JP3852157B2 - Method for producing ultraviolet photosensitive chemically amplified resist and method for inspecting ultraviolet photosensitive chemically amplified resist - Google Patents

Method for producing ultraviolet photosensitive chemically amplified resist and method for inspecting ultraviolet photosensitive chemically amplified resist Download PDF

Info

Publication number
JP3852157B2
JP3852157B2 JP12414497A JP12414497A JP3852157B2 JP 3852157 B2 JP3852157 B2 JP 3852157B2 JP 12414497 A JP12414497 A JP 12414497A JP 12414497 A JP12414497 A JP 12414497A JP 3852157 B2 JP3852157 B2 JP 3852157B2
Authority
JP
Japan
Prior art keywords
molecular weight
chemically amplified
ultraviolet
resist
amplified resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12414497A
Other languages
Japanese (ja)
Other versions
JPH10312061A (en
Inventor
実 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12414497A priority Critical patent/JP3852157B2/en
Publication of JPH10312061A publication Critical patent/JPH10312061A/en
Application granted granted Critical
Publication of JP3852157B2 publication Critical patent/JP3852157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,紫外線感光性化学増幅型レジストの原料中に不均質な原料が混入しているか否かを検査し、さらにはこの検査結果に基づいて均質な紫外線感光性化学増幅型レジストを製造する技術に関する。
【0002】
【従来の技術】
従来、半導体装置の製造工程では、写真製版技術を応用して配線層,絶縁層,能動領域等の各種パターンを形成しており、このためには専らフォトレジストが用いられている。近年の半導体装置は、微細化,高密度化が著しく、そのために微細なパターンを正確に描くことが必要である。
【0003】
フォトレジストは、半導体基板の表面に塗布する都合上、溶剤に露光光に感光する性質を帯びた材料を混ぜた粘液をなしているが、この中に不純物が混入していたり、感光性組成物そのものの分子量や組成が不均一であったりすると、半導体装置やマスク基板の微細パターンを正確に描画しにくいという問題点が露顕する。したがって、調製したフォトレジスト液に含まれる感光性組成物は、実際に使用する以前に適宜検査し、あまりに不均質なものの混入が著しかった場合には、これを除去しできるだけ均質なものだけを取り出し使用するという、均質度の厳格な管理が必要になってきている。
【0004】
現在の半導体装置やマスク基板の製造における露光プロセスでは、微細なパターン幅がよりいっそう強く求められるにつれ、これまでの露光光では対応できずに、より短波長の紫外線が用いられている。例えば、従来より水銀ランプのi線(365nm)が汎用されているが、最先端の超微細デバイスでは、このi線でさえ波長が長く、配線パターンを正確に描ききれずに、露光光のさらなる短波長領域への技術の追求がなされてきた。すなわち、現在開発が進められている最先端デバイスの露光光として候補に上がっているのは、KrF(フッ化クリプトン)エキシマレーザー光(248nm)や、さらに短波長のArF(フッ化アルゴン)エキシマレーザー光(193nm),さらに深紫外領域への追求も行われている。
【0005】
ところで、かかる深紫外光を用いる際には、当然これらの光を透過できる材料をレジスト材料として採用することが前提となるが、従来のノボラック型レジストは分子の骨格をなすベンゼン環の共役二重結合系に深い吸収があるため、真空深紫外光を透過できないという欠点があり、実用には供さない。したがって、新たなレジスト材料を設計することが求められ、このために用いられるベンゼン環を骨格としない材料,例えば、アダマンチルメタクリレート系レジストやノルボルネンメタクリレート系レジストが有望視されている。かかる深紫外領域対応のフォトレジストは、微細パターンの正確な描画の必要から、露光時に化学増幅型と呼ばれる新たな反応様式をとるのが普通である。すなわち、化学増幅型フォトレジストは、光酸発生剤(PAG)と呼ばれる化合物を樹脂基材とともに含み、光を受けてPAGが積極的に酸を発生し、この酸が樹脂基材に働いて結合を形成できる状態をつくり出す。このように、深紫外領域に対応したフォトレジストは一般に、樹脂基材そのものと似た波長に吸収を持つPAGが含まれていることが必須である。
【0006】
ところが、同じ吸収領域を有するPAGと樹脂基材とが含まれなければならない以上、互いの紫外線吸収スペクトルが重なってしまい、紫外線吸収スペクトルの測定だけからでは互いを分離識別することは困難を究める。紫外線吸収スペクトルを単に測定しただけでは、両者の組成比を知ることができないのである。そこで、かかる新しいレジスト材料の組成比の同定には、別の容易な測定方法の確立が求められている。
【0007】
【発明が解決しようとする課題】
以上のように、この発明が解決しようとする課題は、紫外線露光対応の化学増幅型レジスト材料においてレジスト組成を同定容易な測定方法を開発し、それによってかかる新たなレジスト材料の均質性を高める技術を確立することも課題である。
【0008】
【課題を解決するための手段及びその作用効果】
上記課題は,以下の手段により解決できる。即ち、
第一の発明としては、
光酸発生剤と樹脂基材とを共に含んでなる紫外線感光性化学増幅型レジストに対し、GPC(ゲル・パーミュエーション・クロマトグラフィー)法による分子量分別と紫外線吸収率乃至透過率測定とを順次行い、該分子量分別結果および該紫外線吸収率乃至透過率測定結果から求めた組成比に基づき、均質な化学増幅型レジストだけを取捨選別する工程を有する紫外線感光性化学増幅型レジストの製造方法、を手段とする。
【0009】
第二の発明としては、
光酸発生剤と樹脂基材とを共に含んでなる紫外線感光性化学増幅型レジストに対し、GPC(ゲル・パーミュエーション・クロマトグラフィー)法による分子量分別と紫外線吸収率乃至透過率測定とを順次行い、該分子量分別結果および該紫外線吸収率乃至透過率測定結果から組成比を求める工程を有する紫外線感光性化学増幅型レジストの検査方法、を手段とする。
【0010】
以上のように、本発明では、紫外線感光性化学増幅型レジストに対して、GPC(ゲル・パーミュエーション・クロマトグラフィー)法による分子量分別と紫外線吸収スペクトル測定とを順次行ない、光酸発生剤(PAG)の分子量に相当する吸収極大と樹脂基材の分子量に相当する吸収極大との組成比を求める。かかる組成比の特定を行なうことで、レジスト材料中の均質性を測定する。
【0011】
化学増幅型レジストが設計通りに製造されていることを確認するためには、以下の点を確認する必要がある。
(1)樹脂基材の溶解速度,
(2)樹脂基材の分子量,
(3)樹脂基材の保護率,すなわち光酸発生剤によって反応する保護基が樹脂基材に付加乃至置換している割合,
(4)光酸発生剤の量,
(5)光酸発生剤と樹脂基材の割合,
(6)光酸発生剤以外の低分子量物質がある場合は、その量。
【0012】
本発明の手段を取れば、分子量によって先ずレジスト中の選り分けた後に、順次分別されて流れ出してくる各組成物を順番に紫外線吸収スペクトル測定できることになって、以下のような効果がある。
(1)GPCから流れ出てきた樹脂基材の紫外線吸収ピークに着目することで、樹脂基材の分子量が確認できる。
(2)酸発生剤の分子量に当たる部分の紫外線吸収ピークより、酸発生剤の量が確認できる。
(3)樹脂の分子量に当たる部分の紫外線吸収ピークと酸発生剤の分子量に当たる紫外線吸収のピーク強度比より、酸発生剤と樹脂の割合(組成比)が確認できる。
(4)酸発生剤以外の低分子量物質がある場合は、その分子量に当たる紫外線吸収ピークよりその物質の量が確認できる。
(5)異常な紫外線吸収や分子量ピークがある場合は、本来、レジストに含まれているはずのない(レジスト設計段階では入っていないはずの)物質が混入していることになるので、そのような物質の混入が防げる。
【0013】
以上、本発明を用いることで容易にレジストの検査ができる。
基本的に▲1▼樹脂基材の分子量,▲2▼樹脂基材の溶解速度,▲3▼樹脂基材の保護率は樹脂基材単独で検査可能なものなので、本発明を用いなくても検査ができる。一般に、原材料受入れ検査で行われている。但し、レジストのように混合物になってしまうと、本発明でないと検査はできない。
【0014】
本発明によれば、高分子量の樹脂基材と低分子量の光酸発生剤(PAG)とが分離識別され、各々の紫外線吸収が重なっていても容易にそれらの吸収特性は分離でき、したがってレジスト溶液の状態でも樹脂基材と光酸発生剤との組成比が同定可能である点で効果があるが、分子量分別にGPC法を選んだ場合には特に、GPC法によって時間のずれを生じて出てくる各混合物を順番に紫外線吸収スペクトル測定できることになって、より検査効率が高い。
【0015】
【発明の実施の形態】
以上の本発明を、以下では一実施態様に基づいて説明する。なお、本発明はこのような一実施形態に限定されず、広範に変形が可能であることは言うまでもない。
レジスト材料の例として、樹脂としてPVP(ポリビニルフェノール)系樹脂を用い、光酸発生剤(PAG)としてTPS(トリフェニルサルフォニウムトリフラレート)を用いた化学増幅型レジストをとりあげる。PVP樹脂は、320nm以下に紫外線吸収があり、その吸収極大は約280nm付近にある。一方で、TPSは280nm以下に紫外線吸収があり、その吸収極大は235nm付近である。ここで測定したレジストでは、PVP樹脂と光酸発生剤(PAG)との組成比はPVP樹脂:光酸発生剤(PAG)=100:3であった。
【0016】
図1は、本発明の一実施態様に則した測定装置の構成図であり、本発明の測定方法に用いうる測定システムの全体構成の概略を模式的に示したものである。図中、1は検査の対象であるレジストであり、レジスト1の溶媒となる溶剤2はポンプ3を通して一定流量で流され、レジスト1と適度の粘度になるように混ぜ合わせられ、量産での半導体製造プロセスやマスク作成の工程での使用に供するものである。このレジスト1と溶剤2とが混ざったもの(以下では、便宜上、レジスト混合物と呼ぶ)をプレカラム4へと供給される。プレカラム4は、測定前に被測定物となるレジスト混合物から混入している不純物(パーティクル)を予め除去するために設けられるものであり、より正確な組成比特定に有用である。次いで、GPCカラム5を通して混合されている組成物の各分子量を特定する。このGPCカラム5では、レジスト混合物の各成分が分子量ごとに分離される。すなわち、分子量の大きなものは早くGPCカラム5を通過し、分子量の小さなものはゆっくりGPCカラム5を通過する。つまり、分子量の相違によって成分毎にGPCカラム5を通過する時間が異なり、それによって成分毎に順次分別可能となる。例えば、分子量の大きい樹脂はGPCカラム5を早く通過し、分子量の小さい酸発生剤はGPCカラム5の通過時間が長くなる。本発明では、レジスト成分の紫外線吸収の重なりを分子量分別することによって成分分離するので、構成図の通り紫外線分光器6(フォトダイオードアレイディテクタ)の前にGPCカラム5を設ける必要がある。このように分子量分別されたレジストが紫外線分光器6(フォトダイオードアレイディテクタ)に流れ込み、分子量毎の紫外線吸収が測定される。紫外線分光器6で測定された紫外線吸収データはデータ処理装置7で三次元データに変換される。この三次元データは、x方向に分子量をとり、y方向に波長(nm)をとり、z方向に吸収値をとって、全体で波長が変化した場合の分子量対吸収値のデータを一度に知ることができるように構成したものであり、測定者が見れるようにプリンタで出力できる構成をとったりディスプレイで写し出す構成をとったりもできるが、必ずしもこのような三次元データ全体のアウトプットを要さず、データ処理の過程にこのような三次元データ化のプロセスを有し、検量線を自動設定してすることだけでもよい。ここで記録された三次元データより、樹脂基材および酸発生剤に該当する分子量の紫外線吸収ピーク値を読み取り、既知の検量線と照らし合わせることにより各成分の濃度が判る。レジスト混合物は次いで紫外線分光器6を通して、廃液8として処理される。紫外線分光器6にはそこから得られる分光分析結果をデータ解析するためのデータ処理装置7が接続されており、測定者はこのデータ処理装置7で集計した紫外線分光分析結果とGPCカラム5とから得られる分子量分析結果とに基づいて組成比を特定することができる。
【0017】
従来のレジスト出荷試験および受け入れ試験で用いられた方法,レジスト希釈液を紫外線分光器6で測定し、樹脂基材と光酸発生剤(PAG)と各々の吸収極大より組成比を求める方法で紫外線吸収の測定し組成比を求めることを試みたが、TPSの吸収極大がPVP樹脂の吸収に重なり隠れてしまうので、組成比を求めることができなかった。一方、本発明によればGPC(ゲル・パーミュエーション・クロマトグラフィー)法とUVフォトダイオードアレイディテクタとを組み合わせ、分子量分別をしながら紫外線吸収を測定した結果、PVP(ポリビニルフェノール)系樹脂とTPS(トリフェニルサルフォニウムトリフラレート)とでは、前者の分子量が約5000〜10000に対して、後者の分子量が412.2と、互いの分子量が大きく異なるため、GPCによる分子量分別と紫外線吸収とを組み合わせることで各々の吸収極大は明確に分離識別することが可能となった。その結果、PVPの吸収極大の280nmの吸収値およびTPSの吸収極大の235nmの吸収値とを事前に取得した検量線と照らし合わせることで、レジスト溶液の状態でも樹脂基材と光酸発生剤(PAG)の濃度乃至組成比を容易に測定可能になった。
【0018】
【発明の効果】
以上説明したように、紫外吸収が近く分離識別が困難であった材料の組成比を混合溶液の状態で容易に同定できることとなり、レジスト材料の高い品質を保持でき、半導体装置量産へ適用すればより正確に精密パターンを描画可能という効果がある。
【図面の簡単な説明】
【図1】本発明の一実施態様に則した測定装置の構成図
【符号の説明】
1はレジスト,
2は溶剤,
3はポンプ,
4はプレカラム,
5はGPCカラム,
6は紫外線分光器(フォトダイオードアレイディテクタ),
7はデータ処理装置,
8は廃液,である。
[0001]
BACKGROUND OF THE INVENTION
The present invention inspects whether or not a heterogeneous raw material is mixed in the raw material of the ultraviolet photosensitive chemically amplified resist, and further produces a homogeneous ultraviolet photosensitive chemically amplified resist based on the inspection result. Regarding technology.
[0002]
[Prior art]
Conventionally, in the manufacturing process of a semiconductor device, various patterns such as a wiring layer, an insulating layer, and an active region are formed by applying a photoengraving technique, and a photoresist is exclusively used for this purpose. In recent years, semiconductor devices are remarkably miniaturized and densified, and it is therefore necessary to accurately draw a fine pattern.
[0003]
For the convenience of application to the surface of a semiconductor substrate, the photoresist is made of a mucus mixed with a solvent-sensitive material sensitive to exposure light. If the molecular weight or composition of the substrate itself is not uniform, the problem that it is difficult to accurately draw a fine pattern of a semiconductor device or a mask substrate is revealed. Therefore, the photosensitive composition contained in the prepared photoresist solution is appropriately inspected before actual use, and if it is excessively inhomogeneous, remove it and remove only as homogeneous as possible. The use of strict control of homogeneity is becoming necessary.
[0004]
In the current exposure process for manufacturing a semiconductor device or a mask substrate, as the fine pattern width is more strongly demanded, ultraviolet rays having a shorter wavelength are used instead of the conventional exposure light. For example, i-line (365 nm) of a mercury lamp has been widely used in the past. However, even in the most advanced ultra-fine device, even this i-line has a long wavelength, and the wiring pattern cannot be accurately drawn. The pursuit of technology in the short wavelength region has been made. In other words, KrF (krypton fluoride) excimer laser light (248 nm) and even shorter wavelength ArF (argon fluoride) excimer lasers are candidates for exposure light for the most advanced devices currently being developed. The pursuit of light (193 nm) and the deep ultraviolet region is also being carried out.
[0005]
By the way, when using such deep ultraviolet light, it is naturally assumed that a material that can transmit such light is used as a resist material. However, conventional novolak resists are conjugated double benzene rings that form a molecular skeleton. Since the coupled system has deep absorption, it has the disadvantage that it cannot transmit vacuum deep ultraviolet light, and is not practically used. Therefore, it is required to design a new resist material, and materials that do not have a benzene ring as a skeleton used for this purpose, such as adamantyl methacrylate resist and norbornene methacrylate resist, are promising. Such a photoresist corresponding to the deep ultraviolet region usually takes a new reaction mode called a chemical amplification type at the time of exposure because of the necessity of accurately drawing a fine pattern. That is, a chemically amplified photoresist contains a compound called a photoacid generator (PAG) together with a resin base material, and PAG positively generates an acid upon receiving light, and this acid works on the resin base material to bond. Create a state that can form. As described above, it is essential that the photoresist corresponding to the deep ultraviolet region contains PAG having absorption at a wavelength similar to that of the resin base material itself.
[0006]
However, since the PAG having the same absorption region and the resin base material must be included, the ultraviolet absorption spectra of each other overlap each other, and it is difficult to separate and identify each other only by measuring the ultraviolet absorption spectrum. It is not possible to know the composition ratio of the two by simply measuring the ultraviolet absorption spectrum. Therefore, establishment of another easy measurement method is required for identification of the composition ratio of such a new resist material.
[0007]
[Problems to be solved by the invention]
As described above, the problem to be solved by the present invention is to develop a measurement method for easily identifying a resist composition in a chemically amplified resist material compatible with ultraviolet light exposure, thereby improving the homogeneity of the new resist material. Establishing is also an issue.
[0008]
[Means for solving the problems and their effects]
The above problem can be solved by the following means. That is,
As the first invention,
For UV-sensitive chemically amplified resists that contain both a photoacid generator and a resin base material, molecular weight fractionation by the GPC (gel permeation chromatography) method and UV absorption / transmittance measurement are sequentially performed. And a method for producing an ultraviolet-sensitive chemically amplified resist having a step of sorting out only the homogeneous chemically amplified resist based on the molecular weight fractionation result and the composition ratio obtained from the ultraviolet absorption rate or transmittance measurement result, Means.
[0009]
As a second invention,
For UV-sensitive chemically amplified resists that contain both a photoacid generator and a resin base material, molecular weight fractionation by the GPC (gel permeation chromatography) method and UV absorption / transmittance measurement are sequentially performed. performed, to check the method of UV-sensitive chemically amplified resist comprising a step of determining the molecular weight fractionation results and the ultraviolet absorptivity to transmittance measurements or al sets composition ratio, the a unit.
[0010]
As described above, in the present invention, the molecular weight fractionation by the GPC (gel permeation chromatography) method and the ultraviolet absorption spectrum measurement are sequentially performed on the ultraviolet photosensitive chemically amplified resist, and a photoacid generator ( The composition ratio between the absorption maximum corresponding to the molecular weight of PAG) and the absorption maximum corresponding to the molecular weight of the resin substrate is determined. By determining the composition ratio, the homogeneity in the resist material is measured.
[0011]
In order to confirm that the chemically amplified resist is manufactured as designed, it is necessary to confirm the following points.
(1) Dissolution rate of resin base material,
(2) Molecular weight of resin base material,
(3) Protection rate of the resin base material, that is, a ratio in which a protective group that reacts with the photoacid generator is added to or substituted on the resin base material,
(4) Amount of photoacid generator,
(5) Ratio of photoacid generator and resin base material,
(6) If there is a low molecular weight substance other than the photoacid generator, the amount.
[0012]
If the means of the present invention is employed, the ultraviolet absorption spectrum can be measured in order for each composition that is sorted and flowed out after first being sorted in the resist according to molecular weight, and has the following effects.
(1) The molecular weight of the resin base material can be confirmed by paying attention to the ultraviolet absorption peak of the resin base material flowing out from the GPC.
(2) The amount of the acid generator can be confirmed from the ultraviolet absorption peak at the portion corresponding to the molecular weight of the acid generator.
(3) The ratio (composition ratio) between the acid generator and the resin can be confirmed from the ratio of the ultraviolet absorption peak corresponding to the molecular weight of the resin and the peak intensity ratio of the ultraviolet absorption corresponding to the molecular weight of the acid generator.
(4) When there is a low molecular weight substance other than the acid generator, the amount of the substance can be confirmed from the ultraviolet absorption peak corresponding to the molecular weight.
(5) If there is an abnormal ultraviolet absorption or molecular weight peak, it means that a substance that should not be included in the resist (which should not have been included in the resist design stage) is mixed. Prevents contamination of other substances.
[0013]
As described above, the resist can be easily inspected by using the present invention.
Basically, (1) the molecular weight of the resin substrate, (2) the dissolution rate of the resin substrate, and (3) the protection rate of the resin substrate can be inspected by the resin substrate alone, so even without using the present invention. Can be inspected. Generally, it is performed by raw material acceptance inspection. However, if it becomes a mixture like a resist, it cannot be inspected unless it is the present invention.
[0014]
According to the present invention, a high molecular weight resin base material and a low molecular weight photoacid generator (PAG) are separated and identified, and their absorption characteristics can be easily separated even if the respective ultraviolet absorptions are overlapped. Although it is effective in that the composition ratio between the resin base material and the photoacid generator can be identified even in a solution state, the GPC method causes a time lag especially when the GPC method is selected by molecular weight classification. The ultraviolet absorption spectrum can be measured in order for each mixture that comes out, and the inspection efficiency is higher.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on one embodiment. Needless to say, the present invention is not limited to such an embodiment and can be widely modified.
As an example of a resist material, a chemically amplified resist using a PVP (polyvinylphenol) resin as a resin and TPS (triphenylsulfonium triflate) as a photoacid generator (PAG) is taken up. PVP resin has ultraviolet absorption at 320 nm or less, and its absorption maximum is about 280 nm. On the other hand, TPS has ultraviolet absorption below 280 nm, and its absorption maximum is around 235 nm. In the resist measured here, the composition ratio between the PVP resin and the photoacid generator (PAG) was PVP resin: photoacid generator (PAG) = 100: 3.
[0016]
FIG. 1 is a configuration diagram of a measuring apparatus according to an embodiment of the present invention, and schematically shows an overall configuration of a measuring system that can be used in the measuring method of the present invention. In the figure, reference numeral 1 denotes a resist to be inspected. A solvent 2 as a solvent for the resist 1 is flowed at a constant flow rate through a pump 3 and mixed with the resist 1 so as to have an appropriate viscosity. It is used for the manufacturing process and mask making process. A mixture of the resist 1 and the solvent 2 (hereinafter referred to as a resist mixture for convenience) is supplied to the pre-column 4. The pre-column 4 is provided to remove impurities (particles) mixed in from the resist mixture serving as a measurement object before measurement, and is useful for specifying a more accurate composition ratio. Next, each molecular weight of the composition mixed through the GPC column 5 is specified. In this GPC column 5, each component of the resist mixture is separated for each molecular weight. That is, those having a high molecular weight pass through the GPC column 5 early, and those having a low molecular weight pass through the GPC column 5 slowly. That is, the time for passing through the GPC column 5 differs for each component due to the difference in molecular weight, and thus the components can be sequentially separated for each component. For example, a resin having a high molecular weight passes through the GPC column 5 quickly, and an acid generator having a low molecular weight increases the passage time through the GPC column 5. In the present invention, the components of the resist component are separated by molecular weight fractionation of the UV absorption overlap, so it is necessary to provide the GPC column 5 before the ultraviolet spectrometer 6 (photodiode array detector) as shown in the configuration diagram. Thus, the molecular weight separated resist flows into the ultraviolet spectrometer 6 (photodiode array detector), and the ultraviolet absorption for each molecular weight is measured. The ultraviolet absorption data measured by the ultraviolet spectrometer 6 is converted into three-dimensional data by the data processor 7. This three-dimensional data takes the molecular weight in the x direction, takes the wavelength (nm) in the y direction, takes the absorption value in the z direction, and knows the data of the molecular weight versus the absorption value when the wavelength changes as a whole. It can be configured so that it can be output by a printer so that the measurer can see it, or it can be configured to display it on a display, but it does not necessarily require the output of such 3D data as a whole, It is only necessary to have such a three-dimensional data conversion process in the process of data processing and automatically set a calibration curve. From the three-dimensional data recorded here, the UV absorption peak value of the molecular weight corresponding to the resin base material and the acid generator is read, and the concentration of each component can be determined by comparing it with a known calibration curve. The resist mixture is then processed as waste liquid 8 through an ultraviolet spectrometer 6. The ultraviolet spectroscope 6 is connected to a data processing device 7 for data analysis of the spectral analysis result obtained therefrom, and the measurer uses the ultraviolet spectroscopic analysis result and the GPC column 5 compiled by the data processing device 7. The composition ratio can be specified based on the obtained molecular weight analysis result.
[0017]
The method used in the conventional resist shipping test and acceptance test, the resist dilution solution is measured with an ultraviolet spectrometer 6 and ultraviolet rays are obtained by determining the composition ratio from the resin base material, photoacid generator (PAG), and respective absorption maxima. An attempt was made to determine the composition ratio by measuring the absorption, but the composition ratio could not be determined because the absorption maximum of TPS overlapped with the absorption of the PVP resin. On the other hand, according to the present invention, the GPC (gel permeation chromatography) method and the UV photodiode array detector were combined, and as a result of measuring the ultraviolet absorption while classifying the molecular weight, PVP (polyvinylphenol) resin and TPS were measured. In (triphenylsulfonium triflate), the molecular weight of the former is 412.2 and the molecular weight of the latter is greatly different from the molecular weight of about 5000 to 10,000. By combining, each absorption maximum can be clearly separated and identified. As a result, by comparing the absorption value of 280 nm of the absorption maximum of PVP and the absorption value of 235 nm of the absorption maximum of TPS with a calibration curve obtained in advance, the resin base material and the photoacid generator ( The concentration or composition ratio of (PAG) can be easily measured.
[0018]
【The invention's effect】
As explained above, the composition ratio of materials that were difficult to separate and identify because of near ultraviolet absorption can be easily identified in the state of a mixed solution, so that the high quality of resist materials can be maintained, and if applied to mass production of semiconductor devices, There is an effect that a precise pattern can be drawn accurately.
[Brief description of the drawings]
FIG. 1 is a block diagram of a measuring apparatus according to an embodiment of the present invention.
1 is a resist,
2 is solvent,
3 is a pump,
4 is a pre-column,
5 is a GPC column,
6 is an ultraviolet spectrometer (photodiode array detector),
7 is a data processing device,
8 is a waste liquid.

Claims (2)

光酸発生剤と樹脂基材とを共に含んでなる紫外線感光性化学増幅型レジストに対し、GPC(ゲル・パーミュエーション・クロマトグラフィー)法による分子量分別と紫外線吸収率乃至透過率測定とを順次行い、該分子量分別結果および該紫外線吸収率乃至透過率測定結果から求めた組成比に基づき、均質な化学増幅型レジストだけを取捨選別する工程を有する紫外線感光性化学増幅型レジストの製造方法。  For UV-sensitive chemically amplified resists that contain both a photoacid generator and a resin base material, molecular weight fractionation by the GPC (gel permeation chromatography) method and UV absorption / transmittance measurement are sequentially performed. A method for producing an ultraviolet-sensitive chemically amplified resist, comprising a step of sorting out only a homogeneous chemically amplified resist based on a composition ratio obtained from the molecular weight fractionation result and the ultraviolet absorption rate or transmittance measurement result. 光酸発生剤と樹脂基材とを共に含んでなる紫外線感光性化学増幅型レジストに対し、GPC(ゲル・パーミュエーション・クロマトグラフィー)法による分子量分別と紫外線吸収率乃至透過率測定とを順次行い、該分子量分別結果および該紫外線吸収率乃至透過率測定結果から組成比を求める工程を有する紫外線感光性化学増幅型レジストの検査方法。For UV-sensitive chemically amplified resists that contain both a photoacid generator and a resin base material, molecular weight fractionation by the GPC (gel permeation chromatography) method and UV absorption / transmittance measurement are sequentially performed. performed, the molecular weight fractionation results and testing method of UV-sensitive chemically amplified resist comprising a step of obtaining the ultraviolet absorptivity or transmittance measurements or al sets composition ratio.
JP12414497A 1997-05-14 1997-05-14 Method for producing ultraviolet photosensitive chemically amplified resist and method for inspecting ultraviolet photosensitive chemically amplified resist Expired - Lifetime JP3852157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12414497A JP3852157B2 (en) 1997-05-14 1997-05-14 Method for producing ultraviolet photosensitive chemically amplified resist and method for inspecting ultraviolet photosensitive chemically amplified resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12414497A JP3852157B2 (en) 1997-05-14 1997-05-14 Method for producing ultraviolet photosensitive chemically amplified resist and method for inspecting ultraviolet photosensitive chemically amplified resist

Publications (2)

Publication Number Publication Date
JPH10312061A JPH10312061A (en) 1998-11-24
JP3852157B2 true JP3852157B2 (en) 2006-11-29

Family

ID=14878030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12414497A Expired - Lifetime JP3852157B2 (en) 1997-05-14 1997-05-14 Method for producing ultraviolet photosensitive chemically amplified resist and method for inspecting ultraviolet photosensitive chemically amplified resist

Country Status (1)

Country Link
JP (1) JP3852157B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774252B2 (en) * 2005-08-17 2011-09-14 富士フイルム株式会社 Positive resist composition, method for producing the positive resist composition, and pattern forming method using the positive resist composition
JP2010122399A (en) * 2008-11-18 2010-06-03 Sumitomo Bakelite Co Ltd Optical waveguide and method of manufacturing the same

Also Published As

Publication number Publication date
JPH10312061A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
US7662636B2 (en) Ozone gas sensing element, detection apparatus, and measurement method
NL2010211A (en) Inspection apparatus and method.
KR100665003B1 (en) Method of measuring thickenss of organic coating film on metal surface
JP4153652B2 (en) Pattern evaluation apparatus and pattern evaluation method
US20030036006A1 (en) Methods for monitoring photoresists
TWI252381B (en) Lithographic apparatus and methods for use thereof
JP3852157B2 (en) Method for producing ultraviolet photosensitive chemically amplified resist and method for inspecting ultraviolet photosensitive chemically amplified resist
JP3176770B2 (en) Fluid inspection device
US7315384B2 (en) Inspection apparatus and method of inspection
JPS60249327A (en) Method of detecting resist pattern
CN101221369A (en) Automatic measuring method for heterogeneous light of photo-etching machine
EP0134453B1 (en) Method for exposure dose calculation of photolithography projection printers
CN102072809B (en) Device for measuring scattering property of light diffuser and measurement method thereof
Jessop et al. Characterizing acid mobility in chemically amplified resists via spectroscopic methods
US5567625A (en) Apparatus and method for real-time spectral deconvolution of chemical mixtures
US11385154B2 (en) Apparatus and method for monitoring and measuring properties of polymers in solutions
JPH1140635A (en) Method for evaluating layer thickness of semiconductor multilayered film
KR100278920B1 (en) Method of measuring pollution level of photosensitive material
JP2003031467A (en) Projection aligner, projection exposure method, and manufacturing method of semiconductor
JPH03221838A (en) Method and device for measuring body to be tested
JPH0443943A (en) Method and apparatus for analyzing photoresist
JP3105233B2 (en) X-ray mask inspection equipment
Jessop In-situ and on-line characterization of polymer systems: cure monitoring of polymer composites and spectroscopic studies of chemically amplified photoresists
JPH02242140A (en) Breakdown spectral analysis method and apparatus
RU2148853C1 (en) Process determining depth of position of modified surface layer in polymer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term