JP2003300211A - Quantitative feeder mechanism and system device equipped therewith - Google Patents
Quantitative feeder mechanism and system device equipped therewithInfo
- Publication number
- JP2003300211A JP2003300211A JP2002140793A JP2002140793A JP2003300211A JP 2003300211 A JP2003300211 A JP 2003300211A JP 2002140793 A JP2002140793 A JP 2002140793A JP 2002140793 A JP2002140793 A JP 2002140793A JP 2003300211 A JP2003300211 A JP 2003300211A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- feed
- feeder mechanism
- hopper
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、射出又は押出成形
機に付設する原料供給技術に係り、特に顆粒、ペレット
状を含む流動性熱可塑性固形原料を定量化して供給し、
かつ原料の成形機直前環境を改善して製品の成形条件を
改良する製造技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material supply technique attached to an injection or extrusion molding machine, and in particular, quantifies and supplies a flowable thermoplastic solid raw material containing granules or pellets,
In addition, the present invention relates to a manufacturing technique for improving a molding condition of a product by improving an environment just before a molding machine for a raw material.
【0002】[0002]
【従来の技術】この種の成形システム装置には、図5と
図6に示すフィーダを設置しないで小ホッパー2から成
形機の本体装置7に供給するタイプや、図7に示す該本
体装置直前にフィーダ10を介して供給する従来技術が
ある。いずれの場合にあっても予め使用する原料を、小
形に加工して空気流動下のもとに流動性を与えた樹脂等
から成る熱可塑性の固形原料(以下、単に原料という)
を用いる。図5に示すもの(以下、従来例1という)
は、バッチ式で固形原料を供給する簡易構造型のもの、
図6に示すもの(以下、従来例2という)は、連続的に
原料元ホッパー4からクッションホッパー2へブロワ1
2が空気輸送源となり、原料供給管2Aを介し、その途
中にホッパー前シャッタ9aによる制御を加えて原料を
自動補給し、原料供給後は排気管2Bを介して排気して
いる。クッションホッパー内原料は、ホッパー後シャッ
タ9cを介して成形機の本体装置7に供給し、その装置
直前に立設する供給筒6内にセンサー13を設置し、そ
の原料検知信号を信号線2Dを介してコントローラ14
によって信号処理し、その処理によって前記ブロワを制
御すると共に、本体装置加熱部11において原料を加
熱、溶融することによって熱可塑性樹脂から脱離、分離
するガス成分を、真空吸引管2Cを配管して真空ポンプ
15によって強制排除している(資料1:「プラスチッ
クス」2002.2月号、pp30、図2)。ここに、
図7に示すものを含め、いずれの本体装置7の内部構造
も、メインシリンダ7aに内張りされたメインシリンダ
スリーブ7bと、メインスクリュ8aに巻装するメイン
スクリュブレード8bとの刃先間の空隙、片隙間S0
は、通常0.1mmを保持して形成し、ホッパー2ない
し供給筒6下部のフィード口4c、本体装置側受入口4
dを経て原料を受け入れ、メインスクリュ8aの回転速
度によって加熱部11へ搬送する原料供給量を調節する
構成は変わらない。フィーダを設置する図7に示すもの
(以下、従来例3という)は、本体装置7への原料供給
量を定量化する改善手法(綾井英二氏提案「飢餓的供給
システム」)を示し、その定量供給を、受入口4dにお
ける原料の供給状態をメインスクリュが搬送できる最小
量、即ち供給筒6内に原料が積み上げる現象が発生しな
いように、フィードスクリュー5の吐出側端部に同図
(B)に示す定量フィーダ10と供給筒6を設けてフィ
ード口4cからの原料吐出量を調整操作し、従来例1と
従来例2ではできない原料供給を保持するようにしてい
る。なおこのフィーダは水平置型で、そのフィードスク
リュー5外壁に螺旋状に巻装するフィードスクリューブ
レード5a(外径d)とフィードシリンダ3cに内張り
するフィードシリンダスリーブ3d(内径D)との間に
形成する片隙間S1=(D−d)/2は、本体装置7に
倣って前記S0と同じ隙間0.1mmを保持している。2. Description of the Related Art In this type of molding system apparatus, the type shown in FIG. 5 and FIG. 6 is not installed and the small hopper 2 feeds the main body apparatus 7 of the molding machine, or the main body apparatus shown in FIG. There is a conventional technique in which the paper is supplied through the feeder 10. In either case, the raw material used in advance is a thermoplastic solid raw material (hereinafter simply referred to as raw material) made of a resin or the like that has been processed into a small size and made fluid under air flow.
To use. What is shown in FIG. 5 (hereinafter referred to as Conventional Example 1)
Is a simple structure type that supplies solid raw materials in batch mode,
The one shown in FIG. 6 (hereinafter referred to as “conventional example 2”) is a blower 1 from the raw material source hopper 4 to the cushion hopper 2 continuously.
2 serves as an air transport source, and the raw material is automatically replenished through the raw material supply pipe 2A through the control of the front hopper shutter 9a, and after the raw material is supplied, the exhaust gas is exhausted through the exhaust pipe 2B. The raw material in the cushion hopper is supplied to the main body device 7 of the molding machine through the post-hopper shutter 9c, the sensor 13 is installed in the supply cylinder 6 standing upright in front of the device, and the raw material detection signal is supplied to the signal line 2D. Through the controller 14
The signal processing is performed by, and the blower is controlled by the processing, and the gas component that is desorbed and separated from the thermoplastic resin by heating and melting the raw material in the main body device heating unit 11 is piped through the vacuum suction pipe 2C. It is forcibly excluded by the vacuum pump 15 (Document 1: “Plastics” February 2002 issue, pp30, FIG. 2). here,
The internal structure of any of the main body devices 7, including the one shown in FIG. 7, has a gap between the cutting edges of the main cylinder sleeve 7b lined in the main cylinder 7a and the main screw blade 8b wound around the main screw 8a, Gap S0
Is usually formed by holding 0.1 mm, and is provided with a feed port 4c at the bottom of the hopper 2 or the supply cylinder 6, and a main device side receiving port 4
The configuration for receiving the raw material via d and adjusting the feed amount of the raw material to be conveyed to the heating unit 11 is not changed by the rotation speed of the main screw 8a. The one shown in FIG. 7 in which a feeder is installed (hereinafter referred to as “conventional example 3”) shows an improved method for quantifying the amount of raw material supply to the main body device 7 (Eiji Aiji's “hungry supply system”) and its quantification. As for the supply, the minimum amount that the main screw can convey the supply state of the raw material at the receiving port 4d, that is, the phenomenon that the raw material is piled up in the supply cylinder 6, does not occur at the discharge side end portion of the feed screw 5 (B). The constant amount feeder 10 and the supply cylinder 6 shown in FIG. 2 are provided to adjust the amount of raw material discharged from the feed port 4c so as to maintain the raw material supply which cannot be achieved by the conventional example 1 and the conventional example 2. This feeder is of a horizontal type and is formed between a feed screw blade 5a (outer diameter d) spirally wound around the outer wall of the feed screw 5 and a feed cylinder sleeve 3d (inner diameter D) lining the feed cylinder 3c. The one-sided gap S1 = (D−d) / 2 holds the same gap of 0.1 mm as the above S0, following the main body device 7.
【0003】一般に、成形機で発生するガスや水分は、
本体装置の受入前に充分に乾燥処理した原料でも、溶融
樹脂中に再吸湿させてしまうと、成形条件が悪化する。
ここにペレット状を含む原料樹脂の許容乾燥状態は、吸
水率0.2%WT以下(1tonの樹脂当たり200c
/c)であって、連続成形操作中に発生する水蒸気体積
は無視できない容積となり、成形操作の事前に乾燥操作
を継続し、充分に脱離成分を排除して、成形操作が行え
る場合には、成形機の最終工程に配置する金型に生じる
汚れは減少する。ところで飢餓的供給法に基づく従来例
3においては、本体装置7内の原料搬送状況は、メイン
シリンダスリーブ7b内上部に空間が出来易く、加熱操
作時に溶融ペレットから生じるガスや水蒸気などの脱離
成分はメインシリンダ内部を抜けて、供給筒6、フィー
ダ10を介して更に上昇し、その過程で加熱された気流
が本体装置7供給前のペレット樹脂を乾燥させ、その乾
燥効果の結果、成形機最終工程において良好な成形品を
生み、製品不良率発生を低下させるという好結果をもた
らす。その汚れに起因する金型の焼け、ウエルドライン
及びショートショット、及び成形品の光沢など、外観不
良を含む成形不良の発生率は汚れの減少により改善し、
金型分解、洗浄費用等を削減できる。Generally, the gas and water generated in a molding machine are
Even if the raw material is sufficiently dried before being received by the main body device, if the molten resin is re-absorbed, the molding conditions will be deteriorated.
The allowable dry state of the raw material resin including pellets here is 0.2% WT or less in water absorption (200 c / ton of resin).
/ C), the volume of water vapor generated during the continuous molding operation becomes a non-negligible volume, and the drying operation is continued in advance of the molding operation to sufficiently remove the desorbed components, so that the molding operation can be performed. The stains on the mold placed in the final step of the molding machine are reduced. By the way, in the conventional example 3 based on the starvation supply method, the raw material is transported inside the main body device 7 because a space is likely to be formed in the upper part of the main cylinder sleeve 7b, and desorbed components such as gas and steam generated from the molten pellets during the heating operation. Passes through the inside of the main cylinder and further rises through the supply cylinder 6 and the feeder 10, and the airflow heated in the process dries the pellet resin before the main body device 7 is supplied, and as a result of the drying effect, the molding machine final It produces good molded products in the process and brings about good results such that the occurrence rate of product defects is reduced. The incidence of molding defects including appearance defects such as mold burns, weld lines and short shots due to the stains, and gloss of molded products is improved by reducing stains,
Mold disassembly and cleaning costs can be reduced.
【0004】図8に示す模式図により各従来例フィーダ
機構の原料搬送状態を示す。同図(A)で示す従来例1
では、加熱部11で原料が溶融して減容する以外、原料
の搬送カサ密度最も大であるF1手前のF2状態に調節
したクッションホッパー2内では、堆積ないし原料自重
によるブリッジが生じる供給過疎の恐れがある。原料に
混合する充填材により加熱時に発生するガスが、フィー
ド側に戻らずに金型に混入し、高温系樹脂原料の成形例
にはメインシリンダ8aに異常摩耗を起こす。同図
(B)で示す従来例2では、供給筒6とホッパー後シャ
ッタ9cが、従来例1よりブリッジ発生の恐れは、ホッ
パーシャッタ下の中間スペースFSの存在によって緩和
するが、バッチ供給に伴う原料粒子間摩擦や原料自重は
堆積を起こし、堆積F2状態を、構造上、避けられな
い。堆積を起こす従来例1と従来例2に比べて、同図
(C)に示す従来例3では、フィードスクリュ5の回転
操作を調節することによって、本体装置7の受入口4d
に原料溜まりが生じない操作を行うことは容易である。
従って本体装置7内のメインスクリュ8a回転操作の押
し込み効果によって、原料カサ密度が(粗)のF4状態
から、F4→F2の(粗→密)に変化する過程のF3状
態を経て、F1状態にカサ密度を最大に高めることが可
能になった。しかしフィーダの回転操作を制御しても、
原料が大きくなると原形破壊が増える現象を抑制でき
ず、フィードスクリュの異常摩耗も新規に生ずる。なお
クッションホッパー2内には、ここに図示しないホッパ
ー内シャッタによって槽内を上下に二分し下槽にパドル
式レベル計を配置して、原料の溜まりを少な目、即ちF
1状態が生じても回転操作でカサ状態を制御するので、
フィードシリンダスリーブ3d内には空隙ができる。FIG. 8 is a schematic diagram showing the state of raw material conveyance in each conventional feeder mechanism. Conventional example 1 shown in FIG.
In addition, in the cushion hopper 2 adjusted to the F2 state before the F1 where the bulk density of the raw material conveyed is the highest except that the raw material is melted and reduced in volume in the heating section 11, a bridge due to accumulation or self-weight of the raw material is generated. There is a fear. Gas generated during heating due to the filler mixed with the raw material mixes into the mold without returning to the feed side, and causes abnormal wear in the main cylinder 8a in the molding example of the high temperature resin raw material. In Conventional Example 2 shown in FIG. 1B, the possibility that the supply cylinder 6 and the hopper rear shutter 9c may cause a bridge is reduced by the presence of the intermediate space FS under the hopper shutter, but this is accompanied by batch feeding. The friction between the raw material particles and the self-weight of the raw material cause the accumulation, and the accumulated F2 state is unavoidable structurally. Compared with the conventional example 1 and the conventional example 2 which cause the accumulation, in the conventional example 3 shown in FIG. 1C, the rotation operation of the feed screw 5 is adjusted to adjust the receiving port 4d of the main body device 7.
It is easy to perform an operation that does not cause raw material accumulation.
Therefore, due to the pushing effect of the rotation operation of the main screw 8a in the main body device 7, the raw material density changes from F4 state of (coarse) to F1 state through F3 state of the process of changing from F4 to F2 (coarse to dense). It has become possible to maximize the bulk density. However, even if you control the rotation operation of the feeder,
When the raw material becomes large, the phenomenon that the original shape is increased cannot be suppressed, and abnormal wear of the feed screw newly occurs. In the cushion hopper 2, a paddle type level meter is arranged in the lower tank by dividing the inside of the tank into upper and lower parts by a shutter in the hopper (not shown) so as to reduce the accumulation of raw material, that is, F
Even if one state occurs, the rotation state controls the dry state, so
A void is formed in the feed cylinder sleeve 3d.
【0005】一般に本体装置7内部から発生する加熱原
料の脱離成分をその機外へ排除し、さらにフィーダやホ
ッパーの補助装置から成形設備外へ運び出すために、図
6や図7に示す排気、ガス抜きのための配管系を設け
て、成形機と付設設備全体が有機的に配設され、一つの
システム装置を構成し、その構成の価値と適正操作が、
成形機の最終工程で得られる製品の価値、即ち初期費
用、動力経費、製品不良率、清掃サイクル、補修サイク
ルのデータを決定する。図6に示す従来例2では、ブロ
ワ12による駆動空気源系により、ホッパー前シャッタ
9aとホッパー後シャッタ9c操作によるバッチ式コン
トロールが、間欠的にほぼ定量化して原料供給する配管
系とガス抜き用の真空吸引管2Cの、2系の配管システ
ムを付設するシステム装置を構成する。図7(A)に示
す従来例3は、吸引式空気輸送装置9とクッションホッ
パー2を半循環する配管系の1系を配設してシステム装
置を構成する。(資料2:日水化工(株)総合製品案内
「システム輸送タイプLK型」、pp2,カタログ95
10−3000)。従来例3における吸引式空気輸送装
置9が発生する負圧力が原料搬送力となり、この一系配
管によって従来例2のシステム装置より全体設備の初期
費用と保全作業、ランニングコスト費用を安価にしてい
る。即ち、従来例3にあっては、飢餓的供給法に従って
構成した水平置き型フィーダ10とシステム装置は、成
形工程を良好に操作する上で、有機的な不過分の関係に
ある。Exhaust components shown in FIGS. 6 and 7 are generally used in order to remove the desorbed components of the heating raw material generated from the inside of the main body device 7 to the outside of the machine and to carry them out from the auxiliary equipment of the feeder or hopper to the outside of the molding equipment. By providing a piping system for degassing, the molding machine and the entire attached equipment are organically arranged to form one system device, and the value of the configuration and proper operation are
Determine the value of the product obtained in the final step of the molding machine, namely initial cost, power cost, product failure rate, cleaning cycle and repair cycle data. In a conventional example 2 shown in FIG. 6, a batch type control by operating a front hopper shutter 9a and a rear hopper shutter 9c by a drive air source system by a blower 12 intermittently almost quantitatively quantifies a raw material and a piping system for supplying a raw material and degassing. The vacuum suction pipe 2C of No. 2 is configured as a system device attached with a two-system piping system. In Conventional Example 3 shown in FIG. 7 (A), one system of a piping system for semicirculating the suction type air transportation device 9 and the cushion hopper 2 is arranged to configure a system device. (Material 2: Nissui Kako Co., Ltd. general product information "System Transport Type LK", pp2, Catalog 95
10-3000). The negative pressure generated by the suction type pneumatic transportation device 9 in the conventional example 3 becomes the raw material conveying force, and this one-system piping makes the initial cost of the entire equipment, maintenance work, and running cost less than the system device of the conventional example 2. . That is, in Conventional Example 3, the horizontal placement type feeder 10 and the system apparatus configured according to the starvation supply method are in an organic imbalance in order to properly operate the molding process.
【0006】[0006]
【発明が解決しようとする課題】良品を製造する成形機
の本体装置の良い成形工程操作には、付帯設備が果たす
役割が重要である。従来例2において成形機と供給筒6
間に形成する狭い空間はホッパー後シャッタ9cによっ
てほぼ密閉状態にあり、発生ガスの濃い濃度分布は本体
装置内部に留まり易く、供給筒6下部での搬送カサ密度
が大のF1状態では、原料自重により隣接する原料同志
の擦過が生じ、その結果、原料は細粒化し、細かくなっ
た原料は加熱部11底部に滞留し、成形品の「焼け」原
因となる。従来例3について、図8(C)に示すよう
に、水平置き型フィーダ10のフィード口4cを観察し
た結果、フィードスクリュ5の吐出側端部の下部部分か
ら原料供給がF3状態で行われるのでなく、不定期に同
端部の上部部分からの原料供給がF4状態で生じている
ことが観察された。この不定期現象によって、従来例3
の定量制御操作は不正確であること、さらに供給筒6か
らクッションホッパー2に抜けて排気管2Bに吸引され
るガス抜き効果も不十分であることが判った。本発明
は、顆粒、ペレット状を含む原料を用いて溶融操作し、
その溶融材を金型に受けて成形品を製造する製造手段と
しての、定量フィーダとそのフィーダ付設システム装置
に係る上記した問題点に鑑み、改善手段として開発した
もので、飢餓的供給法によって操作するのに最適な、原
料の定量フィーダ機構に改良して、フィーダから供給筒
へ定量化した原料供給が行える定量フィーダ装置の構造
を決定すると共に、経済性に有効で積極的なガス吸引手
段を新設して、正確に定量化した原料供給によって、成
形機の本体装置内部に、改善された原料環境を作り出せ
る搬送操作が行える成形機製造技術を提供することを目
的とするものである。The role of ancillary equipment is important for good molding process operation of the main unit of a molding machine for manufacturing non-defective products. Molding machine and supply cylinder 6 in Conventional Example 2
The narrow space formed between them is almost sealed by the shutter 9c after the hopper, the dense concentration distribution of the generated gas is likely to remain inside the main body device, and in the F1 state in which the conveyance bulk density in the lower part of the supply cylinder 6 is large, the raw material self-weight As a result, the adjacent raw materials are rubbed with each other, and as a result, the raw material becomes finer and the finely divided raw material stays at the bottom of the heating section 11, causing "burning" of the molded product. Regarding Conventional Example 3, as shown in FIG. 8 (C), as a result of observing the feed port 4c of the horizontal feeder 10, the raw material is fed from the lower part of the discharge side end of the feed screw 5 in the F3 state. However, it was observed that the raw material supply from the upper portion of the same end occurred irregularly in the F4 state. Due to this irregular phenomenon, the conventional example 3
It was found that the quantitative control operation of No. 1 was inaccurate, and the degassing effect of sucking the gas from the supply cylinder 6 to the cushion hopper 2 and being sucked into the exhaust pipe 2B was insufficient. The present invention is a melting operation using raw materials including granules and pellets,
It was developed as an improvement means in view of the above-mentioned problems relating to the quantitative feeder and the feeder-attached system device as a manufacturing means for receiving the molten material in a mold to manufacture a molded product, and operated by a starvation supply method. The structure of the quantitative feeder device that can supply the quantified raw material from the feeder to the supply cylinder is decided by improving the optimum quantitative feeder mechanism of the raw material. It is an object of the present invention to newly provide a molding machine manufacturing technique capable of performing a conveying operation capable of creating an improved raw material environment inside a main body apparatus of a molding machine by supplying an accurately quantified raw material.
【0007】[0007]
【課題を解決するための手段】本発明に係る定量フィー
ダ機構は、原料元ホッパーから貯留式または連続補給式
のクッションホッパーに移送した顆粒、ペレット状を含
む流動性熱可塑性固形原料を、フィードシリンダ内面に
帳設するフィードシリンダスリーブと、そのスリーブ内
径とフィードスクリューブレード外径との隙間を隔てて
フィードスクリューブレードを巻装し、可変速回転操作
可能にフィードスクリューを有するフィーダ機構を配設
して、成形機の本体装置に成形可能に供給する定量フィ
ーダ機構において、原料が上向き搬送可能に傾斜角を付
けて配置するフィーダ機構と、フィーダ機構と本体装置
の受入口間に、原料を案内しかつその上部に自然換気又
は強制排気用のガス抜き口を付設する供給筒を立設し、
それぞれを配設すると共に、フィードシリンダスリーブ
とフィードスクリューブレードとの一部ないし全部の区
間に設ける原料の大きさより充分大きな隙間と、原料が
示す安息角前後の傾斜角を付けてフィード機構を設置す
る傾斜角とを選択的に組み合わせて構成するものであ
る。The quantitative feeder mechanism according to the present invention is a feed cylinder for a fluid thermoplastic solid raw material containing granules or pellets transferred from a raw material source hopper to a storage type or continuous replenishing type cushion hopper. The feed cylinder sleeve is installed on the inner surface, and the feed screw blade is wound with a gap between the inner diameter of the sleeve and the outer diameter of the feed screw blade, and a feeder mechanism having a feed screw for variable speed rotation operation is provided. In a fixed-quantity feeder mechanism that supplies the raw material to the main body of the molding machine so that the raw material can be conveyed upward, a feeder mechanism that arranges the raw material at an inclined angle and guides the raw material between the feeder mechanism and the receiving port of the main body On top of that, install a supply cylinder with a gas vent for natural ventilation or forced exhaust,
In addition to arranging each of them, a feed mechanism is installed with a gap sufficiently larger than the size of the raw material provided in a part or all of the section between the feed cylinder sleeve and the feed screw blade and an inclination angle before and after the repose angle indicated by the raw material. It is configured by selectively combining the inclination angle.
【0008】そして本発明に係る定量フィーダ機構付き
システム装置は、吸引式空気輸送装置を駆動空気源に用
い、流動性熱可塑性固形原料を原料元ホッパーから吸引
してフィーダ機構付設のクッションホッパーへ空気輸送
し、クッションホッパー内部空気を原料元ホッパーへ排
気して一つの循環配管系を形成する請求項1記載の定量
フィーダ機構を付設する定量フィーダ機構付きシステム
装置であって、定量フィーダ機構と本体装置との中間に
介在させる供給筒の内部空気を、供給筒付属のガス抜き
口を介して吸引式空気輸送装置の排気管に配管して、常
時吸引保持状態可能に構成するものである。The system device with a fixed amount feeder mechanism according to the present invention uses a suction type pneumatic transportation device as a driving air source, sucks the fluid thermoplastic solid raw material from a raw material source hopper, and feeds it to a cushion hopper provided with a feeder mechanism. The system device with a constant quantity feeder mechanism according to claim 1, wherein the constant quantity feeder mechanism is attached to the material source hopper to transport and exhaust the air inside the cushion hopper to a raw material hopper. The internal air of the supply cylinder, which is interposed in the middle of the above, is piped to the exhaust pipe of the suction type air transportation device through the gas vent port attached to the supply cylinder so that the suction suction state can be maintained at all times.
【0009】[0009]
【作用】以上のように構成した本発明の定量フィーダ機
構3は、クッションホッパーから受け入れた原料をその
安息角を基準に上方へ搬送するフィード装置の設置傾斜
角を決め、その傾斜角の程度をフィードスクリューブレ
ードとフィードシリンダスリーブ間の空隙大きさに対応
させて、少なくとも原料大きさ以上に広く空けたので、
原料供給時に原料の姿形を破壊せず、供給時の原料自重
による圧密現象も生じない。さらにフィード口上側から
のばらつき供給現象を生じることのない定量化回転フィ
ード操作が行え、計量管理の誤差が減少した。さらにフ
ィード装置内部の隙間Sを充分に大きくしたので、フィ
ードシリンダスリーブ、フィードスクリュ、フィードス
クリューブレードそれぞれに生じる摩耗の発生が激減
し、フィード装置駆動電動機出力が低減すると共に、相
乗的にフィード装置自体が小型化、軽量化できた。また
定量供給筒上部に設けたガス抜き口は、クッションホッ
パー内の乾燥排気流と明確に区分できたので、ホッパー
へのガス移動は無くなった。フィード装置の傾斜角を原
料の安息角という物性に合わせて決めたので、フィード
スクリュの低回転時に水平置型において生じた原料に着
色剤や添加剤などを付加した場合に、攪拌不十分で混合
効果が得られなかった現象が大幅に改善して、最終成形
品の色むらの原因が激減した。同様に定量フィード機構
付きシステム装置1は、前記ガス抜き口と排気管を配管
して強制吸引したので、加熱された樹脂から脱離するガ
ス成分が、本体装置内奥から受入口側に漸増するように
原料間隙間が存在できるようになって本体装置内からガ
ス抜きし易くなり、原料破壊が無く、不要な細粒や粉末
成分がないので、金型のデポジット発生などの不具合が
減少した。In the quantitative feeder mechanism 3 of the present invention configured as described above, the installation inclination angle of the feed device for conveying the raw material received from the cushion hopper upward based on the angle of repose is determined, and the degree of the inclination angle is determined. Corresponding to the size of the gap between the feed screw blade and the feed cylinder sleeve, it was opened at least as large as the raw material size.
The shape of the raw material is not destroyed when the raw material is supplied, and the consolidation phenomenon due to the weight of the raw material during the supply does not occur. Furthermore, the quantified rotary feed operation can be performed without causing the uneven supply phenomenon from the upper side of the feed port, and the error in the measurement control is reduced. Furthermore, since the gap S inside the feed device is made sufficiently large, the occurrence of wear on the feed cylinder sleeve, the feed screw, and the feed screw blade is drastically reduced, the output of the feed device drive motor is reduced, and the feed device itself is synergistically reduced. Has been made smaller and lighter. Further, the gas vent provided at the upper part of the fixed quantity supply cylinder was clearly separated from the dry exhaust flow in the cushion hopper, so that gas transfer to the hopper was eliminated. Since the inclination angle of the feed device was determined according to the physical property called the angle of repose of the raw material, when colorants or additives were added to the raw material generated in the horizontal type when the feed screw was rotated at low speed, the mixing effect was not sufficient due to insufficient stirring. The phenomenon that could not be obtained was greatly improved, and the cause of uneven color in the final molded product was drastically reduced. Similarly, in the system device 1 with a fixed amount feed mechanism, since the gas vent and the exhaust pipe are piped and forcedly sucked, the gas component desorbed from the heated resin gradually increases from the inner side of the main body device to the inlet side. As described above, a gap between raw materials can be present, which facilitates degassing from the inside of the main body device, there is no destruction of raw materials, and there are no unnecessary fine particles or powder components, so defects such as mold deposits are reduced.
【0010】[0010]
【発明の実施の形態】以下、本発明に係る定量フィーダ
機構とその機構付きシステム装置を図によって説明す
る。ここに、図1は、本発明の定量フィーダ機構を説明
するもので、その構成を示す側断面を含む部分側面図、
図2は、本発明の定量フィーダ機構付きシステム装置を
説明するもので、そのシステム構成を示す側面図、図3
は、本発明の定量フィーダ機構の実施例を説明するもの
で、(A)はその1実施例を示す部分側断面図、(B)
は他の実施例を示す部分側断面図、そして図4は、本発
明の定量フィーダ機構の特徴を説明するもので、(A)
は原料搬送状態を示す模式図、(B)は原料搬送の内部
構造を示す部分側断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A quantitative feeder mechanism and a system device with the mechanism according to the present invention will be described below with reference to the drawings. Here, FIG. 1 is a partial side view including a side cross-section showing the structure for explaining the quantitative feeder mechanism of the present invention.
2 is a side view showing the system configuration of the system apparatus with a quantitative feeder mechanism of the present invention, FIG.
Is for explaining an embodiment of the quantitative feeder mechanism of the present invention, (A) is a partial side sectional view showing one embodiment thereof, (B)
FIG. 4 is a partial side sectional view showing another embodiment, and FIG. 4 is a view for explaining the characteristics of the quantitative feeder mechanism of the present invention.
Is a schematic diagram showing a raw material transport state, and (B) is a partial side sectional view showing an internal structure of the raw material transport.
【0011】本発明の定量フィーダ機構3は、図1に示
すように、クッションホッパー2下部の原料投下口4b
位置からフィード口4c方向に傾けて上向かせ、その傾
斜角θは原料物性の安息角前後に選択し、かつ成形機の
本体装置7の受入口4dに立設する供給筒6と連結して
いる。そして可変速可能の減速機構付きフィーダ3の動
力駆動によるフィードスクリュー5の回転操作を経て、
クッションホッパー2から本体装置7へほぼ閉鎖的に上
向き搬送した原料を供給可能に構成している。フィード
スクリュー5に巻装するフィードスクリューブレード5
aの刃先と、フィードシリンダスリーブ3d間の隙間S
2は、原料大きさより充分広く形成し、さらに供給筒
6の頂部には、ガス抜き口2bを付設している。The quantitative feeder mechanism 3 of the present invention, as shown in FIG. 1, is a raw material dropping port 4b under the cushion hopper 2.
From the position, it is tilted upward in the direction of the feed port 4c, and its inclination angle θ is selected to be around the repose angle of the physical properties of the raw material, and it is connected to the supply cylinder 6 which stands upright at the receiving port 4d of the main body device 7 of the molding machine. There is. Then, through the rotation operation of the feed screw 5 by the power drive of the feeder 3 with a reduction mechanism capable of variable speed,
The cushion hopper 2 is configured to be able to supply the raw material conveyed upward in a substantially closed manner to the main body device 7. Feed screw blade 5 wound around the feed screw 5.
The gap S between the blade edge of a and the feed cylinder sleeve 3d
2 is formed sufficiently wider than the size of the raw material, and a gas vent 2b is attached to the top of the supply cylinder 6.
【0012】また本発明の定量フィーダ機構付きシステ
ム装置1は、図2に示すように、クッションホッパー
2、定量フィーダ機構3、供給筒6の順に組み立て、成
形機の本体装置7上側に立設する該供給筒頂部付設のガ
ス抜き口2bを、自然換気可能に設け、あるいは強制吸
引排気するために排気管2Bに配管接続して、本体装置
7に連通可能に構成する。なお図4(B)に示すよう
に、フィード構造の一部又は全区間に亘って形成する、
フィードシリンダスリーブ3d内径Dとフィードスクリ
ュブレード5a外径dとの間の隙間S2は、原料Mがペ
レット状であっても、錠剤、顆粒の形態であっても、そ
れら原料の内、一番大きな形態の大きさより充分大きい
ことが必要である。Further, as shown in FIG. 2, the system device 1 with a constant quantity feeder mechanism of the present invention is constructed by assembling a cushion hopper 2, a constant quantity feeder mechanism 3 and a supply cylinder 6 in this order, and stands upright on the upper side of the main body device 7 of the molding machine. The gas vent port 2b attached to the top of the supply cylinder is provided for natural ventilation, or is connected to the exhaust pipe 2B for forced suction / exhaust so as to be able to communicate with the main body device 7. As shown in FIG. 4B, the feed structure is formed over a part or the entire section,
The gap S2 between the inner diameter D of the feed cylinder sleeve 3d and the outer diameter d of the feed screw blade 5a is the largest of the raw materials M, whether the raw material M is in the form of pellets, tablets or granules. It should be sufficiently larger than the size of the form.
【0013】[0013]
【実施例】本発明の、定量フィーダ機構3の実施例を図
1ないし図3について説明する。ペレット状の成形原料
に用い、フィード装置3を、ペレット樹脂の安息角とほ
ぼ同じの設置傾斜角θ=π/6とし、用いたペレット大
きさより充分に広く、フィードスクリュブレード5aの
刃先とフィードシリンダスリーブ3d間との隙間S2=
6mmを設定した。供給筒6上部駆体にガス抜き口2b
を付設し、該供給筒中間部に硬質ガラス管から成る透明
部6aを、該上部駆体と供給筒取付部6b間に固定する
4本の支柱によって外部から締め付けて密封状に組み立
てている。ここにフィードスクリューを窒化材、スリー
ブをSUS440CHRC45で製作した。なお3b
は、精密部品成形時に厳密に原料供給する上で不可欠の
定量フィーダ駆動源サーボモータ用のコントローラであ
り、4aは原料供給口、また2aは排気口、Hは供給筒
6の上部駆体下部高さで、20cmとした。なお図3に
示すように、原料大きさより隙間Sを狭くしてS1にし
たものと、原料大きさより充分に隙間S2に広くしたも
のとを混在させてブレード5a及び/または5bと混在
させたフィードスクリュー5を形成しても良い。同図
(A)に示すフィード装置3は、ここに図示しない供給
筒のフィード口に面するブレード部分をほぼ1周分、幅
広に形成してペレット大きさより小さい隙間S1を形成
し、その他の区間部分の隙間S2はペレット大きさより
充分広く形成したもので、設置傾斜角θがペレット安息
角の大きさ以下の小の場合に実施する。また同図(B)
に示すものは、予め充分広い同一の隙間S2を全てに形
成した上で、ここに図示しない供給筒のフィード口側ブ
レード部分を含む他のブレード部分に対して、隙間Sを
狭くするよう隙間Sを狭くするようににブレードカバー
を付け加えて帳設し、又は予め巻装してほぼ1周分、ブ
レード刃先を狭い隙間S1に形成するもので、ペレット
がフィード口4cの上側空隙から間欠的に落下し易い設
置傾斜角θの傾斜が不足する場合に応用的に対応設置し
てよく、フィールド実施テストによる確認作業に基づい
て、適時、付加着装する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the quantitative feeder mechanism 3 of the present invention will be described with reference to FIGS. The feed device 3 is used as a pellet forming material, and the feed device 3 has an installation inclination angle θ = π / 6, which is substantially the same as the repose angle of the pellet resin, and is sufficiently wider than the used pellet size, and the blade tip of the feed screw blade 5a and the feed cylinder. Gap between the sleeves 3d S2 =
6 mm was set. Gas vent 2b in the upper part of the supply cylinder 6
And a transparent portion 6a made of a hard glass tube is attached to the middle portion of the supply cylinder by externally tightening it with four columns fixed between the upper driving body and the supply cylinder attachment portion 6b to assemble in a sealed manner. Here, the feed screw was made of a nitride material, and the sleeve was made of SUS440CHRC45. 3b
Is a controller for a constant-feeder drive source servomotor, which is indispensable for strictly supplying raw materials at the time of molding precision parts, 4a is a raw material supply port, 2a is an exhaust port, and H is a lower height of the upper part of the supply cylinder 6 Now, it is set to 20 cm. As shown in FIG. 3, a feed in which the gap S is narrower than the raw material size to S1 and a gap in which the gap S2 is sufficiently wider than the raw material size are mixed to be mixed with the blades 5a and / or 5b. The screw 5 may be formed. In the feed device 3 shown in FIG. 3A, the blade portion facing the feed port of the supply cylinder (not shown) is formed to be wide for about one round to form a gap S1 smaller than the pellet size, and other sections. The gap S2 in the portion is formed sufficiently wider than the size of the pellet, and is performed when the installation inclination angle θ is smaller than the size of the angle of repose of the pellet. The same figure (B)
In the structure shown in Fig. 1, the same wide gap S2 is formed in advance, and the gap S is narrowed with respect to other blade portions including the feed port side blade portion of the supply cylinder (not shown). Is installed by adding a blade cover so as to narrow the width of the blade, or is wound in advance to form the blade edge in a narrow gap S1 for about one rotation, and the pellet is intermittently fed from the upper gap of the feed port 4c. If the inclination of the installation inclination angle θ that is easy to fall is insufficient, it may be applied correspondingly, and additional wearing is timely based on the confirmation work by the field implementation test.
【0014】前記した定量フィーダ機構の実施例を組み
込んで、本発明の定量フィーダ機構付きシステム装置を
構成した実施例を図2について説明する。本実施例で
は、定量フィーダ機構3の供給筒6頂部に付設するガス
抜き口2bを、排気管2Bに配管接続して、強制吸引排
気するようにした。そして通常のテスト運転を約1年
間、使用原料をペレット状にしたものを46ナイロン樹
脂を主材に、添加材混合比で全体の30%をグラスファ
イバーを付加、含有させたものを供給して行った。本実
施例と、前記した従来例1ないし従来例3を、それぞれ
順次比較例1ないし比較例3として比較したものを、表
1に示す。この表中において、それぞれのシステム装置
は添付する図面番号又は指定図番中の記号によって適用
図を示した。An embodiment in which the above-described embodiment of the quantitative feeder mechanism is incorporated to configure a system device with a quantitative feeder mechanism of the present invention will be described with reference to FIG. In this embodiment, the gas vent port 2b attached to the top of the supply cylinder 6 of the quantitative feeder mechanism 3 is connected to the exhaust pipe 2B for forced suction and exhaust. Then, after a normal test run for about 1 year, the pelletized material used was 46 nylon resin as the main material, and glass fiber was added to contain 30% of the total of the additive materials, and supplied. went. Table 1 shows a comparison between the present example and the above-mentioned Conventional Examples 1 to 3 as Comparative Examples 1 to 3, respectively. In this table, each system device is indicated by an attached drawing number or a symbol in a designated drawing number.
【0015】[0015]
【表1】 [Table 1]
【0016】本発明のシステム装置の実施例では、表1
に示す以外に、フィードスクリュー5の回転により、フ
ィーダ内部ではペレット同志が良好に摩擦接触して、終
始、良好な計量状態にあった。図4(A)に示すよう
に、クッションホッパー2内部の原料貯留状態が堆積が
生じない程度のF2状態に調整される場合に、定量フィ
ーダ機構3内部のペレットの状態は、ここに記載しない
フィードスクリュの回転操作によって(粗→密)変化す
る過程のF3状態に保持して上向き供給され、ペレット
状原料は瞬時に供給筒6に到達して原料カサ密度が
(粗)のF4状態になってパラパラと落下する。本体装
置7に落下した後は、体積移動速度一定状態を保持し
て、前記従来例3における本体装置内のペレットと同様
な搬送状態を示す。すなわち供給筒6直下の本体装置7
受入口4d近くのメインブレード8bの谷部には、ペレ
ットは堆積せず良好な空間が認められた。そのために加
熱部11直前部分のペレット助走区間では、加熱原料か
らの良好なガス成分の分離が生じた。なお故意に定量フ
ィード機構3の吐出口を塞いだ際、詰め込まれたペレッ
トに、フィードスクリュー5は空転した。その空転動作
はペレットの圧密を進行させず、電動機の過負荷状態は
危険域に進まず、僅かにペレットに軽微な破壊が生じた
だけでその破壊障害発生の範囲は狭く、かつフィード装
置構成材に摩耗の痕跡を認めなかった。文献引用による
比較例2を除く他の実施例では補修を必要とするまで運
転し、補修が必要なくとも12ヶ月間で運転を中止し、
運転データを得た。In the embodiment of the system device of the present invention, Table 1
In addition to the above, due to the rotation of the feed screw 5, the pellets were in good frictional contact with each other inside the feeder, and a good weighing condition was maintained throughout. As shown in FIG. 4 (A), when the raw material storage state inside the cushion hopper 2 is adjusted to the F2 state where accumulation does not occur, the state of the pellets inside the quantitative feeder mechanism 3 is not shown here. While being held in the F3 state in the process of changing (rough → dense) by the rotation operation of the screw and fed upward, the pelletized raw material instantly reaches the supply cylinder 6 and becomes the F4 state in which the raw material bulk density is (coarse). It falls down. After falling into the main body device 7, the state in which the volume moving speed is constant is maintained, and a transportation state similar to the pellet in the main body device in the conventional example 3 is shown. That is, the main body device 7 immediately below the supply cylinder 6
In the valley portion of the main blade 8b near the receiving port 4d, pellets were not deposited and a good space was recognized. Therefore, in the pellet run-up section immediately before the heating unit 11, good gas components were separated from the heating raw material. When the discharge port of the fixed quantity feed mechanism 3 was intentionally closed, the feed screw 5 idled in the packed pellets. The idling operation does not progress the compaction of the pellet, the overload state of the electric motor does not go into the dangerous area, the range of failure failure is narrow even if the pellet is slightly broken, and the feed device components No trace of wear was observed on the. In the other examples except Comparative Example 2 based on literature citation, the operation was continued until the repair was required, and the operation was stopped in 12 months even if the repair was not required,
I got driving data.
【0017】このように構成した本発明の実施によっ
て、充分な脱離成分の除去効果が得られて、薄肉のAB
S樹脂ペレットの成形品成形において、比較例3ではシ
ョートモールドが50PPM生じたが、実施例では0P
PMであった。さらに分散剤に水酸化アルミニウムを添
加し、高温でその混合ペレットを成形する場合に、分散
剤が分解して発生する水蒸気成分の脱気除去や、エラス
トマー系樹脂使用時に生じる残留水の蒸気化による有効
な機外排気が達成出来た。なお本発明の好適な実施対象
には、例えば1型当たり4−6個取り、1ショット総合
製品重量15g程度の小形部品の精密部品成形や、特に
プラスチック製品以外の熱可塑性固定原料を用いる食品
加工や薬剤の製剤用に適用できる。By carrying out the present invention thus constructed, a sufficient effect of removing the desorbed components can be obtained, and the thin AB
In the molding of the molded product of the S resin pellet, short-circuiting of 50 PPM occurred in Comparative Example 3, but 0 P in Example.
It was PM. Furthermore, when aluminum hydroxide is added to the dispersant and the mixed pellets are molded at high temperature, degassing and removal of water vapor components generated by decomposition of the dispersant and vaporization of residual water generated when using an elastomer resin Effective outboard exhaust was achieved. The preferred embodiment of the present invention is, for example, 4-6 pieces per mold, precision part molding of small parts with a total product weight of about 15 g per shot, and food processing using thermoplastic fixed raw materials other than plastic products in particular. And can be applied for drug formulation.
【0018】[0018]
【発明の効果】本発明の、定量フィーダ機構とその機構
付きシステム装置によれば、原料物性に基づき上向き搬
送可能にした傾斜配置と、原料大きさを設計要件とした
定量フィーダ機構を構成し、この定量フィーダ機構を付
設するシステム装置の配管系を有機的に組織化して、成
形機内の工程操作が向上する条件作りを行ったので、電
動機出力低下を実現し、その結果、フィード装置は小型
化、省エネ化し、定量供給は格段と安定化した。しかも
システム装置の成形構造内環境は、高度に条件づけて制
御工作を行わなくとも最良化され、かつシステム装置の
初期費用の対費用効果は高まり、普及し易い装置費用内
に収まった。その上、製造する成形品品質は向上して不
良率が低減し、金型清掃やフィードスクリュー交換を含
む保守・補修コストは数分の一以下になるなど、基礎的
事項を考究して得られた本発明技術は、供給原料の特性
と製造する成形品条件に適正に対応することによって、
非常に安定した運転操作が行えて、成形製造技術一般の
向上に広く寄与する。According to the quantitative feeder mechanism and the system device with the mechanism of the present invention, the fixed feeder mechanism having the slanted arrangement capable of being conveyed upward based on the physical properties of the raw material and the raw material size as a design requirement is constituted, By organically organizing the piping system of the system equipment attached with this quantitative feeder mechanism, the conditions for improving the process operation in the molding machine were created, so the output of the motor was reduced, and as a result, the feed device was downsized. , Energy saving, and quantitative supply has become much more stable. In addition, the environment inside the molding structure of the system device is optimized without performing highly controlled control work, and the cost efficiency of the initial cost of the system device is increased, so that the system cost is easily spread. In addition, the quality of molded products to be manufactured is improved, the defective rate is reduced, and the maintenance and repair costs including mold cleaning and feed screw replacement are reduced to a fraction or less. The present invention technology, by properly responding to the characteristics of the feedstock and the conditions of the molded product to be manufactured,
Very stable operation can be performed, and it contributes widely to improvement of molding and manufacturing technology in general.
【図1】 本発明の定量フィーダ機構を説明するもの
で、その構成を示す側断面を含む部分側面図である。FIG. 1 is a partial side view for explaining a quantitative feeder mechanism of the present invention, including a side cross section showing the configuration thereof.
【図2】 本発明の定量フィーダ機構付きシステム装置
を説明するもので、そのシステム構成を示す側面図であ
る。FIG. 2 is a side view showing a system configuration of a system device with a quantitative feeder mechanism according to the present invention.
【図3】 本発明の定量フィーダ機構の実施例を説明す
るもので、(A)はその1実施例を示す部分側断面図、
(B)は他の実施例を示す部分側断面図である。FIG. 3 is a view for explaining an embodiment of the quantitative feeder mechanism of the present invention, in which (A) is a partial side sectional view showing the first embodiment;
(B) is a partial side sectional view showing another embodiment.
【図4】 本発明の定量フィーダ機構の特徴を説明する
もので、(A)は原料搬送状態を示す模式図、(B)は
原料搬送の内部構造を示す部分側断面図である。であ
る。4A and 4B are views for explaining the features of the quantitative feeder mechanism of the present invention, in which FIG. 4A is a schematic diagram showing a raw material transport state, and FIG. 4B is a partial side sectional view showing an internal structure of the raw material transport. Is.
【図5】 フィーダ機構に係る従来技術を説明するもの
で、従来例1(ホッパ直結型成形機)を示す部分側断面
図である。FIG. 5 is a partial side sectional view showing a conventional example 1 (a hopper direct-coupling molding machine) for explaining a conventional technique relating to a feeder mechanism.
【図6】 システム装置に係る従来技術を説明するもの
で、従来例2(シャッタ開閉式フィーダ付きシステム装
置)を示す部分側断面図である。FIG. 6 is a partial side cross-sectional view showing a conventional example 2 (system device with a shutter openable / closable feeder) for explaining a conventional technique related to the system device.
【図7】 システム装置とその付設フィーダ機構に係る
他の従来技術を説明するもので、(A)は従来例3(水
平置型定量フィーダ付きシステム装置)を示す側面図、
(B)はその定量フィーダ(水平置型定量フィーダ)を
示す部分側断面図である。FIG. 7 is a view for explaining another conventional technique relating to the system device and the feeder mechanism attached to the system device. FIG. 7A is a side view showing a conventional example 3 (a system device with a horizontal placement type quantitative feeder);
(B) is a partial side sectional view showing the quantitative feeder (horizontal placement type quantitative feeder).
【図8】 従来技術におけるフィーダ機構の原料搬送状
態を説明するもので、(A)は従来例1についての状態
を示す模式図、(B)は従来例2についての状態を示す
模式図、(C)は従来例3についての状態を示す模式図
である。8A and 8B are views for explaining a raw material conveyance state of a feeder mechanism in a conventional technique, FIG. 8A is a schematic diagram showing a state of Conventional Example 1, FIG. 8B is a schematic diagram showing a state of Conventional Example 2, and FIG. C) is a schematic diagram showing a state of Conventional Example 3.
1 システム装置
2 クッションホッパー
2a 排気口
2b ガス抜き口
2A 原料供給管
2B 排気管
2C 真空吸引管
2D 信号線
3 フィーダ
3a サーボモータ
3b コントローラ(サーボモータ用)
3c フィードシリンダ
3d フィードシリンダスリーブ
4 原料元ホッパー
4a 原料供給口
4b 原料投下口
4c フィード口
4d 受入口
5 フィードスクリュ
5a、5b フィードスクリュブレード(又は同外
包線)
6 供給筒
6a 透明部
6b 供給筒取付部
7 本体装置(押出機/射出成形機)
7a メインシリンダ
7b メインシリンダスリーブ
8 減速装置(本体用)
8a メインスクリュ
8b メインスクリュブレード(又は同外包
線)
9 吸引式空気輸送装置
9a ホッパー前シャッタ
9b ホッパー内シャッタ
9c ホッパー後シャッタ
10 水平置型フィーダ
11 加熱部
12 ブロワー
13 センサー
14 コントローラ
15 真空ポンプ
D スリーブ内径
d スクリュブレード外径
F1 原料搬送カサ密度大の状態、
F1(密)>F2>F3>F4(粗)
F2 F1状態手前の状態
F3 F4→F2の(粗→密)変化する過程
の状態
F4 原料カサ密度が(粗)の状態
FS ホッパーシャッタ下の中間スペース
H 透明筒を含む高さ
θ フィーダ装置設置傾斜角
S シリンダスリーブとスクリューブレー
ド間の隙間、(D−d)/2
S0 同上部分の隙間(本体装置)
S1 同上部分の、原料大きさより狭い隙間
(フィーダ)
S2 同上部分の、原料大きさより広い隙間
(フィーダ)1 System Device 2 Cushion Hopper 2a Exhaust Port 2b Gas Release Port 2A Raw Material Supply Pipe 2B Exhaust Pipe 2C Vacuum Suction Pipe 2D Signal Line 3 Feeder 3a Servo Motor 3b Controller (for Servo Motor) 3c Feed Cylinder 3d Feed Cylinder Sleeve 4 Raw Material Hopper 4a Raw material supply port 4b Raw material dropping port 4c Feed port 4d Receiving port 5 Feed screw 5a, 5b Feed screw blade (or outer envelope line) 6 Supply cylinder 6a Transparent part 6b Supply cylinder attachment part 7 Main body device (extruder / injection molding machine) ) 7a Main cylinder 7b Main cylinder sleeve 8 Speed reducer (for main body) 8a Main screw 8b Main screw blade (or outer envelope) 9 Suction type air transport device 9a Front shutter 9b Hopper shutter 9c Hopper rear shutter 10 Horizontal mount type flap Feeder 11 Heating unit 12 Blower 13 Sensor 14 Controller 15 Vacuum pump D Sleeve inner diameter d Screw blade outer diameter F1 Raw material conveying bulk density, F1 (dense)>F2>F3> F4 (coarse) F2 F1 state F3 F4 → F2 (coarse → dense) changing process state F4 Raw material bulk density (coarse) state FS Intermediate space under hopper shutter H Height including transparent cylinder θ Feeder device installation angle S Cylinder sleeve and screw Gap between blades, (D-d) / 2 S0 Same as above (main body device) S1 Same as above, narrower than raw material size (feeder) S2 Above same, wider than raw material size (feeder)
Claims (2)
給式のクッションホッパーに移送した顆粒、ペレット状
を含む流動性熱可塑性固形原料を、フィードシリンダ内
面に帳設するフィードシリンダスリーブと、そのスリー
ブ内径Dとフィードスクリューブレード外径d(<D)
との間に隙間S=(D−d)/2を隔てた、フィードス
クリューブレードを巻装し可変速回転操作可能のフィー
ドスクリューを有するフィーダ機構を配設して、成形機
の本体装置に成形可能に供給する定量フィーダ機構にお
いて、原料(M)を上向き搬送可能に傾斜角(θ)を付
けて配置するフィーダ機構(3)と、該フィーダ機構と
本体装置(7)の受入口(4d)間に、該原料を案内し
かつその上部に自然換気又は強制排気用のガス抜き口
(2b)を付設する供給筒(6)を立設し、それぞれを
順次配設すると共に、フィードシリンダスリーブ(3
d)とフィードスクリューブレード(5a)との一部な
いし全部の区間に設ける原料(M)の大きさより充分大
きな隙間Sと、該原料が示す安息角前後の傾斜角を付け
てフィード機構(3)を設置する傾斜角(θ)とを選択
的に組み合わせて構成することを特徴とする定量フィー
ダ機構。1. A feed cylinder sleeve in which a fluid thermoplastic solid raw material containing granules or pellets transferred from a raw material source hopper to a storage type or continuous replenishing type cushion hopper is placed on the inner surface of a feed cylinder, and an inner diameter of the sleeve. D and feed screw blade outer diameter d (<D)
And a feeder mechanism having a feed screw capable of rotating at a variable speed and having a feed screw blade wound between them and a gap S = (D−d) / 2, are disposed in the main body of the molding machine. In the quantitative feeder mechanism that can be supplied as much as possible, a feeder mechanism (3) that arranges the raw material (M) with an inclination angle (θ) so that it can be conveyed upward, and an inlet (4d) of the feeder mechanism and the main body device (7). In the meantime, a supply cylinder (6) for guiding the raw material and having a gas vent (2b) for natural ventilation or forced exhaust attached to the upper part thereof is provided upright, and the supply cylinders (6) are sequentially arranged and the feed cylinder sleeve ( Three
The feed mechanism (3) is provided with a gap S sufficiently larger than the size of the raw material (M) provided in a part or all of the section between the d) and the feed screw blade (5a) and an inclination angle before and after the repose angle indicated by the raw material. A quantitative feeder mechanism characterized in that it is configured by selectively combining with an inclination angle (θ) for installing.
い、流動性熱可塑性固形原料を原料元ホッパーから吸引
してフィーダ機構付設のクッションホッパーへ空気輸送
し、クッションホッパー内部空気を原料元ホッパーへ排
気して一つの循環配管系を形成する請求項1記載の定量
フィーダ機構を付設する定量フィーダ機構付きシステム
装置であって、定量フィーダ機構(3)と本体装置
(7)との中間に介在させる供給筒(6)の内部空気
を、該供給筒付属のガス抜き口(2b)を介して吸引式
空気輸送装置(9)の排気管(2B)に配管して、常時
吸引保持状態可能に構成することを特徴とする定量フィ
ーダ機構付きシステム装置。2. A suction type air transportation device is used as a drive air source, and a fluid thermoplastic solid raw material is sucked from a raw material source hopper to be pneumatically transported to a cushion hopper provided with a feeder mechanism, and the air inside the cushion hopper is used as a raw material source hopper. A system device with a fixed amount feeder mechanism according to claim 1, wherein said fixed amount feeder mechanism is attached to the fixed amount feeder mechanism (3) and the main body device (7). The internal air of the supply cylinder (6) to be caused to be piped to the exhaust pipe (2B) of the suction type air transportation device (9) through the gas vent port (2b) attached to the supply cylinder so that the suction suction state can be maintained at all times. A system device with a quantitative feeder mechanism, characterized in that it is configured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002140793A JP3853251B2 (en) | 2002-04-09 | 2002-04-09 | A quantitative feeder mechanism and a system device with the mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002140793A JP3853251B2 (en) | 2002-04-09 | 2002-04-09 | A quantitative feeder mechanism and a system device with the mechanism |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005178641A Division JP4297889B2 (en) | 2005-06-17 | 2005-06-17 | Hungry injection molding method and hungry injection molding apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003300211A true JP2003300211A (en) | 2003-10-21 |
JP3853251B2 JP3853251B2 (en) | 2006-12-06 |
Family
ID=29397628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002140793A Expired - Lifetime JP3853251B2 (en) | 2002-04-09 | 2002-04-09 | A quantitative feeder mechanism and a system device with the mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3853251B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006069143A (en) * | 2004-09-06 | 2006-03-16 | Miyoko Ichikawa | Starved-state molding device and starved-state molding method |
WO2009014089A1 (en) * | 2007-07-26 | 2009-01-29 | Sumitomo Heavy Industries, Ltd. | Material supply device for molding machine |
JP2009028998A (en) * | 2007-07-26 | 2009-02-12 | Sumitomo Heavy Ind Ltd | Material feeding device of molding machine |
JP2009028997A (en) * | 2007-07-26 | 2009-02-12 | Sumitomo Heavy Ind Ltd | Material feeding apparatus of molding machine |
CN102745472A (en) * | 2012-07-05 | 2012-10-24 | 芜湖美亚特新型建材有限公司 | Injection molding extruder screw feeder |
TWI398343B (en) * | 2007-12-27 | 2013-06-11 | Sumitomo Heavy Industries | Injection device and injection method |
CN113138002A (en) * | 2021-03-30 | 2021-07-20 | 滁州安瑞汇龙电子有限公司 | Control system of quantitative feeder |
-
2002
- 2002-04-09 JP JP2002140793A patent/JP3853251B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006069143A (en) * | 2004-09-06 | 2006-03-16 | Miyoko Ichikawa | Starved-state molding device and starved-state molding method |
WO2009014089A1 (en) * | 2007-07-26 | 2009-01-29 | Sumitomo Heavy Industries, Ltd. | Material supply device for molding machine |
JP2009028998A (en) * | 2007-07-26 | 2009-02-12 | Sumitomo Heavy Ind Ltd | Material feeding device of molding machine |
JP2009028997A (en) * | 2007-07-26 | 2009-02-12 | Sumitomo Heavy Ind Ltd | Material feeding apparatus of molding machine |
JP4704397B2 (en) * | 2007-07-26 | 2011-06-15 | 住友重機械工業株式会社 | Material feeder for molding machine |
TWI398343B (en) * | 2007-12-27 | 2013-06-11 | Sumitomo Heavy Industries | Injection device and injection method |
CN102745472A (en) * | 2012-07-05 | 2012-10-24 | 芜湖美亚特新型建材有限公司 | Injection molding extruder screw feeder |
CN113138002A (en) * | 2021-03-30 | 2021-07-20 | 滁州安瑞汇龙电子有限公司 | Control system of quantitative feeder |
CN113138002B (en) * | 2021-03-30 | 2022-09-30 | 滁州安瑞汇龙电子有限公司 | Control system of quantitative feeder |
Also Published As
Publication number | Publication date |
---|---|
JP3853251B2 (en) | 2006-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006206325A5 (en) | ||
JP4448510B2 (en) | Waste plastic processing equipment | |
US20070151995A1 (en) | Celluar wheel sluice | |
JP2003300211A (en) | Quantitative feeder mechanism and system device equipped therewith | |
CN201746052U (en) | High-pressure pneumatic conveying rotation feeder | |
JP2006264963A (en) | Rotary drum conveyor | |
JP2016504970A (en) | Supply device for supplying bulk material to briquetting press | |
CN207658572U (en) | Powder conveying apparatus | |
JP4297889B2 (en) | Hungry injection molding method and hungry injection molding apparatus | |
KR101953999B1 (en) | Pellet manufacturing apparatus for animal feeds | |
EP2457049B1 (en) | Method for drying a fluid or wet product, and drying apparatus for carrying out the method | |
JP2012041106A (en) | Partition plate of fixed quantity feeder device of powder | |
CN207452046U (en) | A kind of sketch plate and biological particles production line | |
JP3186076U (en) | High moisture content wood chip chip quantitative feeder | |
JP5697375B2 (en) | Pinhole sheet of powder feeder | |
KR101570415B1 (en) | aero-flow feeder | |
CN210220392U (en) | Mortar raw material drying system | |
JP2006256854A (en) | Screw feeder and screw with blade | |
CN208452251U (en) | Plastic cement production crystal feeding device | |
JPH11270828A (en) | Apparatus and method for supplying waste to combustion apparatus | |
JP2019059217A (en) | Gas feeding device | |
KR20130035765A (en) | Pulverized coal feeding system | |
CN218808472U (en) | Spiral feeding equipment | |
JPH10147433A (en) | Pneumatic transport method for plastic particles | |
CN218144474U (en) | High chlorine ash processing apparatus that cement kiln treatment domestic waste bypass was let out wind and is collected |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040830 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20050821 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051115 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20051114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060526 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3853251 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140915 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |