JP3851393B2 - Method for producing porous silicon oxide film - Google Patents

Method for producing porous silicon oxide film Download PDF

Info

Publication number
JP3851393B2
JP3851393B2 JP31366896A JP31366896A JP3851393B2 JP 3851393 B2 JP3851393 B2 JP 3851393B2 JP 31366896 A JP31366896 A JP 31366896A JP 31366896 A JP31366896 A JP 31366896A JP 3851393 B2 JP3851393 B2 JP 3851393B2
Authority
JP
Japan
Prior art keywords
alkoxysilane
mol
film
silicon oxide
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31366896A
Other languages
Japanese (ja)
Other versions
JPH10158012A (en
Inventor
崇明 井岡
恒彰 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP31366896A priority Critical patent/JP3851393B2/en
Publication of JPH10158012A publication Critical patent/JPH10158012A/en
Application granted granted Critical
Publication of JP3851393B2 publication Critical patent/JP3851393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質ケイ素酸化物膜の製造方法に関する。
【0002】
【従来の技術】
従来、LSI多層配線に用いる層間絶縁膜には、ケイ素酸化物、またはフッ素や有機基を導入したケイ素酸化物が用いられてきた。しかしながら、これらの材料の比誘電率の値は比較的大きく、LSIの配線が今後微細化されるに従って、これらの材料を層間絶縁膜として用いることにより配線遅延などの諸問題が生ずる。そのため、ケイ素酸化物を多孔化して、比誘電率の値がおよそ1である空気との複合体にして比誘電率を低下させるという試みがなされているが、いずれも複雑な工程を含むため、良質なケイ素酸化物膜の簡便な製造方法は確立されていない。
【0003】
三枝らの報告(Journal of Macromolecular Science−Chemistry,A27巻,13−14合併号 P.1603−1612(1990)によると、アミド結合を含むポリマーの存在下で酸触媒を用いてテトラアルコキシシランの加水分解、脱水縮合反応を行った場合、生成したケイ素酸化物ゲル中では、アミド結合のカルボニル基とケイ素上のシラノール基とが水素結合して、分子レベルで安定に分散しており、従ってその有機ポリマー分を焼失させると、分子レベルの非常に小さな空孔が均一に分散している多孔質ケイ素酸化物が得られる。
【0004】
しかしながら、上記報告に記載の方法では、加水分解、脱水縮合に要する時間が長く、ゲルの形状が膜である場合には溶媒の蒸発が優先して起こるため、良質な膜を得ることができなかった。
【0005】
【発明が解決しようとする課題】
本発明は、巨大粒子の生成などのない、均一で良質な多孔質ケイ素酸化物膜を簡便かつ速やかに製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、アルコキシシランと、アミド結合を含有する有機ポリマーを溶媒に溶解し、酸を添加して部分的に加水分解した後、塩基触媒を添加して基板上に膜状に塗布し加水分解、脱水縮合を行い、その後に溶媒を蒸発させて得られた乾燥ゲルから有機ポリマーを除去することを特徴とする多孔質ケイ素酸化物膜の製造方法である。
【0007】
以下、本発明を詳細に説明する。
本発明の多孔質ケイ素酸化物膜の製造法では、まずアミド結合を含む有機ポリマーとアルコキシシランとを溶媒に溶解し、触媒である酸と水を添加して撹拌することによって、部分的に加水分解する工程を実施する。これによりアルコキシシランは、部分的にケイ素水酸化物となり、一部脱水縮合反応を起こすが、直ちにゲル化することはない。
【0008】
本発明において用いられるアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラ(i−プロピル)シラン、テトラ(t−ブチル)シランなどのテトラアルコキシシラン、およびこれらの混合物が挙げられる。また、上記のテトラアルコキシシランの部分加水分解物も用いることができる。さらに多孔質膜を改良するために、ケイ素原子上に1個のアルキル基やアリール基をもつアルコキシシランを用いたり、ケイ素原子上に1〜3個のアルキル基やアリール基をもつアルコキシシランを上記のテトラアルコキシシランに混合することも可能である。
【0009】
本発明で用いられるアミド結合を含有する有機ポリマーの具体例としては、ポリ(N−ビニルピロリドン)、ポリ(N−ビニルカプロラクトン)、ポリアクリルアミド誘導体、ポリメタクリルアミド誘導体、ポリオキサゾリン誘導体、ポリイミド誘導体、ポリウレタン誘導体、ポリ尿素誘導体、ナイロン誘導体およびこれらの混合物などが挙げられる。またこれらのポリマーの構成成分であるモノマー同士の共重合体や、他の任意のモノマーとの共重合体を用いてもよい。ポリマー中のアミド結合は、アルコキシシランのゲル化が起こる課程でアルコキシシランが加水分解されて生成したシラノール基と有効に水素結合して相分離を防止する。そのためにポリマー中のアミド結合含有量は、アミド残基あたりの分子量が5000以下であることが必要である。
【0010】
これらのアミド結合含有有機ポリマーの添加量は、アルコキシシラン100重量部に対し1〜10000重量部、好ましくは10〜1000重量部である。本発明で得られる多孔質膜の空隙率は主にアミド結合含有有機ポリマーの添加量で決まる。したがってアミド結合含有有機ポリマーの添加量が1重量部より少ないと、空隙率が小さく多孔質膜の特性が現れない。また10000重量部より多いと、得られる多孔質膜の強度が小さくなり実用性に乏しい。
【0011】
溶媒としては、用いているアルコキシシランとアミド結合含有有機ポリマーの両方が溶解する溶媒であることが好ましく、C1〜C4の一価アルコール、ジメチルホルムアミド、ホルムアミド、ジメチルアセトアミドなどが好適に用いられる。これらの溶媒を混合したり、他の任意の溶媒あるいは添加物を混合してもよい。
【0012】
触媒である酸の具体例としては塩酸、硝酸、硫酸、酢酸などが挙げられる。これらの酸の添加量はアルコキシシラン1モルに対し10-5〜1モル、好ましくは10-4〜10-1モルが適当である。触媒の添加量が10-5モルより少ないと加水分解が十分に進まず、次の工程でゲル化が起こらない場合がある。また、1モルより多いと沈殿の生成などが起こり均一な多孔質膜が得られなかったり、次の工程を実施する前にゲル化してしまったりする。
【0013】
この工程で起こるアルコキシシランの加水分解は、これら触媒である酸が水溶液である場合にはその溶媒である水によって起こるし、必要ならば別途水を添加する。適当な水の量は原料のアルコキシシランの種類にもよるが、アルコキシシラン1モルに対し0.3〜100モル、好ましくは1〜10モルである。0.3モルより少ないと加水分解が十分に進まず、次の工程で速やかにゲル化しないため、良質な膜を得ることができない。また100モルより多いと多孔質膜の均質性が低下する。
【0014】
酸触媒を用いた部分加水分解反応の温度は0〜100℃、好ましくは20〜60℃である。0℃未満では反応速度が小さく、加水分解を十分に進行させるのに長時間を要し、また100℃を超える温度では次の工程を実施する前にゲル化する場合がある。ゲル化に要する時間はゲル化の温度や触媒の量などによって異なるが、通常数時間〜数日間の範囲である。
【0015】
本発明の多孔質ケイ素酸化物膜の製造法では、上記の方法で得られたアルコキシシランの部分加水分解物の溶液に、触媒である塩基および必要に応じて水を添加し、基板上に膜状塗布した後にアルコキシシランの加水分解、脱水縮合を終了させる。
ここで用いる塩基の具体例としてはアンモニア水、水酸化カリウム、水酸化ナトリウム、トリエチルアミン、トリエタノールアミンなどが挙げられる。これらの塩基は、前の工程で加えた酸よりもある程度過剰に加えることが重要であり、塩基の添加量があまり少ないとゲル化しなかったり、ゲル化に長時間を要するため、良質な膜が得られない。塩基の添加量は原料のアルコキシシラン1モルに対し、前の工程で添加した酸よりも10-5〜1モル、好ましくは10-4〜10-1モル過剰とするのが適当である。塩基の過剰量が1モルより多いと急激な粘度上昇が起こり膜状塗布が困難になったり、瞬時にゲル化してしまったりする。
【0016】
加える水の量は原料のアルコキシシランの種類にもよるが、前の工程と本工程で加えた水の添加量の合計は、アルコキシシラン1モルに対し1〜100モル、好ましくは2〜10モルである。1モルより少ないと加水分解、ゲル化が十分に起こらず、多孔質膜を得ることができない。また100モルより多いと多孔質膜の均質性が低下する。すでに前工程で十分量の水を加えている場合には本工程で新たに水を加えなくてもよい。
【0017】
膜状塗布は流延、浸漬、スプレー法、回転塗布法等の公知の方法で行う。膜厚は特に限定されないが、0.1μm以上であることが好ましい。0.1μm未満では多孔質膜の効果が十分に得られない。更に膜厚1mm以下であることが短時間でゲルの乾燥を行うことができることから好ましい。ゲルの乾燥に十分に時間をかけることで1mmを超える膜厚の膜も作成することも可能である。
【0018】
密着性、均質性、耐クラック性、耐剥離性に優れた膜を得るために、基板上をあらかじめ密着向上剤で処理してもよい。この場合の密着向上剤としてはいわゆるシランカップリング剤として用いられるものを使用することができる。好適に用いられるものとして3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルメチルジエトキシシラン、3−クロロプロピルメチルジクロロシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シランなどが挙げられ、中でも3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシランが特に好適に用いられる。これらの密着向上剤を塗布するにあたっては必要に応じて他の添加物を加えたり、アルコールや水などの溶媒で希釈して用いてもよい。密着向上剤の塗布は流延、浸漬、スプレー法、回転塗布法等の公知の方法で行う。塗布した後、過剰の密着向上剤をアルコールなど一般の有機溶媒で洗浄除去する。塗布から洗浄までの時間は通常数分間で十分である。その後、洗浄溶媒を乾燥して処理基板をえる。塗布から洗浄までの時間が短いと密着向上剤の効果が得られず、逆に余り長いと密着向上剤が基板上で硬化することがある。
【0019】
塗布した膜のゲル化反応の温度は0〜100℃の範囲であり、特に20〜60℃とするのが好ましい。0℃未満では反応速度が小さく、十分な架橋を起こさせるのに長時間を要し、また100℃を超える温度ではボイドが生成しやすく、得られる多孔質膜の均質性が低下する。ゲル化に要する時間はゲル化の温度や触媒の量などによって異なるが、通常数分間〜数日間の範囲である。
【0020】
ゲル化を十分に進行させた後、溶媒を除去するために乾燥する。乾燥温度は当然溶媒の種類によって異なるが、通常20〜200℃の範囲で行う。ボイドの発生を制御し、均質な乾燥ゲル膜を得るために、乾燥工程中に徐々に温度を上昇させる方法も好ましい。
この乾燥ゲル膜から有機ポリマーのみを除去することにより目的の多孔質ケイ素酸化物膜を得ることができる。有機ポリマーを除去する方法としては加熱焼成、溶媒抽出、プラズマ処理などが挙げられる。もっとも簡便なのがアミド結合含有有機ポリマーの熱分解温度以上で1〜24時間程度加熱する方法である。
【0021】
本発明の方法では、テトラアルコキシシランの加水分解、脱水縮合が速やかに終了するので、溶媒の蒸発による膜質の劣化を防ぎ、均一な多孔質膜を速やかに得ることができる。
【0022】
【発明の実施の形態】
以下に本発明の実施例を示す。なお、実施例で得られたケイ素酸化物膜の評価は以下のように行った。
1.表面積(N2 BET)
(株)島津製作所製の窒素吸着式表面積測定装置を用いて測定した。
2.走査電子顕微鏡(SEM)
試料を約5mm四方に切断し、導電テープを貼った試料台に載せカーボンペーストで導通を確保し、さらに白金−パラジウムを1nm程度蒸着し、(株)日立製作所製走査電子顕微鏡で測定を行った。電子の加速電圧は1kVに設定した。
【0023】
【実施例1】
テトラエトキシシラン0.6gと、ポリ(N−ビニルピロリドン)0.5gをエタノール0.8g、ジメチルホルムアミド1.2gに溶解し、この溶液に0.1N塩酸0.05g加え、室温にて5時間撹拌した。この溶液に0.1Nアンモニア水溶液0.5mlを加え撹拌し、膜厚が1mmになるように速やかにガラス基板上に流延塗布した後、密閉容器中で室温にて1時間放置したところ、塗布膜は流動性を失っていた。終夜静置し、5時間かけて60℃から150℃にて乾燥し、窒素中で600℃にて12時間加熱した。得られたケイ素酸化物膜は760m2 /gの表面積を有することが、窒素吸着法により分かった。
【0024】
【実施例2】
シリコン基板上に3−アミノプロピルトリエトキシシランを流延塗布し、3分間放置した後メタノールで洗浄し、60℃にて10分間乾燥した。10ml容器に、テトラエトキシシラン1.2g、ポリ(N−ビニルピロリドン)1.0gをエタノール1.6g、ジメチルホルムアミド2.4gに溶解し、この溶液に0.1N塩酸0.1gを加え、室温にて3時間撹拌した。この溶液に0.1Nアンモニア水溶液0.5mlを加え撹拌し、膜厚が1μmになるように上記のシリコン基板上に毎秒1500回転の速度で10秒間回転塗布した後、密閉容器中で室温にて1時間放置した。終夜静置し、4時間かけて60℃から160℃にて乾燥し、窒素中で600℃にて8時間加熱した。得られたケイ素酸化物膜の表面を走査電子顕微鏡で観察したところ、非常に均一でクラックや巨大粒子の発生も見られなかった。
【0025】
【比較例1】
テトラエトキシシラン5.2g、ポリ(N−ビニルピロリドン)1.5gをエタノール2.5g、ジメチルホルムアミド3.5gに溶解し、この溶液に0.08N塩酸3.5g加え、室温にて3時間撹拌した。この溶液をガラス基板上に膜厚が1mmになるように流延塗布した後、密閉容器中で室温にて終夜放置したが、塗布膜は粘凋であり流動性を失っていなかった。
【0026】
【発明の効果】
本発明で得られた多孔質ケイ素酸化物薄膜は、従来法に比べて製造法がきわめて簡便かつ速やかであるにもかかわらず良質のものである。また細孔径が小さく、また空隙率を大きくできるため誘電率を低下させることが可能なので、LSI多層配線用絶縁膜などに用いることができる。その他、触媒の坦体としても使用可能であることから、産業上大いに有用である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a porous silicon oxide film.
[0002]
[Prior art]
Conventionally, silicon oxide or silicon oxide into which fluorine or an organic group is introduced has been used for an interlayer insulating film used for LSI multilayer wiring. However, the relative permittivity values of these materials are relatively large, and problems such as wiring delays arise due to the use of these materials as interlayer insulating films as LSI wiring becomes finer in the future. For this reason, attempts have been made to lower the dielectric constant by making silicon oxide porous and making it a composite with air having a relative dielectric constant of about 1, both of which involve complicated processes, A simple method for producing a high-quality silicon oxide film has not been established.
[0003]
According to a report by Saegusa et al. (Journal of Macromolecular Science-Chemistry, Vol. 27, 13-14, P. 1603-1612 (1990)) When the decomposition and dehydration condensation reactions are performed, the carbonyl group of the amide bond and the silanol group on the silicon are hydrogen-bonded in the resulting silicon oxide gel and are stably dispersed at the molecular level. When the polymer content is burned out, a porous silicon oxide in which very small pores at the molecular level are uniformly dispersed can be obtained.
[0004]
However, in the method described in the above report, the time required for hydrolysis and dehydration condensation is long, and when the gel shape is a film, the evaporation of the solvent preferentially occurs, so a good film cannot be obtained. It was.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for easily and rapidly producing a uniform and high-quality porous silicon oxide film free from the formation of large particles.
[0006]
[Means for Solving the Problems]
In the present invention, an alkoxysilane and an organic polymer containing an amide bond are dissolved in a solvent, an acid is added to partially hydrolyze, a base catalyst is added, and the resulting solution is applied in a film form on a substrate for hydrolysis. And a method for producing a porous silicon oxide film, characterized in that the organic polymer is removed from the dried gel obtained by performing dehydration condensation and then evaporating the solvent.
[0007]
Hereinafter, the present invention will be described in detail.
In the method for producing a porous silicon oxide film of the present invention, first, an organic polymer containing an amide bond and an alkoxysilane are dissolved in a solvent, and a catalyst acid and water are added and stirred to partially add water. The process of decomposing is performed. As a result, the alkoxysilane partially becomes a silicon hydroxide and partially undergoes a dehydration condensation reaction, but does not gel immediately.
[0008]
Specific examples of the alkoxysilane used in the present invention include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra (i-propyl) silane, tetra (t-butyl) silane, and mixtures thereof. Moreover, the partial hydrolyzate of said tetraalkoxysilane can also be used. In order to further improve the porous film, an alkoxysilane having one alkyl group or aryl group on a silicon atom is used, or an alkoxysilane having 1 to 3 alkyl groups or aryl groups on a silicon atom is used as described above. It is also possible to mix with tetraalkoxysilane.
[0009]
Specific examples of the organic polymer containing an amide bond used in the present invention include poly (N-vinylpyrrolidone), poly (N-vinylcaprolactone), polyacrylamide derivative, polymethacrylamide derivative, polyoxazoline derivative, polyimide derivative, Examples include polyurethane derivatives, polyurea derivatives, nylon derivatives, and mixtures thereof. Moreover, you may use the copolymer of the monomers which are the structural components of these polymers, and a copolymer with another arbitrary monomer. The amide bond in the polymer effectively forms a hydrogen bond with the silanol group produced by hydrolysis of the alkoxysilane during the course of the gelation of the alkoxysilane, thereby preventing phase separation. Therefore, the amide bond content in the polymer needs to have a molecular weight of 5,000 or less per amide residue.
[0010]
The amount of the amide bond-containing organic polymer added is 1 to 10,000 parts by weight, preferably 10 to 1000 parts by weight, based on 100 parts by weight of the alkoxysilane. The porosity of the porous film obtained in the present invention is mainly determined by the amount of the amide bond-containing organic polymer added. Therefore, when the addition amount of the amide bond-containing organic polymer is less than 1 part by weight, the porosity is small and the characteristics of the porous film do not appear. On the other hand, when the amount is more than 10,000 parts by weight, the strength of the obtained porous film is reduced and the practicality is poor.
[0011]
The solvent is preferably a solvent in which both the alkoxysilane used and the amide bond-containing organic polymer are dissolved, and C1-C4 monohydric alcohol, dimethylformamide, formamide, dimethylacetamide and the like are preferably used. These solvents may be mixed, or any other solvent or additive may be mixed.
[0012]
Specific examples of the acid as the catalyst include hydrochloric acid, nitric acid, sulfuric acid, acetic acid and the like. The amount of these acids added is suitably 10 -5 to 1 mol, preferably 10 -4 to 10 -1 mol, per mol of alkoxysilane. If the amount of the catalyst added is less than 10 −5 mol, hydrolysis does not proceed sufficiently, and gelation may not occur in the next step. On the other hand, when the amount is more than 1 mol, a precipitate is formed and a uniform porous film cannot be obtained, or gelation occurs before the next step.
[0013]
Hydrolysis of the alkoxysilane that occurs in this step is caused by the solvent water when the catalyst acid is an aqueous solution, and additional water is added if necessary. An appropriate amount of water is 0.3 to 100 mol, preferably 1 to 10 mol, based on 1 mol of alkoxysilane, although it depends on the type of raw material alkoxysilane. If the amount is less than 0.3 mol, hydrolysis does not proceed sufficiently, and gelation does not occur rapidly in the next step, so that a good quality film cannot be obtained. On the other hand, when the amount is more than 100 mol, the homogeneity of the porous membrane is lowered.
[0014]
The temperature of the partial hydrolysis reaction using an acid catalyst is 0 to 100 ° C, preferably 20 to 60 ° C. If it is less than 0 ° C., the reaction rate is low, and it takes a long time for the hydrolysis to proceed sufficiently, and if it exceeds 100 ° C., it may gel before the next step. The time required for gelation varies depending on the temperature of gelation and the amount of catalyst, but is usually in the range of several hours to several days.
[0015]
In the method for producing a porous silicon oxide film of the present invention, a base as a catalyst and water as required are added to the solution of the partially hydrolyzed alkoxysilane obtained by the above method, and the film is formed on the substrate. After the coating is applied, the hydrolysis and dehydration condensation of the alkoxysilane is terminated.
Specific examples of the base used here include aqueous ammonia, potassium hydroxide, sodium hydroxide, triethylamine, triethanolamine and the like. It is important that these bases are added to a certain extent in excess of the acid added in the previous step. If the amount of the base added is too small, it will not gel, or it will take a long time for gelation. I can't get it. The amount of the base added is suitably 10 -5 to 1 mol, preferably 10 -4 to 10 -1 mol in excess of the acid added in the previous step with respect to 1 mol of the raw material alkoxysilane. When the excess amount of the base is more than 1 mol, a rapid increase in viscosity occurs, making it difficult to apply a film or gelling instantaneously.
[0016]
The amount of water added depends on the type of raw material alkoxysilane, but the total amount of water added in the previous step and this step is 1 to 100 mol, preferably 2 to 10 mol per mol of alkoxysilane. It is. When the amount is less than 1 mol, hydrolysis and gelation do not occur sufficiently and a porous membrane cannot be obtained. On the other hand, when the amount is more than 100 mol, the homogeneity of the porous membrane is lowered. If a sufficient amount of water has already been added in the previous step, it is not necessary to add new water in this step.
[0017]
The film coating is performed by a known method such as casting, dipping, spraying, or spin coating. The film thickness is not particularly limited, but is preferably 0.1 μm or more. If the thickness is less than 0.1 μm, the effect of the porous film cannot be sufficiently obtained. Furthermore, it is preferable that the film thickness is 1 mm or less because the gel can be dried in a short time. It is also possible to create a film having a film thickness exceeding 1 mm by taking sufficient time to dry the gel.
[0018]
In order to obtain a film having excellent adhesion, homogeneity, crack resistance, and peel resistance, the substrate may be treated with an adhesion improver in advance. As the adhesion improver in this case, those used as so-called silane coupling agents can be used. As preferred ones, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3- Aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane , 3-chloropropylmethyldichlorosilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, etc., among others 3-aminopropyltrimethoxysilane 3-aminopropyltriethoxysilane, N- (2- aminoethyl) -3-aminopropyltrimethoxysilane, N- (2- aminoethyl) -3-aminopropyl methyl dimethoxy silane is particularly preferably used. In applying these adhesion improvers, other additives may be added as necessary, or diluted with a solvent such as alcohol or water. The adhesion improving agent is applied by a known method such as casting, dipping, spraying, or spin coating. After coating, the excess adhesion improver is removed by washing with a common organic solvent such as alcohol. A few minutes is usually sufficient from application to washing. Thereafter, the cleaning solvent is dried to obtain a processed substrate. If the time from application to cleaning is short, the effect of the adhesion improving agent cannot be obtained. Conversely, if the time is too long, the adhesion improving agent may be cured on the substrate.
[0019]
The temperature of the gelation reaction of the applied film is in the range of 0 to 100 ° C, and preferably 20 to 60 ° C. If it is less than 0 ° C., the reaction rate is low, and it takes a long time to cause sufficient crosslinking, and if the temperature exceeds 100 ° C., voids are likely to be generated, and the homogeneity of the resulting porous film is lowered. The time required for gelation varies depending on the gelation temperature and the amount of catalyst, but is usually in the range of several minutes to several days.
[0020]
After allowing the gelation to proceed sufficiently, it is dried to remove the solvent. Although drying temperature naturally changes with kinds of solvent, it is normally performed in the range of 20-200 degreeC. In order to control the generation of voids and obtain a homogeneous dry gel film, a method of gradually raising the temperature during the drying process is also preferred.
A desired porous silicon oxide film can be obtained by removing only the organic polymer from the dried gel film. Examples of the method for removing the organic polymer include heating and baking, solvent extraction, and plasma treatment. The simplest is a method of heating for about 1 to 24 hours at a temperature higher than the thermal decomposition temperature of the amide bond-containing organic polymer.
[0021]
In the method of the present invention, since the hydrolysis and dehydration condensation of the tetraalkoxysilane are completed quickly, deterioration of the film quality due to evaporation of the solvent can be prevented, and a uniform porous film can be obtained quickly.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention are shown below. The silicon oxide films obtained in the examples were evaluated as follows.
1. Surface area (N2 BET)
Measurement was performed using a nitrogen adsorption surface area measuring device manufactured by Shimadzu Corporation.
2. Scanning electron microscope (SEM)
The sample was cut into approximately 5 mm squares, placed on a sample table with a conductive tape, and secured with carbon paste. Further, about 1 nm of platinum-palladium was deposited and measured with a scanning electron microscope manufactured by Hitachi, Ltd. . The electron acceleration voltage was set to 1 kV.
[0023]
[Example 1]
0.6 g of tetraethoxysilane and 0.5 g of poly (N-vinylpyrrolidone) are dissolved in 0.8 g of ethanol and 1.2 g of dimethylformamide, 0.05 g of 0.1N hydrochloric acid is added to this solution, and the mixture is stirred at room temperature for 5 hours. Stir. After adding 0.5 ml of 0.1N aqueous ammonia solution to this solution and stirring, it was cast on a glass substrate promptly so as to have a film thickness of 1 mm, and then allowed to stand at room temperature for 1 hour in a sealed container. The membrane lost fluidity. It was allowed to stand overnight, dried at 60 ° C. to 150 ° C. over 5 hours, and heated at 600 ° C. for 12 hours in nitrogen. It was found by the nitrogen adsorption method that the obtained silicon oxide film had a surface area of 760 m 2 / g.
[0024]
[Example 2]
3-Aminopropyltriethoxysilane was cast on a silicon substrate, allowed to stand for 3 minutes, washed with methanol, and dried at 60 ° C. for 10 minutes. In a 10 ml container, 1.2 g of tetraethoxysilane and 1.0 g of poly (N-vinylpyrrolidone) are dissolved in 1.6 g of ethanol and 2.4 g of dimethylformamide, and 0.1 g of 0.1N hydrochloric acid is added to this solution. For 3 hours. To this solution, 0.5 ml of 0.1N aqueous ammonia solution was added and stirred, and the solution was spin-coated on the above silicon substrate for 10 seconds at a speed of 1500 rpm so that the film thickness became 1 μm, and then at room temperature in a sealed container. Left for 1 hour. The mixture was allowed to stand overnight, dried at 60 ° C. to 160 ° C. over 4 hours, and heated at 600 ° C. for 8 hours in nitrogen. When the surface of the obtained silicon oxide film was observed with a scanning electron microscope, it was very uniform and no cracks or giant particles were observed.
[0025]
[Comparative Example 1]
Dissolve 5.2 g of tetraethoxysilane and 1.5 g of poly (N-vinylpyrrolidone) in 2.5 g of ethanol and 3.5 g of dimethylformamide, add 3.5 g of 0.08N hydrochloric acid to this solution, and stir at room temperature for 3 hours. did. This solution was cast on a glass substrate so as to have a film thickness of 1 mm, and then left overnight in a sealed container at room temperature. However, the coating film was viscous and did not lose its fluidity.
[0026]
【The invention's effect】
The porous silicon oxide thin film obtained in the present invention is of a high quality despite the extremely simple and rapid production method compared with the conventional method. Further, since the pore diameter is small and the porosity can be increased, the dielectric constant can be lowered, so that it can be used for an insulating film for LSI multilayer wiring. In addition, since it can be used as a catalyst carrier, it is very useful industrially.

Claims (3)

アルコキシシランおよび酸による該アルコキシシランの部分加水分解物と、塩基と、アミド結合を含有する有機ポリマーとを含有することを特徴とする膜形成用の塗布組成物。A coating composition for forming a film, comprising a partial hydrolyzate of alkoxysilane with an alkoxysilane and an acid, a base, and an organic polymer containing an amide bond . アルコキシシランと、該アルコキシシラン1モルに対して1×10−5〜1モルの酸と、該アルコキシシラン1モルに対して0.3〜100モルの水と、該アルコキシシラン100重量部に対して1〜10000重量部の該アミド結合を含有する有機ポリマーとを0〜100℃で混合攪拌して該アルコキシシランを部分的に酸加水分解する工程と、引き続き、該アルコキシシラン1モルに対して2×10−5〜2モルの塩基を添加する工程とを経て得られることを特徴とする請求項1に記載の膜形成用の塗布組成物の製造方法。1 × 10 −5 to 1 mol of acid with respect to 1 mol of the alkoxysilane, 0.3 to 100 mol of water with respect to 1 mol of the alkoxysilane, and 100 parts by weight of the alkoxysilane 1 to 10000 parts by weight of the organic polymer containing the amide bond at 0 to 100 ° C. to partially acid hydrolyze the alkoxysilane, and subsequently to 1 mol of the alkoxysilane. The method for producing a coating composition for forming a film according to claim 1, which is obtained through a step of adding 2 × 10 −5 to 2 mol of a base. 請求項1に記載の塗布組成物又は請求項2に記載の製造方法で得られた塗布組成物を、基板上に膜状に塗布した後、該アルコキシシランおよびその部分加水分解物をさらに加水分解・脱水縮合してケイ素酸化物とし、引き続き該アミド結合を含有する有機ポリマーを除去して得られることを特徴とする多孔質ケイ素酸化物の製造方法。 After the coating composition according to claim 1 or the coating composition obtained by the production method according to claim 2 is coated on a substrate in a film shape, the alkoxysilane and its partial hydrolyzate are further hydrolyzed. A method for producing a porous silicon oxide, which is obtained by dehydrating condensation to obtain a silicon oxide and subsequently removing the organic polymer containing the amide bond .
JP31366896A 1996-11-25 1996-11-25 Method for producing porous silicon oxide film Expired - Fee Related JP3851393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31366896A JP3851393B2 (en) 1996-11-25 1996-11-25 Method for producing porous silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31366896A JP3851393B2 (en) 1996-11-25 1996-11-25 Method for producing porous silicon oxide film

Publications (2)

Publication Number Publication Date
JPH10158012A JPH10158012A (en) 1998-06-16
JP3851393B2 true JP3851393B2 (en) 2006-11-29

Family

ID=18044085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31366896A Expired - Fee Related JP3851393B2 (en) 1996-11-25 1996-11-25 Method for producing porous silicon oxide film

Country Status (1)

Country Link
JP (1) JP3851393B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3055599A (en) * 1998-04-01 1999-10-25 Asahi Kasei Kogyo Kabushiki Kaisha Method of manufacturing interconnection structural body
TWI260332B (en) * 1999-09-16 2006-08-21 Hitachi Chemical Co Ltd Compositions, methods of forming low dielectric coefficient film using the composition, low dielectric coefficient films, and electronic components having the film
KR20040070225A (en) 2001-12-14 2004-08-06 아사히 가세이 가부시키가이샤 Coating composition for forming low-refractive index thin layers
JP6612563B2 (en) * 2014-12-26 2019-11-27 日東電工株式会社 Silicone porous body and method for producing the same
JP6599699B2 (en) 2014-12-26 2019-10-30 日東電工株式会社 Void structure film bonded through catalytic action and method for producing the same
JPWO2017018543A1 (en) * 2015-07-30 2018-05-24 国立研究開発法人産業技術総合研究所 Method for producing silanol compound
JP6713872B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Laminated film, laminated film manufacturing method, optical member, image display device, optical member manufacturing method, and image display device manufacturing method
US11975977B2 (en) 2017-08-24 2024-05-07 Lg Chem, Ltd. Production method of silica film

Also Published As

Publication number Publication date
JPH10158012A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US5152834A (en) Spin-on glass composition
DE10196026B4 (en) Coating composition, thin film, thin film use, and method of producing a thin porous silica film
JP4093596B2 (en) Alkoxysilane-organic polymer composition for production of insulating thin film and use thereof
JP4090244B2 (en) Composition for producing a substance having nanopores
KR100760405B1 (en) Low dielectric nano-porous material obtainable from polymer decomposition
JP3851393B2 (en) Method for producing porous silicon oxide film
JP2000044719A (en) Porous polyimide, its precusor and manufacture of porous polyimide
JP2002501674A (en) Method for producing nanoporous dielectric film at high pH
JP4025389B2 (en) Organic-inorganic composite and inorganic porous body
US7166362B2 (en) Film-forming composition, production process therefor, and porous insulating film
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
JP2001115021A (en) Silica precursor/organic polymer composition
JP3163579B2 (en) Coating liquid for film formation
JP3571522B2 (en) Method for forming porous film and material for forming porous film
JP4321686B2 (en) Organic-inorganic composite and method for producing porous silicon oxide
JP2002534804A (en) Dielectric film with organic hydride siloxane resin
KR20050082383A (en) Cyclodextrin derivatives as pore-forming templates, and low dielectric material prepared by using it
JPH1070121A (en) Method of low volatile solvent group for forming thin film of nano-porous aerogels on semiconductor substrate
JP2001287910A (en) Method for producing porous silicon oxide coating film
JP3982073B2 (en) Low dielectric constant insulating film forming method
JPH10158011A (en) Production of porous silicon dioxide film
JP2004292554A (en) Film-forming composition, method for producing the same, and method for forming film
JP3912697B2 (en) Interlayer insulating film forming coating solution and insulating film forming method using the same
JPH09298241A (en) Semiconductor device and manufacture thereof
JP2004285266A (en) Composition for porous insulating film, its manufacturing method, porous insulating film and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees