JP3851336B1 - Surface acoustic wave device - Google Patents
Surface acoustic wave device Download PDFInfo
- Publication number
- JP3851336B1 JP3851336B1 JP2005158755A JP2005158755A JP3851336B1 JP 3851336 B1 JP3851336 B1 JP 3851336B1 JP 2005158755 A JP2005158755 A JP 2005158755A JP 2005158755 A JP2005158755 A JP 2005158755A JP 3851336 B1 JP3851336 B1 JP 3851336B1
- Authority
- JP
- Japan
- Prior art keywords
- acoustic wave
- surface acoustic
- idt electrode
- cut
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
【課題】弾性表面波デバイスの高性能・高安定化を目的とした漏洩弾性表面波フィルタや漏洩弾性表面波振動子の構造に関するもので、三次の温度特性を有し、Loss変動も極めて少ない高安定な弾性表面波装置を提供する。
【解決手段】膜厚ゼロでカット角16.2°で切断した回転Yカット水晶板400に、空隙404を設けて、漏洩弾性表面波を励起する周期2LpのIDT電極402を設ける。403は伝播してきた漏洩弾性表面波を受けるIDT電極である。IDT電極は誘電体と空隙空間を挟んで水晶板表面の上部の空隙空間に形成されるため、水晶板上の漏洩弾性表面波の励振効率に寄与する空隙空間の電界は誘電体中の電界が弱まった分、εS倍水晶板上の空隙空間の電界が強くなるという特長がある。
【効果】IDT電極と水晶板表面の間の空隙に誘電体を挿入することで電界強度を高め質量負荷を弾性表面波に与えることがないので前述の問題点を克服できる。
【選択図】図4The present invention relates to a structure of a leaky surface acoustic wave filter or a leaky surface acoustic wave vibrator for the purpose of high performance and high stability of a surface acoustic wave device, and has a third-order temperature characteristic and extremely low loss fluctuation. A stable surface acoustic wave device is provided.
A rotating Y-cut quartz plate 400 cut at a film thickness of zero and a cut angle of 16.2 ° is provided with an air gap 404 and an IDT electrode 402 having a period of 2 Lp for exciting a leaky surface acoustic wave. Reference numeral 403 denotes an IDT electrode that receives the leaked surface acoustic wave. Since the IDT electrode is formed in the gap space above the quartz plate surface with the dielectric and the gap space in between, the electric field in the gap space that contributes to the excitation efficiency of the leaky surface acoustic wave on the quartz plate is There is a feature that the electric field in the air gap space on the εS crystal plate becomes stronger due to the weakening.
[Effect] By inserting a dielectric in the gap between the IDT electrode and the quartz plate surface, the electric field strength is increased and no mass load is applied to the surface acoustic wave, so that the above-mentioned problems can be overcome.
[Selection] Figure 4
Description
本発明は、漏洩弾性表面波を利用して実現する弾性表面波装置、更に詳細にはすべての弾性表面波フィルタや弾性表面波振動子に適用可能である。特に、高安定、高機能化が要求される移動体通信分野での携帯電話機や光通信分野における光モジュール部の心臓部としての弾性表面波デバイスの高性能・高安定化を目的とした漏洩弾性表面波フィルタや漏洩弾性表面波振動子の構造に関するもので、三次の温度特性を有し、Loss変動も極めて少ない高安定な弾性表面波装置を提供するものである。 The present invention is applicable to a surface acoustic wave device realized by using a leaky surface acoustic wave, and more specifically to all surface acoustic wave filters and surface acoustic wave vibrators. In particular, leakage elasticity for the purpose of high-performance and high-stability surface acoustic wave devices as the heart of optical modules in mobile communication fields and optical communication fields where high stability and high functionality are required The present invention relates to the structure of surface wave filters and leaky surface acoustic wave vibrators, and provides a highly stable surface acoustic wave device having third-order temperature characteristics and extremely low loss fluctuation.
超小型・高安定性が要求される移動体通信機器や光通信機器等の分野において、特に弾性表面波フィルタは必須のエレクトロメカニカル機能デバイスとしてその地位を確立している。弾性表面波フィルタの製造方法は、LSIと同じフォトリソグラフィ技術で製作されているため、量産が可能なデバイスである。これまで、弾性表面波デバイスは、1ppm/℃の周波数変動を有するパラボリックな周波数温度特性曲線をもつST-cut水晶が長らく使われてきた。このST-cut水晶は、バルク波の三次温度特性曲線を有するAT-cut水晶に比べると、温度特性的には劣性である。これまで、各所で三次温度特性を持つ弾性表面波のカット探査がなされてきたが、残念ながら、レイリー波の探査では、発見できなかった。しかしながら、特許文献1に記載されているように、実験中に、世界で最初に回転Yカット水晶のBT側に属するYカット(右手系のオイラー角で15°付近)の漏洩弾性表面波で三次温度特性を有するLSTカットの発見をした。その後、このLSTカットの詳細な検討を行うことで、バルク波と同様に、膜厚依存性は高く、特に高温においてLossの変動が大きいことがわかった。この原因は、漏洩弾性表面波の伝播損失が温度の変化に対して伝播損失が増減する温度依存性に起因していることがわかり、この対策として、切断角度を0.6°補正することが最とも有効であることもわかった。本来のAT-cut水晶並みの三次曲線を得るためには、漏洩弾性表面波固有の膜厚からの拘束を解く必要がある。弾性表面波デバイスはシリコンデバイスとは異なり、圧電結晶を使用していることから、電極膜を圧電結晶上に形成すると、弾性表面波には圧電反作用と質量負荷効果が生じる。特に、LSTカット水晶を使用した漏洩弾性表面波としてのSAWフィルタは、従来のレイリー波を使用したSAWフィルタが質量負荷は中心周波数の頂点温度のシフトという形で現れていた温度特性が、LSTカットの温度特性は三次的あるいは直線的に変化することから、LSTカットは電極膜厚の影響を強く受けることになる。周波数安定度を最適にするためには、カット角と膜厚の両方のパラメータを制御する必要がある。通常、漏洩弾性表面波の伝播損失は小さいが高温側の温度特性になると挿入損失が急速に増大する。漏洩弾性表面波の挿入損失の温度特性はカット角依存性は大きいが、電極膜厚の影響はそれほどでもない。したがって、挿入損失の温度特性は電極膜厚が無視できるようになれば、カット角で補正できる。 In fields such as mobile communication devices and optical communication devices that require ultra-compact and high stability, surface acoustic wave filters have particularly established themselves as essential electromechanical functional devices. Since the surface acoustic wave filter is manufactured by the same photolithography technology as LSI, it is a device that can be mass-produced. Until now, ST-cut quartz having a parabolic frequency temperature characteristic curve having a frequency variation of 1 ppm / ° C. has been used for a long time as a surface acoustic wave device. This ST-cut crystal is inferior in temperature characteristics as compared with an AT-cut crystal having a third-order temperature characteristic curve of a bulk wave. Until now, cut surface acoustic wave waves with tertiary temperature characteristics have been investigated in various places, but unfortunately they could not be found by Rayleigh wave exploration. However, as described in Patent Document 1, during the experiment, the third-order leaky surface acoustic wave of the Y-cut (right-handed Euler angle near 15 °) belonging to the BT side of the world's first Y-cut quartz crystal in the world. An LST cut having temperature characteristics was discovered. Then, by conducting a detailed examination of this LST cut, it was found that the film thickness dependence was high as in the case of the bulk wave, and that the loss variation was particularly large at high temperatures. This is due to the fact that the propagation loss of the leaky surface acoustic wave is due to the temperature dependence of the propagation loss increasing or decreasing with respect to the temperature change. As a countermeasure, the cutting angle can be corrected by 0.6 °. It was also found to be the most effective. In order to obtain a cubic curve similar to that of an original AT-cut quartz crystal, it is necessary to remove the constraint from the film thickness inherent to the leaky surface acoustic wave. Unlike the silicon device, the surface acoustic wave device uses a piezoelectric crystal. Therefore, when the electrode film is formed on the piezoelectric crystal, the surface acoustic wave has a piezoelectric reaction and a mass load effect. In particular, the SAW filter as a leaky surface acoustic wave using an LST-cut crystal has a temperature characteristic that the conventional SAW filter using a Rayleigh wave appears in the form of a shift of the peak temperature of the center frequency of the mass load. temperature characteristic of the fact that changes in tertiary or linear, LST cut will be strongly affected by the electrode film thickness. In order to optimize the frequency stability, it is necessary to control both parameters of the cut angle and the film thickness. Usually, the propagation loss of the leaky surface acoustic wave is small, but the insertion loss increases rapidly when the temperature characteristic is on the high temperature side. Although the temperature characteristics of the insertion loss of the leaky surface acoustic wave have a large cut angle dependency, the influence of the electrode film thickness is not so great. Therefore, the temperature characteristic of insertion loss can be corrected by the cut angle if the electrode film thickness can be ignored.
現行の移動通信機器はその周波数発振源にATカット水晶のオーバートーン水晶発振器を使用し、さらに逓倍回路にて所要の高い周波数を得ている。そのため、逓倍は水晶発振器のC/Nや位相歪を悪化させるばかりでなくセットの高性能化や小型軽量化への妨げとなっている。それゆえ、ATカット並の三次の温度特性を有し、高周波で直接発振が可能な弾性表面波振動子が長い間の研究開発の目標であった。 Current mobile communication equipment uses an AT-cut crystal overtone crystal oscillator as its frequency oscillation source, and obtains the required high frequency with a multiplier circuit. For this reason, the multiplication not only deteriorates the C / N and phase distortion of the crystal oscillator, but also hinders the improvement in performance and size and weight of the set. Therefore, surface acoustic wave vibrators that have the third-order temperature characteristics comparable to those of AT-cuts and can oscillate directly at high frequencies have long been the goal of research and development.
弾性表面波デバイスの交差指状(IDT:Inter Digital Transducer)電極の質量負荷効果を無くす方法として、特許文献2や特許文献3がある。特許文献2は、圧電体基板と、圧電体基板の上方にエアギャップを介して配設された櫛形電極と、櫛形電極を支持する非圧電体からなる絶縁体ブリッジを備え、櫛形電極により、エアギャップを介して圧電体基板における弾性表面波の励振あるいは受信を行なうことを特徴とする弾性表面波素子である。引用特許文献2の[実施例]の3頁右上13行―14行目に「櫛形電極3a、3bの部分は絶縁体ブリッジ4の裏面に懸垂されるごとくに固着されており、」と記載されている。特許文献3は、回転Yカット水晶LSTカット基板に空隙層を介して対向して形成される漏洩弾性表面波を送受させるIDT電極を設け、IDT電極には電気的に接続されてなる引出電極部から構成されたトランスバーサル型弾性表面波デバイスにおいて、IDT電極部は回転Yカット水晶LSTカット基板の漏洩弾性表面波振動領域を囲うように空隙を設けた絶縁性の単体または複合膜に形成することで電極膜厚負荷の影響を受けない漏洩弾性表面波デバイス構造とした弾性表面波装置である。 As a method of eliminating the mass load effect of an interdigital finger (IDT) electrode of a surface acoustic wave device, there are Patent Document 2 and Patent Document 3. Patent Document 2 includes a piezoelectric substrate, a comb electrode disposed above the piezoelectric substrate via an air gap, and an insulator bridge made of a non-piezoelectric material that supports the comb electrode. A surface acoustic wave element that excites or receives surface acoustic waves on a piezoelectric substrate through a gap. In the 13th to 14th lines in the upper right of page 3 of [Example] of the cited patent document 2, it is described that "the parts of the comb-shaped electrodes 3a and 3b are fixed so as to be suspended from the back surface of the insulator bridge 4". ing. Patent Document 3 provides an IDT electrode for transmitting and receiving a leaky surface acoustic wave formed opposite to a rotating Y-cut quartz crystal LST cut substrate with a gap layer interposed therebetween, and an extraction electrode portion that is electrically connected to the IDT electrode. In the transversal surface acoustic wave device constructed from the above, the IDT electrode part is formed on an insulating single or composite film provided with a gap so as to surround the leakage surface acoustic wave vibration region of the rotated Y-cut quartz LST cut substrate The surface acoustic wave device has a leaky surface acoustic wave device structure that is not affected by the electrode film thickness load.
非特許文献1の3頁の上から3〜4行目に、表面波の励振方法としての上位概念である圧電物質の直接表面に電極を張り付けることなく、表面近傍におかれた電極の電界により励振する方法が示されている。この方法が弾性表面波デバイスのIDT電極の質量負荷効果を無くす方法であり、これは、空間的なエアギャップを介して配設された櫛形電極で漏洩弾性表面波を励振する方法である。IDT電極の配置位置が水晶板の表面から離れるにつれ、弾性表面波の励振強度や受信信号は低下し、IDT電極での送受できる電界強度は弱くなっていく。非特許文献2の第7図に、空間に設けられたIDT電極の水晶板表面からの距離をパラメータとして、得られる漏洩弾性表面波の受信電界強度分布が示されている。特許文献2や特許文献3は、弾性表面波の励振方法として、非特許文献1の構造と異なる下位概念として位置づけられ、その外観図は図10で、断面図は図11で示される。回転Yカット水晶板1000に、空隙空間1004を設けて漏洩弾性表面波を励振するIDT電極1002(1003)を設ける。IDT電極1002(1003)の電極周期は2Lpである。1003(1002)は伝播してきた漏洩弾性表面波を受けるIDT電極である。このエアギャップを設けたIDT電極の電界分布は、図3で示される。回転Yカット水晶板300に空間的な空隙空間304を介して絶縁膜301にIDT電極が回転Yカット水晶板300に漏洩弾性表面波を励振する電界分布が矢印で示されている。図11の断面図で回転Yカット水晶板1100上に空隙空間1104を介して絶縁膜1101で支持されたIDT電極1102、1103が形成されている。エアギャップを介して配設されたIDT電極で漏洩弾性表面波を励振する方法は、IDT電極の配置が水晶板の表面から離れるにつれ漏洩弾性表面波の励振強度や受信信号が劣化をするため、IDT電極と回転Yカット水晶板との空隙を極めて近接させる必要がある。 In the third to fourth lines from the top of page 3 of Non-Patent Document 1, the electric field of the electrode placed in the vicinity of the surface is not attached to the direct surface of the piezoelectric material, which is a superordinate concept as a surface wave excitation method. The method of excitation is shown. This method is a method of eliminating the mass load effect of the IDT electrode of the surface acoustic wave device, and this is a method of exciting a leaky surface acoustic wave with a comb-shaped electrode disposed through a spatial air gap. As the position of the IDT electrode moves away from the surface of the quartz plate, the excitation intensity of the surface acoustic wave and the received signal decrease, and the electric field intensity that can be transmitted and received by the IDT electrode becomes weaker. FIG. 7 of Non-Patent Document 2 shows the received electric field intensity distribution of the leaky surface acoustic wave obtained using the distance from the surface of the quartz plate of the IDT electrode provided in the space as a parameter. Patent Document 2 and Patent Document 3 are positioned as subordinate concepts different from the structure of Non-Patent Document 1 as the surface acoustic wave excitation method, and an external view thereof is shown in FIG. 10 and a sectional view thereof is shown in FIG. The rotating Y-cut quartz plate 1000, provided IDT electrode 1002 for vibration excitation of the leaky surface acoustic wave is provided a void space 1004 (1003). The electrode period of the IDT electrode 1002 (1003) is 2 Lp. Reference numeral 1003 (1002) denotes an IDT electrode that receives the leaked surface acoustic wave. The electric field distribution of the IDT electrode provided with this air gap is shown in FIG. Electric field distribution in the rotating Y-cut quartz plate 300 via a spatial void space 304 insulating film 301 is IDT electrode to vibration excitation of the leaky surface acoustic wave on the rotation Y cut quartz plate 300 is indicated by arrows. In the cross-sectional view of FIG. 11, IDT electrodes 1102 and 1103 supported by an insulating film 1101 are formed on a rotating Y-cut quartz plate 1100 with a gap space 1104 interposed therebetween. The method of exciting a leaky surface acoustic wave with an IDT electrode arranged through an air gap causes the excitation intensity of the leaky surface acoustic wave and the received signal to deteriorate as the arrangement of the IDT electrode moves away from the surface of the quartz plate. It is necessary to make the gap between the IDT electrode and the rotated Y-cut quartz plate very close.
弾性表面波フィルタや弾性表面波振動子は70MHz〜3GHzでの使用周波数領域でIDT電極や反射器を含む漏洩弾性表面波振動用領域(空隙を設けるエリア)は、0.004mm2〜3mm2と極めて微小面積である。空隙を介してIDT電極を空間的に支える誘電体材料で構成された単体または複合膜の厚みは、数千Å〜数μmで機械的強度は充分である。従来の問題点を解決するための手段として、本発明の回転Yカット水晶LSTカット基板に空隙層を介して対向して形成される漏洩弾性表面波を送受させるIDT電極を設けてなるトランスバーサル型弾性表面波フィルタにおいて、回転Yカット水晶LSTカット基板の表面に空隙空間、その上に誘電体、さらに誘電体の上に漏洩弾性表面波を励振するIDT電極が積層状に形成されてなる構造とする弾性表面波フィルタを提供することで、これまでの空間的励振方法による弾性表面波の励振強度や受信信号の劣化の問題を解決することができる。また本発明の共振器型弾性表面波振動子は、回転Yカット水晶LSTカット基板上にグルーブ構造または金属電極埋め込構造の反射器を対向して設けて一対の反射電極構造を形成し、この反射電極間の所定の位置に空隙空間を介して形成された漏洩弾性表面波を励振させるIDT電極とから構成された共振器型弾性表面波振動子において、回転Yカット水晶LSTカット基板の表面に空隙空間、その上に誘電体を形成し、さらに誘電体の上に漏洩弾性表面波を励振する交差指状電極が積層状に形成されてなる構造とすることで電極膜厚負荷の影響を受けない高安定、高信頼性の弾性表面波振動子を提供する。本発明の漏洩弾性表面波の励振方法は、弾性表面波であるレイリー波にも広く適用可能である。 Surface acoustic wave filter and a surface acoustic wave oscillator LSAW vibration region including the IDT electrodes and the reflectors with the use frequency domain in 70MHz~3GHz (area providing the air gap) is a 0.004 mm 2 to 3 mm 2 Very small area. The thickness of a simple substance or a composite film made of a dielectric material that spatially supports the IDT electrode through a gap is several thousand to several μm, and the mechanical strength is sufficient. As a means for solving the conventional problems, a transversal type in which an IDT electrode for transmitting and receiving a leaky surface acoustic wave formed opposite to a rotating Y-cut quartz crystal LST cut substrate of the present invention via a gap layer is provided. The surface acoustic wave filter has a structure in which an air gap space is formed on the surface of the rotating Y-cut quartz LST cut substrate, a dielectric is formed thereon, and an IDT electrode that excites a leaky surface acoustic wave is formed on the dielectric in a laminated form. By providing the surface acoustic wave filter, the problems of the surface acoustic wave excitation intensity and the deterioration of the received signal due to the conventional spatial excitation method can be solved. The resonator-type surface acoustic wave resonator according to the present invention includes a reflector having a groove structure or a metal electrode embedded structure on a rotating Y-cut quartz LST cut substrate to form a pair of reflective electrode structures. in resonator-type surface acoustic wave resonator made up of an IDT electrode which makes vibration excitation of the leaky surface acoustic wave which is formed with a gap space at a predetermined position between the reflecting electrodes, the surface of the rotating Y-cut quartz LST cut substrate In this structure, a dielectric is formed on the gap, and a cross-fingered electrode is formed on the dielectric to excite the leaky surface acoustic wave. To provide a highly stable and highly reliable surface acoustic wave resonator that is not affected. The method for exciting a leaky surface acoustic wave according to the present invention is widely applicable to Rayleigh waves , which are surface acoustic waves.
本発明は、漏洩弾性表面波を励振するIDT電極が回転Yカット水晶LSTカット基板の漏洩弾性表面波振動領域を囲うように、空隙を設けた誘電体の中に形成された構造のトランスバーサル型弾性表面波フィルタや共振器型弾性表面波振動子も提供できる。 The present invention is a transversal type having a structure formed in a dielectric having a gap so that an IDT electrode for exciting a leaky surface acoustic wave surrounds the leaky surface acoustic wave vibration region of a rotating Y-cut quartz LST cut substrate. A surface acoustic wave filter and a resonator type surface acoustic wave vibrator can also be provided.
次に本発明の弾性表面波装置の動作特性について、実施例にもとづき図面を参照にして説明する。図1および図2は、本発明の基本構成の弾性表面波装置のIDT電極部の1周期当たりのIDT電極の断面図とその電界分布を表す。図1は、IDT電極が誘電体の表面に形成された場合では電圧Vの加わった図1での電界は、IDT電極と水晶板との間の距離をd、誘電体101の比誘電率εSと厚みをd1とすると、誘電体101と空間104の電界強度は、数1の数式で表される。数1の左辺は数2であるから、漏洩弾性表面波の励振効率に寄与する空間の電界は誘電体中の電界が弱まった分だけ強くなる。IDT電極の位置が水晶板の表面から極端に離れても、漏洩弾性表面波の励振強度や受信信号の低下をきたすようなことはほとんどない。このIDT電極と誘電体との一体構造は、エアギャップを介して漏洩弾性を励振する最とも効率の良い励振方法である。 Next, the operational characteristics of the surface acoustic wave device of the present invention will be described with reference to the drawings based on examples. 1 and 2 show a cross-sectional view of an IDT electrode per period of an IDT electrode portion of a surface acoustic wave device having a basic configuration of the present invention and an electric field distribution thereof. 1 shows that when the IDT electrode is formed on the surface of the dielectric, the electric field in FIG. 1 to which the voltage V is applied is the distance between the IDT electrode and the crystal plate d, and the relative permittivity ε of the dielectric 101 Assuming that S and the thickness are d 1 , the electric field strength of the dielectric 101 and the space 104 is expressed by Equation 1. Since the left side of Equation 1 is Equation 2, the electric field in the space that contributes to the excitation efficiency of the leaky surface acoustic wave becomes stronger as the electric field in the dielectric is weakened. Even if the position of the IDT electrode is extremely far from the surface of the quartz plate, the excitation intensity of the leaky surface acoustic wave and the received signal are hardly lowered. The integrated structure of the IDT electrode and the dielectric is the most efficient excitation method for exciting leakage elasticity through the air gap.
本発明を実施するための最良の形態の一つとして、右手系のオイラー角15°〜17°で切り出された回転Yカット水晶LSTカット基板に空隙層を介して対向して形成される漏洩弾性表面波を送受させるIDT電極を設けたトランスバーサル型弾性表面波デバイスにおいて、回転Yカット水晶LSTカット基板の表面に空隙空間、その上に誘電体、さらに誘電体の上に漏洩弾性表面波を励振するIDT電極とする積層構造からなる弾性表面波フィルタであり、または、IDT電極部は誘電体の中に形成された構造としたことである。 As one of the best modes for carrying out the present invention, leakage elasticity formed to face a rotating Y-cut quartz LST cut substrate cut out at a right-handed Euler angle of 15 ° to 17 ° with a gap layer interposed therebetween. In a transversal surface acoustic wave device with an IDT electrode that transmits and receives surface waves, an air gap space is formed on the surface of a rotating Y-cut quartz LST cut substrate, a dielectric is formed on the surface, and a leaky surface acoustic wave is excited on the dielectric. In other words, the surface acoustic wave filter has a laminated structure as an IDT electrode, or the IDT electrode portion is formed in a dielectric.
もう一つの本発明を実施するための弾性表面波振動子の最良の形態の一つとして、右手系のオイラー角15°〜17°で切り出された回転Yカット水晶LSTカット基板上にグルーブ構造または金属電極埋め込構造の反射器を対向して設けて一対の反射電極構造を形成し、この反射電極間の所定の位置に空隙層を介して形成された漏洩弾性表面波を励振させるIDT電極とから構成される共振器型弾性表面波振動子において、IDT電極は、回転Yカット水晶LSTカット基板の表面に空隙空間、その上に誘電体、さらに誘電体の上に漏洩弾性表面波を励振するIDT電極とする積層構造からなる共振器型弾性表面波振動子であり、また、IDT電極部が誘電体の中に形成された構造とした共振器型弾性表面波振動子である。 As one of the best modes of the surface acoustic wave vibrator for carrying out the present invention, a groove structure or an LST cut substrate cut out at a right-handed Euler angle of 15 ° to 17 ° is used. An IDT electrode for exciting a leaky surface acoustic wave formed through a gap layer at a predetermined position between the reflective electrodes by forming a pair of reflective electrode structures by providing reflectors with a metal electrode embedded structure facing each other. In the resonator-type surface acoustic wave resonator, the IDT electrode excites a space on the surface of the rotating Y-cut quartz LST substrate, a dielectric on it, and a leaky surface acoustic wave on the dielectric. It is a resonator type surface acoustic wave resonator having a laminated structure as an IDT electrode, and a resonator type surface acoustic wave resonator having an IDT electrode portion formed in a dielectric.
図4と図5は、本発明の一実施例であるトランスバーサル型の漏洩弾性表面波フィルタの外観図とその断面図である。膜厚ゼロでカット角16.2°で切断した回転Yカット水晶板400(500)に、空隙空間404(504)を設け、漏洩弾性表面波を励振する周期2LpのIDT電極402(502)を設ける。403(503)は伝播してきた漏洩弾性表面波を受けるIDT電極である。空隙空間404(504)を設ける方法は、フォトリソグラフィ技術の基本技術として確立されている。最初に、0.1μm〜数μmの厚みのZnO薄膜や金属薄膜を回転Yカット水晶板400(500)に堆積させる。または、数10μmのフォトレジスト膜をコーティングする方法が適用できる。この空隙形成用犠牲層膜の表面を誘電体の薄膜401(501)で被う。401(501)は、空隙を空間的に確保する為のハードコーティングの誘電体膜である。コーティングの誘電体膜としては、パイレックス(登録商標)薄膜、ダイヤモンド薄膜、β‐C3N4窒化物で構成する。フォトリソグラフィ技術で、最下層の空隙形成犠牲層膜をエッチングで除去し、所望の漏洩弾性表面波振動領域を確保するようパターン形成する。この誘電体の薄膜401(501)の上に、漏洩弾性表面波を励振するIDT電極であるアルミニウム薄膜をスパッタ、蒸着法等で形成する。フォトリソグラフィ技術でIDT電極を形成すれば、機械的空間的に保たれたIDT電極が誘電体の薄膜401(501)の表面に形成される。膜の成膜条件を的確に制御することにより、膜は応力緩和され、基本的に安定な膜構成とすることができる。この状態の漏洩弾性表面波では、質量負荷されない。なお、空隙形成用犠牲層膜、ハードコーティング誘電体膜、アルミニウム薄膜の三層構造の状態で、最下層の空隙形成用犠牲層膜をエッチングで除去し空隙空間を形成してもよい。励振効率に関しては、IDT電極と水晶板の空間ギャプが0.1μm〜数μmであることから、IDT電極は誘電体と空隙を挟んで水晶板の上部に形成されるため、水晶板上の漏洩弾性表面波の励振効率に寄与する空間の電界は誘電体中の電界が弱まった分だけ強くなるという特長がある。IDT電極の位置が水晶板の表面から極端に離れても、漏洩弾性表面波の励振強度や受信信号の低下をきたすようなことはほとんどない。このような構造の弾性表面波デバイスは、エアギャップを介して配設されたIDT電極での弾性表面波を励振する最良の方法である。このように本発明では、膜厚ゼロでLSTカット角16.2°を使用することで、漏洩弾性表面波フィルタとして−30℃〜110℃の温度範囲で、周波数変化量が20ppm以下で、挿入損失の変化が0.4dB以下の伝播損失0.0002dB/λ以下の特性を有する弾性表面波デバイスが、実現できる。 4 and 5 are an external view and a cross-sectional view of a transversal type leaky surface acoustic wave filter according to an embodiment of the present invention. Rotation was cut at a cut angle of 16.2 ° with zero thickness Y-cut quartz plate 400 (500), void space 404 (504) is provided, IDT electrodes 402 cycle 2Lp for vibration excitation of the leaky surface acoustic wave (502) Is provided. Reference numeral 403 (503) denotes an IDT electrode that receives the leaked surface acoustic wave. A method of providing the void space 404 (504) is established as a basic technique of the photolithography technique. First, a ZnO thin film or metal thin film having a thickness of 0.1 μm to several μm is deposited on the rotating Y-cut quartz plate 400 (500). Alternatively, a method of coating a photoresist film of several tens of μm can be applied. The surface of the gap forming sacrificial layer film is covered with a dielectric thin film 401 (501). Reference numeral 401 (501) denotes a hard coating dielectric film for spatially securing a void. The dielectric film of the coating is composed of a Pyrex (registered trademark) thin film, a diamond thin film, and β-C 3 N 4 nitride. Using a photolithography technique, the lowermost void forming sacrificial layer film is removed by etching, and a pattern is formed so as to ensure a desired leaky surface acoustic wave vibration region. This on the dielectric thin film 401 (501), an aluminum thin film is IDT electrodes for vibration excitation of the leaky surface acoustic wave sputtering, an evaporation method, or the like. When an IDT electrode is formed by photolithography, an IDT electrode maintained mechanically and spatially is formed on the surface of the dielectric thin film 401 (501). By precisely controlling the film forming conditions, the film is relieved of stress and can be basically made into a stable film structure. The leaky surface acoustic wave in this state is not mass loaded. In the three-layer structure of the void forming sacrificial layer film, the hard coating dielectric film, and the aluminum thin film, the lowermost void forming sacrificial layer film may be removed by etching to form a void space. Regarding the excitation efficiency, since the space gap between the IDT electrode and the crystal plate is 0.1 μm to several μm, the IDT electrode is formed on the upper portion of the crystal plate with the dielectric and the gap interposed therebetween. The electric field in the space that contributes to the excitation efficiency of the surface acoustic wave has a feature that it becomes stronger as the electric field in the dielectric is weakened. Even if the position of the IDT electrode is extremely far from the surface of the quartz plate, the excitation intensity of the leaky surface acoustic wave and the received signal are hardly lowered. The surface acoustic wave device having such a structure is the best method for exciting the surface acoustic wave at the IDT electrode disposed through the air gap. As described above, in the present invention, by using an LST cut angle of 16.2 ° with a film thickness of zero, a leaky surface acoustic wave filter is inserted within a temperature range of −30 ° C. to 110 ° C. with a frequency variation of 20 ppm or less. A surface acoustic wave device having a characteristic of a propagation loss of 0.0002 dB / λ or less with a change in loss of 0.4 dB or less can be realized.
図6と図7は、本発明のもう一つの実施例であるトランスバーサル型漏洩弾性表面波フィルタの外観図とその断面図である。膜厚ゼロでカット角16.2°で切断した回転Yカット水晶板600(700)に、空隙空間604(704)を設けて、誘電体601(701)の中に漏洩弾性表面波を励振する周期2LpのIDT電極602(702)を設ける。603(703)は伝播してきた漏洩弾性表面波を受けるIDT電極である。空隙空間604(704)を設ける方法は、フォトリソグラフィ技術の基本技術として確立されている。最初に、0.1μm〜数μmの厚みのZnO薄膜や金属薄膜を回転Yカット水晶板600(700)に堆積させる。または、数10μmのフォトレジスト膜をコーティングする方法も適用できる。この空隙形成用犠牲層膜の表面を誘電体の薄膜で被う。この誘電体の薄膜は、空隙を空間的に確保する為のハードコーティングの誘電体膜である。コーティング膜としては、パイレックス(登録商標)薄膜、ダイヤモンド薄膜、β‐C3N4窒化物で構成する。フォトリソグラフィ技術で、最下層の空隙形成用犠牲層膜をエッチングで除去し、所望の漏洩弾性表面波振動領域を確保するようパターン形成する。この絶縁性の誘電体薄膜の上に、漏洩弾性表面波を励振するIDT電極であるアルミニウム薄膜をスパッタ、蒸着法等で形成する。フォトリソグラフィ技術でIDT電極を形成すれば、機械的空間的に保たれたIDT電極は誘電体の表面に形成される。このIDT電極の上にさらに透明なSiO2の誘電体を堆積させることで、IDT電極の機械的な強度の強化ができる。この状態の漏洩弾性表面波では、IDT電極の質量負荷は生じない。なお、空隙形成用犠牲層膜、ハードコーティング誘電体膜、アルミニウム薄膜、ハードコーティング誘電体膜の四層構造とし、最下層の空隙形成用犠牲層膜をエッチングで除去して弾性表面波デバイスを構成してもよい。漏洩弾性表面波の励振効率に関しては、IDTと水晶板の空間ギャプが1μm〜数μmであることから、IDT電極の形成する電界は誘電体を介して、空隙空間から水晶板表面に効率的に作用する。漏洩弾性表面波の励振効率に関しては、水晶板表面の空隙空間の電界は誘電体中の電界が弱まった分、εS倍水晶板上の空隙空間の電界は強くなる。IDT電極は、透明のSiO2膜で被われている。このように本発明は、膜厚ゼロでLSTカット角16.2°を使用することで、漏洩弾性表面波フィルタとして−30℃〜110℃の温度範囲で、周波数変化量が20ppm以下で、挿入損失の変化が0.4dB以下の伝播損失0.0002dB/λ以下の特性を有するものが、実現できる。 6 and 7 are an external view and a sectional view of a transversal type leaky surface acoustic wave filter which is another embodiment of the present invention. The rotation was cut at a cut angle of 16.2 ° with zero thickness Y-cut quartz plate 600 (700), provided void space 604 (704), vibration excitation of the leaky surface acoustic wave in the dielectric 601 (701) An IDT electrode 602 (702) having a period of 2Lp is provided. Reference numeral 603 (703) denotes an IDT electrode that receives the leaked surface acoustic wave. A method of providing the void space 604 (704) is established as a basic technique of the photolithography technique. First, a ZnO thin film or metal thin film having a thickness of 0.1 μm to several μm is deposited on the rotating Y-cut quartz plate 600 (700). Alternatively, a method of coating a photoresist film of several tens of μm can be applied. The surface of the gap forming sacrificial layer film is covered with a dielectric thin film. This dielectric thin film is a hard coating dielectric film for spatially securing voids. The coating film is composed of a Pyrex (registered trademark) thin film, a diamond thin film, and β-C 3 N 4 nitride. By using a photolithography technique, the lowermost layer forming sacrificial layer for void formation is removed by etching, and a pattern is formed so as to secure a desired leaky surface acoustic wave vibration region. On the insulating dielectric thin film, an aluminum thin film is IDT electrodes for vibration excitation of the leaky surface acoustic wave sputtering, an evaporation method, or the like. If the IDT electrode is formed by the photolithography technique, the mechanically and spatially maintained IDT electrode is formed on the surface of the dielectric. By depositing a transparent SiO 2 dielectric on the IDT electrode, the mechanical strength of the IDT electrode can be enhanced. In the leaky surface acoustic wave in this state, the mass load of the IDT electrode does not occur. A four-layer structure consisting of a gap forming sacrificial layer film, a hard coating dielectric film, an aluminum thin film, and a hard coating dielectric film, and forming the surface acoustic wave device by removing the lowermost layer forming the sacrificial layer film by etching. May be. Regarding the excitation efficiency of the leaky surface acoustic wave, since the space gap between the IDT and the quartz plate is 1 μm to several μm, the electric field formed by the IDT electrode is efficiently transferred from the gap space to the quartz plate surface via the dielectric. Works. For the excitation efficiency of the leaky surface acoustic wave, the electric field of void space of the quartz plate surface amount that weakened electric field in the dielectric, the electric field of void space in the epsilon S times quartz plate is increased. The IDT electrode is covered with a transparent SiO 2 film. As described above, the present invention uses a LST cut angle of 16.2 ° with a film thickness of zero, and is used as a leaky surface acoustic wave filter with a frequency variation of 20 ppm or less in a temperature range of −30 ° C. to 110 ° C. It is possible to realize one having a characteristic in which a change in loss is 0.4 dB or less and a propagation loss is 0.0002 dB / λ or less.
図8と図9は、本発明の他の実施例である共振器型の漏洩弾性表面波共振器の外観図と断面図である。回転Yカット水晶板800(900)に、共振器を構成する反射器802、803を設ける。この反射器802、803の形成は、ドライエッチングで反射効率の高い溝加工をする。反射効率をさらに高めるためには、この溝加工されたグルーブにアルミニウム膜を埋めてもよい。しかしながら、アルミニウム膜を堆積させると、質量負荷の影響がでてくるので、注意する必要がある。反射器802、803の間の最適位置に空隙空間を設けて、漏洩弾性表面波を励振するIDT電極805(905)を設ける。空隙空間804(904)を設ける方法は、フォトリソグラフィ技術では、基本的技術として確立されている。最初に、0.1μm〜数μmの厚みのZnO薄膜や金属薄膜を水晶板に堆積させる。または、数10μmのフォトレジスト膜をコーティングする方法も適用できる。この空隙形成用犠牲層膜の表面を誘電体の薄膜801(901)で被う。801(901)は、空隙を空間的に確保する為のハードコーティングの誘電体膜である。コーティング膜としては、パイレックス(登録商標)薄膜、ダイヤモンド薄膜、β‐C3N4窒化物で構成する。フォトリソグラフィ技術で、最下層の空隙形成用犠牲層膜をエッチングで除去し、所望の漏洩弾性表面波振動領域を確保するようパターン形成する。この絶縁性の誘電体薄膜801(901)の上に、漏洩弾性表面波を励振するIDT電極であるアルミニウム薄膜をスパッタ、蒸着法等で形成する。フォトリソグラフィ技術でIDT電極を形成すれば、機械的空間的に保たれたIDT電極が誘電体薄膜801(901)の表面に形成でき、優れた漏洩弾性表面波共振器が実現できる。膜の成膜条件を的確に制御することにより、膜は応力緩和され、基本的に安定な膜構成とすることができる。この状態の漏洩弾性表面波は、質量負荷は生じない。なお、空隙形成用犠牲層膜、ハードコーティングの誘電体膜、アルミニウム薄膜の三層構造とし、最下層の空隙形成用犠牲層膜をエッチングで除去してもよい。なお、空隙形成用犠牲層膜、ハードコーティング誘電体膜、アルミニウム薄膜、ハードコーティング誘電体膜の四層構造としてもよい。このように本発明の漏洩弾性表面波共振器は、膜厚ゼロの状態でLSTカット角16.2°を使用することで、漏洩弾性表面波共振器として、−30℃〜110℃の広い温度範囲で、周波数変化量が20ppm以下のQの高い、SAWレゾネータが実現できる。 8 and 9 are an external view and a sectional view of a resonator-type leaky surface acoustic wave resonator according to another embodiment of the present invention. Reflectors 802 and 803 constituting a resonator are provided on the rotated Y-cut quartz plate 800 (900). The reflectors 802 and 803 are formed by performing a groove process with high reflection efficiency by dry etching. In order to further improve the reflection efficiency, the grooved groove may be filled with an aluminum film. However, when an aluminum film is deposited, the influence of mass load appears, so care must be taken. And a void space is provided to the optimum position between the reflectors 802 and 803, providing an IDT electrode 805 (905) for vibration excitation of the leaky surface acoustic wave. A method of providing the void space 804 (904) is established as a basic technique in the photolithography technique. First, a ZnO thin film or metal thin film having a thickness of 0.1 μm to several μm is deposited on a quartz plate. Alternatively, a method of coating a photoresist film of several tens of μm can be applied. The surface of the gap forming sacrificial layer film is covered with a dielectric thin film 801 (901). Reference numeral 801 (901) denotes a hard coating dielectric film for spatially securing voids. The coating film is composed of a Pyrex (registered trademark) thin film, a diamond thin film, and β-C 3 N 4 nitride. By using a photolithography technique, the lowermost layer forming sacrificial layer for void formation is removed by etching, and a pattern is formed so as to secure a desired leaky surface acoustic wave vibration region. On the insulating dielectric thin film 801 (901), an aluminum thin film is IDT electrodes for vibration excitation of the leaky surface acoustic wave sputtering, an evaporation method, or the like. If the IDT electrode is formed by the photolithography technique, the IDT electrode maintained in a mechanical space can be formed on the surface of the dielectric thin film 801 (901), and an excellent leakage surface acoustic wave resonator can be realized. By precisely controlling the film forming conditions, the film is relieved of stress and can be basically made into a stable film structure. The leaky surface acoustic wave in this state does not cause a mass load. A three-layer structure of a void forming sacrificial layer film, a hard coating dielectric film, and an aluminum thin film may be used, and the lowermost void forming sacrificial layer film may be removed by etching. A four-layer structure of a sacrificial layer film for void formation, a hard coating dielectric film, an aluminum thin film, and a hard coating dielectric film may be used. As described above, the leaky surface acoustic wave resonator according to the present invention uses an LST cut angle of 16.2 ° in a state where the film thickness is zero, so that the leaky surface acoustic wave resonator has a wide temperature range of −30 ° C. to 110 ° C. Within a range, a high QW SAW resonator with a frequency variation of 20 ppm or less can be realized.
上述したように本発明の弾性表面波装置は、従来の固定観念であった漏洩弾性表面波やレーリー弾性表面波の励起用電極として使用されているIDT電極の形成を回転Yカット水晶板の表面から空間的に浮かせてIDT電極により、漏洩弾性表面波の励振効率や受信効率を高めるため、IDT電極と水晶板表面の間の空隙空間に誘電体を挿入することで電界強度分布を高め、質量負荷効果を弾性表面波に与えることなく、膜厚の影響を無くすことで、本来の漏洩弾性表面波の有する優れた3次温度特性を得られるようにしたもので、長期エージング的にも、水晶表面とIDT電極との間の界面で生じる数々の問題点を克服できる。この手法は、大電力用SAWに関しても表面での弾性振動の影響でIDT電極のダメージを回復できることから、新たな分野を開拓できる可能性があり、その工業的価値はきわめて高い。 As described above, the surface acoustic wave device of the present invention is the surface of a rotating Y-cut quartz plate that forms IDT electrodes that are used as excitation electrodes for leaky surface acoustic waves and Rayleigh surface acoustic waves, which was a conventional concept. In order to increase the excitation efficiency and reception efficiency of leaky surface acoustic waves by using IDT electrodes that are spatially floated from the surface, the electric field strength distribution is increased by inserting a dielectric into the gap space between the IDT electrode and the quartz plate surface, and the mass By removing the influence of film thickness without giving load effect to surface acoustic waves, it is possible to obtain the excellent third-order temperature characteristics of the original leaky surface acoustic waves. A number of problems that occur at the interface between the surface and the IDT electrode can be overcome. This method can recover the damage of IDT electrodes under the influence of elastic vibration on the surface even for high-power SAW, so it may open up a new field, and its industrial value is extremely high.
100 水晶板
101 絶縁性膜
102 空隙
200 水晶板
201 絶縁性膜
202 空隙
300 水晶板
301 絶縁性膜
302 空隙
400 水晶板
401 絶縁性膜
402 IDT電極
403 IDT電極
404 空隙
500 水晶板
501 絶縁性膜
502 IDT電極
503 IDT電極
504 空隙
600 水晶板
601 絶縁性膜
602 IDT電極
603 IDT電極
604 空隙
700 水晶板
701 絶縁性膜
702 IDT電極
703 IDT電極
704 空隙
800 水晶板
801 絶縁性膜
802 反射電極
803 反射電極
804 IDT電極
805 空隙
900 水晶板
901 絶縁性膜
902 反射電極
903 反射電極
904 IDT電極
905 空隙
1000 水晶板
1001 絶縁性膜
1002 IDT電極
1003 IDT電極
1004 空隙
1100 水晶板
1101 絶縁性膜
1102 IDT電極
1103 IDT電極
1104 空隙
100 crystal plate 101 insulating film 102 gap 200 crystal plate 201 insulating film 202 gap 300 crystal plate 301 insulating film 302 gap 400 crystal plate 401 insulating film 402 IDT electrode 403 IDT electrode 404 gap 500 crystal plate 501 insulating film 502 IDT electrode 503 IDT electrode 504 Gap 600 Crystal plate 601 Insulating film 602 IDT electrode 603 IDT electrode 604 Gap 700 Crystal plate 701 Insulating film 702 IDT electrode 703 IDT electrode 704 Gap 800 Crystal plate 801 Insulating film 802 Reflective electrode 803 Reflective electrode 804 IDT electrode 805 Gap 900 Crystal plate 901 Insulating film 902 Reflective electrode 903 Reflective electrode 904 IDT electrode 905 Gap 1000 Crystal plate 1001 Insulating film 1002 IDT electrode 1003 IDT electrode 1004 Gap 1100 Crystal plate 1101 Insulating film 1102 IDT electrode 1103 IDT Electrode 11 4 gap
Claims (2)
2. The surface acoustic wave device according to claim 1, wherein the interdigital electrodes are formed in a dielectric.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005158755A JP3851336B1 (en) | 2005-05-31 | 2005-05-31 | Surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005158755A JP3851336B1 (en) | 2005-05-31 | 2005-05-31 | Surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3851336B1 true JP3851336B1 (en) | 2006-11-29 |
JP2006339742A JP2006339742A (en) | 2006-12-14 |
Family
ID=37544660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005158755A Expired - Fee Related JP3851336B1 (en) | 2005-05-31 | 2005-05-31 | Surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3851336B1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2224591A2 (en) | 2009-02-27 | 2010-09-01 | Epson Toyocom Corporation | Surface acoustic wave resonator and surface acoustic wave oscillator |
WO2010098139A1 (en) | 2009-02-27 | 2010-09-02 | エプソントヨコム株式会社 | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device |
WO2012137027A1 (en) | 2011-04-07 | 2012-10-11 | Gvr Trade Sa | Surface acoustic wave resonator |
US8471434B2 (en) | 2010-08-26 | 2013-06-25 | Seiko Epson Corporation | Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus |
US8598766B2 (en) | 2010-12-03 | 2013-12-03 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8723395B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723396B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723394B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723393B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8928432B2 (en) | 2010-08-26 | 2015-01-06 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US9048806B2 (en) | 2010-09-09 | 2015-06-02 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US9088263B2 (en) | 2010-06-17 | 2015-07-21 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
CN110247639A (en) * | 2019-07-01 | 2019-09-17 | 中电科技德清华莹电子有限公司 | A kind of RF surface acoustic wave fliter chip and manufacture craft |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049818A (en) | 2010-08-26 | 2012-03-08 | Seiko Epson Corp | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
JP5648908B2 (en) | 2010-12-07 | 2015-01-07 | セイコーエプソン株式会社 | Vibration device, oscillator, and electronic device |
-
2005
- 2005-05-31 JP JP2005158755A patent/JP3851336B1/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8952596B2 (en) | 2009-02-27 | 2015-02-10 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
US8933612B2 (en) | 2009-02-27 | 2015-01-13 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
EP2224591A2 (en) | 2009-02-27 | 2010-09-01 | Epson Toyocom Corporation | Surface acoustic wave resonator and surface acoustic wave oscillator |
US9762207B2 (en) | 2009-02-27 | 2017-09-12 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument |
US8502625B2 (en) | 2009-02-27 | 2013-08-06 | Seiko Epson Corporation | Surface acoustic wave resonator and surface acoustic wave oscillator |
WO2010098139A1 (en) | 2009-02-27 | 2010-09-02 | エプソントヨコム株式会社 | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device |
US9537464B2 (en) | 2010-06-17 | 2017-01-03 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US9088263B2 (en) | 2010-06-17 | 2015-07-21 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8471434B2 (en) | 2010-08-26 | 2013-06-25 | Seiko Epson Corporation | Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus |
US8928432B2 (en) | 2010-08-26 | 2015-01-06 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
US8723395B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723396B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723393B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8723394B2 (en) | 2010-09-09 | 2014-05-13 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US9048806B2 (en) | 2010-09-09 | 2015-06-02 | Seiko Epson Corporation | Surface acoustic wave device, electronic apparatus, and sensor apparatus |
US8598766B2 (en) | 2010-12-03 | 2013-12-03 | Seiko Epson Corporation | Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus |
WO2012137027A1 (en) | 2011-04-07 | 2012-10-11 | Gvr Trade Sa | Surface acoustic wave resonator |
CN110247639B (en) * | 2019-07-01 | 2024-05-07 | 中电科技德清华莹电子有限公司 | Radio frequency surface acoustic wave filter chip and manufacturing process |
CN110247639A (en) * | 2019-07-01 | 2019-09-17 | 中电科技德清华莹电子有限公司 | A kind of RF surface acoustic wave fliter chip and manufacture craft |
Also Published As
Publication number | Publication date |
---|---|
JP2006339742A (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3851336B1 (en) | Surface acoustic wave device | |
US11539344B2 (en) | Elastic wave device and method for producing the same | |
KR102067310B1 (en) | Acoustic wave element and antenna shared apparatus employing same | |
JP7546656B2 (en) | Transducer structures for acoustic wave devices. | |
WO2017132184A1 (en) | Guided surface acoustic wave device providing spurious mode rejection | |
Assila et al. | High-frequency resonator using A 1 Lamb wave mode in LiTaO 3 plate | |
JP6530494B2 (en) | Surface acoustic wave device | |
CN111010130B (en) | Bulk acoustic wave resonator with temperature compensation layer and electrical layer, filter and electronic equipment | |
US9843304B2 (en) | Transducer with bulk waves surface-guided by synchronous excitation structures | |
JPWO2005086345A1 (en) | Boundary acoustic wave device | |
JP2024001367A (en) | Converter structure for generation source suppression in saw filter device | |
KR20030003654A (en) | Surface acoustic wave device | |
Lee et al. | L-Band LiNbO 3/SiO 2/Sapphire Longitudinal Leaky Saw (LLSAW) Resonators with High Figure of Merit | |
US11469735B2 (en) | Acoustic wave device, filter, and multiplexer | |
JP2000332570A (en) | Piezoelectric resonator | |
CN117321914A (en) | Resonator device | |
EP3796555A1 (en) | Transducer structure for an acoustic wave device | |
JP2009188939A (en) | Thin film bulk wave acoustic resonator | |
JP7401999B2 (en) | elastic wave element | |
WO2023213412A1 (en) | An acoustic resonator device exploiting al lamb mode | |
JP2003017969A (en) | Surface acoustic wave device | |
CN118556369A (en) | Acoustic resonator firmly mounted on high acoustic velocity substrate | |
JP2008236463A (en) | Saw resonator element and saw resonator | |
FBAR et al. | BAW MATERIALS AND PROPAGATION II |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110908 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120908 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |