JP3852806B2 - A Zr-based amorphous alloy excellent in bending strength and impact strength and its production method. - Google Patents

A Zr-based amorphous alloy excellent in bending strength and impact strength and its production method. Download PDF

Info

Publication number
JP3852806B2
JP3852806B2 JP21041698A JP21041698A JP3852806B2 JP 3852806 B2 JP3852806 B2 JP 3852806B2 JP 21041698 A JP21041698 A JP 21041698A JP 21041698 A JP21041698 A JP 21041698A JP 3852806 B2 JP3852806 B2 JP 3852806B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
strength
based amorphous
alloy
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21041698A
Other languages
Japanese (ja)
Other versions
JP2000026943A (en
Inventor
明久 井上
濤 張
信行 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP21041698A priority Critical patent/JP3852806B2/en
Publication of JP2000026943A publication Critical patent/JP2000026943A/en
Application granted granted Critical
Publication of JP3852806B2 publication Critical patent/JP3852806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、曲げ強度および衝撃強度に優れたZr基非晶質合金およびZr基非晶質合金を強化して該合金を製造する方法に関するものである。
【0002】
【従来の技術】
従来、溶融状態の合金を急冷することにより薄帯状、フィラメント状、粉粒体状等、種々の形状を有する非晶質金属材料が得られることはよく知られている。非晶質合金薄帯は、大きな冷却速度の得られる片ロール法、双ロール法、回転液中紡糸法等の方法によって容易に製造できるので、これまでにもFe系、Ni系、Co系、Pd系、Cu系、Zr系あるいはTi系合金について数多くの非晶質合金が得られている。これらの非晶質合金は、結晶質金属材料では得られない高耐食性、高強度等の工業的に極めて重要な特性を示すために、新たな構造材料、医用材料、化学材料等の分野への応用が期待されている。しかしながら、前記した製造方法によって得られる非晶質合金は、薄帯や細線に限られており、それらを用いて最終製品形状へ加工することも困難なことから、工業的にみてその用途がかなり限定されていた。
【0003】
最近、上記非晶質合金の非晶質形成能向上、最適組成化および製造方法の検討が行われ、構造材料としての要求に充分応えられる寸法をもった非晶質合金塊の作製が行われている。例えば、Zr-Al-Cu-Ni 系においては直径30mm、長さ50mmの非晶質合金塊(日本金属学会誌欧文誌:1995年36巻1184項参照)が、さらに、Pd-Ni-Cu-P系では直径72mm、長さ75mmの非晶質合金塊(日本金属学会誌欧文誌:1997年38巻179 項参照)が得られている。これらの非晶質合金塊は1700MPa 以上の引張強さと500 以上のビッカース硬度を有しており、極めて高い弾性限を有するユニークな高強度構造材料として期待されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記非晶質合金塊は、その乱れた原子構造(ガラス質)故に、常温での塑性変形能に乏しいために曲げおよび衝撃荷重等の動的強度が伴わず、実用構造材料としての信頼性に乏しい。したがって、非晶質構造故の高強度高弾性限特性を損なわずに曲げおよび衝撃荷重に対する動的強度を向上した非晶質合金およびその強化方法の開発が望まれていた。
【0005】
【課題を解決するための手段】
そこで本発明者らは、上述の課題を解決するために、非晶質構造故の高強度特性を損なわずに実用に耐えうる曲げ強度および衝撃強度を向上した非晶質合金を提供することを目的として鋭意研究した結果、金属元素に比べ原子半径が小さなほう素、炭素の少なくとも1種以上の元素をZr基非晶質合金表面より浸透させ高融点化合物を形成せしめ、該化合物が生成する際の体積減少により非晶質合金表面部より連続した圧縮応力層を残留させることによりZr基非晶質合金の曲げ強度および衝撃強度が向上することを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、表層部より内部に向かい組織傾斜させることで応力集中を回避し、合金表面に内部応力を残留させることで曲げおよび衝撃荷重に対する強度に優れたZr基非晶質合金とその製法を提供するものである。
【0007】
【発明の実施の形態】
以下に本発明の好ましい実施態様を説明する。Zr基非晶質合金塊の作製方法は、アーク溶解法、金型鋳造法、石英管水焼き入れ法、ダイカストキャスティングおよびスクイズキャスティング等が好ましく用いられる。本発明の方法は、上記組成および製造方法により製造されたZr基非晶質合金の曲げ強度および衝撃荷重に対する強度の向上に用いられる。すなわち、本発明の方法におけるZr基非晶質合金の強化は、以下に示すように好ましく達成される。
【0008】
上述のように、金属元素に比べ原子半径が小さなほう素、炭素の少なくとも1種以上の元素をZr基非晶質合金表面より浸透せしめるためには、これらの浸透元素を含むガス中での加熱、これらの元素のイオン注入後の拡散熱処理、または従来、結晶質合金の表面硬化法として用いられる固体、塩浴、ガスを用いた浸炭法、ほう化法等が好ましく用いられる。しかしながら、Zr基非晶質合金塊形状が既に最終製品形状で複雑な場合には、塩浴およびガスによる表面処理法がさらに好ましく用いられる。また、表面の残留圧縮応力層の厚さおよび組織傾斜の制御は、処理温度および時間により容易に達成される。
【0009】
例えば、後述の実施例のとおり、Zr系非晶質合金をCO+Arガス中で、本合金の過冷却液体領域である500℃で3分間加熱した場合、試料表面にはγ−ZrC(融点3430℃)がX線回折法により同定され、断面の硬さ測定では、表面より深さ方向に約200μmにわたり緩やかな硬化が認められた。また、同試料にほう素原子をイオン注入した後、本合金の過冷却液体領域である500℃で3分間拡散処理した試料表面にはZrB2がX線回折法により同定され、断面の硬さ測定では、表面より深さ方向に約70μmにわたり緩やかな硬化が認められた。このことより、ガス中加熱、イオン注入および拡散処理等で非晶質合金表面部に高融点化合物が生成しており、その化合物は表面より内部に向かい組成傾斜していることがわかる。
【0010】
ここで、元素の浸透でZr基非晶質表面に圧縮応力が残留する原因、および残留圧縮応力によるZr基非晶質合金の曲げ強度および衝撃強度の向上原因について記す。通常の金属結晶は、その規則的原子配列故に、部分的に辷り変形し易い変形容易軸を有する。この変形容易軸をもって結晶質金属材料の強度は定義されている。しかしながら、非晶質合金は等方的かつ乱れた原子配列が構造的特徴であり、これ故に部分的に塑性変形し易い異方性を持たない。したがって、部分的に強度の低い軸が存在せず、これ故に非晶質合金は、高強度、高弾性限特性を示す。しかしながら、この塑性変形容易軸をもたないことが曲げ強度および衝撃荷重に対する強度の低下を起こしている。
【0011】
非晶質物質、特に酸化物ガラスにおいては、該ガラスは凝固の際、表面を風力を用いて冷却することにより表層部に圧縮応力を残留させることで該ガラスの機械的性質を向上させた強化ガラスが一般に商用されている。この強化機構の本質は、表層部の残留圧縮応力にある。しかしながら、金属は一般に非晶質化に大きな冷却速度を必要とするため、冷却速度による精密な残留圧縮応力の付与制御が難しい。本発明で示されるように非晶質合金表面に圧縮応力を残留させることは、通常酸化物ガラスで用いられている風力強化と同様の効果を与える。
【0012】
本発明で用いる浸透元素は、一般に金属元素に比べて小さな原子半径を有する。このことは、結晶質合金に比べて比較的大きな空隙(自由体積)を有する非晶質合金中に浸透元素が容易に拡散できることを示唆している。また、非晶質合金の中には、一定昇温速度での加熱において結晶化する前に過冷却液体状態に遷移し、急激に自由体積が増加するものがある。結晶質合金では、元素の浸透が極く表面近傍に集中するのに対して、この遷移現象により過冷却液体状態に遷移する非晶質合金では、大幅に浸透深さが増大する。
【0013】
一方、非晶質合金の加熱により、これらの浸透元素は、非晶質合金を構成する元素と化合物を生成する。この化合物は、Zr基非晶質合金に対して、ほう素、炭素の少なくとも1種以上を浸透・拡散させると、生成する化合物は、それぞれ、ZrB2 、γ−ZrCである。これらの化合物は、一般に3000℃程度の融点と工具刃先を構成できるほどの硬さを有している。これらの生成化合物は、結晶性を有するとともに、生成に際して凝縮し体積減少する。この体積減少が結晶周囲の非晶質合金に圧縮応力を残留させる原因である。
【0014】
また、非晶質合金の破壊挙動は、原子間の結合の分断によるとされる。この結合は、引張応力により分断され易いが、圧縮応力で結合を押しつぶすことは困難であるといわれる。さらに、この結合分断の起点は、表面のキズ付近の応力集中部であるといわれる(「ガラスへの誘い」、南 努著、産業図書、1993年、98項)。したがって、非晶質合金の表面部に予め圧縮応力を印加しておくことは、非晶質合金の破壊を防ぐ効果的な方法であるといえる。本発明では、浸透元素とZrからなる化合物が表面残留圧縮応力の発現機構であり、この応力により効果的に曲げおよび衝撃強度を向上させることができる。
【0015】
【実施例】
以下、本発明の実施例について説明する。金型鋳造法により作製した表1に示す合金組成からなる非晶質合金塊を、表に示す種々の表面圧縮応力印加法により処理し(実施例1〜)、機械的性質の測定に供した。圧縮応力印加処理の加熱は500℃で3分間行なった。また、比較のために金型鋳造したまま(表面圧縮応力印加処理を施さなかった)による非晶質合金塊(比較例1,2)についても同様の機械的性質の測定を行った。引張強さ(σf )および表面硬さ(Hv)は、インストロン引張試験機、ビッカース硬度計を用いて測定した。衝撃値および曲げ強度は、シャルピー衝撃試験および3点曲げ試験により評価した。表中の、σf は、引張強さ、Eは、ヤング率を示す。
【0016】
【表1】

Figure 0003852806
【0017】
表1より明らかなように、実施例1〜の圧縮応力印加処理を施した非晶質合金は、比較例1および2の未処理材とほぼ同等の引張強さ(σf )を示しており、非晶質合金本来の高強度特性は損なわれていない。さらに、衝撃値、曲げ剛性、曲げ強さ等の動的な機械的性質は、それぞれ、150kJ/m2 、100GPa、3500MPaを超える値を示す。したがって、非晶質合金表面に圧縮応力印加処理を施すことにより、非晶質本来の引張強さをほとんど損なうことなく、曲げおよび衝撃荷重に対する強度の大幅な改善を達成している。
【0018】
以上のことから、原子半径の小さなほう素、炭素の少なくとも1種以上をガス中加熱、イオン注入後拡散熱処理等の圧縮応力印加処理によってZr基非晶質合金表面に圧縮応力を残留させたZr基非晶質合金板を製造することにより、Zr基非晶質合金本来の引張強さを損なうことなく、その衝撃荷重および曲げ荷重に対する強度を付与することができることが分かる。
【0019】
【発明の効果】
以上説明したように、本発明は、曲げおよび衝撃荷重に対する強度に優れ、実用構造材としての信頼性のあるZr基非晶質合金とその製法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing the alloy to strengthen the bending strength and impact strength excellent Zr-based amorphous alloy and Zr based amorphous alloy.
[0002]
[Prior art]
Conventionally, it is well known that amorphous metal materials having various shapes such as a strip shape, a filament shape, and a granular material shape can be obtained by rapidly cooling a molten alloy. Amorphous alloy ribbons can be easily manufactured by methods such as single roll method, twin roll method, spinning in spinning solution, etc., which can obtain a large cooling rate, so far Fe-based, Ni-based, Co-based, Many amorphous alloys have been obtained for Pd, Cu, Zr, or Ti alloys. Since these amorphous alloys exhibit industrially extremely important characteristics such as high corrosion resistance and high strength that cannot be obtained with crystalline metal materials, they are used in the fields of new structural materials, medical materials, chemical materials, etc. Application is expected. However, the amorphous alloys obtained by the above-described manufacturing methods are limited to thin strips and thin wires, and it is difficult to process them into final product shapes using them. It was limited.
[0003]
Recently, the amorphous forming ability of the above amorphous alloy has been improved, the optimum composition and the manufacturing method have been studied, and an amorphous alloy lump having a dimension that can sufficiently meet the demand as a structural material has been produced. ing. For example, in the Zr-Al-Cu-Ni system, an amorphous alloy lump with a diameter of 30 mm and a length of 50 mm (European Journal of the Japan Institute of Metals: see Vol. 36, 1184, 1995) In the P series, an amorphous alloy block with a diameter of 72 mm and a length of 75 mm (European Journal of the Japan Institute of Metals: see Vol. 38, paragraph 179, 1997) has been obtained. These amorphous alloy ingots have a tensile strength of 1700 MPa or more and a Vickers hardness of 500 or more, and are expected as a unique high-strength structural material having an extremely high elastic limit.
[0004]
[Problems to be solved by the invention]
However, the amorphous alloy lump has a disordered atomic structure (glassy), so it lacks plastic deformability at room temperature, so it does not have dynamic strength such as bending and impact load, and it is reliable as a practical structural material. Poor sex. Accordingly, there has been a demand for the development of an amorphous alloy having improved dynamic strength against bending and impact load and its strengthening method without impairing the high strength and high elastic limit property due to the amorphous structure.
[0005]
[Means for Solving the Problems]
Therefore, in order to solve the above-mentioned problems, the present inventors provide an amorphous alloy having improved bending strength and impact strength that can withstand practical use without impairing the high strength characteristics due to the amorphous structure. as a result of extensive studies for the purpose, a small more hydrogen has atomic radius compared with the metal element, at least one element of carbon impregnated from Zr based amorphous alloy surface brought form high melting compounds, when the compound is produced It found that flexural strength and impact strength of the Zr-based amorphous alloy by residual compressive stress layer which is continuous from the amorphous alloy surface portion can be improved by reduction in volume, and have completed the present invention.
[0006]
That is, the present invention avoids the stress concentration by causing tissue inclined toward the inside from the surface layer portion, and the Zr-based amorphous alloy having excellent strength against bending and impact load by causing the residual internal stresses in the alloy surface thereof The manufacturing method is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described. The method for manufacturing a Zr-based amorphous alloy ingot is arc melting method, a die casting method, a quartz tube water quenching method, die-casting casting and squeeze casting, etc. are preferably used. The method of the present invention is used for improving the strength against bending strength and impact load Zr based amorphous alloy manufactured by the composition and production method. Namely, strengthening of the Zr-based amorphous alloy in the process of the present invention is preferably accomplished as follows.
[0008]
As noted above, small more hydrogen has atomic radius compared with the metal element, at least one element of carbon to allowed to penetrate from the Zr-based amorphous alloy surface is heated in a gas containing these penetration elements , diffusion heat treatment after ion implantation of these elements, or conventional, solid used as a surface hardening method of the crystalline alloy, salt bath, carburizing method using a gas, Ho emergence method and the like are preferably used. However, when the Zr-based amorphous alloy ingot shape is already complicated in the final product shape, the surface treatment method is used more preferably by salt bath and gas. Also, the control of the thickness and texture gradient of the residual compressive stress layer on the surface is easily achieved by the processing temperature and time.
[0009]
For example, as will be described later, when a Zr-based amorphous alloy is heated in CO + Ar gas at 500 ° C., which is a supercooled liquid region of this alloy, for 3 minutes, γ-ZrC (melting point: 3430 ° C.) ) Was identified by the X-ray diffraction method, and in the measurement of the hardness of the cross section, a moderate hardening was observed over a depth of about 200 μm from the surface. In addition, after boron ions were ion-implanted into the sample, ZrB 2 was identified by X-ray diffraction on the surface of the sample, which was diffusion treated at 500 ° C. for 3 minutes in the supercooled liquid region, and the hardness of the cross section In the measurement, gentle curing was observed over about 70 μm in the depth direction from the surface. From this, it can be seen that a high melting point compound is formed on the amorphous alloy surface by heating in gas, ion implantation, diffusion treatment, and the like, and the compound has a composition gradient from the surface toward the inside.
[0010]
Here, described the bending strength and increase the cause of the impact strength of the Zr-based amorphous alloy caused, and due to the residual compressive stress compressive stress remains in the Zr-based amorphous surface penetration elements. Ordinary metal crystals have an easy-to-deform axis that is partially deformable due to their regular atomic arrangement. With this easy deformation axis, the strength of the crystalline metal material is defined. However, an amorphous alloy has an isotropic and disordered atomic arrangement as a structural feature, and therefore does not have anisotropy that is likely to be partially plastically deformed. Therefore, there is no partially low-strength axis, and therefore amorphous alloys exhibit high strength and high elastic limit properties. However, the absence of this plastically deformable axis causes a decrease in bending strength and strength against impact load.
[0011]
In the case of amorphous materials, especially oxide glasses, when the glass is solidified, the surface is cooled with wind force to leave a compressive stress in the surface layer, thereby improving the mechanical properties of the glass. Glass is generally commercially available. The essence of this strengthening mechanism is the residual compressive stress in the surface layer. However, since metals generally require a large cooling rate for amorphization, it is difficult to precisely control the residual compressive stress by the cooling rate. As shown in the present invention, leaving a compressive stress on the surface of the amorphous alloy gives the same effect as the wind strengthening usually used in oxide glass.
[0012]
The penetrating element used in the present invention generally has a smaller atomic radius than a metal element. This suggests that the penetrating element can be easily diffused into the amorphous alloy having a relatively large void (free volume) compared to the crystalline alloy. Some amorphous alloys transition to a supercooled liquid state before crystallization in heating at a constant temperature increase rate, and the free volume increases rapidly. In crystalline alloys, the penetration of elements is extremely concentrated in the vicinity of the surface, whereas in an amorphous alloy that transitions to a supercooled liquid state due to this transition phenomenon, the penetration depth is greatly increased.
[0013]
On the other hand, by heating the amorphous alloy, these penetrating elements generate elements and compounds constituting the amorphous alloy. This compound, with respect to Z r based amorphous alloy, boron and is infiltrated and diffused to at least one more carbon, resulting compounds, respectively, ZrB 2, a gamma-Zr C. These compounds generally that have a hardness enough to constitute the melting point and the tool edge of about 3000 ° C.. Product compound of these, along with a crystalline, condensed in generating reduced volume. This volume reduction is the cause of the residual compressive stress in the amorphous alloy around the crystal.
[0014]
In addition, the fracture behavior of amorphous alloys is attributed to the breakage of bonds between atoms. Although this bond is easily broken by tensile stress, it is said that it is difficult to crush the bond by compressive stress. Furthermore, the origin of this bond breaking is said to be the stress concentration area near the surface scratch (“Invitation to Glass”, Tsutomu Minami, Sangyo Tosho, 1993, paragraph 98). Therefore, it can be said that applying a compressive stress to the surface portion of the amorphous alloy in advance is an effective method for preventing the destruction of the amorphous alloy. In the present invention, the compound composed of the penetrating element and Zr is a mechanism for expressing the surface residual compressive stress, and the bending and impact strength can be effectively improved by this stress.
[0015]
【Example】
Examples of the present invention will be described below. The amorphous alloy ingot having the alloy composition shown in Table 1 produced by the die casting method is processed by various surface compressive stress application methods shown in the table (Examples 1 to 4 ) and used for measurement of mechanical properties. did. The compression stress application treatment was performed at 500 ° C. for 3 minutes. For comparison, the same mechanical properties were measured for the amorphous alloy ingots (Comparative Examples 1 and 2) as cast (no surface compressive stress application treatment was performed). Tensile strength (σf) and surface hardness (Hv) were measured using an Instron tensile tester and a Vickers hardness tester. The impact value and bending strength were evaluated by Charpy impact test and three-point bending test. In the table, σf is the tensile strength, and E is the Young's modulus.
[0016]
[Table 1]
Figure 0003852806
[0017]
As is clear from Table 1, the amorphous alloys subjected to the compressive stress application treatments of Examples 1 to 4 exhibited substantially the same tensile strength (σf) as the untreated materials of Comparative Examples 1 and 2. The original high strength properties of the amorphous alloy are not impaired. Furthermore, dynamic mechanical properties such as impact value, flexural rigidity, flexural strength and the like show values exceeding 150 kJ / m 2 , 100 GPa, and 3500 MPa, respectively. Therefore, by applying a compressive stress application treatment to the amorphous alloy surface, a significant improvement in strength against bending and impact load is achieved with almost no loss of the original tensile strength of the amorphous alloy.
[0018]
From the above, small more elements of atomic radius, in the gas heating at least one or more of the carbon, leaving a compressive stress in the Zr-based amorphous alloy surface by the compression stress applied treatment of the diffusion heat treatment after the ion implantation Zr by manufacturing the base amorphous alloy plate, without impairing the tensile strength of the original Zr based amorphous alloy, it can be seen that it is possible to impart strength against the impact load and bending load.
[0019]
【The invention's effect】
As described above, the present invention is, bending and excellent strength against impact loads, Zr based amorphous alloy with reliability as practical structural material and can provide its production method.

Claims (2)

加熱において結晶化する前に過冷却液体状態に遷移し、自由堆積が増加するZr基非晶質合金塊表面より過冷却液体状態において内部に浸透したほう素、炭素の少なくとも1種以上とZrとの高融点化合物が析出し、該高融点化合物は表面より内部に向い組成傾斜しており、該化合物が生成する際の体積減少により該合金表面部に圧縮応力層が形成されていることを特徴とする曲げ強度および衝撃強度に優れたZr基非晶質合金。Transition to a supercooled liquid state before crystallization in the heated, boron which penetrates into the supercooled liquid state than Zr based amorphous alloy ingot surface free deposition is increased, at least one or more and Zr in-carbon A high-melting-point compound is deposited, and the high-melting-point compound is inclined to the inside from the surface, and a compressive stress layer is formed on the surface of the alloy due to a decrease in volume when the compound is formed. excellent Zr based amorphous alloy bending strength and impact strength, characterized. 加熱において結晶化する前に過冷却液体状態に遷移し、自由堆積が増加するZr基非晶質合金塊を一定昇温速度で加熱し、結晶化する前の過冷却液体状態において、表面よりほう素、炭素の少なくとも1種以上を内部に浸透させてZrとの高融点化合物を合金内部に析出させ、該化合物が生成する際の体積減少により非晶質合金表面部より連続した圧縮応力層を残留させることによって合金を強化することを特徴とする請求項1記載の曲げ強度および衝撃強度に優れたZr基非晶質合金の製法。Transition to a supercooled liquid state before crystallization in the heating, to heat the Zr-based amorphous alloy ingot freedom deposition increases at a constant heating rate, the supercooled liquid state before crystallization, boron from the surface element, a high melting compound of Zr and inside infiltrated at least one more carbon-containing precipitate within the alloy, compressive stress layer which is continuous from the amorphous alloy surface part by volume reduction of the time of the compound to produce method according to claim 1, wherein the flexural strength and impact strength excellent Zr-based amorphous alloy, characterized in that to strengthen the alloy by remaining a.
JP21041698A 1998-07-08 1998-07-08 A Zr-based amorphous alloy excellent in bending strength and impact strength and its production method. Expired - Fee Related JP3852806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21041698A JP3852806B2 (en) 1998-07-08 1998-07-08 A Zr-based amorphous alloy excellent in bending strength and impact strength and its production method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21041698A JP3852806B2 (en) 1998-07-08 1998-07-08 A Zr-based amorphous alloy excellent in bending strength and impact strength and its production method.

Publications (2)

Publication Number Publication Date
JP2000026943A JP2000026943A (en) 2000-01-25
JP3852806B2 true JP3852806B2 (en) 2006-12-06

Family

ID=16588961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21041698A Expired - Fee Related JP3852806B2 (en) 1998-07-08 1998-07-08 A Zr-based amorphous alloy excellent in bending strength and impact strength and its production method.

Country Status (1)

Country Link
JP (1) JP3852806B2 (en)

Also Published As

Publication number Publication date
JP2000026943A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
Zhang et al. Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy
CN107419154B (en) One kind having hyperelastic TiZrHfNbAl high-entropy alloy and preparation method thereof
US6692590B2 (en) Alloy with metallic glass and quasi-crystalline properties
He et al. Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites
US6306228B1 (en) Method of producing amorphous alloy excellent in flexural strength and impact strength
JP3852805B2 (en) Zr-based amorphous alloy excellent in bending strength and impact strength and its production method
Chen et al. Improvement in mechanical properties of a Zr-based bulk metallic glass by laser surface treatment
Kikuchi et al. Mechanical properties and grindability of dental cast Ti-Nb alloys
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
CN110714155B (en) Irradiation-resistant impact-resistant FeCoCrNiMn high-entropy alloy and preparation method thereof
CN100535148C (en) Manganese-based memory alloy with high-strength, plasticity and damping performances and production thereof
JPH07116546B2 (en) High strength magnesium base alloy
Jawed et al. Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys
Churyumov et al. Structure and mechanical properties of Ni-Cu-Ti-Zr composite materials with amorphous phase
JP4081537B2 (en) Bio-based Co-based alloy and method for producing the same
Kim et al. Origin of the simultaneous improvement of strength and plasticity in Ti-based bulk metallic glass matrix composites
JPH04235258A (en) Manufacture of amorphous alloy forming material
JP3852806B2 (en) A Zr-based amorphous alloy excellent in bending strength and impact strength and its production method.
Zhao et al. Influence of Cu content on the mechanical properties and corrosion resistance of Mg-Zn-Ca bulk metallic glasses
Lone et al. Effect of Chromium and Molybdenum Increment on the Crystal Structure, Nanoindentation, and Corrosion Properties of Cobalt‐Based Alloys
Wang et al. Textures and compressive properties of ferromagnetic shape-memory alloy Ni48Mn25Ga22Co5 prepared by isothermal forging process
KR102668835B1 (en) Ti-Ni-Ag shape memory alloy wire and method of manufacturing the same
Wu et al. Ion nitriding of TiNi shape memory alloys I. Nitriding parameters and microstructure characterization
JPS62139840A (en) Metallic composite material reinforced with continuous alumina fiber containing mullite crystal
JP2004124156A (en) METHOD FOR MANUFACTURING SUPERELASTIC TiNbSn ALLOY FOR ORGANISM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees