JP3853170B2 - Load sensor - Google Patents

Load sensor Download PDF

Info

Publication number
JP3853170B2
JP3853170B2 JP2001115425A JP2001115425A JP3853170B2 JP 3853170 B2 JP3853170 B2 JP 3853170B2 JP 2001115425 A JP2001115425 A JP 2001115425A JP 2001115425 A JP2001115425 A JP 2001115425A JP 3853170 B2 JP3853170 B2 JP 3853170B2
Authority
JP
Japan
Prior art keywords
strain
shaft hole
spacer
generating body
load sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001115425A
Other languages
Japanese (ja)
Other versions
JP2002310815A (en
Inventor
昭人 三浦
幸一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2001115425A priority Critical patent/JP3853170B2/en
Publication of JP2002310815A publication Critical patent/JP2002310815A/en
Application granted granted Critical
Publication of JP3853170B2 publication Critical patent/JP3853170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歪み素子を搭載した板状の起歪体の撓み具合によって荷重を検出する荷重センサに係り、特に、起歪体をボルト等の固定軸体に支持するための取付構造に関する。
【0002】
【従来の技術】
図9は、この種の荷重センサの従来例を示す説明図である。同図において、符号1は厚膜抵抗体からなる歪み素子、2は軸孔2aを有して歪み素子1を搭載した金属板製の起歪体で、この起歪体2の先端部には測定対象物からの荷重が加わる荷重点2bが設けられている。符号3は軸孔2aに挿通されたボルトで、このボルト3はナット9等を用いて設置部材であるフレーム4等に固定されている。符号5,6はボルト3に外挿されている平板状のワッシャで、これら一対のワッシャ5,6の間に起歪体2の軸孔2aの周縁部分を配置させている。符号7,8はボルト3に螺着せしめたナットで、これら一対のナット7,8の間にワッシャ6と起歪体2とワッシャ5とが積層状態で挟圧・固定されている。
【0003】
すなわち、起歪体2をボルト3に取り付ける際には、ボルト3にナット8を螺合させた後、ワッシャ6と起歪体2およびワッシャ5を順次ボルト3に外挿してから、ナット7をボルト3に螺合させて両ナット7,8を締め付けていく。これにより、一対のナット7,8の間で、起歪体2の軸孔2aの周縁部分を挟み込んだ一対のワッシャ5,6がボルト3の軸線方向に沿って挟圧されていくので、ワッシャ5,6を介して起歪体2をボルト3に強固に固定することができる。
【0004】
【発明が解決しようとする課題】
この種の荷重センサにおいて、起歪体2は例えば約2mm厚のSUS等からなる金属板であるが、この起歪体2とワッシャ5,6とを完全に面接触させることは困難なので、起歪体2の軸孔2aの周縁部分にはワッシャ5,6からの加圧力が強く作用する場所と弱く作用する場所とが生じる。特に図10に示すように、ナット7(または8)がボルト3に対し傾いて螺着された場合、ワッシャ5(または6)の一側部に過大な応力が集中してしまうため、同図の点Pを支点として他側部が浮き上がり起歪体2から離れてしまう。その結果、起歪体2の軸孔2aの周縁部分において、ワッシャ5,6に加圧される応力集中個所が極端に不均一な分布となり、歪み素子1の特性に悪影響を及ぼすようなゆがみが起歪体2に生じてしまう。そして、取付時にこのようなゆがみが起歪体2に生じやすい荷重センサは、荷重点2bに同等の荷重が加わっても歪み素子1の出力値が製品ごとにばらつきやすいため高い信頼性が得にくくなる。なお、ナット7,8やボルト3に刻設されているねじ溝の公差によっても、図10に示すようなナット7(または8)の傾きはある程度起こりうる。
【0005】
本発明はこのような従来技術の実情に鑑みてなされたもので、その目的は、歪み素子の特性に悪影響を及ぼさずに起歪体が固定軸体に簡単かつ確実に取り付けられる、高信頼性の荷重センサを提供することにある。
【0006】
【課題を解決するための手段】
上述した目的を達成するために、本発明の荷重センサは、荷重の作用する荷重点から離反した位置に軸孔が設けられた板状の起歪体と、この起歪体の前記荷重点と前記軸孔との間に搭載された歪み素子と、前記起歪体の前記軸孔周縁部分に対向配置されたスペーサ部材と、前記軸孔を貫通し前記スペーサ部材を介して前記起歪体を支持する固定軸体と、この固定軸体に固定されて前記スペーサ部材を前記起歪体の板厚方向へ加圧する加圧部材とを備え、前記スペーサ部材のうち前記加圧部材に当接する座面を該加圧部材よりも小径に設定することとした。
【0007】
このように加圧部材に当接するスペーサ部材の座面を該加圧部材よりも小さくしておくと、たとえ加圧部材が固定軸体に対して傾いたままスペーサ部材に加圧力を加えたとしても、加圧部材に直接押し込まれるのはスペーサ部材の内周部だけなので、該スペーサ部材の一部が浮き上がって起歪体から離れてしまうという現象は起こらない。したがって、起歪体を固定軸体に取り付ける際に、スペーサ部材による起歪体の応力集中個所が軸孔の周囲で極端に不均一な分布となる心配がなくなり、歪み素子の特性に悪影響を及ぼさずに起歪体を確実に固定軸体に取り付けることができる。なお、固定軸体がねじを刻設したボルトからなり、かつ加圧部材が該ボルトに締着されるナットからなる構成にしてあれば、起歪体の取付作業が簡単に行えるので好ましい。
【0008】
また、かかる構成において、スペーサ部材が略中央の筒状部から径方向外側へ鍔部を突設してなる一対のワッシャからなり、これら両ワッシャの前記筒状部どうしを積層させて起歪体の軸孔内に配置させると共に、該軸孔の外に位置する前記筒状部の端面を前記座面となしておけば、両ワッシャの鍔部どうしの間隔を精度よく規定することができるので、これら鍔部どうしの間に起歪体の軸孔周縁部分を無理なく配置させることができる。そして、鍔部どうしの間隔を起歪体の板厚よりも大きく設定して、起歪体の軸孔周縁部分と該鍔部との間に隙間を生じさせ、この隙間に接着固定剤を充填しておけば、両ワッシャの加圧力が接着固定剤で分散されて起歪体に加わるため、起歪体に対する過度の応力集中が抑制できて好ましい。
【0009】
あるいは、かかる構成において、スペーサ部材が、起歪体の軸孔内に配置される管スペーサと、一端面を前記座面となして他端面が前記管スペーサに当接される一対の凸状ワッシャとからなり、これら両凸状ワッシャが前記加圧部材に加圧されて前記管スペーサを挟圧するようにしておくことも可能である。この場合も、管スペーサの軸線方向の長さ寸法を起歪体の板厚よりも大きく設定して、起歪体の軸孔周縁部分と凸状ワッシャとの間に隙間を生じさせ、この隙間に接着固定剤を充填しておくことが好ましい。
【0010】
あるいは、かかる構成において、起歪体の軸孔の周囲の所定個所に凹状または凸状の被押圧部を設けると共に、この被押圧部がスペーサ部材にて加圧されるようになし、かつ前記被押圧部を除く起歪体の表面がスペーサ部材に対して非接触に保たれるようにしておくことも可能である。この場合、起歪体の軸孔周縁部分は常に特定個所(被押圧部)だけにスペーサ部材の加圧力が加わることになるので、スペーサ部材による起歪体の応力集中個所を軸孔の周囲で均一な分布となすことができる。
【0011】
また、上述した各構成において、起歪体のうち、軸孔周縁部分の板厚を、歪み素子を搭載している部分の板厚よりも大きく設定しておけば、荷重点に荷重を加えて起歪体を撓ませたとき、その変形の起点が板厚小なる部分と板厚大なる部分との境目に限定されてばらつかなくなるので、検出精度の向上が図れる。
【0012】
【発明の実施の形態】
以下、発明の実施の形態を図面を参照して説明すると、図1は第1の実施形態例に係る荷重センサの要部断面図、図2は図1に示す荷重センサの全体斜視図、図3は図1,2に示す起歪体の平面図、図4は第2の実施形態例に係る荷重センサの要部断面図、図5は第3の実施形態例に係る荷重センサの要部断面図、図6は第4の実施形態例に係る荷重センサの要部断面図、図7は第5の実施形態例に係る荷重センサの要部平面図、図8は図7のA−A線に沿う断面図であり、図9と対応する部分には同一符号が付してある。
【0013】
まず、図1〜図3を参照しつつ第1の実施形態例について説明すると、図中の符号1は厚膜抵抗体からなる歪み素子、2は軸孔2aを有して歪み素子1を搭載した金属板製の起歪体であり、これら歪み素子1と起歪体2によって歪みゲージが構成されている。図2に示すように、本実施形態例に係る荷重センサは、自動車の座席に組み込まれて搭乗者の体重を検出するためのものであり、起歪体2の先端部に設けられた荷重点2bには、座席側に固定されたアーム17を介して搭乗者の荷重が作用するようになっている。符号3は固定軸体としてのボルトであり、このボルト3はナット9を用いて設置部材であるシートフレーム4に固定されている。符号7,8は加圧部材としてボルト3に螺着せしめたナットである。符号10,11はスペーサ部材としてボルト3に外挿されている凸状ワッシャで、これら一対の凸状ワッシャ10,11は、起歪体2の軸孔2aの周縁部分の表裏両面と対向する位置に配置されて、一対のナット7,8により挟圧・固定されている。ただし、ナット7に当接している凸状ワッシャ10の座面10aや、ナット8に当接している凸状ワッシャ11の座面11aは、これらナット7,8よりも小径に設定されており、各ナット7,8の外周部が凸状ワッシャ10,11と当接しないようになっている。
【0014】
なお、本実施形態例では、図3に示すように、起歪体2の上面の4か所に歪み素子1が配設されており、これら4個の歪み素子1を結線してなるホイートストンブリッジ回路の4個の端子1aが起歪体1の軸孔2a側の端部に集約させてある。
【0015】
上述した構成において、歪み素子1が搭載された起歪体2(歪みゲージ)をボルト3に取り付ける際には、ボルト3にナット8を螺合させた後、凸状ワッシャ11をボルト3に外挿し、さらに起歪体2の軸孔2aの周縁部分をボルト3に外挿する。しかる後、凸状ワッシャ10をボルト3に外挿してから、ナット7をボルト3に螺合させて両ナット7,8を締め付けていく。これにより、一対のナット7,8の間で、凸状ワッシャ10,11が起歪体2の板厚方向(ボルト3の軸線方向)に沿って挟圧されていくので、起歪体2の軸孔2aの周縁部分が凸状ワッシャ10,11間に挟持された状態となる。つまり、起歪体2が凸状ワッシャ10,11を介してボルト3に支持された状態となる。
【0016】
このように本実施形態例では、起歪体2を挟持する凸状ワッシャ10,11の小径な座面10a,11aをナット7,8に当接させていることから、ナット7やナット8がボルト3に対して傾いたまま締め付けられた場合にも、ナット7,8から直接挟圧力を付与されるのは凸状ワッシャ10,11の内周部だけであり、凸状ワッシャ10,11の鍔状部分10b,11bが浮き上がって起歪体2から離れてしまうことはない。つまり、起歪体2をボルト3に取り付ける際に、凸状ワッシャ10,11による起歪体2の応力集中個所が軸孔2aの周囲で極端に不均一な分布となる心配がない。それゆえ、歪み素子1の特性に悪影響を及ぼさずに起歪体2を簡単かつ確実にボルト3に取り付けることができ、信頼性の高い荷重センサが得られる。
【0017】
図4に示す第2の実施形態例では、ナット7,8間に挟み込むスペーサ部材として、略中央の筒状部12c,13cから径方向外側へ鍔部12b,13bを突設してなる一対のワッシャ12,13を用い、これら両ワッシャ12,13の筒状部12c,13cどうしを積層させて起歪体2の軸孔2a内に配置させている。このようなワッシャ12,13を用いると、その鍔部12b,13bどうしの間隔を精度よく規定することができるので、両鍔部12b,13b間に起歪体2の軸孔2aの周縁部分を無理なく配置させることができる。ただし、図4において、鍔部12b,13bどうしの間隔は起歪体2の板厚よりも若干大きく設定されているので、積層状態のワッシャ12,13と起歪体2の軸孔2aの周縁部分との間には隙間が生じることとなり、この隙間に硬化してもほとんど収縮しない嫌気性の接着剤14を充填させている。また、ワッシャ12の筒状部12cの上端面をナット7に当接する座面12aとなし、かつワッシャ13の筒状部13cの下端面をナット8に当接する座面13aとなしているが、これらの座面12a,13aはナット7,8よりも小径に設定されている。
【0018】
したがって本実施形態例においては、ナット7,8を締め付けてワッシャ12,13を挟圧・固定すると、各ワッシャ12,13による加圧力が接着剤14を介して起歪体2の軸孔2aの周縁部分に加えられることになり、それゆえ起歪体2に対する過度の応力集中が抑制できる。しかも、前述した第1の実施形態例と同様に、小径の座面12a,13aをナット7,8に当接させているので、ナット7,8がボルト3に対して傾いたまま締め付けられた場合にも鍔部12b,13bが浮き上がって起歪体2から離れてしまうことはなく、よってワッシャ12,13による起歪体2の応力集中個所は軸孔2aの周囲でほぼ均一な分布となりやすい。そのため、歪み素子1の特性が極めて安定したものとなり、荷重センサの信頼性を一層高めることができる。
【0019】
図5に示す第3の実施形態例では、ナット7,8間に挟み込むスペーサ部材として、起歪体2の板厚よりも長寸で軸孔2a内に配置される管スペーサ15と、この管スペーサ15の上下に積層配置された一対の凸状ワッシャ16,17とを用いている。一方の凸状ワッシャ16はその上端面をナット7に当接する小径な座面16aとなし、かつ下端面の内周部を管スペーサ15に当接させている。同様に、他方の凸状ワッシャ17はその下端面をナット8に当接する小径な座面17aとなし、かつ上端面の内周部を管スペーサ15に当接させている。したがって、ナット7,8を締め付けていくと、両凸状ワッシャ16,17が管スペーサ15を挟圧することとなり、スペーサ部材の全体の形状としては図4に示した一対のワッシャ12,13と実質的に同じになる。なお、本実施形態例の場合も、管スペーサ15および凸状ワッシャ16,17からなるスペーサ部材と、起歪体2の軸孔2aの周縁部分との間の隙間に、嫌気性の接着剤14を充填させている。
【0020】
図6に示す第4の実施形態例では、ナット7,8間に挟み込むスペーサ部材として、略中央の筒状部18c,19cから径方向外側へ鍔部18b,19bを突設し、かつ各筒状部18c,19cの座面18a,19a側の端部をテーパ面となした一対のワッシャ18,19を用いている。これら両ワッシャ18,19は、筒状部18c,19cどうしを積層させて起歪体2の軸孔2a内に配置させており、起歪体2の軸孔2aの周縁部分と鍔部18b,19bとの間の隙間に、嫌気性の接着剤14を充填させている。また、本実施形態例では、起歪体2のうち軸孔2aの近傍の板厚が、歪み素子1を搭載している延出部分の板厚よりも大きくしてある。このように、荷重点2bとは反対側の基端部で起歪体2の板厚を増大させておくと、荷重点2bに荷重を加えて起歪体2を撓ませたとき、その変形の起点が板厚小なる部分と板厚大なる部分との境目Qに限定されてばらつかなくなるので、検出精度の向上が図れる。
【0021】
図7,8に示す第5の実施形態例では、起歪体2の軸孔2aの近傍の表裏両面にそれぞれ、凹状の被押圧部2c,2dが複数(例えば4個ずつ)設けてある。ボルト3に外挿され起歪体2を介して対向する一対の凸状ワッシャ20,21は、それぞれ小径な座面20a,21aをナット7,8に当接させている。また、凸状ワッシャ20,21にはそれぞれ、起歪体2の被押圧部2c,2d内に挿入される押圧突起20b,21bが複数設けてある。これらの凸状ワッシャ20,21は、各押圧突起20b,21bを対応する被押圧部2c,2d内に挿入した状態で、ナット7,8に挟圧されてボルト3に固定されるので、起歪体2は複数個所の被押圧部2c,2dにおいて凸状ワッシャ20,21に挟圧される。ただし、被押圧部2c,2dを除く起歪体2の表裏両面は、凸状ワッシャ20,21に対して非接触に保たれている。
【0022】
すなわち本実施形態例は、起歪体2が挟圧される個所(被押圧部2c,2d)を予め特定するというものであり、凸状ワッシャ20,21による起歪体2の応力集中個所を軸孔2aの周囲で均一な分布となすことができる。そして、凸状ワッシャ20,21の小径な座面20a,21aをナット7,8に当接させているので、ナット7,8がボルト3に対して傾いたまま締め付けられた場合にも、押圧突起20b,21bが浮き上がって起歪体2から離れてしまうことはない。なお、本実施形態例において、起歪体2の軸孔2aの近傍に凸状の被押圧部を設けて挟圧されるようにしてもよい。
【0023】
なお、上述した各実施形態例では、固定軸体としてボルト3を使用し、このボルト3にナット7,8を螺合させて締め付ける場合について例示しているが、リベットのようにねじ溝を持たない固定軸体に起歪体2を取り付ける場合には、ワッシャ等のスペーサ部材をかしめ等の手法で加圧すればよい。
【0024】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0025】
ナット等の加圧部材でワッシャ等のスペーサ部材を加圧することにより起歪体を固定軸体に取り付けるという荷重センサで、加圧部材に当接するスペーサ部材の座面を該加圧部材よりも小径にしてあるので、加圧部材が固定軸体に対して傾いたままスペーサ部材に加圧力を加えた場合にも、スペーサ部材の一部が浮き上がって起歪体から離れてしまうという現象は起こらない。それゆえ、起歪体を固定軸体に取り付ける際に、スペーサ部材による起歪体の応力集中個所が軸孔の周囲で極端に不均一な分布となる心配がなくなり、歪み素子の特性に悪影響を及ぼさずに起歪体を簡単かつ確実に固定軸体に取り付けることが可能となり、信頼性の高い荷重センサが得られる。
【0026】
また、かかる構成において、スペーサ部材が略中央の筒状部から径方向外側へ鍔部を突設してなる一対のワッシャからなり、これら両ワッシャの前記筒状部どうしを積層させて起歪体の軸孔内に配置させると共に、該軸孔の外に位置する前記筒状部の端面を前記座面となしておけば、両ワッシャの鍔部どうしの間隔を精度よく規定することができるので、これら鍔部どうしの間に起歪体の軸孔周縁部分を無理なく配置させることができる。そして、鍔部どうしの間隔を起歪体の板厚よりも大きく設定して、起歪体の軸孔周縁部分と該鍔部との間に隙間を生じさせ、この隙間に接着固定剤を充填しておけば、スペーサ部材の加圧力が接着固定剤で分散されて起歪体に加わるため、起歪体に対する過度の応力集中が抑制できる。
【0027】
また、起歪体の軸孔の周囲の所定個所に凹状または凸状の被押圧部を設けると共に、この被押圧部がスペーサ部材にて加圧されるようになし、かつ被押圧部を除く起歪体の表面がスペーサ部材に対して非接触に保たれるように構成しておけば、起歪体の軸孔周縁部分は常に特定個所(被押圧部)だけにスペーサ部材の加圧力が加わることになるので、スペーサ部材による起歪体の応力集中個所を軸孔の周囲で均一な分布となすことができる。
【0028】
また、起歪体のうち、軸孔周縁部分の板厚を歪み素子を搭載している部分の板厚よりも大きく設定しておけば、荷重点に荷重を加えて起歪体を撓ませたとき、その変形の起点が板厚小なる部分と板厚大なる部分との境目に限定されてばらつかなくなるので、検出精度の向上が図れる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態例に係る荷重センサの要部断面図である。
【図2】図1に示す荷重センサの全体斜視図である。
【図3】図1,2に示す起歪体の平面図である。
【図4】本発明の第2の実施形態例に係る荷重センサの要部断面図である。
【図5】本発明の第3の実施形態例に係る荷重センサの要部断面図である。
【図6】本発明の第4の実施形態例に係る荷重センサの要部断面図である。
【図7】本発明の第5の実施形態例に係る荷重センサの要部平面図である。
【図8】図7のA−A線に沿う断面図である。
【図9】従来例に係る荷重センサの要部断面図である。
【図10】該従来技術の問題点を示す説明図である。
【符号の説明】
1 歪み素子
2 起歪体
2a 軸孔
2b 荷重点
2c,2d 被押圧部
3 ボルト(固定軸体)
7,8 ナット(加圧部材)
10〜13,16〜21 ワッシャ(スペーサ部材)
10a〜13a,16a〜21a 座面
12b,13b,18b,19b 鍔部
12c,13c,18c,19c 筒状部
14 接着剤
15 管スペーサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a load sensor that detects a load by a bending state of a plate-like strain generating body on which a strain element is mounted, and particularly relates to an attachment structure for supporting the strain generating body on a fixed shaft body such as a bolt.
[0002]
[Prior art]
FIG. 9 is an explanatory view showing a conventional example of this type of load sensor. In the figure, reference numeral 1 is a strain element made of a thick film resistor, and 2 is a strain plate made of a metal plate having a shaft hole 2 a and mounting the strain element 1. A load point 2b to which a load from the measurement object is applied is provided. Reference numeral 3 denotes a bolt inserted through the shaft hole 2a. The bolt 3 is fixed to a frame 4 or the like as an installation member using a nut 9 or the like. Reference numerals 5 and 6 denote flat washers that are externally attached to the bolt 3, and the peripheral portion of the shaft hole 2 a of the strain generating body 2 is disposed between the pair of washers 5 and 6. Reference numerals 7 and 8 are nuts screwed to the bolt 3, and the washer 6, the strain body 2 and the washer 5 are sandwiched and fixed between the pair of nuts 7 and 8 in a laminated state.
[0003]
That is, when attaching the strain body 2 to the bolt 3, after the nut 8 is screwed onto the bolt 3, the washer 6, the strain body 2 and the washer 5 are sequentially extrapolated to the bolt 3, and then the nut 7 is attached. The nuts 7 and 8 are tightened by screwing onto the bolts 3. As a result, the pair of washers 5 and 6 sandwiching the peripheral portion of the shaft hole 2a of the strain generating body 2 is sandwiched between the pair of nuts 7 and 8 along the axial direction of the bolt 3, so the washer The strain generating body 2 can be firmly fixed to the bolt 3 via 5 and 6.
[0004]
[Problems to be solved by the invention]
In this type of load sensor, the strain body 2 is a metal plate made of, for example, SUS having a thickness of about 2 mm. However, it is difficult to bring the strain body 2 and the washers 5 and 6 into full surface contact. A place where the pressurizing force from the washers 5 and 6 acts strongly and a place where the pressure force acts weakly are generated at the peripheral portion of the shaft hole 2a of the strain body 2. In particular, as shown in FIG. 10, when the nut 7 (or 8) is screwed at an angle with respect to the bolt 3, excessive stress is concentrated on one side of the washer 5 (or 6). The other side portion is lifted away from the strain generating body 2 with the point P as a supporting point. As a result, in the peripheral portion of the shaft hole 2 a of the strain generating body 2, stress concentration points applied to the washers 5 and 6 are extremely unevenly distributed, and there is a distortion that adversely affects the characteristics of the strain element 1. It will occur in the strain body 2. A load sensor in which such distortion is likely to occur in the strain generating body 2 during mounting is difficult to obtain high reliability because the output value of the strain element 1 is likely to vary from product to product even when an equivalent load is applied to the load point 2b. Become. Note that the inclination of the nut 7 (or 8) as shown in FIG. 10 may occur to some extent due to the tolerance of the thread grooves formed in the nuts 7 and 8 and the bolt 3.
[0005]
The present invention has been made in view of such a state of the art, and its purpose is to provide a highly reliable structure in which a strain generating body can be easily and reliably attached to a fixed shaft body without adversely affecting the characteristics of the strain element. It is in providing a load sensor.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, the load sensor of the present invention includes a plate-like strain body having a shaft hole provided at a position away from a load point at which a load acts, and the load point of the strain body. A strain element mounted between the shaft hole, a spacer member disposed opposite to a peripheral portion of the shaft hole of the strain body, and the strain body through the shaft hole and the spacer member. A fixed shaft body to be supported; and a pressure member that is fixed to the fixed shaft body and pressurizes the spacer member in a plate thickness direction of the strain-generating body, the seat being in contact with the pressure member among the spacer members The surface was set to have a smaller diameter than the pressure member.
[0007]
In this way, if the seating surface of the spacer member that contacts the pressure member is made smaller than the pressure member, it is assumed that pressure is applied to the spacer member while the pressure member is inclined with respect to the fixed shaft body. However, since only the inner peripheral portion of the spacer member is directly pushed into the pressure member, a phenomenon that a part of the spacer member is lifted and separated from the strain generating body does not occur. Therefore, when attaching the strain body to the fixed shaft body, there is no concern that the stress concentration points of the strain body due to the spacer member will be extremely unevenly distributed around the shaft hole, and the characteristics of the strain element will be adversely affected. Therefore, the strain body can be securely attached to the fixed shaft body. In addition, it is preferable that the fixed shaft body is made of a bolt in which a screw is engraved and the pressure member is made of a nut fastened to the bolt, because the attaching work of the strain generating body can be easily performed.
[0008]
Further, in this configuration, the spacer member is composed of a pair of washers in which a flange portion projects from the substantially central cylindrical portion to the outside in the radial direction, and the cylindrical portions of both washers are laminated to form a strain generating body. If the end surface of the cylindrical portion located outside the shaft hole is used as the seat surface, the interval between the collar portions of both washers can be accurately defined. The axial hole peripheral portion of the strain generating body can be arranged without difficulty between the flanges. Then, the gap between the flanges is set to be larger than the plate thickness of the strain-generating body, and a gap is formed between the axial hole peripheral portion of the strain-generating body and the flange, and this gap is filled with an adhesive fixing agent. In this case, the pressure applied by both washers is dispersed by the adhesive fixing agent and applied to the strain generating body, which is preferable because excessive stress concentration on the strain generating body can be suppressed.
[0009]
Alternatively, in this configuration, the spacer member is a tube spacer disposed in the shaft hole of the strain body, and a pair of convex washers whose one end surface is the seating surface and the other end surface is in contact with the tube spacer. It is also possible that these both convex washers are pressed against the pressure member to pinch the tube spacer. Also in this case, the axial dimension of the tube spacer is set to be larger than the plate thickness of the strain-generating body, and a gap is formed between the axial hole peripheral portion of the strain-generating body and the convex washer. Is preferably filled with an adhesive fixing agent.
[0010]
Alternatively, in this configuration, a concave or convex pressed portion is provided at a predetermined location around the shaft hole of the strain generating body, the pressed portion is pressed by a spacer member, and the covered It is also possible to keep the surface of the strain generating body excluding the pressing portion in non-contact with the spacer member. In this case, since the pressurizing force of the spacer member is always applied only to the specific portion (the pressed portion) at the peripheral portion of the shaft hole of the strain generating body, the stress concentration portion of the strain generating body by the spacer member is around the shaft hole. A uniform distribution can be obtained.
[0011]
Moreover, in each structure mentioned above, if the plate | board thickness of a shaft hole peripheral part is set larger than the plate | board thickness of the part which mounts a distortion element among strain generating bodies, a load will be added to a load point. When the strain generating body is bent, the starting point of the deformation is limited to the boundary between the portion where the plate thickness is small and the portion where the plate thickness is large and does not vary, so that the detection accuracy can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of the main part of a load sensor according to a first embodiment, and FIG. 2 is an overall perspective view of the load sensor shown in FIG. 3 is a plan view of the strain generating body shown in FIGS. 1 and 2, FIG. 4 is a cross-sectional view of the main part of the load sensor according to the second embodiment, and FIG. 5 is the main part of the load sensor according to the third embodiment. FIG. 6 is a sectional view of a principal part of a load sensor according to a fourth embodiment, FIG. 7 is a plan view of a principal part of a load sensor according to a fifth embodiment, and FIG. It is sectional drawing which follows a line, and the same code | symbol is attached | subjected to the part corresponding to FIG.
[0013]
First, the first embodiment will be described with reference to FIGS. 1 to 3. Reference numeral 1 in the figure denotes a strain element made of a thick film resistor, and 2 denotes a strain element 1 having a shaft hole 2a. A strain gauge is constituted by the strain element 1 and the strain body 2. As shown in FIG. 2, the load sensor according to the present embodiment is for detecting the weight of the passenger incorporated in the seat of the automobile, and is a load point provided at the tip of the strain body 2. A passenger's load acts on 2b via the arm 17 fixed to the seat side. Reference numeral 3 denotes a bolt as a fixed shaft body, and the bolt 3 is fixed to a seat frame 4 as an installation member using a nut 9. Reference numerals 7 and 8 are nuts screwed to the bolt 3 as pressure members. Reference numerals 10 and 11 denote convex washers that are extrapolated to the bolt 3 as spacer members, and the pair of convex washers 10 and 11 are opposed to the front and back surfaces of the peripheral portion of the shaft hole 2a of the strain body 2. And clamped and fixed by a pair of nuts 7 and 8. However, the seating surface 10a of the convex washer 10 in contact with the nut 7 and the seating surface 11a of the convex washer 11 in contact with the nut 8 are set to have a smaller diameter than the nuts 7 and 8, The outer peripheral portions of the nuts 7 and 8 are not brought into contact with the convex washers 10 and 11.
[0014]
In this embodiment, as shown in FIG. 3, the strain elements 1 are arranged at four positions on the upper surface of the strain generating body 2, and the Wheatstone bridge formed by connecting these four strain elements 1. Four terminals 1a of the circuit are gathered at the end of the strain body 1 on the shaft hole 2a side.
[0015]
In the configuration described above, when the strain generating body 2 (strain gauge) on which the strain element 1 is mounted is attached to the bolt 3, the nut 8 is screwed onto the bolt 3, and then the convex washer 11 is removed from the bolt 3. Further, the peripheral portion of the shaft hole 2 a of the strain generating body 2 is extrapolated to the bolt 3. Thereafter, the convex washer 10 is extrapolated to the bolt 3, and the nut 7 is screwed onto the bolt 3 to tighten both nuts 7 and 8. Thus, the convex washers 10 and 11 are sandwiched between the pair of nuts 7 and 8 along the plate thickness direction of the strain generating body 2 (the axial direction of the bolt 3). The peripheral edge portion of the shaft hole 2a is sandwiched between the convex washers 10 and 11. That is, the strain body 2 is supported by the bolt 3 via the convex washers 10 and 11.
[0016]
As described above, in the present embodiment, the small-diameter seating surfaces 10a and 11a of the convex washers 10 and 11 holding the strain body 2 are in contact with the nuts 7 and 8, so that the nuts 7 and 8 are Even when tightened while being tilted with respect to the bolt 3, the clamping pressure is directly applied from the nuts 7 and 8 only to the inner peripheral portions of the convex washers 10 and 11. The hook-shaped portions 10b and 11b are not lifted up and separated from the strain generating body 2. That is, when the strain body 2 is attached to the bolt 3, there is no fear that the stress concentration portions of the strain body 2 by the convex washers 10 and 11 are extremely unevenly distributed around the shaft hole 2a. Therefore, the strain generating body 2 can be easily and reliably attached to the bolt 3 without adversely affecting the characteristics of the strain element 1, and a highly reliable load sensor can be obtained.
[0017]
In the second embodiment shown in FIG. 4, as a spacer member sandwiched between the nuts 7 and 8, a pair of flange portions 12b and 13b projecting radially outward from the substantially central cylindrical portions 12c and 13c. Washers 12 and 13 are used, and the cylindrical portions 12c and 13c of both washers 12 and 13 are laminated and disposed in the shaft hole 2a of the strain generating body 2. When such washers 12 and 13 are used, the interval between the flange portions 12b and 13b can be accurately defined. Therefore, the peripheral portion of the shaft hole 2a of the strain body 2 is interposed between the flange portions 12b and 13b. Can be arranged without difficulty. However, in FIG. 4, the interval between the flanges 12b and 13b is set to be slightly larger than the plate thickness of the strain-generating body 2, so that the peripheral edges of the laminated washer 12 and 13 and the shaft hole 2a of the strain-generating body 2 A gap is formed between the portions, and the gap is filled with an anaerobic adhesive 14 that hardly shrinks even when cured. Further, the upper end surface of the cylindrical portion 12c of the washer 12 is formed as a seat surface 12a that contacts the nut 7, and the lower end surface of the cylindrical portion 13c of the washer 13 is configured as a seat surface 13a that contacts the nut 8. These seat surfaces 12 a and 13 a are set to have a smaller diameter than the nuts 7 and 8.
[0018]
Therefore, in this embodiment, when the nuts 7 and 8 are tightened and the washers 12 and 13 are clamped and fixed, the pressure applied by the washers 12 and 13 is applied to the shaft hole 2a of the strain generating body 2 via the adhesive 14. Therefore, excessive stress concentration on the strain generating body 2 can be suppressed. Moreover, since the small-diameter seat surfaces 12a and 13a are in contact with the nuts 7 and 8 as in the first embodiment, the nuts 7 and 8 are tightened while being inclined with respect to the bolts 3. Even in this case, the flanges 12b and 13b are not lifted and separated from the strain generating body 2, so that the stress concentration portions of the strain generating body 2 by the washers 12 and 13 tend to be almost uniformly distributed around the shaft hole 2a. . For this reason, the characteristics of the strain element 1 become extremely stable, and the reliability of the load sensor can be further enhanced.
[0019]
In the third embodiment shown in FIG. 5, as a spacer member sandwiched between nuts 7 and 8, a tube spacer 15 which is longer than the plate thickness of the strain generating body 2 and is disposed in the shaft hole 2a, and this tube A pair of convex washers 16 and 17 that are stacked on top and bottom of the spacer 15 are used. One convex washer 16 has an upper end surface as a small-diameter seat surface 16 a that abuts the nut 7, and an inner peripheral portion of the lower end surface abuts the tube spacer 15. Similarly, the other convex washer 17 has a lower end surface as a small-diameter seat surface 17 a that abuts the nut 8, and an inner peripheral portion of the upper end surface abuts the tube spacer 15. Therefore, when the nuts 7 and 8 are tightened, the bi-convex washers 16 and 17 pinch the pipe spacer 15, and the overall shape of the spacer member is substantially the same as that of the pair of washers 12 and 13 shown in FIG. Will be the same. In the case of this embodiment as well, the anaerobic adhesive 14 is provided in the gap between the spacer member composed of the tube spacer 15 and the convex washers 16 and 17 and the peripheral portion of the shaft hole 2a of the strain body 2. Is filled.
[0020]
In the fourth embodiment shown in FIG. 6, as spacer members sandwiched between the nuts 7 and 8, flanges 18b and 19b project from the substantially central cylindrical portions 18c and 19c to the outer side in the radial direction. A pair of washers 18 and 19 are used in which end portions on the seating surfaces 18a and 19a side of the shaped portions 18c and 19c are tapered surfaces. Both washers 18 and 19 are formed by stacking cylindrical portions 18c and 19c in the shaft hole 2a of the strain body 2, and the peripheral portion of the shaft hole 2a of the strain body 2 and the flange portion 18b, An anaerobic adhesive 14 is filled in a gap between the gap 19b. Further, in the present embodiment, the plate thickness in the vicinity of the shaft hole 2a in the strain generating body 2 is larger than the plate thickness of the extending portion on which the strain element 1 is mounted. In this way, if the plate thickness of the strain generating body 2 is increased at the base end opposite to the load point 2b, when the strain is applied to the load point 2b and the strain generating body 2 is bent, its deformation Since the starting point is limited to the boundary Q between the portion where the plate thickness is small and the portion where the plate thickness is large, the detection accuracy can be improved.
[0021]
In the fifth embodiment shown in FIGS. 7 and 8, a plurality of concave pressed portions 2c and 2d (for example, four each) are provided on both the front and back surfaces of the strain generating body 2 in the vicinity of the shaft hole 2a. The pair of convex washers 20 and 21 that are externally attached to the bolt 3 and face each other via the strain body 2 have the small-diameter seating surfaces 20a and 21a abutted against the nuts 7 and 8, respectively. The convex washers 20 and 21 are provided with a plurality of pressing protrusions 20b and 21b inserted into the pressed portions 2c and 2d of the strain generating body 2, respectively. These convex washers 20 and 21 are clamped by the nuts 7 and 8 and fixed to the bolt 3 with the pressing protrusions 20b and 21b inserted into the corresponding pressed parts 2c and 2d. The strain body 2 is pinched by the convex washers 20 and 21 at a plurality of pressed portions 2c and 2d. However, the front and back surfaces of the strain generating body 2 excluding the pressed parts 2c and 2d are kept in non-contact with the convex washers 20 and 21.
[0022]
That is, in this embodiment, the location (pressed portion 2c, 2d) where the strain body 2 is clamped is specified in advance, and the stress concentration location of the strain body 2 by the convex washers 20, 21 is determined. A uniform distribution can be obtained around the shaft hole 2a. Since the small-diameter seating surfaces 20a and 21a of the convex washers 20 and 21 are brought into contact with the nuts 7 and 8, even when the nuts 7 and 8 are tightened while being inclined with respect to the bolt 3, The protrusions 20b and 21b are not lifted up and separated from the strain generating body 2. In this embodiment, a convex pressed portion may be provided in the vicinity of the shaft hole 2a of the strain body 2 so as to be clamped.
[0023]
In each of the above-described embodiments, the case where the bolt 3 is used as the fixed shaft body and the nuts 7 and 8 are screwed and tightened to the bolt 3 is illustrated, but a screw groove is provided like a rivet. When the strain body 2 is attached to a fixed shaft body that is not present, a spacer member such as a washer may be pressed by a technique such as caulking.
[0024]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0025]
A load sensor that attaches a strain body to a fixed shaft body by pressurizing a spacer member such as a washer with a pressure member such as a nut. The seating surface of the spacer member that contacts the pressure member has a smaller diameter than the pressure member. Therefore, even when pressure is applied to the spacer member while the pressure member is tilted with respect to the fixed shaft body, a phenomenon in which a part of the spacer member is lifted away from the strain body does not occur. . Therefore, when attaching the strain generating body to the fixed shaft body, there is no concern that the stress concentration portion of the strain generating body due to the spacer member will be extremely unevenly distributed around the shaft hole, and the characteristics of the strain element are adversely affected. It is possible to easily and reliably attach the strain generating body to the fixed shaft body without affecting, and a highly reliable load sensor can be obtained.
[0026]
Further, in this configuration, the spacer member is composed of a pair of washers in which a flange portion projects from the substantially central cylindrical portion to the outside in the radial direction, and the cylindrical portions of both washers are laminated to form a strain generating body. If the end surface of the cylindrical portion located outside the shaft hole is used as the seat surface, the interval between the collar portions of both washers can be accurately defined. The axial hole peripheral portion of the strain generating body can be arranged without difficulty between the flanges. Then, the gap between the flanges is set to be larger than the plate thickness of the strain-generating body, and a gap is formed between the axial hole peripheral portion of the strain-generating body and the flange, and this gap is filled with an adhesive fixing agent. If so, the applied pressure of the spacer member is dispersed by the adhesive fixing agent and applied to the strain generating body, so that excessive stress concentration on the strain generating body can be suppressed.
[0027]
In addition, a concave or convex pressed portion is provided at a predetermined location around the shaft hole of the strain generating body, the pressed portion is not pressed by the spacer member, and the pressed portion is excluded. If the surface of the strain body is configured so as to be kept in non-contact with the spacer member, the peripheral edge of the shaft hole of the strain body is always subjected to the pressing force of the spacer member only at a specific location (pressed portion). Therefore, the stress concentration portion of the strain generating body by the spacer member can be made to be uniform around the shaft hole.
[0028]
Also, if the plate thickness at the periphery of the shaft hole is set larger than the plate thickness of the portion where the strain element is mounted, the strain body is deflected by applying a load to the load point. At this time, since the starting point of the deformation is limited to the boundary between the portion where the plate thickness is small and the portion where the plate thickness is large, the detection accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a load sensor according to a first embodiment of the present invention.
2 is an overall perspective view of the load sensor shown in FIG. 1. FIG.
FIG. 3 is a plan view of the strain generating body shown in FIGS.
FIG. 4 is a cross-sectional view of a main part of a load sensor according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view of a main part of a load sensor according to a third embodiment of the present invention.
FIG. 6 is a cross-sectional view of a main part of a load sensor according to a fourth embodiment of the present invention.
FIG. 7 is a plan view of an essential part of a load sensor according to a fifth embodiment of the present invention.
8 is a cross-sectional view taken along line AA in FIG.
FIG. 9 is a cross-sectional view of a main part of a load sensor according to a conventional example.
FIG. 10 is an explanatory diagram showing a problem of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Strain element 2 Strain body 2a Shaft hole 2b Load point 2c, 2d Pressed part 3 Bolt (fixed shaft body)
7,8 Nut (Pressurizing member)
10-13, 16-21 Washer (spacer member)
10a to 13a, 16a to 21a Seat surface 12b, 13b, 18b, 19b Ridge part 12c, 13c, 18c, 19c Tubular part 14 Adhesive 15 Pipe spacer

Claims (8)

荷重の作用する荷重点から離反した位置に軸孔が設けられた板状の起歪体と、この起歪体の前記荷重点と前記軸孔との間に搭載された歪み素子と、前記起歪体の前記軸孔周縁部分に対向配置されたスペーサ部材と、前記軸孔を貫通し前記スペーサ部材を介して前記起歪体を支持する固定軸体と、この固定軸体に固定されて前記スペーサ部材を前記起歪体の板厚方向へ加圧する加圧部材とを備え、前記スペーサ部材のうち前記加圧部材に当接する座面を該加圧部材よりも小径に設定したことを特徴とする荷重センサ。A plate-like strain generating body provided with a shaft hole at a position away from a load point on which a load acts, a strain element mounted between the load point of the strain generating body and the shaft hole, A spacer member disposed opposite to the peripheral edge portion of the shaft hole of the strain body, a fixed shaft body that passes through the shaft hole and supports the strain body through the spacer member, and is fixed to the fixed shaft body and A pressure member that pressurizes the spacer member in the plate thickness direction of the strain body, and a seating surface that contacts the pressure member among the spacer members is set to have a smaller diameter than the pressure member. Load sensor. 請求項1の記載において、前記固定軸体がねじを刻設したボルトからなり、かつ前記加圧部材が該ボルトに締着されるナットからなることを特徴とする荷重センサ。2. The load sensor according to claim 1, wherein the fixed shaft body is made of a bolt engraved with a screw, and the pressure member is made of a nut fastened to the bolt. 請求項1または2の記載において、前記スペーサ部材が略中央の筒状部から径方向外側へ鍔部を突設してなる一対のワッシャからなり、これら両ワッシャの前記筒状部どうしを積層させて前記起歪体の前記軸孔内に配置させると共に、前記軸孔の外に位置する前記筒状部の端面を前記座面となしたことを特徴とする荷重センサ。The spacer member according to claim 1 or 2, wherein the spacer member includes a pair of washers formed by projecting a flange portion radially outward from a substantially central cylindrical portion, and the cylindrical portions of both washers are stacked. The load sensor is arranged in the shaft hole of the strain body and the end surface of the cylindrical portion located outside the shaft hole serves as the seat surface. 請求項3の記載において、前記筒状部どうしを積層させた前記一対のワッシャの前記鍔部どうしの間隔を前記起歪体の板厚よりも大きく設定することにより、前記起歪体の前記軸孔周縁部分と前記鍔部との間に隙間を生じさせ、この隙間に接着固定剤を充填したことを特徴とする荷重センサ。4. The shaft of the strain-generating body according to claim 3, wherein an interval between the flange portions of the pair of washers in which the cylindrical portions are stacked is set larger than a plate thickness of the strain-generating body. A load sensor characterized in that a gap is formed between a hole peripheral portion and the flange, and the gap is filled with an adhesive fixing agent. 請求項1または2の記載において、前記スペーサ部材が、前記起歪体の前記軸孔内に配置される管スペーサと、一端面を前記座面となして他端面が前記管スペーサに当接される一対の凸状ワッシャとからなり、これら両凸状ワッシャが前記加圧部材に加圧されて前記管スペーサを挟圧するように構成したことを特徴とする荷重センサ。3. The spacer according to claim 1, wherein the spacer member is a tube spacer disposed in the shaft hole of the strain body, and one end surface is used as the seat surface and the other end surface is brought into contact with the tube spacer. A load sensor comprising: a pair of convex washers, wherein both the convex washers are pressed by the pressure member to sandwich the tube spacer. 請求項5の記載において、前記管スペーサの軸線方向の長さ寸法を前記起歪体の板厚よりも大きく設定することにより、前記起歪体の前記軸孔周縁部分と前記凸状ワッシャとの間に隙間を生じさせ、この隙間に接着固定剤を充填したことを特徴とする荷重センサ。The length of the tube spacer in the axial direction according to claim 5 is set to be larger than the plate thickness of the strain generating body, whereby the axial hole peripheral portion of the strain generating body and the convex washer A load sensor characterized in that a gap is formed between the gaps and an adhesive fixing agent is filled in the gap. 請求項1または2の記載において、前記起歪体の前記軸孔周縁部分の所定個所に凹状または凸状の被押圧部を設けると共に、この被押圧部が前記スペーサ部材にて加圧されるようになし、かつ前記被押圧部を除く前記起歪体の表面が前記スペーサ部材に対して非接触に保たれるように構成したことを特徴とする荷重センサ。3. The concave or convex pressed portion is provided at a predetermined position on the peripheral edge portion of the shaft hole of the strain generating body according to claim 1 or 2, and the pressed portion is pressed by the spacer member. The load sensor is configured such that the surface of the strain generating body excluding the pressed portion is kept in non-contact with the spacer member. 請求項1〜7のいずれかの記載において、前記起歪体のうち、前記軸孔周縁部分の板厚を、前記歪み素子を搭載している部分の板厚よりも大きく設定したことを特徴とする荷重センサ。In any one of Claims 1-7, The plate | board thickness of the said shaft hole peripheral part among the said strain generating bodies was set larger than the plate | board thickness of the part which mounts the said strain element, It is characterized by the above-mentioned. Load sensor.
JP2001115425A 2001-04-13 2001-04-13 Load sensor Expired - Lifetime JP3853170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115425A JP3853170B2 (en) 2001-04-13 2001-04-13 Load sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115425A JP3853170B2 (en) 2001-04-13 2001-04-13 Load sensor

Publications (2)

Publication Number Publication Date
JP2002310815A JP2002310815A (en) 2002-10-23
JP3853170B2 true JP3853170B2 (en) 2006-12-06

Family

ID=18966330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115425A Expired - Lifetime JP3853170B2 (en) 2001-04-13 2001-04-13 Load sensor

Country Status (1)

Country Link
JP (1) JP3853170B2 (en)

Also Published As

Publication number Publication date
JP2002310815A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP3694450B2 (en) Load sensor
JP5003431B2 (en) Load detection device for vehicle seat
JPH0625613U (en) Pipe fixing device
US20120128413A1 (en) Vehicle securing structure
JP3853170B2 (en) Load sensor
JP5003430B2 (en) Vehicle seat load detection device
JPH1137860A (en) Load detecting device
JP3412169B2 (en) Fixing device for electrolytic capacitors
JPH08109980A (en) Clamp for piping
JP2006207704A (en) Vibration control rubber
CN219197833U (en) Multidimensional force sensor paster pressurizing device
CN215574227U (en) Radial foil bearing welding strength detection clamp
CN211904502U (en) Auxiliary tool for measuring force
CN211291922U (en) Rigidity detection device for battery pack
JP2018200264A (en) Load sensor
JPH0861352A (en) Bolt
JP2000024980A (en) Assembling structure of micromanipulator with force sensor
JPH02195004A (en) Attaching structure for member having plane part
JP2010078554A (en) Load detector
JP2001027285A (en) Power plant mounting device
JP2512773Y2 (en) Cable cleats
JP5141609B2 (en) Torque box hole substitution jig and vehicle fixing device
JP2604693B2 (en) How to fix the piezoelectric diaphragm
JPH02183134A (en) Axial force detector for screw link tightening means
JP3899467B2 (en) Press-fit spacer and its mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6