JP3850941B2 - Optical transmitter array - Google Patents

Optical transmitter array Download PDF

Info

Publication number
JP3850941B2
JP3850941B2 JP02394997A JP2394997A JP3850941B2 JP 3850941 B2 JP3850941 B2 JP 3850941B2 JP 02394997 A JP02394997 A JP 02394997A JP 2394997 A JP2394997 A JP 2394997A JP 3850941 B2 JP3850941 B2 JP 3850941B2
Authority
JP
Japan
Prior art keywords
refractive index
optical transmission
lens
weight
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02394997A
Other languages
Japanese (ja)
Other versions
JPH10221540A (en
Inventor
吉弘 魚津
憲史 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP02394997A priority Critical patent/JP3850941B2/en
Publication of JPH10221540A publication Critical patent/JPH10221540A/en
Application granted granted Critical
Publication of JP3850941B2 publication Critical patent/JP3850941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種の光伝送路として利用できるプラスチック光伝送体、その製法及び光伝送体アレイに関する。
【0002】
【従来の技術】
屈折率分布型光伝送体は一般的には、その両端面を中心軸に垂直な平行平面に鏡面研磨し、単体で微小レンズとして使用されている。またその多数を密接配列して接着一体化してレンズアレイの形態として複写機、ファクシミリ、スキャナ等のラインセンサ部品として、またLEDプリンタの書き込みデバイス等に広く用いられている。また、特定の用途においては片端面または両端面を若干の曲率の球面にして使用されている。
【0003】
画像伝送に用いられる屈折率分布型レンズ及びレンズアレイにおいては結像面における光量ムラが問題になる。図1に示すようにレンズ素子が結像面において
E(X)=E0(1−(X/X021/2 (1)
で示されるような光量分布を持つとき、レンズ素子は当然光量ムラを持つ。一方レンズ素子が多数本配列されたレンズアレイの結像面における光量分布は1本1本のレンズ素子の光量の和となる。そのためレンズアレイにおいてもレンズの配列ピッチによって周期的な光量ムラが生じる。このようにして起こる光量ムラにより、レンズまたはレンズアレイを用いて画像を伝送する場合に問題が生じる。例えばレンズアレイを複写機、ファクシミリ、スキャナ等のラインセンサ部品等に用いる場合に、読みとりムラ等が生じ、このムラを少なくするために電気信号に補正をかけなければならないなどの問題が生じる。
【0004】
このような問題を解決しようとするものに特開平4−251805号公報がある。これは光伝送体中に光吸収性物質を濃度分布が連続的に変化するように存在させて光量ムラを小さくするというものである。
【0005】
【発明が解決しようとする課題】
しかし、この光伝送体はレンズ中心部に染料を入れるためにレンズの光量が低下するという問題があった。
【0006】
以上のように従来は光量ムラが小さく、かつ十分な光量値を持つレンズ及びレンズアレイは提供されていない。また、このようなレンズを容易に製造する方法も提供されていない。
【0007】
【課題を解決するための手段】
本発明の要旨は、半径rなる円形断面であり、中心軸から半径方向に0〜0.85r の範囲で屈折率がほぼ下記式
N(r)=N (1−Ar
(ただし、N :中心軸上の屈折率、A:屈折率分布定数、N(r):中心軸から半径方向の距離がrの位置での屈折率)
で表される屈折率分布を持つ屈折率分布型光伝送体の複数個を一列以上平行に配列した光伝送体アレイにおいて、前記光伝送体の屈折率が、中心から半径方向の距離が0〜R((1−30/315)≦R≦(1−35/465))の範囲で中心から半径方向外側に向かって連続的に減少し、距離がR〜rの範囲で中心から半径方向外側に向かって連続的に上昇していることを特徴とする光伝送体アレイである。
【0010】
【発明の実施の形態】
以下、本発明の光伝送体(以下適宜レンズという)及びその製造方法について詳細に説明する。
屈折率分布型レンズでは、一方の端面から入射した光線はレンズ体内をサインカーブを描いて進行し他端面から出射して結像するのであるが、一般にレンズ体内の屈折率分布は必ずしも理想的な分布に一致しているわけではない。特に外周部付近で理想分布から外れており、この外周部付近での屈折率分布の歪みとレンズ外周面を通してレンズ内に入る外光に起因してレンズ周辺にフレア光と呼ばれるぼやけた光が発生する。本発明の光伝送体においては光伝送体の外周部付近で屈折率が上昇しているために、フレア光の量が増加し、その結果光量ムラが小さくなる。
【0011】
図2は本発明の光伝送体の屈折率分布の一例である。レンズ素材1は、中心軸4上の屈折率をN0、屈折率分布定数をAとすれば、中心軸から半径方向に0〜0.85r0の範囲では屈折率N(r)が、ほぼ次式の関係で表される屈折率分布を持つ透明な円柱体である。
【0012】
N(r)=N0(1−Ar2) (2)
本発明はレンズ素材1の中心から半径方向の距離がR〜r0の範囲の部分の屈折率が中心から半径方向外側に向かって連続的に上昇していることを特徴としている。このためその近傍で発生するフレア光の量が多くレンズ素子の光量ムラが減少する。さらにレンズ素子を複数本配列してレンズアレイを形成した場合、フレア光が隣接するレンズとの界面で反射、散乱、透過するためにレンズの配列ピッチによって生じる周期的な光量ムラが小さくなる。
【0013】
外周部の屈折率は中心からの距離がRの位置の屈折率に対して、0.003以上大きいことが好ましく、0.005以上大きいことがより好ましい。
【0014】
屈折率が半径方向外側に向かって上昇している部分の厚さは5〜50μmであることが好ましい。厚さが薄すぎるとフレア光の増加の効果が小さく、また厚さが厚すぎるとレンズ性能が低下する。
【0015】
本発明における光伝送体アレイは前記の光伝送体を用いて従来公知の方法で製造することができる。光伝送体が一列または複数列で平行に配置されていれば、アレイの形状、材質等は問わない。
【0016】
本発明の光伝送体は次のようにして製造できる。硬化後の屈折率nがn1>n2>・・・・>nN(N≧3)なるN個の未硬化状物を中心から外周面に向かって順次屈折率が低くなるような配置で、かつ、同心円状に複層積層した未硬化状の積層体(以下適宜「糸状体」と称する)に賦形し、糸状体の各層間の屈折率分布が連続的分布となるように隣接層間の物質の相互拡散処理及びまたは最外周層の成分の揮発処理を行いながら、またはこれらの処理を行った後、積層体を硬化処理して屈折率分布型ファイバを製造する方法において、最外周層から低屈折率成分を相対的に多く揮発させるように最外周層の未硬化状物を調製し、揮発処理を行うことにより製造される。
【0017】
得られる光伝送体の屈折率分布を理想的な分布に近づけるために、Nは4〜6の範囲であることが望ましい。
【0018】
本発明における光伝送体の製造時の未硬化積層体の各層の厚みはレンズ性能の発現が可能な条件に設定される。
【0019】
本発明に用いられる未硬化状物質は、粘度が103〜108ポイズで硬化性のものであることが好ましい。粘度が小さすぎると賦形に際し糸切れが生じるようになり糸状体の形成が困難である。また粘度が大きすぎると賦形時に操作性が不良となり各層の同心円性が損なわれたり、太さ斑の大きな糸状体となりやすいので好ましくない。
【0020】
この未硬化状物を構成する物質としてはラジカル重合性ビニル単量体または該単量体と該単量体に可溶な重合体とよりなる組成物などを用いることができる。
ラジカル重合性ビニル単量体の具体例としてはメチルメタクリレート(n=1.49)、スチレン(n=1.59)、クロルスチレン(n=1.61)、酢酸ビニル(n=1.47)、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオロブチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート等のフッ素化アルキル(メタ)アクリレート(n=1.37〜1.44)、屈折率1.43〜1.62の(メタ)アクリレート類たとえばエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アルキレングリコール(メタ)アクリレート、トリメチロールプロパンジ又はトリ(メタ)アクリレート、ペンタエリスリトールジ、トリ又はテトラ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジエチレングリコールビスアリルカーボネート、フッ素化アルキレングリコール(メタ)アクリレートなどが挙げられる。
【0021】
これら未硬化状物から糸状体を形成する際の未硬化状物の粘度調整を容易にするため、及び糸状体の中心から外周へ向かい連続的な屈折率分布を持たせるため、前記の未硬化状物はビニル系単量体と可溶性ポリマーとで構成されていることが好ましい。
【0022】
ここに用いうるポリマーとしては、前記のラジカル重合性ビニル単量体から生成するポリマーと相溶性が良いことが必要であり、例えばポリメチルメタクリレート(n=1.49)、ポリメチルメタクリレート系コポリマー(n=1.47〜1.50)、ポリ4ーメチルペンテンー1(n=1.46)、エチレン/酢酸ビニル共重合体(n=1.46〜1.50)、ポリカーボネート(n=1.50〜1.57)、ポリフッ化ビニリデン(n=1.42)、フッ化ビニリデン/テトラフルオロエチレン共重合体(n=1.42〜1.46)、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロペン共重合体(n=1.40〜1.46)、ポリフッ化アルキル(メタ)アクリレートポリマー等が挙げられる。
【0023】
粘度を調整するため、各層に同一の屈折率を有するポリマーを用いた場合には中心から外周に向かって連続的な屈折率分布を有するプラスチック光伝送体が得られるので好ましい。特に、ポリメチルメタクリレートは透明性に優れ、屈折率も高いので本発明の屈折率分布型光伝送体を作成するに際して用いるポリマーとしては好適なものである。
【0024】
最外周層の未硬化状物は揮発処理において、低屈折率成分が揮発しやすいように調製される。例えば最外周層の未硬化状物がビニル系単量体と可溶性ポリマーから構成される場合、単量体として相対的に低屈折率のものを用いることが望ましい。その際、揮発性成分を二種類以上用いる場合は低屈折率成分を高屈折率成分よりも多量に用いることが好ましく、また低屈折率成分として高揮発性のものを用いることが好ましい。
【0025】
前記未硬化状物より形成した糸状体を相互拡散処理を行いながら、または相互拡散処理を行った後、最外周層の成分の一部を揮発させる。揮発処理は低屈折率成分が相対的に多くかつ外周部の屈折率を上昇させるのに十分な量程度揮発するように行われる。低屈折率成分を多く揮発させればさせるほど、得られる光伝送体の外周部の屈折率は上昇する。この場合、好ましくは高屈折率成分をできるだけ揮発させないように、更に好ましくは全く揮発させないように揮発処理を行う。揮発させる成分の揮発量のコントロールはどのように行われてもよく、例えば揮発処理部に導入される不活性ガスの流量によって制御することができる。
【0026】
前記相互拡散処理および外周面からの揮発処理を行った糸状体を硬化するには未硬化状物中に熱硬化触媒あるいは光硬化触媒を添加しておくことが好ましく、熱硬化触媒としては普通パーオキサイド系又はアゾ系の触媒が用いられる。光硬化触媒としてはベンゾフェノン、ベンゾインアルキルエーテル、4'ーイソプロピルー2ーヒドロキシー2ーメチルプロピオフェノン、1ーヒドロキシシクロヘキシルフェニルケトン、ベンジルメチルケタール、2,2-ジエトキシアセトフェノン、クロロチオキサントン、チオキサントン系化合物、ベンゾフェノン系化合物、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、N−メチルジエタノールアミン、トリエチルアミンなどが挙げられる。
【0027】
次いで未硬化状物を硬化させるには、硬化部において好ましくは紫外線を周囲から作用させ、熱硬化触媒及び/又は光硬化触媒を含有する糸状体を熱処理ないし光硬化処理を行う。
【0028】
本発明の光伝送体は例えば図3の糸状体成形装置を用いて製造することができる。図3は糸状体成形装置を図式的に示す工程図であり、相互拡散処理部2及び硬化処理部3の部分だけを縦断面図で示してある。図中の記号9は同心円状複合ノズル、1は押し出された未硬化の糸状体、2は糸状体の各層の単量体を相互に拡散させて屈折率分布を与えるための相互拡散処理部、3は未硬化状物を硬化させるための硬化処理部、4は引き取りローラー、5は製造された光伝送体、6は巻き取り部、7は不活性ガス導入口、8は不活性ガス排出口である。相互拡散処理部2及び硬化処理部3において糸状体1から遊離する揮発性物質を除去するため、不活性ガス導入口7から不活性ガス例えば窒素ガスが導入される。
【0029】
光重合に用いる光源としては150〜600nmの波長の光を発生する炭素アーク灯、高圧水銀灯、中圧水銀灯、低圧水銀灯、超高圧水銀灯、ケミカルランプ、キセノンランプ、レーザー光等が挙げられる。
【0030】
【実施例】
以下実施例により本発明を具体的に説明する。
尚、実施例及び比較例において屈折率分布及び光量分布の測定は下記の方法により行った。
I.屈折率分布の測定
カールツアイス社製インターファコ干渉顕微鏡を用いて公知の方法により測定した。
II.レンズアレイの光量ムラの測定
レンズアレイの光量ムラは白色光源に570nmの干渉フィルターを組み合わせてCCDを用いて測定した。光量ムラの値は、
△I=(Imax.−Imin.)/Imin.×100 (%)
で計算して求めた。
【0031】
比較例1
ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定、以下実施例、比較例中において同様のものを用いる。)52重量部、ベンジルメタクリレート35重量部、メチルメタクリレート13重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部及びハイドロキノン0.1重量部を70℃に加熱混練して第1層形成用原液とした。ポリメチルメタクリレート48重量部、ベンジルメタクリレート10重量部、メチルメタクリレート35重量部、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート7重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第2層形成用原液とした。ポリメチルメタクリレート47重量部、メチルメタクリレート30重量部、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート23重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第3層形成用原液とした。ポリメチルメタクリレート40重量部、メチルメタクリレート18重量部、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート42重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部ハイドロキノン0.1重量部を70℃に加熱混練して第4層形成用原液とした。ポリメチルメタクリレート37重量部、メチルメタクリレート4重量部、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート59重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第5層形成用原液とした。この5種類の原液を同心円状5層複合ノズルを用い中心から順次未硬化状物の屈折率が低くなるように配列し同時に押し出した。
複合紡糸ノズルの温度は48℃であった。各層の吐出比は半径の比で1層目から順に34.7/38.7/19.5/6.3/0.8であった。
【0032】
ついで長さ30cmの相互拡散処理部を通しその後長さ120cm、40Wのケミカルランプ12本を円状に等間隔に配設された硬化処理部の中心にストランドファイバを通過させて120cm/minの速度でニップローラーで引き取った。相互拡散処理部における窒素流量は50L/minであった。
【0033】
得られた光伝送体は半径r0が0.465mmであり、屈折率分布は中心部が1.512、外周部が1.469であった。外周部での屈折率の上昇は見られなかった。この光伝送体複数本を用い、側板にはフェノール樹脂(厚さ1.2mm)2枚を用い、接着剤にはカーボンブラックを2wt%添加したエピフォーム(ソマール社製)を用い、側板の間に光伝送体を1列に配列し接着剤を充填し、接着剤を硬化し、その後両端面を切断して研磨し、レンズ長6.6mmのレンズアレイを製造した。レンズアレイの光量を測定したところ通常のレンズアレイで見られるようなレンズ配列ピッチに対応した周期的な光量ムラが顕著に見られ、光量ムラは19%であった。
【0034】
実施例1
第1層目〜第5層目の原液を比較例1と同様とし、相互拡散処理部における窒素流量80L/minとし、複合紡糸ノズルから出た糸状体の単量体の揮発を盛んにした以外は比較例1と同様にして光伝送体を製造した。揮発した単量体は主として硬化後の屈折率が低い2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレートであった。
【0035】
この光伝送体の半径は0.465mmであり、屈折率分布は中心部が1.512、外周部が1.473であった。光伝送体の外周部から約35μmの部分でレンズの中心部から外周部に向かって連続的に屈折率が約0.004上昇していた。
【0036】
比較例1と同様にしてレンズアレイを製造して光量を測定した結果、レンズ配列ピッチに対応した周期的な光量ムラは見られたものの光量ムラの値は10%であり比較例1のレンズアレイの場合に比較して小かった。
【0037】
実施例2
複合紡糸ノズル温度を40℃、各層の吐出比を半径の比で1層目から順に34.3/38.5/20.1/6.1/1.0とし、紡糸速度を150cm/min、窒素流量を72L/minとした以外は実施例1と同様にして光伝送体を得た。得られた光伝送体の半径は0.315mmであった。
【0038】
この光伝送体の屈折率分布は中心部が1.512、外周部が1.477であった。光伝送体の外周部から約30μmの部分でレンズの中心部から外周部に向かって屈折率が約0.006上昇していた。
【0039】
比較例1と同様にしてレンズアレイを製造して光量を測定した結果、レンズ配列ピッチに対応した周期的な光量ムラは見られたものの光量ムラの値は12%で比較例1のレンズアレイの場合に比較して小さかった。
【0040】
【発明の効果】
本発明の光伝送体及び光伝送体アレイは光量ムラが小さくかつ十分な光量値を有する。また、本発明の光伝送体の製法によればこのような光伝送体を容易に製造することができる。
【図面の簡単な説明】
【図1】従来の光伝送体の光量分布を示す図である。
【図2】本発明の光伝送体の屈折率分布を示す図である。
【図3】本発明の光伝送体を製造するための製造装置の概略図である。
【符号の簡単な説明】
1 未硬化の糸状体
2 相互拡散処理部
3 硬化処理部
4 引き取りローラー
5 光伝送体
6 巻き取り部
7 不活性ガス導入口
8 不活性ガス排出口
9 同心円状複合ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plastic optical transmission body that can be used as various optical transmission lines, a manufacturing method thereof, and an optical transmission body array.
[0002]
[Prior art]
In general, the gradient index optical transmission body is mirror-polished to a parallel plane perpendicular to the central axis at both end faces, and is used alone as a microlens. Many of them are closely arranged and bonded and integrated to form a lens array, which is widely used as a line sensor component for copying machines, facsimiles, scanners, etc., and for a writing device of an LED printer. In a specific application, one or both end surfaces are used as spherical surfaces having a slight curvature.
[0003]
In a gradient index lens and lens array used for image transmission, unevenness in the amount of light on the image plane becomes a problem. As shown in FIG. 1, the lens element is E (X) = E 0 (1− (X / X 0 ) 2 ) 1/2 (1) on the imaging plane.
When the lens element has a light amount distribution as shown in FIG. On the other hand, the light amount distribution on the imaging surface of the lens array in which a large number of lens elements are arranged is the sum of the light amounts of the individual lens elements. For this reason, even in the lens array, periodic light amount unevenness occurs depending on the arrangement pitch of the lenses. The unevenness in the amount of light that occurs in this way causes a problem when an image is transmitted using a lens or a lens array. For example, when a lens array is used for a line sensor component such as a copying machine, a facsimile machine, a scanner, etc., uneven reading occurs, and there is a problem that an electric signal must be corrected to reduce the unevenness.
[0004]
Japanese Patent Laid-Open No. 4-251805 discloses an attempt to solve such a problem. This is to reduce the unevenness in the amount of light by allowing a light-absorbing substance to exist in the optical transmission body so that the concentration distribution changes continuously.
[0005]
[Problems to be solved by the invention]
However, this optical transmission member has a problem that the amount of light of the lens is reduced because the dye is put in the center of the lens.
[0006]
As described above, a lens and a lens array having a small light amount unevenness and a sufficient light amount value are not conventionally provided. Also, a method for easily manufacturing such a lens is not provided.
[0007]
[Means for Solving the Problems]
The gist of the present invention is a circular cross section having a radius r 0 , and the refractive index is approximately in the range of 0 to 0.85 r 0 in the radial direction from the central axis.
N (r) = N 0 (1-Ar 2 )
(Where N 0 is the refractive index on the central axis, A is the refractive index distribution constant, N (r) is the refractive index at the position where the radial distance from the central axis is r)
In the optical transmission element array in which a plurality of refractive index distribution type optical transmission elements having a refractive index distribution represented by the following are arranged in parallel, the refractive index of the optical transmission element is 0 to 0 in the radial direction from the center. R ((1-30 / 315) r 0 ≦ R ≦ (1-35 / 465) r 0) decreases from the center in a range of continuously radially outward, the distance in the range of R~r 0 An optical transmitter array characterized by continuously rising from the center toward the outside in the radial direction.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an optical transmission body (hereinafter referred to as a lens as appropriate) and a manufacturing method thereof according to the present invention will be described in detail.
In a gradient index lens, a light beam incident from one end face travels in a sine curve in the lens body and exits from the other end face to form an image. In general, the refractive index distribution in the lens body is not always ideal. It is not consistent with the distribution. In particular, it is deviated from the ideal distribution in the vicinity of the outer periphery, and blurred light called flare light is generated around the lens due to the distortion of the refractive index distribution in the vicinity of the outer periphery and the external light entering the lens through the outer periphery of the lens. To do. In the optical transmission body of the present invention, since the refractive index is increased near the outer periphery of the optical transmission body, the amount of flare light is increased, and as a result, the light amount unevenness is reduced.
[0011]
FIG. 2 is an example of the refractive index distribution of the optical transmission body of the present invention. When the refractive index on the central axis 4 is N 0 and the refractive index distribution constant is A, the lens material 1 has a refractive index N (r) of approximately 0 to 0.85 r 0 in the radial direction from the central axis. It is a transparent cylinder having a refractive index distribution represented by the relationship of the following formula.
[0012]
N (r) = N 0 (1-Ar 2 ) (2)
The present invention is characterized in that the refractive index of the portion whose radius direction distance from the center of the lens material 1 is in the range of R to r 0 continuously increases from the center toward the outside in the radial direction. For this reason, the amount of flare light generated in the vicinity thereof is large, and the light amount unevenness of the lens element is reduced. Further, when a lens array is formed by arranging a plurality of lens elements, since the flare light is reflected, scattered, and transmitted at the interface with the adjacent lens, the periodic light amount unevenness caused by the lens arrangement pitch is reduced.
[0013]
The refractive index of the outer peripheral portion is preferably greater than the refractive index at the position where the distance from the center is R by 0.003 or more, and more preferably greater than 0.005.
[0014]
The thickness of the portion where the refractive index is rising radially outward is preferably 5 to 50 μm. If the thickness is too thin, the effect of increasing flare light is small, and if the thickness is too thick, the lens performance is degraded.
[0015]
The optical transmission element array in the present invention can be manufactured by a conventionally known method using the optical transmission element. The shape and material of the array are not limited as long as the optical transmission bodies are arranged in parallel in one or more rows.
[0016]
The optical transmission body of the present invention can be manufactured as follows. Arrangement in which the refractive index n after curing is such that N uncured materials having a refractive index n of n 1 > n 2 >...> N N (N ≧ 3) sequentially decrease from the center toward the outer peripheral surface. In addition, it is shaped into an uncured laminated body (hereinafter referred to as “filamentous body” where appropriate) that is formed by concentrically laminating multiple layers, and adjacent so that the refractive index distribution between each layer of the filamentous body becomes a continuous distribution. In the method of manufacturing the gradient index fiber by curing the laminate while performing the interdiffusion treatment of the inter-layer material and / or the volatilization treatment of the components of the outermost circumference layer, and performing these treatments, the outermost circumference It is manufactured by preparing an uncured material of the outermost peripheral layer so as to volatilize a relatively large amount of the low refractive index component from the layer and performing a volatilization treatment.
[0017]
In order to make the refractive index distribution of the obtained optical transmission body close to an ideal distribution, N is preferably in the range of 4-6.
[0018]
The thickness of each layer of the uncured laminate at the time of production of the optical transmission body in the present invention is set to a condition that allows the lens performance to be expressed.
[0019]
The uncured material used in the present invention preferably has a viscosity of 10 3 to 10 8 poise and is curable. If the viscosity is too small, thread breakage occurs during shaping, and it is difficult to form a filament. On the other hand, if the viscosity is too large, the operability is poor at the time of shaping, and the concentricity of each layer is impaired, or a filamentous body having a large thickness is liable to be formed.
[0020]
As a substance constituting the uncured material, a radical polymerizable vinyl monomer or a composition comprising the monomer and a polymer soluble in the monomer can be used.
Specific examples of the radical polymerizable vinyl monomer include methyl methacrylate (n = 1.49), styrene (n = 1.59), chlorostyrene (n = 1.61), vinyl acetate (n = 1.47). 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl (meth) acrylate, 2,2,3,4,4 , Fluorinated alkyl (meth) acrylates such as 2,4-hexafluorobutyl (meth) acrylate and 2,2,2-trifluoroethyl (meth) acrylate (n = 1.37 to 1.44), refractive index 1.43 ~ 1.62 (meth) acrylates such as ethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, hydroxyalkyl (meth) acrylate, alkylene glycol (meth) acrylate, trimethylo Rupropanedi or tri (meth) acrylate, pentaerythritol di, tri or tetra (meth) acrylate, diglycerin tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, diethylene glycol bisallyl carbonate, fluorinated alkylene glycol (meth) acrylate Etc.
[0021]
In order to easily adjust the viscosity of the uncured material when forming the filament from these uncured materials, and to have a continuous refractive index distribution from the center to the outer periphery of the filament, The material is preferably composed of a vinyl monomer and a soluble polymer.
[0022]
The polymer that can be used here needs to have good compatibility with the polymer produced from the radical polymerizable vinyl monomer, for example, polymethyl methacrylate (n = 1.49), polymethyl methacrylate copolymer ( n = 1.47-1.50), poly-4-methylpentene-1 (n = 1.46), ethylene / vinyl acetate copolymer (n = 1.46-1.50), polycarbonate (n = 1) .50 to 1.57), polyvinylidene fluoride (n = 1.42), vinylidene fluoride / tetrafluoroethylene copolymer (n = 1.42 to 1.46), vinylidene fluoride / tetrafluoroethylene / hexa Examples thereof include a fluoropropene copolymer (n = 1.40 to 1.46) and a polyfluorinated alkyl (meth) acrylate polymer.
[0023]
In order to adjust the viscosity, it is preferable to use a polymer having the same refractive index in each layer because a plastic optical transmission body having a continuous refractive index distribution from the center toward the outer periphery can be obtained. In particular, since polymethyl methacrylate is excellent in transparency and has a high refractive index, it is suitable as a polymer for use in preparing the gradient index optical transmission material of the present invention.
[0024]
The uncured material of the outermost peripheral layer is prepared so that the low refractive index component is easily volatilized in the volatilization treatment. For example, when the uncured material of the outermost peripheral layer is composed of a vinyl monomer and a soluble polymer, it is desirable to use a monomer having a relatively low refractive index. In this case, when two or more kinds of volatile components are used, it is preferable to use a low refractive index component in a larger amount than a high refractive index component, and it is preferable to use a high volatile component as the low refractive index component.
[0025]
A part of the component of the outermost peripheral layer is volatilized while performing the mutual diffusion treatment on the filament formed from the uncured material or after performing the mutual diffusion treatment. The volatilization process is performed so that the amount of the low refractive index component is relatively large and a sufficient amount is volatilized to increase the refractive index of the outer peripheral portion. The more the low refractive index component is volatilized, the higher the refractive index of the outer periphery of the obtained optical transmission body. In this case, the volatilization treatment is preferably performed so that the high refractive index component is not volatilized as much as possible, and more preferably not volatilized at all. The volatilization amount of the component to be volatilized may be controlled in any way, and can be controlled by, for example, the flow rate of the inert gas introduced into the volatilization processing unit.
[0026]
In order to cure the filaments subjected to the interdiffusion treatment and the volatilization treatment from the outer peripheral surface, it is preferable to add a thermosetting catalyst or a photocuring catalyst to the uncured product. Oxide-based or azo-based catalysts are used. Photocuring catalysts include benzophenone, benzoin alkyl ether, 4'-isopropyl-2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, benzyl methyl ketal, 2,2-diethoxyacetophenone, chlorothioxanthone, thioxanthone compounds, benzophenone Examples thereof include ethyl compounds, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, N-methyldiethanolamine, and triethylamine.
[0027]
Next, in order to cure the uncured product, ultraviolet rays are preferably applied from the surroundings in the cured part, and the filament containing the thermosetting catalyst and / or the photocuring catalyst is subjected to heat treatment or photocuring treatment.
[0028]
The optical transmission body of the present invention can be manufactured, for example, using the filamentous body forming apparatus shown in FIG. FIG. 3 is a process diagram schematically showing the filamentous body forming apparatus, in which only the portions of the interdiffusion processing unit 2 and the curing processing unit 3 are shown in a longitudinal sectional view. In the figure, symbol 9 is a concentric composite nozzle, 1 is an uncured extruded filament, 2 is a mutual diffusion processing unit for diffusing monomers of each layer of the filament to give a refractive index distribution, 3 is a curing processing unit for curing an uncured material, 4 is a take-up roller, 5 is a manufactured optical transmission body, 6 is a winding unit, 7 is an inert gas inlet, and 8 is an inert gas outlet. It is. In order to remove volatile substances released from the filament 1 in the interdiffusion treatment unit 2 and the curing treatment unit 3, an inert gas such as nitrogen gas is introduced from the inert gas inlet 7.
[0029]
Examples of the light source used for photopolymerization include a carbon arc lamp that generates light having a wavelength of 150 to 600 nm, a high-pressure mercury lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a xenon lamp, and a laser beam.
[0030]
【Example】
The present invention will be specifically described below with reference to examples.
In Examples and Comparative Examples, the refractive index distribution and the light amount distribution were measured by the following methods.
I. Measurement of refractive index distribution The refractive index distribution was measured by a known method using an Interfaco interference microscope manufactured by Carl Zeiss.
II. Measurement of unevenness of light amount of lens array The unevenness of light amount of the lens array was measured using a CCD with a white light source combined with a 570 nm interference filter. The uneven light intensity value is
ΔI = (Imax.−Imin.) / Imin. × 100 (%)
Calculated with
[0031]
Comparative Example 1
52 parts by weight of polymethyl methacrylate ([η] = 0.40, measured in MEK at 25 ° C., the same is used in the following examples and comparative examples) 52 parts by weight, 35 parts by weight of benzyl methacrylate, 13 parts by weight of methyl methacrylate Part, 1-hydroxycyclohexyl phenyl ketone 0.25 part by weight and hydroquinone 0.1 part by weight were kneaded at 70 ° C. to obtain a stock solution for forming the first layer. 48 parts by weight of polymethyl methacrylate, 10 parts by weight of benzyl methacrylate, 35 parts by weight of methyl methacrylate, 7 parts by weight of 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate, 1-hydroxycyclohexyl phenyl ketone 0 25 parts by weight and 0.1 part by weight of hydroquinone were heated and kneaded at 70 ° C. to obtain a stock solution for forming the second layer. 47 parts by weight of polymethyl methacrylate, 30 parts by weight of methyl methacrylate, 23 parts by weight of 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone, hydroquinone 0.1 parts by weight was heated and kneaded at 70 ° C. to obtain a third layer forming stock solution. 40 parts by weight of polymethyl methacrylate, 18 parts by weight of methyl methacrylate, 42 parts by weight of 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone Hydroquinone 0 .1 part by weight was heated and kneaded at 70 ° C. to obtain a fourth layer forming stock solution. 37 parts by weight of polymethyl methacrylate, 4 parts by weight of methyl methacrylate, 59 parts by weight of 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone, hydroquinone 0.1 parts by weight was heated and kneaded at 70 ° C. to obtain a fifth layer forming stock solution. These five types of undiluted solutions were sequentially arranged from the center using a concentric five-layer composite nozzle so that the refractive index of the uncured product was lowered and extruded simultaneously.
The temperature of the composite spinning nozzle was 48 ° C. The ejection ratio of each layer was 34.7 / 38.7 / 19.5 / 6.3 / 0.8 in order from the first layer in terms of radius ratio.
[0032]
Then, the strand fiber was passed through the center of the curing processing section arranged at equal intervals in a circular manner at a rate of 120 cm / min through 12 chemical lamps of 120 cm length and 40 W after passing through the 30 cm long interdiffusion processing section. It was taken up with a nip roller. The nitrogen flow rate in the interdiffusion treatment part was 50 L / min.
[0033]
The obtained optical transmission body had a radius r 0 of 0.465 mm, and the refractive index distribution was 1.512 at the center and 1.469 at the outer periphery. There was no increase in refractive index at the outer periphery. Using two or more of these optical transmission bodies, two phenolic resins (thickness 1.2 mm) are used for the side plates, and an epiform (manufactured by Somar Co.) added with 2% by weight of carbon black is used between the side plates. The optical transmission bodies were arranged in a row and filled with an adhesive, the adhesive was cured, and then both end surfaces were cut and polished to produce a lens array with a lens length of 6.6 mm. When the light amount of the lens array was measured, periodic light amount unevenness corresponding to the lens arrangement pitch as seen in a normal lens array was noticeable, and the light amount unevenness was 19%.
[0034]
Example 1
The stock solution of the first layer to the fifth layer was the same as that of Comparative Example 1, except that the nitrogen flow rate in the interdiffusion treatment unit was 80 L / min, and the volatilization of the monomer of the filaments from the composite spinning nozzle was actively performed. Manufactured an optical transmission member in the same manner as in Comparative Example 1. The volatilized monomer was mainly 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate with low refractive index after curing.
[0035]
The radius of this optical transmission member was 0.465 mm, and the refractive index distribution was 1.512 at the center and 1.473 at the outer periphery. The refractive index continuously increased by about 0.004 from the center of the lens toward the outer periphery at a portion of about 35 μm from the outer periphery of the optical transmission body.
[0036]
As a result of manufacturing a lens array and measuring the amount of light in the same manner as in Comparative Example 1, although the periodic light amount unevenness corresponding to the lens arrangement pitch was seen, the value of the light amount unevenness was 10%, and the lens array of Comparative Example 1 It was small compared to the case.
[0037]
Example 2
The composite spinning nozzle temperature was 40 ° C., the discharge ratio of each layer was 34.3 / 38.5 / 20.1 / 6.1 / 1.0 in order from the first layer in the radius ratio, the spinning speed was 150 cm / min, An optical transmission body was obtained in the same manner as in Example 1 except that the nitrogen flow rate was set to 72 L / min. The radius of the obtained optical transmission body was 0.315 mm.
[0038]
The refractive index distribution of this optical transmission member was 1.512 at the center and 1.477 at the outer periphery. The refractive index increased by about 0.006 from the center of the lens toward the outer periphery at a portion approximately 30 μm from the outer periphery of the optical transmission body.
[0039]
As a result of manufacturing the lens array and measuring the amount of light in the same manner as in Comparative Example 1, although the periodic light amount unevenness corresponding to the lens arrangement pitch was seen, the value of the light amount unevenness was 12%. It was small compared to the case.
[0040]
【The invention's effect】
The light transmission body and the light transmission body array of the present invention have a small light amount unevenness and a sufficient light amount value. Moreover, according to the manufacturing method of the optical transmission body of this invention, such an optical transmission body can be manufactured easily.
[Brief description of the drawings]
FIG. 1 is a diagram showing a light amount distribution of a conventional optical transmission body.
FIG. 2 is a diagram showing a refractive index distribution of an optical transmission body of the present invention.
FIG. 3 is a schematic view of a manufacturing apparatus for manufacturing the optical transmission body of the present invention.
[Brief description of symbols]
DESCRIPTION OF SYMBOLS 1 Uncured thread body 2 Interdiffusion processing part 3 Curing process part 4 Take-off roller 5 Optical transmission body 6 Winding part 7 Inert gas introduction port 8 Inert gas discharge port 9 Concentric composite nozzle

Claims (1)

半径rなる円形断面であり、中心軸から半径方向に0〜0.85r の範囲で屈折率がほぼ下記式
N(r)=N (1−Ar
(ただし、N :中心軸上の屈折率、A:屈折率分布定数、N(r):中心軸から半径方向の距離がrの位置での屈折率)
で表される屈折率分布を持つ屈折率分布型光伝送体の複数個を一列以上平行に配列した光伝送体アレイにおいて、前記光伝送体の屈折率が、中心から半径方向の距離が0〜R((1−30/315)≦R≦(1−35/465))の範囲で中心から半径方向外側に向かって連続的に減少し、距離がR〜rの範囲で中心から半径方向外側に向かって連続的に上昇していることを特徴とする光伝送体アレイ。
It has a circular cross-section with a radius r 0 , and the refractive index in the range from 0 to 0.85 r 0 in the radial direction from the central axis is approximately
N (r) = N 0 (1-Ar 2 )
(Where N 0 is the refractive index on the central axis, A is the refractive index distribution constant, N (r) is the refractive index at the position where the radial distance from the central axis is r)
In the optical transmission element array in which a plurality of refractive index distribution type optical transmission elements having a refractive index distribution represented by the following are arranged in parallel, the refractive index of the optical transmission element is 0 to 0 in the radial direction from the center. R ((1-30 / 315) r 0 ≦ R ≦ (1-35 / 465) r 0) decreases from the center in a range of continuously radially outward, the distance in the range of R~r 0 An optical transmitter array characterized by continuously rising from the center toward the outside in the radial direction.
JP02394997A 1997-02-06 1997-02-06 Optical transmitter array Expired - Fee Related JP3850941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02394997A JP3850941B2 (en) 1997-02-06 1997-02-06 Optical transmitter array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02394997A JP3850941B2 (en) 1997-02-06 1997-02-06 Optical transmitter array

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006035388A Division JP4160982B2 (en) 2006-02-13 2006-02-13 Manufacturing method of optical transmission body

Publications (2)

Publication Number Publication Date
JPH10221540A JPH10221540A (en) 1998-08-21
JP3850941B2 true JP3850941B2 (en) 2006-11-29

Family

ID=12124811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02394997A Expired - Fee Related JP3850941B2 (en) 1997-02-06 1997-02-06 Optical transmitter array

Country Status (1)

Country Link
JP (1) JP3850941B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100489587C (en) * 2005-01-28 2009-05-20 鸿富锦精密工业(深圳)有限公司 Variable refractivity lens module
JP2013101233A (en) * 2011-11-09 2013-05-23 Mitsubishi Rayon Co Ltd Refractive index distribution type lens and method of manufacturing the same, and refractive index distribution type lens array and method of manufacturing the same

Also Published As

Publication number Publication date
JPH10221540A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP5417554B1 (en) Rod lens array and image sensor head using the same
JP3850941B2 (en) Optical transmitter array
JP2000035519A (en) Optical transmission body, optical transmission body array and image sensor
JP4160982B2 (en) Manufacturing method of optical transmission body
JP4087503B2 (en) Optical transmitter, optical transmitter array, method of using optical transmitter array, and color image sensor
JP4323121B2 (en) Plastic rod lens, lens array, and image sensor
JP2001337244A (en) Plastic optical transmission body, method for manufacturing the same and plastic optical transmission array
JP3794828B2 (en) Optical transmitter, optical transmitter array and plate lens
JP2005164703A (en) Rod lens and rod lens array
JP4323100B2 (en) Plastic rod lens and rod lens array
JP2003114306A (en) Rod lens, lens array and led printer
JP4990171B2 (en) Rod lens manufacturing method and rod lens array
JP3986638B2 (en) Optical transmission
JP3291583B2 (en) Indexable plastic optical transmitter, optical transmitter array, and image scanner
JP3072116B2 (en) Manufacturing method of graded index plastic optical transmitter
JP2012078656A (en) Plastic rod lens and plastic rod lens array
JP2013101233A (en) Refractive index distribution type lens and method of manufacturing the same, and refractive index distribution type lens array and method of manufacturing the same
JP3771636B2 (en) Optical transmission body and manufacturing method thereof
JP2893046B2 (en) Method of manufacturing refractive index distribution type plastic optical transmission body
JP2005178361A (en) Method for manufacturing plastic rod lens and method for manufacturing plastic rod lens array
JP5858282B2 (en) Rod lens and method for manufacturing rod lens
JP3945849B2 (en) OPTICAL TRANSMITTER, OPTICAL TRANSMITTER ARRAY, USE THEREOF, AND COLOR IMAGE SENSOR
JP2010139959A (en) Plastic rod lens, method of manufacturing the same, and plastic rod lens array
JPH10221558A (en) Optical transmitter, its manufacture, array, and these usage
JP2002243911A (en) Rod lens, rod lens array, led printer and scanner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees