluid thermoplastic solid raw material including granules and pellets, and improves the environment immediately before the raw material molding machine. The present invention relates to a manufacturing technique for improving the molding conditions.
[0002]
[Prior art]
In this type of molding system apparatus, the feeder shown in FIG. 5 and FIG. 6 is not installed and the feeder is supplied from the small hopper 2 to the main body device 7 of the molding machine, or through the feeder 10 immediately before the main body device shown in FIG. There is a conventional technology to supply. In either case, a raw material used in advance is a thermoplastic solid raw material (hereinafter simply referred to as a raw material) made of a resin or the like that has been processed into a small size and imparted fluidity under air flow. The one shown in FIG. 5 (hereinafter referred to as Conventional Example 1) is of a simple structure type that supplies a solid raw material in a batch type, and the one shown in FIG. 6 (hereinafter referred to as Conventional Example 2) is continuously a raw material hopper. The blower 12 serves as an air transportation source from 4 to the cushion hopper 2 and is automatically replenished via the raw material supply pipe 2A, controlled by the shutter 9a before the hopper in the middle, and exhausted through the exhaust pipe 2B after the raw material is supplied. is doing. The raw material in the cushion hopper is supplied to the main body device 7 of the molding machine via the shutter 9c after the hopper, the sensor 13 is installed in the supply cylinder 6 standing immediately before the device, and the raw material detection signal is sent to the signal line 2D. The controller 14 performs signal processing, and the blower is controlled by the processing, and the gas component desorbed and separated from the thermoplastic resin by heating and melting the raw material in the main body heating unit 11 is supplied to the vacuum suction pipe 2C. And forcibly removed by the vacuum pump 15 (Document 1: “Plastics” 2002.02 issue, pp30, FIG. 2).
Here, the internal structure of any of the main body devices 7 including those shown in FIG. 7 is between the cutting edges of the main cylinder sleeve 7b lining the main cylinder 7a and the main screw blade 8b wound around the main screw 8a. The gap and the piece gap S0 are usually formed by holding 0.1 mm, and the raw material is received through the feed port 4c at the lower part of the hopper 2 or the supply cylinder 6 and the main body side receiving port 4d, and heated by the rotational speed of the main screw 8a. The structure which adjusts the raw material supply amount conveyed to the part 11 does not change.
The one shown in FIG. 7 where the feeder is installed (hereinafter referred to as Conventional Example 3) shows an improved method for quantifying the amount of raw material supplied to the main unit 7 (proposed by Eiji Arai “Hunger Supply System”), and its quantification (B) at the discharge side end of the feed screw 5 so that the supply of the raw material at the receiving port 4d is the minimum amount that the main screw can convey, that is, the phenomenon that the raw material accumulates in the supply cylinder 6 does not occur. Are provided to adjust the amount of raw material discharged from the feed port 4c so as to maintain the raw material supply that cannot be achieved in the conventional example 1 and the conventional example 2. This feeder is of a horizontal type and is formed between a feed screw blade 5a (outer diameter d) spirally wound around the outer wall of the feed screw 5 and a feed cylinder sleeve 3d (inner diameter D) lining the feed cylinder 3c. The single gap S1 = (D−d) / 2 keeps the same gap of 0.1 mm as S0 following the main body device 7.
[0003]
In general, if the gas and moisture generated in the molding machine are reabsorbed in the molten resin even if the raw material is sufficiently dried before receiving the main body device, the molding conditions deteriorate. Here, the allowable dry state of the raw material resin including pellets is a water absorption of 0.2% WT or less (200 c / c per 1 ton of resin), and the water vapor volume generated during the continuous molding operation is a volume that cannot be ignored. If the drying operation is continued prior to the molding operation to sufficiently remove the desorbed components and the molding operation can be performed, the contamination generated on the mold placed in the final process of the molding machine is reduced. By the way, in the prior art example 3 based on the starvation supply method, the raw material conveyance situation in the main body device 7 is that a space is easily formed in the upper part of the main cylinder sleeve 7b, and desorption components such as gas and water vapor generated from the molten pellets during the heating operation. Passes through the inside of the main cylinder and further rises through the supply cylinder 6 and the feeder 10, and the air flow heated in the process dries the pellet resin before supplying the main body device 7, and as a result of the drying effect, the molding machine finally The process yields good results in producing good molded products and reducing the product defect rate. The occurrence rate of molding defects including appearance defects such as mold burns, weld lines and short shots due to dirt, and gloss of molded products can be improved by reducing dirt, and mold disassembly and cleaning costs can be reduced. .
[0004]
The schematic diagram shown in FIG. 8 shows the material conveyance state of each conventional feeder mechanism. In Conventional Example 1 shown in FIG. 2A, in the cushion hopper 2 adjusted to the F2 state before F1, which is the highest density of the conveying crush of the raw material, except for the melting of the raw material in the heating unit 11 and volume reduction, In addition, there is a risk of supply depopulation resulting in a bridge due to the weight of the raw material. Gas generated at the time of heating by the filler mixed with the raw material does not return to the feed side but enters the mold, and abnormal molding occurs in the main cylinder 8a in the molding example of the high temperature resin raw material. In the second conventional example shown in FIG. 2B, the possibility that the supply cylinder 6 and the shutter after the hopper 9c are bridged from the first conventional example is mitigated by the presence of the intermediate space FS under the hopper shutter. The friction between raw material particles and the weight of the raw material cause deposition, and the deposited F2 state is unavoidable due to the structure.
Compared with the conventional example 1 and the conventional example 2 that cause the deposition, in the conventional example 3 shown in FIG. 5C, by adjusting the rotation operation of the feed screw 5, a raw material pool is generated at the receiving port 4d of the main unit 7. It is easy to perform no operation. Therefore, due to the pushing effect of the rotation operation of the main screw 8a in the main unit 7, the raw material density is changed from the (rough) F4 state to the F1 state through the F3 state in which the raw material density changes from F4 to F2 (rough → dense). It became possible to increase the density of the palm to the maximum. However, even if the rotation operation of the feeder is controlled, the phenomenon that the original fracture increases when the raw material becomes large cannot be suppressed, and abnormal wear of the feed screw also newly occurs. In the cushion hopper 2, a hopper shutter (not shown) divides the inside of the tank up and down and a paddle type level meter is arranged in the lower tank so that the rotation of the raw material can be reduced even if the F1 state occurs. Therefore, a gap is formed in the feed cylinder sleeve 3d.
[0005]
Generally, in order to eliminate the desorption component of the heating raw material generated from the inside of the main body device 7 outside the machine, and to carry it out of the molding equipment from the feeder or hopper auxiliary device, the exhaust and degassing shown in FIG. 6 and FIG. A piping system is provided, the molding machine and the entire attached equipment are organically arranged to form a single system unit, and the value of the configuration and the value of the product obtained in the final process of the molding machine That is, the initial cost, power cost, product defect rate, cleaning cycle, and repair cycle data are determined.
In the conventional example 2 shown in FIG. 6, the batch type control by the operation of the shutter 9a before the hopper and the shutter 9c after the hopper is intermittently almost quantified by the driving air source system by the blower 12, and the piping system for supplying the raw material and the degassing The system apparatus which attaches 2nd piping system of the vacuum suction pipe 2C of this is comprised.
In Conventional Example 3 shown in FIG. 7A, one system of a piping system that semi-circulates between the suction type pneumatic transport device 9 and the cushion hopper 2 is provided to constitute a system device. (Document 2: Nissui Chemicals Co., Ltd. General Product Guide “System Transport Type LK”, pp2, catalog 9510-3000). The negative pressure generated by the suction type pneumatic transport device 9 in the conventional example 3 becomes the raw material conveying force, and this system piping makes the initial cost of the entire equipment, the maintenance work, and the running cost cost lower than the system device of the conventional example 2. . That is, in Conventional Example 3, the horizontal feeder 10 configured in accordance with the starvation supply method and the system apparatus have an organic insufficiency in favor of operating the molding process satisfactorily.
[0006]
[Problems to be solved by the invention]
For the good molding process operation of the main body of the molding machine that manufactures non-defective products, the role played by the incidental equipment is important. In the conventional example 2, the narrow space formed between the molding machine and the supply cylinder 6 is almost hermetically sealed by the shutter 9c after the hopper, and the concentrated concentration distribution of the generated gas tends to stay inside the main body, and the conveyance cassette at the lower part of the supply cylinder 6 In the F1 state where the density is high, the adjacent raw materials rub against each other due to the weight of the raw material. As a result, the raw material is finely granulated, and the fine raw material stays at the bottom of the heating unit 11, causing “burning” of the molded product. Become.
As for Conventional Example 3, as shown in FIG. 8C, as a result of observing the feed port 4c of the horizontal feeder 10, the material supply is performed from the lower part of the discharge side end of the feed screw 5 in the F3 state. In addition, it was observed that the raw material supply from the upper part of the end portion occurred irregularly in the F4 state. Due to this irregular phenomenon, it has been found that the quantitative control operation of the conventional example 3 is inaccurate, and that the degassing effect that is drawn from the supply cylinder 6 to the cushion hopper 2 and sucked into the exhaust pipe 2B is insufficient. .
The present invention relates to the above-described problem relating to a quantitative feeder and its feeder installation system device as a manufacturing means for manufacturing a molded product by performing a melting operation using raw materials including granules and pellets and receiving the molten material in a mold. In view of this point, a quantitative feeder device that was developed as an improvement means, improved to a raw material quantitative feeder mechanism that is optimal for operation by the starvation supply method, and can supply the raw material quantified from the feeder to the supply cylinder. In addition to determining the structure, a gas suction means that is effective and economical is newly installed, and the feed operation that can create an improved raw material environment can be performed inside the main body of the molding machine by accurately quantifying the raw material supply. The object is to provide a molding machine manufacturing technique.
[0007]
[Means for Solving the Problems]
The metering feeder according to the present invention comprises a raw material hopper, a material feed pipe, a cushion hopper, an exhaust pipe, and a suction type air transport device which are connected in sequence, and an upward feed type tilt type quantitative feeder mechanism and a molding machine main body at the lower part of the cushion hopper In the feeder mechanism, a gap larger than the raw material is set between the feed cylinder sleeve and the feed screw blade in the feeder mechanism, and the supply cylinder is suspended from the upward tip where the raw material is transferred by the variable speed rotation operation of the feed cylinder sleeve. In the fixed-quantity feeder mechanism to be installed, the inclination angle (θ) for installing the feeder mechanism (3) is configured to be an angle before and after the repose angle indicated by the raw material (M), and the feed cylinder sleeve (3d) and the feed screw in the mechanism blade (5a, 5b) during feed Siri by gaps (S) corresponding to the size of the raw material (M) to permit change of The sleeve (3d) is formed or, in addition, the supply tube (6) is provided with a transparent portion (6a) made of a coin glass tube so that the supply state of the raw material (M) can be confirmed. .
[0008]
And the system device with a quantitative feeder mechanism according to the present invention is a system device with a quantitative feeder mechanism to which a quantitative feeder mechanism is attached , and is directly connected to an exhaust pipe that connects a gas vent port with a supply cylinder to a suction type air transport device . The connecting pipe is configured so that the gas generated inside the main body of the molding machine can be always forcedly sucked and held through the suction operation of the air inside the supply cylinder .
[0009]
[Action]
The quantitative feeder mechanism 3 of the present invention configured as described above is configured such that the feed screw is inclined so that the raw material received from the cushion hopper is fed around the upper side of the feed screw so as not to cause an error. conveyed, corresponding to the gap size between the degree of inclination determines the installation angle of inclination of the feed device for conveying upward relative to the angle of repose of the material Rutotomoni degree feed screw blades and the feed cylinder sleeve of the tilt angle because apart widely decided to, without destroying the appearance form of raw materials at the time of the raw material supply, it does not occur consolidation phenomenon caused by the raw materials to its own weight at the time of supply. In addition, since the supply tube is provided with a transparent part so that the supply state of the raw material can be confirmed , a quantified rotary feed operation that does not cause a variation supply phenomenon from the upper side of the feed port can be performed visually , and an error in measurement management can be obtained. Diminished. In addition, the occurrence of wear caused by the transfer of raw materials generated in each part of the mechanical device was drastically reduced, the output of the motor used was reduced, and the feed device itself could be made smaller and lighter synergistically. Further, the gas vent provided in the upper part of the supply cylinder can be clearly separated from the dry exhaust flow in the cushion hopper, so that the gas movement of the main body generated gas to the cushion hopper is eliminated. And since the device inclination angle of the quantitative feed mechanism is determined according to the physical properties of the repose angle of the raw material, the tendency of the transferred raw material to flow back to the lower side of the feed mechanism can be prevented, and the material does not accumulate at the bottom or middle of the mechanism, and therefore the raw material damage There is no cause of increase in the drive output of the sleeve rotation, such as a measurement error or upper space blockage due to the raw material flowing around from the upper space of the feed screw.
Similarly, the system device 1 with a quantification mechanism uses a forced suction exhaust type in which the supply cylinder gas vent is directly connected to the exhaust pipe, and an exhaust method in which the cushion hopper does not pass. When the air resistance at the time is minimum, it is easy to vent the gas, and further, fine particles, powder, etc. are drastically reduced in the feedstock, so the resin melt state improves in the main unit, and when the resin produced by the main unit is molded However, defects such as deposits that have been generated in the mold in the past have been reduced. Further, the system device 1 of the present invention forcibly sucks the suction-type pneumatic transport device used for the raw material supply also as the degassing / exhaust of the main body device, so that no special suction means is required.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a quantitative feeder mechanism and a system device with the mechanism according to the present invention will be described with reference to the drawings. Here, FIG. 1 illustrates a quantitative feeder mechanism of the present invention, a partial side view including a side cross section showing the configuration thereof, and FIG. 2 illustrates a system apparatus with a quantitative feeder mechanism of the present invention. FIG. 3 is a side view showing the system configuration, FIG. 3 explains an embodiment of the quantitative feeder mechanism of the present invention, (A) is a partial sectional side view showing one embodiment, and (B) is another embodiment. FIG. 4 is a partial side sectional view showing the features of the quantitative feeder mechanism of the present invention, (A) is a schematic diagram showing a raw material conveyance state, and (B) is a portion showing an internal structure of the raw material conveyance. It is a sectional side view.
[0011]
As shown in FIG. 1, the quantitative feeder mechanism 3 of the present invention is inclined upward from the position of the raw material dropping port 4b at the lower part of the cushion hopper 2 in the direction of the feed port 4c, and the inclination angle θ is around the repose angle of the physical properties of the raw material. It is selected and connected to a supply cylinder 6 standing at a receiving port 4d of a main body device 7 of the molding machine. The feedstock 5 is rotated by a power drive of the feeder 3 with a speed reduction mechanism capable of variable speed, and the raw material transported upwardly from the cushion hopper 2 to the main body device 7 can be supplied. The gap S2 between the cutting edge of the feed screw blade 5a wound around the feed screw 5 and the feed cylinder sleeve 3d is formed sufficiently wider than the raw material size, and a gas vent 2b is provided at the top of the supply cylinder 6. ing.
[0012]
Further, as shown in FIG. 2, the system device 1 with a quantitative feeder mechanism of the present invention is assembled in the order of a cushion hopper 2, a quantitative feeder mechanism 3, and a supply cylinder 6, and the supply cylinder standing on the upper side of the main body device 7 of the molding machine. A gas vent 2b attached to the top is provided so as to be naturally ventilated, or connected to the exhaust pipe 2B for forced suction exhaust so that it can communicate with the main unit 7. As shown in FIG. 4B, a gap S2 between the feed cylinder sleeve 3d inner diameter D and the feed screw blade 5a outer diameter d formed over part or all of the feed structure is formed by the raw material M. Whether it is in the form of pellets, tablets, or granules, it is necessary that the raw material be sufficiently larger than the largest form.
[0013]
【Example】
An embodiment of the quantitative feeder mechanism 3 of the present invention will be described with reference to FIGS. Used as a pellet-shaped forming raw material, the quantitative feed mechanism 3 has an installation inclination angle θ = π / 6 which is substantially the same as the angle of repose of the pellet resin, and is sufficiently wider than the size of the pellet M used, and the cutting edge of the feed screw blade 5a A gap S2 = 6 mm between the feed cylinder sleeves 3d was set. The upper cylinder of the supply cylinder 6 is provided with a gas vent 2b, and a transparent part 6a made of a hard glass tube is provided in the middle of the supply cylinder by four columns that are fixed between the upper cylinder and the supply cylinder mounting part 6b. Tightened from outside and assembled in a sealed manner. Here, the feed screw 5 was made of a nitride material, and the feed cylinder sleeve was made of SUS440CHRC45. Reference numeral 3b is a controller for a quantitative feeder drive source servo motor , which is indispensable for supplying raw materials strictly when molding precision parts. 4a is a raw material supply port, 2a is a cushion hopper exhaust port, and H is a supply cylinder 6. The height of the lower part of the upper body was 20 cm. As shown in FIG. 3, the gap S is made narrower than the raw material size to S1, the gap S2 (> S1) is made sufficiently wider than the raw material size , and both the gaps (S1, S2) are provided. Therefore, the feed screw 5 made of a mixture of the feed screw blades 5a and / or 5b may be formed. The fixed amount feed mechanism 3 shown in FIG. 1A is formed with a feed screw blade portion facing a feed port of a supply cylinder (not shown) approximately one round wide to form a gap S1 smaller than the pellet size, The gap S2 in the other section is formed sufficiently wider than the pellet size, and is performed when the installation inclination angle θ is smaller than the pellet repose angle. Also, the one shown in FIG. 2B is the other blade part including the feed port side feed screw blades 5a and 5b ( not shown) of the supply cylinder 6 after forming the same sufficiently wide gap S2 in advance. relative, and set book adds a blade cover so as to narrow the gap S, or pre-wound to approximately one rotation, so as to form said blade tip in narrow gaps S1, these treatments pellets feed This is to cope with problems caused by insufficient inclination of the installation inclination angle θ , such as intermittent drops from the upper gap of the opening 4c. To do.
[0014]
An embodiment in which the above-described embodiment of the quantitative feeder mechanism is incorporated and the system apparatus with the quantitative feeder mechanism of the present invention is configured will be described with reference to FIG. In the present embodiment, the gas vent 2b attached to the top of the supply cylinder 6 of the quantitative feeder mechanism 3 is connected to the exhaust pipe 2B for forced suction exhaust. And in normal test operation for about one year, the material used in pellet form is 46 nylon resin as the main material, and 30% of the total is added with glass fiber added and contained in the additive mixture ratio. went. Table 1 shows a comparison of the present example and the above-described conventional examples 1 to 3 as Comparative Examples 1 to 3, respectively. In this table, each system apparatus indicates an application diagram by a symbol in the attached drawing number or designated drawing number.
[0015]
[Table 1]
Figure 0003853251
[0016]
In the embodiment of the system apparatus of the present invention, in addition to those shown in Table 1, the pellets were in good frictional contact with each other inside the feeder due to the rotation of the feed screw 5 and were in a good weighing state throughout. As shown in FIG. 4 (A), when the raw material storage state inside the cushion hopper 2 is adjusted to the F2 state where no accumulation occurs, the state of the pellets inside the quantitative feeder mechanism 3 is a feed not described here. Holding in the F3 state in the process of changing (rough → dense) by rotating the screw, it is fed upward, and the pellet-like raw material instantaneously reaches the supply cylinder 6 and enters the F4 state where the raw material density is (coarse) Fall down. After falling to the main body device 7, the volume movement speed constant state is maintained, and the same conveying state as the pellets in the main body device in the conventional example 3 is shown. In other words, in the valley portion of the main blade 8b near the main body device 7 receiving port 4d immediately below the supply cylinder 6, pellets were not deposited and a good space was recognized. Therefore, in the pellet run-up section immediately before the heating unit 11, good gas component separation from the heating raw material occurred.
When the discharge port of the quantitative feed mechanism 3 was intentionally closed, the feed screw 5 was idled into the packed pellets. The idling operation does not proceed with the compaction of the pellet, the overload state of the motor does not go into danger, the slight failure of the pellet has occurred, and the range of occurrence of the failure is narrow, and the feed device components No traces of wear were observed. In other examples except the comparative example 2 cited in the literature, the operation was performed until the repair was necessary, and the operation was stopped within 12 months even if the repair was not necessary, and the operation data was obtained.
[0017]
By implementing the present invention configured as described above, a sufficient removal component removal effect was obtained, and in molding of a thin ABS resin pellet, a short mold was generated in Comparative Example 3 at 50 PPM. 0 PPM. Furthermore, when aluminum hydroxide is added to the dispersant and the mixed pellets are molded at a high temperature, the water vapor component generated by decomposition of the dispersant is degassed and removed, or the residual water is vaporized when using an elastomer resin. Effective out-of-flight exhaust was achieved.
Examples of suitable implementations of the present invention include, for example, 4-6 pieces per mold, precision part molding of small parts weighing about 15 g per shot, and food processing using thermoplastic fixing raw materials other than plastic products. And can be applied to pharmaceutical preparations.
[0018]
【The invention's effect】
Of the present invention, according with its mechanism-equipped system apparatus quantitative feeder mechanism, quantitative feeder was the inclined arrangement of the feeder mechanism to allow upward conveyance based on the raw material properties, the raw material size of the design requirements of the mechanism within the gap formed constitute a mechanism 3, the piping system 2A of the system unit 1 to attached the quantitative feeder mechanism, 2B, and organically organize 2b, and the minimum amount of the molding machine in the main screw 8a can carry, in accordance with the so-called starvation feeding method Optimized system to supply the best molding resin by quantitatively supplying the conditions to make it possible to implement by improving the quantitative feeder mechanism. As a result, the quantitative feed device 3 has been reduced in size and energy saving, and the quantitative supply has been remarkably stabilized. In addition, the cost effectiveness of the initial cost of the system device 1 has increased, and similar devices have fallen within a price range that is more prevalent . Moreover, the quality of molded products to which the present invention device 1 is manufactured is reduced defective occurrence rate is improved, maintenance and repair costs, including mold cleaning and feed screw replacement is a fraction less than one, such as the The inventive technique realizes a very stable operation and contributes widely to the general improvement of molding manufacturing technology.
[Brief description of the drawings]
FIG. 1 is a partial side view illustrating a configuration of a quantitative feeder mechanism according to the present invention, including a side cross section showing a configuration thereof.
FIG. 2 is a side view illustrating the system configuration of the system device with a quantitative feeder mechanism according to the present invention.
3A and 3B are diagrams for explaining an embodiment of a quantitative feeder mechanism of the present invention, in which FIG. 3A is a partial side sectional view showing one embodiment, and FIG. 3B is a partial side sectional view showing another embodiment. .
4A and 4B are diagrams for explaining the features of the quantitative feeder mechanism of the present invention, in which FIG. 4A is a schematic view showing a raw material transfer state, and FIG. 4B is a partial side sectional view showing an internal structure of the raw material transfer. It is.
FIG. 5 is a partial side cross-sectional view illustrating a conventional example 1 (a hopper direct-coupled molding machine) for explaining a related art related to a feeder mechanism.
FIG. 6 is a partial side cross-sectional view illustrating a conventional example 2 (system device with a shutter opening / closing type feeder) for explaining a related art related to the system device.
7A and 7B are diagrams for explaining another conventional technique related to a system apparatus and its attached feeder mechanism, in which FIG. 7A is a side view showing a conventional example 3 (system apparatus with a horizontal type quantitative feeder), and FIG. It is a fragmentary sectional side view which shows a feeder (horizontal installation type | mold fixed feeder).
FIGS. 8A and 8B are diagrams for explaining a raw material conveyance state of a feeder mechanism in the prior art, in which FIG. 8A is a schematic diagram illustrating a state of Conventional Example 1, FIG. 8B is a schematic diagram illustrating a state of Conventional Example 2; C) is a schematic diagram showing the state of Conventional Example 3.
[Explanation of symbols]
1 System device 2 Cushion hopper 2a Exhaust port 2b Degassing port 2A Raw material supply tube 2B Exhaust tube 2C Vacuum suction tube 2D Signal line 3 Feeder 3a Servo motor 3b Controller (for servo motor)
3c Feed cylinder 3d Feed cylinder sleeve 4 Raw material hopper 4a Raw material supply port 4b Raw material drop port 4c Feed port 4d Receiving port 5 Feed screw 5a, 5b Feed screw blade (or envelope)
6 Supply tube 6a Transparent portion 6b Supply tube mounting portion 7 Main unit (extruder / injection molding machine)
7a Main cylinder 7b Main cylinder sleeve 8 Reducer (for main unit)
8a Main screw 8b Main screw blade (or envelope)
9 Suction-type pneumatic transport device 9a Shutter before hopper 9b Shutter inside hopper 9c Shutter after hopper 10 Horizontal feeder 11 Heating unit 12 Blower 13 Sensor 14 Controller 15 Vacuum pump D Sleeve inner diameter d Screw blade outer diameter F1 Material feed bulk density state F1 (Dense)>F2>F3> F4 (Coarse)
F2 State before F1 state F3 State of changing process of F4 → F2 (coarse → fine) F4 State of raw material density (coarse) FS Intermediate space under hopper shutter H Height including transparent cylinder θ Feeder installation inclination Angle S Clearance between cylinder sleeve and screw blade, (D−d) / 2
S0 Gap in the same part (main unit)
S1 Same as above, narrower than the size of the raw material (feeder)
S2 Same as above, gap larger than raw material size (feeder)

Claims (2)

原料元ホッパーと原料供給管とクッションホッパーと排気管と吸引式空気輸送装置とを順次接続配管し、クッションホッパー下部に上向き供給式傾斜形定量フィーダ機構と成形機本体装置とを設けた上で、フィーダ機構にはフィードシリンダスリーブとフィードスクリューブレード間に原料大以上の隙間を設定し、フィードシリンダスリーブの可変速回転操作によって原料を移送する上向き先端に供給筒を垂設する定量フィーダ機構において、フィーダ機構(3)を設置する傾斜角(θ)を、原料(M)が示す安息角前後の角度に構成し、該機構内のフィードシリンダスリーブ(3d)とフィードスクリューブレード(5a、5b)間の隙間(S)を原料(M)の大きさに対応して変更可能にするフィードシリンダスリーブ(3d)を形成し、あるいは加えて供給筒(6)に硬貨ガラス管から成る透明部(6a)を設けて原料(M)の供給状態を確認可能にすることを特徴とする定量フィーダ機構。A raw material source hopper, a raw material supply pipe, a cushion hopper, an exhaust pipe, and a suction type pneumatic transport device are connected in order, and an upward supply type inclined quantitative feeder mechanism and a molding machine main body device are provided below the cushion hopper. In the feeder mechanism, a gap larger than the raw material is set between the feed cylinder sleeve and the feed screw blade, and the feeder cylinder is suspended from the upward tip to transfer the raw material by the variable speed rotation operation of the feed cylinder sleeve. The inclination angle (θ) for installing the mechanism (3) is configured to be an angle before and after the repose angle indicated by the raw material (M), and between the feed cylinder sleeve (3d) and the feed screw blades (5a, 5b) in the mechanism. and gaps (S) corresponding to the size of the raw material (M) to form a feed cylinder sleeve (3d) to allow change Or in addition quantitative feeder mechanism, characterized in that to enable check the supply state of the transparent portion made of coins glass tube to the supply tube (6) (6a) the provided material (M) and. 請求項1記載の定量フィーダ機構を付設する定量フィーダ機構付きシステム装置であって、供給筒(6)付設のガス抜き口(2b)を吸引式空気輸送装置(9)に接続する排気管(2B)に直接、接続配管して、前記供給筒内部空気の吸引操作を介して成形機本体装置(7)内部発生ガスを常時強制吸引保持状態可能に構成することを特徴とする定量フィーダ機構付きシステム装置。  A system device with a quantitative feeder mechanism to which the quantitative feeder mechanism according to claim 1 is attached, wherein an exhaust pipe (2B) for connecting a gas vent (2b) attached to a supply cylinder (6) to a suction-type pneumatic transport device (9) The system with a quantitative feeder mechanism is configured so that the gas generated in the molding machine main body device (7) can always be held in a forced suction state through a piping connection directly to the supply cylinder) apparatus.
JP2002140793A 2002-04-09 2002-04-09 A quantitative feeder mechanism and a system device with the mechanism Expired - Lifetime JP3853251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140793A JP3853251B2 (en) 2002-04-09 2002-04-09 A quantitative feeder mechanism and a system device with the mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140793A JP3853251B2 (en) 2002-04-09 2002-04-09 A quantitative feeder mechanism and a system device with the mechanism

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005178641A Division JP4297889B2 (en) 2005-06-17 2005-06-17 Hungry injection molding method and hungry injection molding apparatus

Publications (2)

Publication Number Publication Date
JP2003300211A JP2003300211A (en) 2003-10-21
JP3853251B2 true JP3853251B2 (en) 2006-12-06

Family

ID=29397628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140793A Expired - Lifetime JP3853251B2 (en) 2002-04-09 2002-04-09 A quantitative feeder mechanism and a system device with the mechanism

Country Status (1)

Country Link
JP (1) JP3853251B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069143A (en) * 2004-09-06 2006-03-16 Miyoko Ichikawa Starved-state molding device and starved-state molding method
JP4704397B2 (en) * 2007-07-26 2011-06-15 住友重機械工業株式会社 Material feeder for molding machine
WO2009014089A1 (en) * 2007-07-26 2009-01-29 Sumitomo Heavy Industries, Ltd. Material supply device for molding machine
JP2009028998A (en) * 2007-07-26 2009-02-12 Sumitomo Heavy Ind Ltd Material feeding device of molding machine
WO2009084264A1 (en) * 2007-12-27 2009-07-09 Sumitomo Heavy Industries, Ltd. Injector
CN102745472A (en) * 2012-07-05 2012-10-24 芜湖美亚特新型建材有限公司 Injection molding extruder screw feeder
CN113138002B (en) * 2021-03-30 2022-09-30 滁州安瑞汇龙电子有限公司 Control system of quantitative feeder

Also Published As

Publication number Publication date
JP2003300211A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
CN1126604C (en) Method for processing mixed waste, processing plant and buffer silos therefor
US8894330B2 (en) Method and device for distributing cut tobacco for feeding cigarette-making machines
CN1241501C (en) Device for forming at least one tobacco bunch for cigarette making machine
KR20070107077A (en) Device for filling an extruder with pretreated thermoplastic material
JP3853251B2 (en) A quantitative feeder mechanism and a system device with the mechanism
JP2008254444A (en) Extruder
JP4448510B2 (en) Waste plastic processing equipment
KR101874725B1 (en) Side-feeder with rearward venting
CN104495253A (en) Bidirectional double-head spiral conveyor
CN1214908C (en) Injection molding machine, injection molding system, pellet supply unit, injection molding method and injection molding product
US20070151995A1 (en) Celluar wheel sluice
JP4297889B2 (en) Hungry injection molding method and hungry injection molding apparatus
CN1305658C (en) Method and device for regulating pressure in a single-screw degassing extruder or in a cascade extruder
CN110329748A (en) A kind of vibration feeding machine
EP1226922A1 (en) Polyethyleneterephthalate extrusion equipment
JPS628256B2 (en)
KR101514936B1 (en) Cereal conveyance device of elevator type
CN1714689A (en) Unloading tobacco material from an intermediate reservoir
JP2012066211A (en) Method for supplying material for powder and granular material supply machine, and powder and granular material supply machine
JP2009046256A (en) Dust collector in particulate tank supply part
CN111099285A (en) Melting and sealing device for spiral conveying of molten materials
JP2011011435A (en) Molding method and molding apparatus
JP2006232438A (en) Screw conveyer device
CN201291534Y (en) Feed conveyer of plastic pellet
KR20130035765A (en) Pulverized coal feeding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Ref document number: 3853251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140915

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term