JP3852046B2 - Rotating shaft coupling mechanism - Google Patents

Rotating shaft coupling mechanism Download PDF

Info

Publication number
JP3852046B2
JP3852046B2 JP31879299A JP31879299A JP3852046B2 JP 3852046 B2 JP3852046 B2 JP 3852046B2 JP 31879299 A JP31879299 A JP 31879299A JP 31879299 A JP31879299 A JP 31879299A JP 3852046 B2 JP3852046 B2 JP 3852046B2
Authority
JP
Japan
Prior art keywords
oval
cross
expansion chamber
peripheral surface
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31879299A
Other languages
Japanese (ja)
Other versions
JP2001140916A (en
Inventor
展央 米山
光政 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Koyo Machine Industries Co Ltd
Original Assignee
JTEKT Corp
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp, Koyo Machine Industries Co Ltd filed Critical JTEKT Corp
Priority to JP31879299A priority Critical patent/JP3852046B2/en
Publication of JP2001140916A publication Critical patent/JP2001140916A/en
Application granted granted Critical
Publication of JP3852046B2 publication Critical patent/JP3852046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧延機の圧延ロール等の回転軸を連結して駆動するための回転軸連結機構に関する。
【0002】
【従来の技術】
圧延機の圧延ロールは、ユニバーサルジョイントを介してモータに接続され、このモータの駆動力によって回転するようになっている。ただし、この圧延ロールは、使用に伴いロール面が摩耗するので、適宜交換する必要がある。そこで、ユニバーサルジョイントの一端側には、図5及び図6に示すように、筒状のロールカップリング2が設けられ、圧延ロール1の軸端部に形成された横断面小判形の小判形連結部1aを、このロールカップリング2に形成された横断面小判形の小判形内孔2aに嵌合させるようにしている。ロールカップリング2の小判形内孔2aは、圧延ロール1の小判形連結部1aよりも少し大きく形成されているので、圧延ロール1の交換時には、この小判形連結部1aを容易に着脱することができる。また、横断面小判形の小判形内孔2aに小判形連結部1aが嵌合するので、これらの平面部2b,1b同士が係合して、ロールカップリング2側からの回転トルクを圧延ロール1に確実に伝えることができる。
【0003】
もっとも、ロールカップリング2の小判形内孔2aと圧延ロール1の小判形連結部1aとの間には、着脱のための隙間があるため、このまま圧延作業を行ったのでは、圧延ロール1の回転時にガタ付きによる振動が発生し圧延製品の表面にシワ等を生じさせるおそれがある。このため、従来から、ロールカップリング2には、筒状の外周に油圧拡張室付スリーブ3を外嵌し、この油圧拡張室付スリーブ3の圧迫によって小判形内孔2aを収縮させて小判形連結部1aに圧接し固定することにより、圧延ロール1のガタ付きをなくすようにしていた。
【0004】
油圧拡張室付スリーブ3は、筒状の鋼材の内部の内周面に極めて近い部分に全周にわたって薄い筒状の空間からなる油圧拡張室3aが形成されたものであり、外周面に開口した油圧口3bから高圧の油圧を加えることにより、この油圧拡張室3aの内周側を覆う拡張板3cを油圧によって内側に撓ませて内周面の径を収縮させることができるようにしたものである。このような油圧拡張室付スリーブ3は、円筒形の本体の内周にわずかに径が小さく極めて薄い円筒体を隙間が等しくなるように挿入し、両端の開口部を溶接により封止することにより製造される。
【0005】
【発明が解決しようとする課題】
ところが、上記油圧拡張室付スリーブ3は、図7に示すように、油圧拡張室3aが拡張して拡張板3cの内周面の径が全体に収縮すると、ロールカップリング2の外周面を均等に圧迫することになる。しかしながら、筒状のロールカップリング2は、外周面は円周状であるが、内周面には横断面小判形の小判形内孔2aが形成されているので、この小判形内孔2aの両平面部2bでの肉厚が円周部に比べて特に厚くなる。従って、このように肉厚が不均一なロールカップリング2の外周を均等に圧迫すると、小判形内孔2aは、図8に示すように、肉厚が厚く剛性の高い両平面部2bがそのままの形状を保って内側に平行移動するので、肉厚が薄く剛性の低い円周部は、逆に外側に膨らむように変形しようとする。
【0006】
このため、圧延ロール1の小判形連結部1aは、両平面部1bについては、ロールカップリング2の小判形内孔2aの両平面部2bの間で確実に挟持されるが、この小判形連結部1aの円周部は、小判形内孔2aの円周部に十分に挟持されず、場合によってはここに隙間が生じて、圧延作業時に圧延ロール1が小判形連結部1aの円周部方向にガタ付くおそれがあるという問題が発生していた。
【0007】
なお、ロールカップリング2の小判形内孔2aにおける両平面部2bに、図18に示すような溝2dを形成したり、スリット等を形成して、この部分の剛性を弱めることにより、圧延ロール1の小判形連結部1aを確実に保持しようとする発明も従来からなされている(特許公報第2694683号公報)。しかしながら、このような構成であっても、小判形内孔2aの両平面部2bの肉厚は、溝2dやスリット等がない部分ではまだ厚い状態であるため、全体としてはこれら両平面部2bが内側に平行移動する傾向がある程度残るので、円周部での圧迫力が弱くなるという問題は十分には解消できない。しかも、油圧拡張室付スリーブ3がロールカップリング2の外周面を圧迫した場合に、溝2dやスリットの縁部に応力が集中し易くなるので、これらのエッジ部分のみが小判形連結部1aに食い込んで点接触や線接触による挟持となり、平面部2bの面接触による確実な挟持ができないという問題も生じる。
【0008】
本発明は、かかる事情に鑑みてなされたものであり、油圧拡張室付スリーブの内周面を横断面小判形とすることにより、被連結部材の筒状部の小判形内孔を均等に収縮させて回転軸の小判形連結部を確実に圧接することができる回転軸連結機構を提供することを目的としている。
【0009】
【課題を解決するための手段】
請求項1の発明は、円周状の外周面の両側を軸心に沿う互いにほぼ平行な平面で削り取った形状の横断面小判形に形成された回転軸の軸端部の小判形連結部を、この小判形連結部よりも少し大きい横断面小判形に形成された被連結部材の筒状部の小判形内孔に挿入し、この被連結部材の筒状部の外周に外嵌された油圧拡張室付スリーブ内の油圧拡張室に油圧を加えて拡張させ、この油圧拡張室の内周側を覆うほぼ均等な薄い板厚の拡張板の内周径を全体に収縮させることにより、筒状部を圧迫して小判形内孔を回転軸の小判形連結部に圧接し固定する回転軸連結機構において、被連結部材の筒状部の外周面を、小判形内孔の円周部よりも径の大きい同心であり、かつ、この小判形内孔の平面部とほぼ平行な平面部を備えた横断面小判形に形成すると共に、油圧拡張室付スリーブの拡張板を、内周面が被連結部材の筒状部の外周面よりも少し大きい横断面小判形に形成し、この拡張板の両平面部における外周面と油圧拡張室内の円周状の外周面との間に、それぞれ外周側の面に円周面が形成された横断面弓形のスペーサを挿入したことを特徴とする。
【0010】
請求項1の発明によれば、油圧拡張室付スリーブの油圧拡張室に油圧を加えると、この油圧に押されて拡張板が内周側に撓み内周面を収縮させる。ただし、油圧拡張室は外周面が円周状であるが、拡張板は横断面小判形であるため、この拡張板の平面部の外周側の油圧拡張室は空間が広くなり、そのままでは拡張板が内周側に不規則に撓むおそれがある。しかしながら、この油圧拡張室の広い空間にはスペーサが挿入されるので、このスペーサが油圧によって拡張板の平面部を均等に内周側に押圧することができる。また、スペーサの内周側に回り込んだ油が拡張板の平面部を直接押圧することもあるが、この場合であっても、スペーサの内周側の面によって拡張板が不規則に撓むのを防止できる。従って、油圧拡張室付スリーブは、拡張板の横断面小判形の内周面が同じ横断面小判形の筒状部の外周面を全体に均等に圧迫するので、この筒状部は、外周面の円周部と平面部にほぼ均等な圧迫力を受け、しかも、肉厚もほぼ等しくすることができることから、小判形内孔をほぼ均等に収縮させて、回転軸の小判形連結部に均一に圧接することができるようになる。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0012】
図1〜図4は本発明の一実施形態を示すものであって、図1は圧延機の回転軸連結機構の構成を示す横断面側面図、図2は圧延機の回転軸連結機構の構成を示す縦断面正面図、図3はロールカップリングの構成を示す斜視図、図4は油圧拡張室付スリーブの構成を示す縦断面斜視図である。なお、図5〜図9に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0013】
本実施形態は、図1及び図2に示すように、従来例と同様の圧延機の圧延ロール1をロールカップリング2に連結する回転軸連結機構について説明する。圧延ロール1の軸端部には、従来例と同様に、横断面小判形の小判形連結部1aが形成されている。横断面小判形とは、軸体の円周状の外周面の両側を軸心に沿う互いにほぼ平行な平面で削り取った形状をいい、外周面のうちで平面により削り取られた部分がそれぞれ平面部となり、残りの部分が円周部となる。また、通常はこれらの平面部が軸心から等距離となり左右対称の形状をなす。ただし、横断面小判形の孔の場合には、この軸体の外周面が隙間なく嵌合するような孔形状をいう。
【0014】
ロールカップリング2は、ユニバーサルジョイントの一端部に形成された、圧延ロール1を連結するための筒状部であり、図3に示すように、この筒状部の内周には、小判形内孔2aが形成されている。小判形内孔2aは、圧延ロール1の小判形連結部1aよりも少し大きい横断面小判形に形成された孔、即ち小判形連結部1aの外周面との間にほぼ均一なわずかずつの隙間が形成されるような横断面小判形の孔である。また、ロールカップリング2の外周面は、図1に示すように、小判形内孔2aと同心状の横断面小判形に形成されている。従って、このロールカップリング2の外周面は、小判形内孔2aの円周部と同心であり、これよりも径の大きい円周面の円周部と、この小判形内孔2aの平面部2bと平行な平面部2cを備えている。また、このロールカップリング2の外周面の横断面小判形は、小判形内孔2aとほぼ相似形に形成することにより、筒状の肉厚が等しくなるようにしている。
【0015】
上記ロールカップリング2の外周には、図1及び図2に示すように、油圧拡張室付スリーブ3が外嵌される。油圧拡張室付スリーブ3は、従来例と同様に、内部に油圧拡張室3aが形成されているが、内周面はロールカップリング2の外周面よりも少し大きい横断面小判形に形成されている。即ち、油圧拡張室3a内の外周面は円周面をなし、油圧口3bに通じる孔が開口している。しかし、この油圧拡張室3aの内周側を覆う拡張板3cが横断面小判形に形成されている。拡張板3cは、板厚がほぼ等しい薄い鋼板を横断面小判形の筒状に形成したものであり、円筒形の油圧拡張室付スリーブ3の本体の内周に挿入し、両端の開口部を弓形の鋼板で塞ぐと共に、隙間を溶接により封止される。
【0016】
上記油圧拡張室付スリーブ3は、図4に示すように、拡張板3cの平面部の外周側に、油圧拡張室3a内の円周状の外周面との間の広い空間がそれぞれ形成される。そして、これらの空間には、それぞれスペーサ4を挿入してから拡張板3cを封止する。スペーサ4は、外周側の面に油圧拡張室3a内の外周面に沿った円周面が形成された横断面弓形をなし、拡張板3cの平面部との間の空間にほと
んど隙間なく嵌まり込むようになっている。
【0017】
上記構成の回転軸連結機構は、まず圧延ロール1の軸端部の小判形連結部1aをロールカップリング2の小判形内孔2aに挿入する。この場合、小判形内孔2aは、小判形連結部1aよりも少し大きく形成されているので、容易に挿入することができる。次に、油圧拡張室付スリーブ3の油圧口3bに高圧の油圧を加えて油圧拡張室3aを拡張させ、拡張板3cを内周側に均等に撓ませることにより内周面を収縮させる。ここで、油圧拡張室3aにスペーサ4が挿入されていなかったとすると、拡張板3cの平面部の外周側には、円周部の外周側よりも非常に広い空間が形成されることになる。そして、この油圧拡張室3aに油を注入して高い圧力を加えると、薄い鋼板からなる拡張板3cは、特に広い空間のある平面部の油圧によって不規則に撓み、内周面が均等に収縮しないおそれがある。しかし、本実施形態のように、横断面弓形のスペーサ4が挿入されていれば、このスペーサ4の内周側の平面が油圧によって拡張板3cの平面部を均等に押圧し、また、この油圧が拡張板3cを直接押圧する場合にも、スペーサ4の内周側の平面に沿うことにより、不規則に撓むようなおそれが生じない。
【0018】
上記のようにして、油圧拡張室付スリーブ3における拡張板3cの横断面小判形の内周面が均等に収縮すると、ロールカップリング2の横断面小判形の外周面が全体に均等に圧迫される。そして、このロールカップリング2の外周面の横断面小判形は、小判形内孔2aとの間の肉厚が全周にわたってほぼ等しいので、小判形内孔2aも均等に圧迫されることになる。このため、ロールカップリング2は、小判形内孔2aを均等に収縮させて、圧延ロール1の小判形連結部1aの外周面に均一に圧接し、これを確実に固定することができる。
【0019】
以上説明したように、本実施形態によれば、油圧拡張室付スリーブ3の横断面小判形の内周面が、同じく横断面小判形で肉厚の等しいロールカップリング2を均等に圧迫するので、このロールカップリング2の小判形内孔2aが圧延ロール1の小判形連結部1aの外周面を均一に圧接し固定することができ、圧延作業時に圧延ロール1に半径方向の強い力が加わった場合にも、ロールカップリング2との間にガタ付きが生じないようにすることができる。
【0020】
なお、上記実施形態では、圧延機の圧延ロール1をロールカップリング2に連結する回転軸連結機構について説明したが、その他の回転軸を連結する回転軸連結機構についても、同様に実施可能である。
【0021】
【発明の効果】
以上の説明から明らかなように、本発明の回転軸連結機構によれば、油圧拡張室付スリーブにおける拡張板の横断面小判形の内周面がスペーサに補助されて均等に収縮するので、筒状部の横断面小判形の外周面を介して小判形内孔を回転軸の小判形連結部に確実に圧接して固定することができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すものであって、圧延機の回転軸連結機構の構成を示す横断面側面図である。
【図2】本発明の一実施形態を示すものであって、圧延機の回転軸連結機構の構成を示す縦断面正面図である。
【図3】本発明の一実施形態を示すものであって、ロールカップリングの構成を示す斜視図である。
【図4】本発明の一実施形態を示すものであって、油圧拡張室付スリーブの構成を示す縦断面斜視図である。
【図5】従来例を示すものであって、圧延機の回転軸連結機構の構成を示す縦断面斜視図である。
【図6】従来例を示すものであって、圧延機の回転軸連結機構の構成を示す縦断面正面図である。
【図7】従来例を示すものであって、圧延機の回転軸連結機構の構成を示す横断面側面図である。
【図8】従来例を示すものであって、ロールカップリングの変形の様子を示す側面図である。
【図9】他の従来例を示すものであって、圧延機の回転軸連結機構の構成を示す横断面側面図である。
【符号の説明】
1 圧延ロール
1a 小判形連結部
1b 平面部
2 ロールカップリング
2a 小判形内孔
2b 平面部
2c 平面部
3 油圧拡張室付スリーブ
3a 油圧拡張室
3c 拡張板
4 スペーサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotary shaft coupling mechanism for coupling and driving a rotary shaft such as a rolling roll of a rolling mill.
[0002]
[Prior art]
A rolling roll of the rolling mill is connected to a motor via a universal joint and is rotated by a driving force of the motor. However, since the roll surface is worn with use, the roll needs to be replaced as appropriate. Therefore, as shown in FIGS. 5 and 6, a cylindrical roll coupling 2 is provided on one end side of the universal joint, and an oval connection with an oval cross section formed at the shaft end of the rolling roll 1. The portion 1a is fitted into an oval inner hole 2a having an oval cross section formed in the roll coupling 2. Since the oval inner hole 2a of the roll coupling 2 is formed to be slightly larger than the oval connecting portion 1a of the rolling roll 1, the oval connecting portion 1a can be easily attached and detached when the rolling roll 1 is replaced. Can do. Further, since the oval connecting portion 1a is fitted into the oval inner hole 2a having an oval cross section, the flat portions 2b and 1b are engaged with each other, and the rotational torque from the roll coupling 2 side is reduced to the rolling roll. 1 can be surely communicated.
[0003]
However, since there is a gap for attachment and detachment between the oval inner hole 2a of the roll coupling 2 and the oval connecting portion 1a of the rolling roll 1, if the rolling operation is performed as it is, the rolling roll 1 There is a risk that wobbling or the like may occur on the surface of the rolled product due to vibration caused by rattling during rotation. For this reason, conventionally, the roll coupling 2 is externally fitted with a sleeve 3 with a hydraulic expansion chamber on the outer periphery of the cylinder, and the oval inner hole 2a is contracted by the compression of the sleeve 3 with the hydraulic expansion chamber. The backlash of the rolling roll 1 is eliminated by pressing and fixing the connecting portion 1a.
[0004]
The sleeve 3 with a hydraulic expansion chamber is formed with a hydraulic expansion chamber 3a formed of a thin cylindrical space over the entire circumference in a portion very close to the inner peripheral surface of the cylindrical steel material, and is open to the outer peripheral surface. By applying a high hydraulic pressure from the hydraulic port 3b, the expansion plate 3c covering the inner peripheral side of the hydraulic expansion chamber 3a is bent inward by the hydraulic pressure so that the diameter of the inner peripheral surface can be contracted. is there. Such a sleeve 3 with a hydraulic expansion chamber is formed by inserting a very thin cylindrical body having a small diameter on the inner periphery of a cylindrical main body so that the gaps are equal, and sealing the openings at both ends by welding. Manufactured.
[0005]
[Problems to be solved by the invention]
However, as shown in FIG. 7, when the hydraulic expansion chamber 3a expands and the diameter of the inner peripheral surface of the expansion plate 3c contracts as a whole, the sleeve 3 with the hydraulic expansion chamber equalizes the outer peripheral surface of the roll coupling 2. Will be pressed. However, the cylindrical roll coupling 2 has an outer peripheral surface that is circumferential, but the inner peripheral surface is formed with an oval inner hole 2a having an oval cross section. The wall thickness at both planar portions 2b is particularly thicker than the circumferential portion. Therefore, when the outer periphery of the roll coupling 2 having a non-uniform thickness is pressed evenly, the oblong inner hole 2a has both the thick and highly rigid flat portions 2b as shown in FIG. Therefore, the circumferentially thin portion having a small thickness and low rigidity tends to be deformed so as to bulge outward.
[0006]
For this reason, the oval connecting portion 1a of the rolling roll 1 is securely sandwiched between the two flat surface portions 2b of the oval inner hole 2a of the roll coupling 2 with respect to the two flat surface portions 1b. The circumferential portion of the portion 1a is not sufficiently clamped by the circumferential portion of the oval inner hole 2a, and in some cases, a gap is generated here, so that the rolling roll 1 is circumferentially connected to the oval connecting portion 1a during the rolling operation. There was a problem that there was a risk of rattling in the direction.
[0007]
In addition, by forming grooves 2d as shown in FIG. 18 or slits or the like on both flat surface portions 2b of the oval inner hole 2a of the roll coupling 2, a rolling roll is formed by weakening the rigidity of this portion. An invention for securely holding one oval connecting portion 1a has also been made (Patent Publication No. 2694683). However, even in such a configuration, the thickness of the two flat portions 2b of the oval inner hole 2a is still thick in a portion where there is no groove 2d, slits, or the like. However, the problem that the compression force at the circumference is weak cannot be solved sufficiently. In addition, when the sleeve 3 with the hydraulic expansion chamber presses the outer peripheral surface of the roll coupling 2, stress is easily concentrated on the edge of the groove 2d and the slit, so that only these edge portions are in the oval connecting portion 1a. There is also a problem that it is pinched by point contact or line contact and cannot be securely pinched by surface contact of the flat surface portion 2b.
[0008]
The present invention has been made in view of such circumstances, and by making the inner peripheral surface of the sleeve with the hydraulic expansion chamber into an oval cross-sectional shape, the oval inner hole of the cylindrical portion of the connected member is uniformly contracted. It is an object of the present invention to provide a rotating shaft connecting mechanism that can securely press the oval connecting portion of the rotating shaft.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided an oval connecting portion at a shaft end portion of a rotating shaft formed in a cross-sectional oval shape in which both sides of a circumferential outer peripheral surface are scraped by planes substantially parallel to each other along an axis. The hydraulic pressure is inserted into the oval inner hole of the cylindrical portion of the connected member formed in the oval shape having a slightly larger cross section than the oval connecting portion, and is externally fitted to the outer periphery of the cylindrical portion of the connected member. By expanding the hydraulic expansion chamber in the sleeve with the expansion chamber by applying hydraulic pressure, the inner peripheral diameter of the expansion plate with a substantially uniform thin plate covering the inner peripheral side of the hydraulic expansion chamber is contracted to the whole, thereby forming a tubular shape. In the rotating shaft coupling mechanism that presses the portion and presses and fixes the oval inner hole to the oval connecting portion of the rotating shaft, the outer peripheral surface of the cylindrical portion of the connected member is made to be larger than the circumferential portion of the oval inner hole. Concentric with a large diameter, and formed in a cross-sectional oval shape with a flat part almost parallel to the flat part of the oval bore. In addition, the expansion plate of the sleeve with the hydraulic expansion chamber is formed in an oblong cross section whose inner peripheral surface is slightly larger than the outer peripheral surface of the tubular portion of the connected member. A cross-sectional arcuate spacer having a circumferential surface formed on the outer circumferential surface is inserted between the circumferential outer circumferential surface in the hydraulic expansion chamber.
[0010]
According to the first aspect of the present invention, when hydraulic pressure is applied to the hydraulic expansion chamber of the sleeve with the hydraulic expansion chamber, the expansion plate is bent toward the inner peripheral side by the hydraulic pressure and contracts the inner peripheral surface. However, the outer peripheral surface of the hydraulic expansion chamber has a circular shape, but the expansion plate has an oblong cross section, so the hydraulic expansion chamber on the outer peripheral side of the flat portion of this expansion plate has a larger space, May be irregularly bent toward the inner peripheral side. However, since a spacer is inserted into the wide space of the hydraulic expansion chamber, the spacer can evenly press the flat portion of the expansion plate toward the inner peripheral side by the hydraulic pressure. In addition, the oil that wraps around the inner peripheral side of the spacer may directly press the flat portion of the expansion plate. Even in this case, the expansion plate is irregularly bent by the inner peripheral surface of the spacer. Can be prevented. Therefore, in the sleeve with the hydraulic expansion chamber, the inner peripheral surface of the expansion plate having the oblong cross-sectional shape uniformly presses the entire outer peripheral surface of the cylindrical portion having the same oblong cross-sectional shape. Because the circumference and flat part of the plate are almost evenly compressed, and the wall thickness can be made almost equal, the oval bore is shrunk almost evenly to make the oval joint of the rotating shaft uniform. It becomes possible to press contact with.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
1 to 4 show an embodiment of the present invention. FIG. 1 is a cross-sectional side view showing a configuration of a rotating shaft coupling mechanism of a rolling mill, and FIG. 2 is a configuration of a rotating shaft coupling mechanism of the rolling mill. FIG. 3 is a perspective view showing a configuration of a roll coupling, and FIG. 4 is a perspective view showing a configuration of a sleeve with a hydraulic expansion chamber. In addition, the same number is attached | subjected to the structural member which has the function similar to the prior art example shown in FIGS.
[0013]
In the present embodiment, as shown in FIGS. 1 and 2, a rotating shaft coupling mechanism for coupling a rolling roll 1 of a rolling mill similar to the conventional example to a roll coupling 2 will be described. At the shaft end portion of the rolling roll 1, an oval connecting portion 1a having an oval cross section is formed as in the conventional example. The cross-sectional oblong shape refers to a shape in which both sides of the circumferential outer peripheral surface of the shaft body are scraped by planes that are substantially parallel to each other along the axis, and each portion of the outer peripheral surface that is scraped by the plane is a flat portion. And the remaining part becomes the circumferential part. Usually, these flat portions are equidistant from the axis and have a symmetrical shape. However, in the case of a hole having an oblong cross section, the hole shape is such that the outer peripheral surface of the shaft body is fitted without a gap.
[0014]
The roll coupling 2 is a cylindrical portion for connecting the rolling roll 1 formed at one end of the universal joint. As shown in FIG. A hole 2a is formed. The oval inner hole 2a is a hole formed in a cross sectional oval shape slightly larger than the oval connecting portion 1a of the rolling roll 1, that is, a substantially uniform small gap between the outer periphery of the oval connecting portion 1a. This is a hole having an oblong cross section such that is formed. Further, as shown in FIG. 1, the outer peripheral surface of the roll coupling 2 is formed in a cross-sectional oblong shape concentric with the oblong inner hole 2a. Accordingly, the outer peripheral surface of the roll coupling 2 is concentric with the circumferential portion of the oval inner hole 2a, the circumferential portion of the circumferential surface having a larger diameter, and the flat portion of the oval inner hole 2a. It has a flat surface portion 2c parallel to 2b. Further, the cross-sectional oblong shape of the outer peripheral surface of the roll coupling 2 is formed to be substantially similar to the oblong inner hole 2a so that the cylindrical wall thickness becomes equal.
[0015]
As shown in FIGS. 1 and 2, a sleeve 3 with a hydraulic expansion chamber is fitted on the outer periphery of the roll coupling 2. As in the conventional example, the hydraulic expansion chamber-equipped sleeve 3 has a hydraulic expansion chamber 3a formed therein, but the inner peripheral surface is formed in an oblong cross section that is slightly larger than the outer peripheral surface of the roll coupling 2. Yes. That is, the outer peripheral surface in the hydraulic expansion chamber 3a forms a circumferential surface, and a hole communicating with the hydraulic port 3b is opened. However, an expansion plate 3c that covers the inner peripheral side of the hydraulic expansion chamber 3a is formed in an oblong cross section. The expansion plate 3c is formed by forming a thin steel plate having substantially the same thickness into a cylindrical shape having an oblong cross section. The expansion plate 3c is inserted into the inner periphery of the main body of the cylindrical sleeve 3 with a hydraulic expansion chamber, and the openings at both ends are formed. The gap is sealed with an arcuate steel plate and the gap is sealed by welding.
[0016]
As shown in FIG. 4, the sleeve 3 with the hydraulic expansion chamber is formed with a wide space between the outer peripheral surface of the flat portion of the expansion plate 3c and the circumferential outer surface of the hydraulic expansion chamber 3a. . In each of these spaces, the expansion plate 3c is sealed after inserting the spacers 4 respectively. The spacer 4 has a cross-sectional arc shape in which a circumferential surface along the outer peripheral surface in the hydraulic expansion chamber 3a is formed on the outer peripheral surface, and fits in a space between the flat portion of the expansion plate 3c with almost no gap. It comes to include.
[0017]
In the rotary shaft coupling mechanism having the above configuration, first, the oval coupling portion 1 a at the shaft end of the rolling roll 1 is inserted into the oval inner hole 2 a of the roll coupling 2. In this case, the oval inner hole 2a is formed slightly larger than the oval connecting portion 1a, so that it can be easily inserted. Next, high pressure oil pressure is applied to the hydraulic port 3b of the sleeve 3 with the hydraulic expansion chamber to expand the hydraulic expansion chamber 3a, and the inner peripheral surface is contracted by bending the expansion plate 3c evenly toward the inner peripheral side. Here, if the spacer 4 is not inserted into the hydraulic expansion chamber 3a, a space that is much wider than the outer peripheral side of the circumferential portion is formed on the outer peripheral side of the flat portion of the expansion plate 3c. When high pressure is applied by injecting oil into the hydraulic expansion chamber 3a, the expansion plate 3c made of a thin steel plate bends irregularly by the hydraulic pressure of a flat portion having a large space, and the inner peripheral surface contracts evenly. There is a risk of not. However, as in the present embodiment, when the spacer 4 having an arcuate cross section is inserted, the plane on the inner peripheral side of the spacer 4 presses the plane portion of the expansion plate 3c evenly by hydraulic pressure, and the hydraulic pressure is increased. Even if the expansion plate 3c is pressed directly, there is no possibility of irregular bending by following the inner peripheral plane of the spacer 4.
[0018]
As described above, when the inner peripheral surface of the cross-sectional oval shape of the expansion plate 3c in the sleeve 3 with the hydraulic expansion chamber is evenly contracted, the outer peripheral surface of the cross-sectional oval shape of the roll coupling 2 is uniformly compressed as a whole. The And since the wall thickness between the cross-sectional oval shape of the outer peripheral surface of this roll coupling 2 and the oval inner hole 2a is substantially equal over the whole circumference, the oval inner hole 2a is also compressed equally. . For this reason, the roll coupling 2 can shrink the oval inner hole 2a evenly, uniformly press-contact the outer peripheral surface of the oval connecting portion 1a of the rolling roll 1, and securely fix it.
[0019]
As described above, according to this embodiment, the inner peripheral surface of the cross-sectional oval shape of the sleeve 3 with the hydraulic expansion chamber equally presses the roll coupling 2 having the same oval cross-sectional shape and the same wall thickness. The oval inner hole 2a of the roll coupling 2 can uniformly press and fix the outer peripheral surface of the oval connecting portion 1a of the rolling roll 1, and a strong radial force is applied to the rolling roll 1 during the rolling operation. In this case, backlash between the roll coupling 2 and the roll coupling 2 can be prevented.
[0020]
In the above-described embodiment, the rotating shaft connecting mechanism that connects the rolling roll 1 of the rolling mill to the roll coupling 2 has been described. However, the rotating shaft connecting mechanism that connects other rotating shafts can be similarly implemented. .
[0021]
【The invention's effect】
As is clear from the above description, according to the rotary shaft coupling mechanism of the present invention, the inner peripheral surface of the cross-sectional oblong shape of the expansion plate in the sleeve with the hydraulic expansion chamber is deflated uniformly with the help of the spacer. The oval inner hole can be securely pressed and fixed to the oval connecting portion of the rotary shaft through the outer peripheral surface of the oval cross section of the shaped portion.
[Brief description of the drawings]
FIG. 1, showing an embodiment of the present invention, is a cross-sectional side view showing a configuration of a rotating shaft coupling mechanism of a rolling mill.
FIG. 2, showing an embodiment of the present invention, is a longitudinal sectional front view showing a configuration of a rotating shaft coupling mechanism of a rolling mill.
FIG. 3 is a perspective view showing a configuration of a roll coupling according to an embodiment of the present invention.
FIG. 4 is a longitudinal sectional perspective view showing a configuration of a sleeve with a hydraulic expansion chamber according to an embodiment of the present invention.
FIG. 5 is a longitudinal sectional perspective view showing a configuration of a rotary shaft coupling mechanism of a rolling mill, showing a conventional example.
FIG. 6 is a longitudinal sectional front view showing a configuration of a rotary shaft coupling mechanism of a rolling mill, showing a conventional example.
FIG. 7 is a cross-sectional side view showing a configuration of a rotary shaft coupling mechanism of a rolling mill, showing a conventional example.
FIG. 8 is a side view showing a conventional example and showing a state of deformation of a roll coupling.
FIG. 9 shows another conventional example and is a cross-sectional side view showing a configuration of a rotating shaft coupling mechanism of a rolling mill.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Roll 1a Oval connection part 1b Plane part 2 Roll coupling 2a Oval inner hole 2b Plane part 2c Plane part 3 Sleeve 3a with hydraulic expansion chamber Hydraulic expansion chamber 3c Expansion plate 4 Spacer

Claims (1)

円周状の外周面の両側を軸心に沿う互いにほぼ平行な平面で削り取った形状の横断面小判形に形成された回転軸の軸端部の小判形連結部を、この小判形連結部よりも少し大きい横断面小判形に形成された被連結部材の筒状部の小判形内孔に挿入し、この被連結部材の筒状部の外周に外嵌された油圧拡張室付スリーブ内の油圧拡張室に油圧を加えて拡張させ、この油圧拡張室の内周側を覆うほぼ均等な薄い板厚の拡張板の内周径を全体に収縮させることにより、筒状部を圧迫して小判形内孔を回転軸の小判形連結部に圧接し固定する回転軸連結機構において、
被連結部材の筒状部の外周面を、小判形内孔の円周部よりも径の大きい同心であり、かつ、この小判形内孔の平面部とほぼ平行な平面部を備えた横断面小判形に形成すると共に、
油圧拡張室付スリーブの拡張板を、内周面が被連結部材の筒状部の外周面よりも少し大きい横断面小判形に形成し、この拡張板の両平面部における外周面と油圧拡張室内の円周状の外周面との間に、それぞれ外周側の面に円周面が形成された横断面弓形のスペーサを挿入したことを特徴とする回転軸連結機構。
The oval connecting part at the shaft end of the rotating shaft formed in a cross-sectional oval shape with both sides of the circumferential outer surface cut off by planes substantially parallel to each other along the axis is from this oval connecting part. The hydraulic pressure in the sleeve with the hydraulic expansion chamber inserted into the outer periphery of the cylindrical portion of the coupled member inserted into the cylindrical portion of the cylindrical portion of the coupled member formed in a slightly larger cross-sectional oblong shape By applying hydraulic pressure to the expansion chamber and expanding it, the inner diameter of the expansion plate with an almost uniform thin plate covering the inner peripheral side of this hydraulic expansion chamber is contracted to the whole, thereby compressing the cylindrical part and making it oval In the rotating shaft coupling mechanism that presses and fixes the inner hole to the oval coupling portion of the rotating shaft,
Cross section provided with a flat surface that is concentric with the outer peripheral surface of the cylindrical portion of the connected member having a larger diameter than the peripheral portion of the oval inner hole and substantially parallel to the flat portion of the oval inner hole While forming into an oval shape,
The expansion plate of the sleeve with the hydraulic expansion chamber is formed in an oval cross-sectional shape whose inner peripheral surface is slightly larger than the outer peripheral surface of the tubular portion of the connected member. A rotary shaft coupling mechanism, wherein a spacer having an arcuate cross section having a circumferential surface formed on the outer circumferential surface is inserted between each of the circumferential outer circumferential surfaces.
JP31879299A 1999-11-09 1999-11-09 Rotating shaft coupling mechanism Expired - Fee Related JP3852046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31879299A JP3852046B2 (en) 1999-11-09 1999-11-09 Rotating shaft coupling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31879299A JP3852046B2 (en) 1999-11-09 1999-11-09 Rotating shaft coupling mechanism

Publications (2)

Publication Number Publication Date
JP2001140916A JP2001140916A (en) 2001-05-22
JP3852046B2 true JP3852046B2 (en) 2006-11-29

Family

ID=18103005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31879299A Expired - Fee Related JP3852046B2 (en) 1999-11-09 1999-11-09 Rotating shaft coupling mechanism

Country Status (1)

Country Link
JP (1) JP3852046B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217079A (en) * 2003-01-15 2004-08-05 Yuhshin Co Ltd Monitor opening and closing device
JP5488021B2 (en) * 2010-02-12 2014-05-14 株式会社ジェイテクト Shaft coupling device and torque limiter
KR101407527B1 (en) 2012-05-18 2014-06-13 한국기계연구원 Apparatus for preventing rotation error of table
GB2506261B (en) * 2013-07-30 2015-02-18 Rolls Royce Plc A joint

Also Published As

Publication number Publication date
JP2001140916A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
CN102292563B (en) Joint cross type universal joint yoke and method of manufacturing same
JP2007533903A (en) Radial swivel motor and method for making the radial swivel motor
JP3852046B2 (en) Rotating shaft coupling mechanism
JP2918494B2 (en) Lip type seal
JP3925891B2 (en) Rotating shaft coupling mechanism
EP1854698A2 (en) Vehicle steering assembly having an axially compliant intermediate shaft
JP3606934B2 (en) Shaft coupling mechanism
JPH09164854A (en) Dynamic damper structure of propeller shaft
JP3928912B2 (en) Rotating shaft coupling mechanism
JP2001090741A (en) Rotation shaft connecting mechanism
JPH09210074A (en) Connection structure of yoke and shaft of universal joint
JP2784881B2 (en) Hydraulic fitting
JP2000039027A (en) Coupling structure of rotary shaft
JP2008524519A (en) Multi-lobe socket for protecting a vehicle transmission and transmission joint provided with such socket
KR100280743B1 (en) Foil bearing
JP2007321943A (en) Cross shaft coupling, universal coupling and steering system for vehicle
JP3845832B2 (en) Rotating shaft coupling device
KR100390407B1 (en) hinge-assembly
JP3344689B2 (en) Connection structure between ball joint and arm
JPH11169957A (en) Method for bending hollow material using hydraulic type mandrel and hydraulic type mandrel
JPH1082466A (en) Seal ring
JP2000210706A (en) Composite sleeve roll
JPH0988991A (en) Rotor fixture
JP3729652B2 (en) Power steering device
JPH0128318Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees