JP3850974B2 - Refractory spray construction method and spray material used in this method - Google Patents

Refractory spray construction method and spray material used in this method Download PDF

Info

Publication number
JP3850974B2
JP3850974B2 JP03820098A JP3820098A JP3850974B2 JP 3850974 B2 JP3850974 B2 JP 3850974B2 JP 03820098 A JP03820098 A JP 03820098A JP 3820098 A JP3820098 A JP 3820098A JP 3850974 B2 JP3850974 B2 JP 3850974B2
Authority
JP
Japan
Prior art keywords
spraying
weight
refractory
nozzle
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03820098A
Other languages
Japanese (ja)
Other versions
JPH11223469A (en
Inventor
孝三 山田
統一 白曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP03820098A priority Critical patent/JP3850974B2/en
Publication of JPH11223469A publication Critical patent/JPH11223469A/en
Application granted granted Critical
Publication of JP3850974B2 publication Critical patent/JP3850974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、接着強度に優れ且つ厚みが大きい施工体の形成が可能な耐火物吹付け施工方法と、それに使用する吹付材に関する。
【0002】
【従来の技術】
各種の溶融金属容器あるいはそれに付随する装置に使用される耐火物は、損耗が進むと耐火物を吹付けて補修することが行われている。
この吹付け施工方法の一つとして、予め施工水分を添加した吹付材をノズル内にて急結剤を添加して吹付ける方法が提案されている(例えば特開昭54−61005号公報)。この方法は、吹付材を圧送ポンプにてノズルに供給できることにより、吹付材を空気圧送する通常の吹付け施工に比べて一度に多量の吹付けが可能となり、施工能率に優れている。
【0003】
【発明が解決しようとする課題】
吹付材は、壁面に対する接着強度がその性能を大きく左右する。例えば金属容器の内張り補修などにおける吹付けでは、溶融金属による物理的・熱的応力、容器移動に伴う衝撃などで、吹付け施工体の剥離が生じやすい。いかに耐食性に優れた吹付材でも、剥離するとたちまち寿命となる。
【0004】
吹付け効果を顕著にするためには、厚みの大きな施工体を得ることが必要である。しかし、施工体厚さが大きくなると施工体の自重に加え、施工体内の温度勾配の大きさからくるソリにより、一層剥離が生じやすい。
また、上記従来の吹付け施工方法では、ノズル内で珪酸ソーダなどの急結剤を添加しているが、吹付材のダレ落ちのために厚さの大きな施工体を迅速に形成できない。
【0005】
本発明は、予め施工水分を添加した吹付材を圧送ポンプにてノズルに供給し、該ノズル内にて急結剤を添加して吹付ける施工方法において、接着強度に優れ且つ厚みが大きい施工体の形成が可能な施工方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は耐火物吹付け施工方法において、その特徴とするところは、粒径0.1mm以下の酸化マグネシウムを1〜40重量%含む耐火性骨材100重量部にアルミナセメント1〜15重量部添加した吹付材を、予め施工水分を添加した後、圧送ポンプにてノズルに供給し、該ノズル内にてアルミン酸カリウム水溶液を添加して吹付けることにある。
【0007】
本発明によれば、熱間での接着強度が格段に優れた吹付け施工体を形成することができる。その理由は以下のとおりと考えられる。すなわち、ノズル内にて吹付材に添加されたアルミン酸カリウム水溶液中のアルミン酸カリウム成分が炉壁残熱などで熱分解し、アルミナ成分を生成し、このアルミナ成分と吹付材の骨材の酸化マグネシウムとが反応してAl23・MgO系スピネル(以下、スピネルと称する)のボンドを形成することにより、吹付材の接着強度が向上する。
【0008】
また、アルミン酸カリウムの分解でアルミナ成分と共に生成されるカリウムが化学的にきわめて活性なことで、接着強度に寄与する前記スピネルの生成を助長するためと考えられる。
【0009】
この種の吹付施工において、急結剤としてアルミン酸ソーダ水溶液の使用は知られている(特開昭62−36070号公報)。しかし、吹付材の接着強度において本発明の如き顕著な効果は得られない。本発明の効果は、粒径0.1mm以下の酸化マグネシウムを1〜40重量%含む耐火骨材との組み合わせによって得られる。粒径ガ0.1mmを超える酸化マグネシウムでは接着強度に寄与するスピネルの生成量が不十分であり、また、酸化マグネシウムの割合が40重量%を超えるとスピネル生成に伴う体積膨張によって接着強度が低下する。
【0010】
アルミン酸カリウム水溶液はさらに酸化マグネシウムの凝集に作用し、アルミン酸ソーダ水溶液などの使用に比べて、吹付材の付着性が大きく向上する。その結果、吹付材は吹付時のダレもなく、厚さの大きな施工体をより迅速に形成することができる。
【0011】
【発明の実施の形態】
本発明において吹付材に添加する急硬剤としてのアルミン酸カリウム水溶液は、濃度を好ましくは30〜80重量%とし、K2O/Al23はモル比1.7〜2.6が好ましい。また、吹付材に対する添加割合は、施工水分添加後の吹付材100重量部に対するアルミン酸カリウム水溶液の添加割合は0.3〜3重量部が好ましい。
【0012】
本発明で使用する急硬剤はアルミン酸カリウム単独の水溶液の使用が最も好ましいが、例えばアルミン酸ソ−ダが共存した水溶液の使用否定するものではない。しかし、その場合も本発明の効果得るために、水溶液中のアルミン酸カリウム濃度を30〜80重量%とし、K2O/Al23はモル比1.7〜2.6とすることが好ましい。
【0013】
吹付材は耐火骨材とアルミナセメントを主材とし、耐火骨材には粒径0.1mm以下の酸化マグネシウムを1〜40重量%含むことが必要である。粒径0.1mm以下の酸化マグネシウムの割合が1重量%未満ではアルミン酸カリウムとの反応性に劣るため、吹付材の接着強度および付着性について、本発明の効果が得られない。粒径0.1mm以下の酸化マグネシウムの割合が40重量%を超えるとアルミン酸カリウムとの反応によるスピネル生成が過多となってスピネル生成に伴う体積膨張のためか、接着強度が逆に低下する。
【0014】
酸化マグネシウムの具体例は、焼結または電融のマグネシアクリンカーあるいは微粉が得られやすい軽焼マグネシアとする。なお、本発明で規定した粒径0.1mm以下の酸化マグネシウムには、例えば粒径0.045mm以下といった超微粒も含まれるが、超微粒の場合は過度のスピネル生成を防ぐために、その配合割合は本発明の限定割合の範囲内において、少ない領域がより好ましい。
【0015】
粒径0.1mm以下の酸化マグネシウム以外の耐火性骨材の種類は耐食性および容積安定性に優れた焼結アルミナ、電融アルミナなどのアルミナが好ましいが、他にもばん土けつ岩、ムライト、ろう石、シャモット、アンダルサイト、ケイ石、焼結マグネシア、電融マグネシア、焼結マグネシア−カルシア、電融マグネシア−カルシア、電融Al23−MgO系スピネル、焼結Al23−MgO系スピネル、クロム鉱、ボーキサイト、シリマナイト、ジルコンなどでもよい。また、これらに、必要に応じて例えばジルコニア、炭素、炭化珪素、粘土、仮焼アルミナ、軽焼マグネシア、揮発シリカなどを組み合わせてもよい。さらに、粒径0.1mmを超える焼結マグネシアあるいは電融マグネシアを併用してもよい。
【0016】
耐火性骨材全体の粒度構成、アルミナセメントの割合などは従来材質と特に変わりない。耐火性骨材全体の粒度は、本発明で必須とする粒径0.1mm以下の酸化マグネシウムの使用量も考慮して、粗粒、中粒、微粒に調整する。アルミナセメントの割合は、耐火性骨材100重量部に対して1〜15重量部とし、1重量部未満では施工体の強度に劣り、15重量部を超えると耐食性の低下を招く。
【0017】
他に必要によっては有機繊維、金属繊維、分散剤、疑集剤、減水剤、金属粉、発泡剤、硬化遅延剤、硬化促進剤、粗大耐火粒子、有機質マイクロバルーンなどを組み合わせてもよい。
【0018】
繊維類の添加は、施工体の強度向上に効果がある。有機繊維の場合は、さらに乾燥爆裂防止の効果を併せ持つ。有機繊維の具体例は、ポリプロピレン、ナイロン、PVA、ポリエチレン、アクリル、ポリエステル、パルプなどである。金属繊維の具体例は、ステンレス鋼、鉄、アルミニウムなどである。最適な添加割合は繊維の材質によって異なる。耐火性骨材100重量部に対して有機繊維は0.05〜1重量部、金属繊維は0.5〜7重量部が好ましい。
【0019】
分散剤は吹付材の流動性を向上させる効果を持つ。その具体例としては、トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ポリアクリル酸ソーダ、ポリアクリルリン酸ソーダ、ポリカルボン酸、リグニンスルホン酸ソーダなどである。好ましい添加量は、骨材100重量部に対して0.01〜1重量部である。
【0020】
本発明は以上の組成からなる吹付材を予め施工水分を添加混合した後、圧送ポンプにてノズルに供給し、ノズル内にて急結剤としてアルミン酸カリウム溶液を添加しつつ吹き付ける。吹付材の混練時に添加する施工水分の適正量は、耐火性骨材の粒度構成、分散剤の有無などによっても異なるが、吹付材組成全体を100重量部にした場合、3〜15重量部が好ましい。
【0021】
図1は、本発明で使用する吹付け装置を模式的に示したものである。ノズル(1)には急結剤供給管(2)が接続され、圧送ノズル(図示せず)から供給された吹付材はノズル(1)内にてアルミン酸カリウムが添加された後、壁面(3)吹き付けられる。(4)は吹付施工体である。
【0022】
図には示していないが、急結剤の供給は、圧縮空気と共に行なうことで吹付材と急結剤との混合が促進される。圧送ポンプは、スクイズ式、スクリュー式、ピストン式などがあるが、圧送時に高圧が得られるピストン式が好ましい。
図では急結剤供給管(3)の接続箇所はノズル(2)の先端近傍であるが、これに限らず、作業環境に合わせて図に示した位置より後方でもよい。
【0023】
【実施例】
表1および表2は、本発明実施例および比較例とそれらの試験結果である。各例は、ピストン式の圧送ポンプを用いた吹付け装置を使用し、実験室と実機のそれぞれで試験した。
【0024】
実験室での試験では、不定形耐火物より構成された表面温度が約800℃の垂直壁面に対し、ノズル先端から被吹付面の距離を500mmに保ち、厚さ200mmの施工体の形成をめざして200kgを吹付けた。その際、吹付材は表に示す施工水分量を持って予め混練し、圧送ポンプにてノズルに供給し、55〜90kg/minの吐出速度で吹き付けた。急硬剤は、ノズル先端の近傍で補助圧搾空気と共に吹付材に添加した。
【0025】
付着性;付着率を求めた。
接着強度;吹付施工体を壁面に接着した状態で切り出し、剪断応力試験装置にて、壁面に対する吹付施工体の接着強度を測定した。
耐食性;吹付施工体を切り出し、110℃×24時間の加熱乾燥後、溶鋼を溶剤とした回転侵食試験にて溶損寸法を測定し、比較例1の溶損寸法を100とした指数で示した。数値が小さいほど耐食性に優れている
【0026】
実機での試験は、不定形耐火物で内張りされた溶鋼容器の内張りの熱間補修を行なった。、ダレなどを目視観察し、付着性を5段階で評価した(付着性大5←→小1)。耐用性は吹付施工体の損耗速度をmm/チャージで測定した。
【0027】
【表1】

Figure 0003850974
実機での試験において、本発明実施例による方法はいずれも吹付材の付着性および接着性に優れた効果を得ることができた。また、実機試験においても本発明実施例によれば吹付材のダレも殆どなく、厚さ100〜200mmの施工体をが迅速に形成でき、しかもその優れた接着性によって耐用性も格段に向上した。
【0028】
これに対して急結剤が異なる比較例1、比較例2および粒径が0.1mm以下の酸化マグネシウムを吹付材に含まない比較例3は、共に吹付材の付着性および接着性に劣る。比較例4は、粒径が0.1mm以下の範囲内にある酸化マグネシウムの割合が多過ぎて接着性に劣る。比較例5はアルミナセメントの割合が多過ぎて耐食性に劣る。
【0029】
【効果】
本発明の施工方法によれば以上のとおり、吹付材について接着性の向上と同時に厚さの大きな施工体を迅速かつ確実に形成でき、溶融金属容器の内張の熱間補修などにおいて優れた補修効果を発揮する。
【図面の簡単な説明】
【図1】本発明で使用する吹付け装置例を模式的に示したものである。
【符号の説明】
1 ノズル
2 急結剤供給管
3 壁面
4 吹付施工体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refractory spraying construction method capable of forming a construction body having excellent adhesive strength and a large thickness, and a spraying material used therefor.
[0002]
[Prior art]
Refractories used in various molten metal containers or devices associated therewith are repaired by spraying refractories as wear increases.
As one of the spraying methods, there has been proposed a method in which a spraying material to which construction moisture has been added in advance is added and sprayed in a nozzle (for example, JP-A-54-61005). Since this method can supply a spray material to a nozzle with a pressure pump, compared with the normal spray construction which pneumatically feeds a spray material, a large amount of spraying is attained at once, and it is excellent in construction efficiency.
[0003]
[Problems to be solved by the invention]
As for the spray material, the adhesive strength to the wall surface greatly affects its performance. For example, in the spraying for repairing the lining of a metal container or the like, peeling of the sprayed construction body is likely to occur due to physical / thermal stress caused by molten metal, impact due to container movement, or the like. No matter how much the spraying material has excellent corrosion resistance, it will soon have a life when peeled off.
[0004]
In order to make the spraying effect remarkable, it is necessary to obtain a construction body having a large thickness. However, when the construction body thickness is increased, peeling is more likely to occur due to the warpage resulting from the temperature gradient in the construction body in addition to the weight of the construction body.
Moreover, in the conventional spraying construction method, a quick setting agent such as sodium silicate is added in the nozzle, but a construction body having a large thickness cannot be rapidly formed due to the dripping of the spraying material.
[0005]
The present invention is a construction method in which a spraying material to which construction moisture has been added in advance is supplied to a nozzle with a pressure pump, and a quick setting agent is added and sprayed in the nozzle. It aims at providing the construction method which can form.
[0006]
[Means for Solving the Problems]
In the refractory spraying method, the present invention is characterized in that 1 to 15 parts by weight of alumina cement is added to 100 parts by weight of refractory aggregate containing 1 to 40% by weight of magnesium oxide having a particle size of 0.1 mm or less. After adding construction water in advance, the sprayed material is supplied to a nozzle with a pressure pump, and a potassium aluminate aqueous solution is added and sprayed in the nozzle.
[0007]
ADVANTAGE OF THE INVENTION According to this invention, the spraying construction body which was excellent in hot adhesive strength can be formed. The reason is considered as follows. That is, the potassium aluminate component in the potassium aluminate aqueous solution added to the spraying material in the nozzle is thermally decomposed by the residual heat of the furnace wall, etc. to produce an alumina component, and this alumina component and the aggregate of the spraying material are oxidized. By reacting with magnesium to form an Al 2 O 3 .MgO-based spinel (hereinafter referred to as spinel) bond, the adhesive strength of the spray material is improved.
[0008]
In addition, it is considered that the potassium generated together with the alumina component by the decomposition of potassium aluminate is chemically very active, thereby promoting the formation of the spinel contributing to the adhesive strength.
[0009]
In this type of spray construction, the use of sodium aluminate aqueous solution as a quick setting agent is known (Japanese Patent Laid-Open No. 62-36070). However, the remarkable effect as in the present invention cannot be obtained in the adhesive strength of the spray material. The effect of the present invention can be obtained by a combination with a refractory aggregate containing 1 to 40% by weight of magnesium oxide having a particle size of 0.1 mm or less. Magnesium oxide with a particle size of more than 0.1 mm produces insufficient spinel that contributes to adhesive strength. If the magnesium oxide content exceeds 40% by weight, adhesive strength decreases due to volume expansion associated with spinel formation. To do.
[0010]
The potassium aluminate aqueous solution further acts on the aggregation of magnesium oxide, and the adhesion of the spray material is greatly improved as compared with the use of sodium aluminate aqueous solution. As a result, the spray material can be formed more quickly without sagging at the time of spraying and having a large thickness.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the potassium aluminate aqueous solution as a rapid hardening agent added to the spraying material preferably has a concentration of 30 to 80% by weight, and K 2 O / Al 2 O 3 preferably has a molar ratio of 1.7 to 2.6. . Moreover, as for the addition ratio with respect to a spraying material, the addition ratio of the potassium aluminate aqueous solution with respect to 100 weight part of spraying materials after construction water addition has 0.3 to 3 weight part is preferable.
[0012]
The quenching agent used in the present invention is most preferably an aqueous solution of potassium aluminate alone. For example, the use of an aqueous solution in which sodium aluminate coexists is not denied. However, even in that case, in order to obtain the effect of the present invention, the potassium aluminate concentration in the aqueous solution should be 30 to 80% by weight, and the K 2 O / Al 2 O 3 molar ratio should be 1.7 to 2.6. preferable.
[0013]
The spray material is mainly composed of refractory aggregate and alumina cement, and the refractory aggregate needs to contain 1 to 40% by weight of magnesium oxide having a particle size of 0.1 mm or less. If the proportion of magnesium oxide having a particle size of 0.1 mm or less is less than 1% by weight, the reactivity with potassium aluminate is inferior, so the effect of the present invention cannot be obtained with respect to the adhesive strength and adhesion of the spray material. If the proportion of magnesium oxide having a particle size of 0.1 mm or less exceeds 40% by weight, the spinel formation due to the reaction with potassium aluminate becomes excessive, and the adhesive strength decreases conversely because of the volume expansion accompanying the spinel formation.
[0014]
As a specific example of magnesium oxide, sintered or electrofused magnesia clinker or light-burned magnesia is easily obtained. The magnesium oxide having a particle size of 0.1 mm or less as defined in the present invention includes ultrafine particles having a particle size of 0.045 mm or less, for example, in order to prevent excessive spinel formation, In the range of the limited ratio of the present invention, a smaller region is more preferable.
[0015]
The type of refractory aggregate other than magnesium oxide having a particle size of 0.1 mm or less is preferably alumina such as sintered alumina and electrofused alumina having excellent corrosion resistance and volume stability. pyrophyllite, chamotte, andalusite, quartzite, sintered magnesia, fused magnesia, sintered magnesia - calcia, fused magnesia - calcia, fused Al 2 O 3 -MgO spinel, sintered Al 2 O 3 -MgO Spinel, chromium ore, bauxite, sillimanite, zircon, etc. may be used. Further, for example, zirconia, carbon, silicon carbide, clay, calcined alumina, light calcined magnesia, volatile silica and the like may be combined with these as required. Furthermore, sintered magnesia or electrofused magnesia having a particle size exceeding 0.1 mm may be used in combination.
[0016]
The particle size composition of the entire refractory aggregate, the proportion of alumina cement, etc. are not particularly different from conventional materials. The particle size of the entire refractory aggregate is adjusted to coarse particles, medium particles, and fine particles in consideration of the amount of magnesium oxide having a particle size of 0.1 mm or less, which is essential in the present invention. The proportion of the alumina cement is 1 to 15 parts by weight with respect to 100 parts by weight of the refractory aggregate. If the amount is less than 1 part by weight, the strength of the construction body is inferior, and if it exceeds 15 parts by weight, the corrosion resistance is reduced.
[0017]
In addition, if necessary, organic fibers, metal fibers, dispersants, scavengers, water reducing agents, metal powders, foaming agents, curing retarders, curing accelerators, coarse refractory particles, organic microballoons, and the like may be combined.
[0018]
The addition of fibers is effective in improving the strength of the construction body. In the case of organic fiber, it also has the effect of preventing dry explosion. Specific examples of the organic fiber include polypropylene, nylon, PVA, polyethylene, acrylic, polyester, and pulp. Specific examples of the metal fiber include stainless steel, iron, and aluminum. The optimum addition ratio varies depending on the fiber material. The organic fiber is preferably 0.05 to 1 part by weight and the metal fiber is preferably 0.5 to 7 parts by weight with respect to 100 parts by weight of the refractory aggregate.
[0019]
The dispersant has the effect of improving the fluidity of the spray material. Specific examples thereof include sodium tripolyphosphate, sodium hexametaphosphate, sodium polyacrylate, sodium polyacrylate, polycarboxylic acid, sodium lignin sulfonate, and the like. A preferable addition amount is 0.01 to 1 part by weight with respect to 100 parts by weight of the aggregate.
[0020]
In the present invention, the spraying material having the above composition is preliminarily added and mixed with construction moisture, and then supplied to the nozzle by a pressure pump, and sprayed while adding a potassium aluminate solution as a rapid setting agent in the nozzle. The appropriate amount of construction moisture to be added when the spray material is kneaded varies depending on the particle size composition of the refractory aggregate, the presence or absence of a dispersant, etc., but if the entire spray material composition is 100 parts by weight, 3 to 15 parts by weight preferable.
[0021]
FIG. 1 schematically shows a spraying device used in the present invention. A quick setting agent supply pipe (2) is connected to the nozzle (1), and the spray material supplied from the pressure feed nozzle (not shown) is added with potassium aluminate in the nozzle (1), and then the wall surface ( 3) Sprayed. (4) is a spray construction body.
[0022]
Although not shown in the figure, the quick setting agent is supplied together with the compressed air, so that mixing of the spray material and the quick setting agent is promoted. There are squeeze pumps, screw pumps, piston pumps, etc., but a pump pump that can obtain a high pressure during pumping is preferable.
In the figure, the connection point of the quick-setting agent supply pipe (3) is near the tip of the nozzle (2), but is not limited thereto, and may be behind the position shown in the figure according to the work environment.
[0023]
【Example】
Tables 1 and 2 show examples of the present invention and comparative examples and test results thereof. Each example used a spraying device using a piston-type pump and was tested in the laboratory and in the actual machine.
[0024]
In the laboratory test, the distance from the nozzle tip to the sprayed surface is kept at 500 mm for a vertical wall composed of irregular refractories and the surface temperature is about 800 ° C, with the aim of forming a 200 mm thick construction body. Sprayed 200 kg. At that time, the spray material was kneaded in advance with the construction moisture amount shown in the table, supplied to the nozzle with a pressure pump, and sprayed at a discharge speed of 55 to 90 kg / min. The quick hardening agent was added to the spray material together with the auxiliary compressed air in the vicinity of the nozzle tip.
[0025]
Adhesiveness: The adhesion rate was determined.
Adhesive strength: The sprayed construction body was cut out in a state of being adhered to the wall surface, and the adhesive strength of the sprayed construction body to the wall surface was measured with a shear stress test apparatus.
Corrosion resistance: Cut-out construction body was cut out, heated and dried at 110 ° C. for 24 hours, and then measured for a erosion dimension in a rotary erosion test using molten steel as a solvent. . The smaller the value, the better the corrosion resistance. [0026]
In the actual test, hot repair of the lining of the molten steel container lined with an irregular refractory was performed. The sagging and the like were visually observed, and the adhesion was evaluated in five stages (adhesion large 5 ← → small 1). For durability, the wear rate of the sprayed body was measured in mm / charge.
[0027]
[Table 1]
Figure 0003850974
In tests with actual machines, all the methods according to the examples of the present invention were able to obtain an excellent effect on the adhesion and adhesion of the spray material. Also, in the actual machine test, according to the embodiment of the present invention, there was almost no dripping of the spray material, and a construction body having a thickness of 100 to 200 mm could be rapidly formed, and the durability was greatly improved by its excellent adhesiveness. .
[0028]
On the other hand, Comparative Example 1 and Comparative Example 2 in which the quick setting agent is different and Comparative Example 3 in which magnesium oxide having a particle size of 0.1 mm or less is not included in the spray material are both inferior in adhesion and adhesiveness of the spray material. In Comparative Example 4, the proportion of magnesium oxide having a particle size in the range of 0.1 mm or less is too high, and the adhesiveness is poor. In Comparative Example 5, the proportion of alumina cement is too high and the corrosion resistance is poor.
[0029]
【effect】
According to the construction method of the present invention, as described above, it is possible to quickly and reliably form a thick construction body at the same time as improving the adhesiveness of the spray material, and excellent repair in hot repair of the lining of the molten metal container. Demonstrate the effect.
[Brief description of the drawings]
FIG. 1 schematically shows an example of a spraying device used in the present invention.
[Explanation of symbols]
1 Nozzle 2 Quick setting agent supply pipe 3 Wall surface 4 Spraying body

Claims (2)

粒径0.1mm以下の酸化マグネシウム1〜40重量%を含む耐火性骨材100重量部にアルミナセメント1〜15重量部添加した吹付材を、予め施工水分を添加した後、圧送ポンプにてノズルに供給し、該ノズル内にてアルミン酸カリウム水溶液を添加して吹付けることを特徴とした、耐火物吹付け施工方法。A spraying material in which 1 to 15 parts by weight of alumina cement is added to 100 parts by weight of a refractory aggregate containing 1 to 40% by weight of magnesium oxide having a particle size of 0.1 mm or less is preliminarily added with construction water, and then a nozzle is fed by a pump. A method for spraying refractory material, characterized in that an aqueous potassium aluminate solution is added and sprayed in the nozzle. 請求項1記載の耐火物吹付け施工方法で使用する吹付材。The spraying material used with the refractory spraying construction method of Claim 1.
JP03820098A 1998-02-03 1998-02-03 Refractory spray construction method and spray material used in this method Expired - Fee Related JP3850974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03820098A JP3850974B2 (en) 1998-02-03 1998-02-03 Refractory spray construction method and spray material used in this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03820098A JP3850974B2 (en) 1998-02-03 1998-02-03 Refractory spray construction method and spray material used in this method

Publications (2)

Publication Number Publication Date
JPH11223469A JPH11223469A (en) 1999-08-17
JP3850974B2 true JP3850974B2 (en) 2006-11-29

Family

ID=12518716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03820098A Expired - Fee Related JP3850974B2 (en) 1998-02-03 1998-02-03 Refractory spray construction method and spray material used in this method

Country Status (1)

Country Link
JP (1) JP3850974B2 (en)

Also Published As

Publication number Publication date
JPH11223469A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP2010536705A (en) Heat-resistant substance mixed with calcium by adding calcium carbonate
CN103601517A (en) Chemical-bonding aluminum-magnesium repairing material for steel ladle working lining
EP0931780A1 (en) Refractory composition for producing compact castable and wet spraying method
JP4351526B2 (en) Unshaped refractories for wet spraying with used refractories
JP3850974B2 (en) Refractory spray construction method and spray material used in this method
JP4382930B2 (en) Refractory spraying method and refractory spraying material
KR20050006119A (en) Unshaped refractory composition
JP2001048662A (en) Method for spraying refractory and spraying material used for the same
EP0798279B1 (en) Wet-gunning method
JP2831976B2 (en) Wet spraying method
JP3790621B2 (en) Refractory spraying method
JP4456193B2 (en) Refractory spraying method
JP2003073174A (en) Monolithic refractory for wet gunning and wet gunning method
JP2002048481A (en) Method for executing wet spray of monolithic refractory
JP3790622B2 (en) Refractory spray construction method and spray material used in this method
JP2001002477A (en) Method for executing wet spraying and spraying material used in the spraying method
JP2965957B1 (en) Amorphous refractory composition for wet spraying
JP2972179B1 (en) Amorphous refractory composition for wet spraying
JP6280427B2 (en) Refractory for spray construction
JPH11310470A (en) Indeterminate refractory for wet spraying
JPH11173765A (en) Method for executing refractory spraying and spraying material used for the method
JP2000351675A (en) Refractory material for wet gunning application
JP2003254672A (en) Method for spraying monolithic refractory excellent in corrosion resistance
JP2000226268A (en) Method of refractory material spraying work and spray refractory material to be used therefor
JP2869881B2 (en) Spray material for kiln repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees