JP3771636B2 - Optical transmission body and manufacturing method thereof - Google Patents

Optical transmission body and manufacturing method thereof Download PDF

Info

Publication number
JP3771636B2
JP3771636B2 JP19260596A JP19260596A JP3771636B2 JP 3771636 B2 JP3771636 B2 JP 3771636B2 JP 19260596 A JP19260596 A JP 19260596A JP 19260596 A JP19260596 A JP 19260596A JP 3771636 B2 JP3771636 B2 JP 3771636B2
Authority
JP
Japan
Prior art keywords
optical transmission
layer
light
transmission body
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19260596A
Other languages
Japanese (ja)
Other versions
JPH09127353A (en
Inventor
吉弘 魚津
敏則 隅
康照 田原
暢彦 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP19260596A priority Critical patent/JP3771636B2/en
Publication of JPH09127353A publication Critical patent/JPH09127353A/en
Application granted granted Critical
Publication of JP3771636B2 publication Critical patent/JP3771636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光集束性光ファイバ、光集束性棒状レンズ、光センサー等種々の光伝送路として利用できるプラスチック光伝送体及びその製造方法に関する。
【0002】
【従来の技術】
内部に連続的な屈折率分布を有する光伝送体は既に特公昭47ー816号においてガラス製のものが提案されている。また、合成樹脂体のものは特公昭47ー28059号において提案されている。その後様々な手法によりガラス製及び合成樹脂製の光伝送体が提案されている。この屈折率分布型光伝送体は一般的には、その両端面を中心軸に垂直な平行平面に鏡面研磨し、単体で微小レンズとして使用されている。またその多数を密接配列して接着一体化してレンズアレイの形態として複写機、ファクシミリ、スキャナ等のラインセンサ部品として、またLEDプリンタの書き込みデバイス等に広く用いられている。また、特定の用途においては片端面または両端面を若干の曲率の球面にして使用される。そして画像伝送に用いられる屈折率分布型レンズ及びレンズアレイにおいては高い解像力を持つ光学特性に優れたレンズが求められており、高い解像力及び良好な画像コントラストを得る上でいわゆるフレア光が問題となる。
【0003】
屈折率分布型レンズでは、一方の端面から入射した光線はレンズ体内をサインカーブを描いて進行し他端面から出射して結像するのであるが、一般にレンズ体内の屈折率分布は必ずしも理想的な分布に一致しているわけではない。特に外周部付近で理想分布から外れており、この外周部付近での屈折率分布の歪みとレンズ側周面を通してレンズ内に入る外光に起因してレンズ周辺にフレア光と呼ばれる結像に寄与しないぼやけた光が発生する。このフレア光がレンズの解像力及び画像のコントラストに悪影響を及ぼすのである。
【0004】
上記のようなフレア光の発生防止のため、従来はレンズアレイに使用する屈折率分布型レンズ素子の外周面を化学的エッチング等により微細な凹凸の粗面とし、これによりレンズ内で最外層に向かう光線を粗面での乱反射で外部へ逃がすとともに外周面に入射する外光を乱反射させてレンズ内への透光を抑制するようにしている。また、レンズ素子同志を結合する接着剤として黒色樹脂を使用している。これらのような対策を行ってもレンズ素子間を結合する接着剤中の黒色顔料が均一分散されず、隣接するレンズ素子間に局部的に透明な部分ができたり、あるいはレンズアレイ組立時において上記接着剤の粘性が大きいため、樹脂がレンズ外周面の凹凸に十分になじまず、局部的に未含浸部を生じ、これに起因して光の漏れが発生して充分な光学性能が得られないと言う問題点があった。また、粗面としたレンズ外周面は微視的に見て鋭利な凹凸となっているために応力集中を生じやすく更に平均的な凹凸とは別に比較的深いクラックを伴っているために相対的に強度が弱く、レンズアレイの組立時にしばしば破損を生じるという問題があった。
【0005】
合成樹脂製レンズの処理方法としては特開平6−222218号公報等においてフレア光を生じる原因となる外周部の屈折率分布の不整な部分を溶剤や刃物を用いて削除した光伝送体及び削除する方法が提案されている。このように削除する方法は非常に効果的な手法であるが、削除した後のごみの処理、溶剤の回収、切削刃が非常に寿命が短い等の問題があった。
【0006】
また、特開平7−120604号公報,特開平7−146436号公報においてフレア光を生じる原因となる外周部の屈折率分布の不整な部分を溶剤や刃物を用いて削除した後に、溶剤に光吸収剤を溶解した溶液中に光伝送体を浸漬し、その外側から光吸収剤を拡散させて光伝送体中に光吸収剤を導入する技術が提案されている。これらの方法を取ることによって光伝送体の光学特性は著しく高いものになるものの先に説明しているように、削除した後のごみの処理、溶剤の回収、切削刃が非常に寿命が短い等の問題があった。
【0007】
特開平1−105202号公報においては、光伝送体の外周部であって光伝送体を構成する組成物中に光吸収剤が存在する光伝送体、光伝送体アレイ、及びその製造方法が提案されている。
【0008】
【発明が解決しようとする課題】
しかしながらこの発明は溶剤に溶かした光吸収剤を光伝送体の外周部から吸収させる方法で製造されるので、光吸収剤の濃度分布が避けられず、光伝送体の横断面の半径方向における光吸収剤の濃度分布は外周部程高く中心側程低いものである。
【0009】
ところで中心から外周部に向かって屈折率が連続的に減少してなる円柱状の光伝送体(以下適宜「レンズ」という)中を走行する光は、レンズの横断面内の外周面の位置で最も少なく、より中心部側の位置であるほど多くなっている。また屈折率分布の不整部分がレンズの外周部の所定範囲に存在する場合、この不整部分の全体に亘って光吸収剤を混在させる必要がある。しかしながら、この先行技術の方法による光吸収剤濃度分布では、光の走行量が多い中心部側程光吸収剤の濃度が低いので、この不整に起因するフレア光を効率的に除去することが難しい。そして不整部分の最も内側(中心部側)の位置に十分な濃度の光吸収剤を含浸させようとすると、それより中心部側の不整部分でない所にも光吸収剤が含浸されてしまい、その結果光伝送量が減少するという問題が生じる。
【0010】
またこれらの光伝送体を単レンズとして用いる場合はレンズを他の部材と固着するために接着剤が用いられ、光伝送体アレイとする場合にはレンズ同士及びレンズと基板を固着させるために接着剤が用いられる。しかしながらこのように光伝送体の外周面にまで光吸収剤が存在しており且つ外周部側にいくにつれて光吸収剤の量が多く存在している場合には、接着剤によって光吸収剤が接着剤層に拡散する、接着剤と光吸収剤が反応して相互作用を起こす、光吸収剤の光線吸収ピークがシフトする、接着剤の硬化が阻害される等の弊害が起こり易い点が問題である。
【0011】
更に、特開平1−105202号公報の方法では溶剤を用いるために光伝送体内部に溶剤が残留して、この溶剤によってレンズ性能が経時変化する点が問題である。また、溶剤処理によって光伝送体の外形寸法が変化し寸法斑が生じやすい点も問題である。
【0012】
特開平6−51141号公報には、光ファイバの保護層(最外層)に着色剤を添加したマルチフィラメント型光ファイバが開示されている。しかしながらこの発明は外部から光ファイバ内に入る光を遮断するための技術であって、着色剤が混入される部分は光伝送体の外側であって光ファイバの損傷を防ぐための保護層部分である。
【0013】
また、この光ファイバの製法においては最外層の光遮断性保護層として熱可塑性樹脂が使用されているが、未硬化状の樹脂組成物を多層紡糸して製造するプラスチック製屈折率分布型光伝送体の製造技術には、最外層に熱可塑性樹脂を配置する手法を適用することは実質的に不可能である。
【0014】
特開平4−251805号公報には、染料濃度が異なる複数の紡糸原液を多層紡糸した屈折率分布型光伝送体が開示されている。しかしながらこの発明は、光伝送体の出射光の光量分布の均一化を目的とするものであって、染料は光伝送体内部の全体に亘って存在している。即ちこの先行技術は、光伝送体の屈折率分布の不整部分にのみ染料等を存在させ、光伝送体の光伝送部には染料等を実質的に存在させない構造の本願発明とは技術思想が全く異なっている。
【0015】
また、このような光重合法による製法では光重合用の光を外周部から中心部まで透過させる必要があることから混在させる光吸収剤の濃度は著しく低くせざるをえない。
即ちこれらの従来技術では、光伝送部の光伝送性が良好で且つフレア光が少ない光伝送体は得られておらず、またこのような性能を発現する光伝送体のを効率的な製法は得られていない。
【0016】
本発明の目的は、光伝送部の光伝送性が良好で且つフレア光が少ない光伝送体、解像度の高いレンズ、レンズアレイを提供することにある。
【0017】
また本発明の目的は、前記性能を発現する光伝送体またはレンズ外周部にフレア光抑制用の均一濃度の光吸収剤等を効率的且つ容易に混在させる方法を提供することにある。
【0018】
【課題を解決するための手段】
本発明の要旨は、中心から外周部に向かって屈折率が連続的に減少してなる円柱状の光伝送体であって、外周表面の位置から中心方向に向かう1μm以上100μm以内の所定範囲の部分のみに光吸収剤または光散乱剤の濃度が均一な層が形成されてなる光伝送体にある。
【0019】
また本発明の要旨は外周表面の位置から中心方向に向かう5μm以内の部分には光吸収剤及び光散乱剤を含有しない、前記光伝送体にある。
【0020】
また本発明の要旨は前記光伝送体において、中心から外周部に向かって屈折率が連続的に減少してなる円柱状の光伝送体であって、外周表面の位置から中心方向に向かう100μm以内の所定範囲の部分に光吸収剤または光散乱剤の濃度が均一な層が2層以上形成されてなる光伝送体にある。
【0021】
更に本発明の要旨は、硬化させた後に得られる硬化物の屈折率がn、n、・・、n(Nは3以上の整数)であるN個の未硬化状物を同心円状に積層して、中心部から外周部に向かって屈折率が順次減少したファイバ状の未硬化物積層体を形成し、この積層体の各層間の屈折率分布が連続的に変化するように隣接層間の成分の相互拡散処理を行いながら、または相互拡散処理を行った後、積層体を硬化処理して、屈折率分布型ファイバを製造する方法において、中心部からN/2番目以上の未硬化状物層の少なくとも一つの層に光吸収剤または光散乱剤を混入させた状態で前記の積層体を形成することにある。
【0022】
また本発明の要旨は前記光伝送体の製法において、硬化後における光伝送体の外周表面の位置から中心方向に向かう1μm以上100μm以内の所定範囲に対応する未硬化状物層の少なくとも一つの層に光吸収剤または光散乱剤を混入させた状態で積層体を形成することにある。
【0023】
また本発明の要旨は前記のいずれかの光伝送体の製法において、少なくともN−1番目の未硬化状物層中に光吸収剤または光散乱剤を混入させることにある。
【0024】
また本発明の要旨は前記のいずれかの光伝送体の製法において、隣接する2つ以上の未硬化状物層中に光吸収剤または光散乱剤を混入させることにある。
【0025】
また本発明の要旨は前記のいずれかの光伝送体の製法において、光重合法により硬化処理を行うことにあり、更に、400〜750nmの特定波長域の吸光度が、300〜370nmにおける吸光度の、2倍以上である光吸収剤を用いて、300〜370nmの発光波長を有する紫外線を用いた光重合法により硬化処理を行うことにある。
【0026】
【発明の実施の形態】
以下、本発明の光伝送体及びその製造方法について詳細に説明する。
図1及び図2はそれぞれ本発明の光伝送体の一例である屈折率分布型レンズの縦断面図、横断面図である。また、図3及び図4は最外周部に光吸収剤または光散乱剤が存在しない場合の光伝送体の縦断面図、横断面図である。それぞれレンズ素材1は、中心軸4上の屈折率をN0、屈折率分布定数をAとすれば、中心軸から半径方向に距離r離れた点での屈折率N(r)がほぼ次式の関係で表される屈折率分布を持つ透明な円柱体である。
N(r)=N0(1−Ar2) ・・・・(1)
本発明の光伝送体は外周部の屈折率が不整な部分に光吸収剤または光散乱剤がほぼ均一に混在していることを特徴としている。外周部に光吸収剤または光散乱剤が分散されているためにその近傍付近で発生するフレア光は界面反射することなしに光吸収剤によって完全に吸収され、または光散乱剤によって散乱される。つまり、光伝送体を構成する組成物中にある厚み方向に光吸収剤または光散乱剤が均一に存在するために、フレア光はより効果的に光吸収剤によりレンズ内部で吸収され、または光散乱剤によりレンズ内部で散乱されるのである。
【0027】
本発明の円柱状の光伝送体において、光吸収剤または光散乱剤はその外周表面の位置から100μm以内の所定範囲の部分に混在されている。この光吸収剤または光散乱剤が存在する層(以下適宜「遮光層」という)の厚さは、屈折率分布の不整部分の幅や光吸収剤もしくは光散乱剤の濃度等によって適宜決定されるが、通常は5〜70μm程度である。
【0028】
この遮光層の厚さは屈折率分布の不整な部分全体であってもよくまたはその一部であってもよい。但し後者の場合は、最も内側の不整部分を含む部分を遮光層として、フレア光を十分に吸収または散乱可能な濃度に光吸収剤等を混在させることが必要である。更にクロストーク防止効果の観点も考慮して光伝送体外部からの光の入射を防止することを目的として、遮光層中の光吸収剤等の濃度や遮光層の厚みを決めることが好ましい。
【0029】
即ち、遮光層は、1)外周表面から中心部に向かう100μm以下の所定の位置から外周表面迄の間に形成させることができ、また2)外周表面から中心部に向かう100μm以下の所定の2つ位置の間に形成させることができる。具体的には外周表面の位置から中心方向に向かう1μm以上100μm以内の位置の所定範囲の部分に遮光層を存在させることができる。
【0030】
尚、遮光層を2以上の層に分割して各層中の濃度を変更したものとすることもできる。例えば光伝送体外部からの光の入射を防止することを目的とする場合は、遮光層を2層以上とし、外側の遮光層中の濃度を高くすることができる。
【0031】
具体的には例えば、N番目の層(最外層)のみ、N−1番目の層のみ、N番目の層とN−1番目の層の2層、N−1番目とN−2番目の層の2層、N番目、N−1番目とN−2番目の層の3層を遮光層とすることができる。尚、製造時において隣接する2層に同一濃度の光吸収剤等を配合した場合は、得られる光伝送体において遮光層は1層と見なされる。
【0032】
本発明において光吸収剤としては、光伝送体が用いられる光学系の発光波長にあった種々の染料、顔料、色素が使用できる。可視光領域のすべての光を吸収することを目的とする場合には、多種の染料、顔料、色素を混合した黒色のものが選択できる。また、カーボンブラック、グラファイトカーボン、等の光吸収剤も当然用いることができる。その他光を吸収する物質であれば特に限定されることはない。本発明においては、光吸収剤が光伝送体を構成する組成物中に分散されて存在するのが好ましい。有機高分子体中に染料分子、顔料分子が物理的あるいは化学的親和力の場で分散あるいは結合している状態である。
【0033】
未硬化状物中に含有される光吸収剤の濃度は0.01〜10重量%、好ましくは0.01〜1重量%の範囲である。濃度が低すぎるとフレア光防止の効果がない。
【0034】
本発明において光散乱剤としては、ナイロン、ポリスチレン、ポリエチレン、ポリエステル、シリコーン樹脂等の樹脂系微粒子、酸化チタン、シリカ、アルミナ等の無機系微粒子、炭酸カルシウム、セルロース、粘土、小麦粉、水溶性でんぷん等の微粉末が挙げられる。またその他、光伝送体の原料となる単量体に不溶な微粉末を使用することができる。本発明においては、光散乱剤添加の効果を上げるためには光散乱剤が均一に分散していることが望ましい。これらの点から微粉末(光散乱剤)の粒径は小さくしかも粒径が揃っていることが好ましい。
【0035】
未硬化状物中に含有される光散乱剤の濃度は0.2〜10重量%、好ましくは0.25〜5重量%の範囲である。濃度が低すぎるとフレア光防止の効果がない。
【0036】
本発明の光伝送体は例えば次のようにして製造できる。
硬化させた後に得られる硬化物の屈折率がn1、n2、・・・、nN(Nは3以上の整数)であるN個の未硬化状物のうち中心部からN/2番目以上の未硬化状物層の少なくとも一方に光吸収剤または光散乱剤を混入させておき、それらの未硬化状物を中心から外周面に向かって順次屈折率が低くなるような配置で、かつ、同心円状に複層積層した未硬化状物の積層体(以下適宜「糸状体」と称する)に賦形し、糸状体の各層間の屈折率分布が連続的分布となるように隣接層間の物質の相互拡散処理を行いながら、または相互拡散処理を行った後、糸状体を硬化処理することにより製造される。
【0037】
また、硬化後における光伝送体の外周表面の位置から中心方向に向かう100μm以内の所定範囲に対応する未硬化状物層の少なくとも一つの層に光吸収剤または光散乱剤を混入させた状態で糸状体に賦形することもできる。
【0038】
得られる光伝送体の屈折率分布を理想的な分布に近づけるために、Nは少なくとも4以上であることが好ましい。また製造の容易さを考慮するとNは6以下程度であることが好ましい。しかしながら高性能の光伝送体を得るためにはNを10以上にすることも可能である。各層の厚みは異なっていてもよく同程度であってもよい。
【0039】
本発明に用いられる未硬化状物質は、粘度が103〜108ポイズで硬化性のものであることが好ましい。粘度が小さすぎると賦形に際し糸切れが生じるようになり糸状物の形成が困難である。また粘度が大きすぎると賦形時に操作性が不良となり各層の同心円性が損なわれたり、太さ斑の大きな糸状体となりやすいので好ましくない。
【0040】
この未硬化状物を構成する物質としてはラジカル重合性ビニル単量体または該単量体と該単量体に可溶な重合体とからなる組成物等を用いることができる。
【0041】
ラジカル重合性ビニル単量体の具体例としてはメチルメタクリレート(n=1.49)、スチレン(n=1.59)、クロルスチレン(n=1.61)、酢酸ビニル(n=1.47)、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオロブチル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、等のフッ素化アルキル(メタ)アクリレート(n=1.37〜1.44)、屈折率1.43〜1.62の(メタ)アクリレート類たとえばエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アルキレングリコール(メタ)アクリレート、トリメチロールプロパンジ又はトリ(メタ)アクリレート、ペンタエリスリトールジ、トリ又はテトラ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、などの他のジエチレングリコールビスアリルカーボネート、フッ素化アルキレングリコールポリ(メタ)アクリレートなどが挙げられる。
【0042】
これら未硬化状物から糸状体を形成する際の未硬化状物の粘度調整を容易にするため、及び糸状体の中心から外周へ向かい連続的な屈折率分布を持たせるため、前記の未硬化状物はビニル系単量体と可溶性ポリマーとで構成されていることが好ましい。
【0043】
ここに用いうるポリマーとしては、前記のラジカル重合性ビニル単量体から生成するポリマーと相溶性が良いことが必要であり、例えばポリメチルメタクリレート(n=1.49)、ポリメチルメタクリレート系コポリマー(n=1.47〜1.50)、ポリ4ーメチルペンテンー1(n=1.46)、エチレン/酢酸ビニル共重合体(n=1.46〜1.50)、ポリカーボネート(n=1.50〜1.57)、ポリフッ化ビニリデン(n=1.42)、フッ化ビニリデン/テトラフルオロエチレン共重合体(n=1.42〜1.46)、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロペン共重合体(n=1.40〜1.46)、ポリフッ化アルキル(メタ)アクリレートポリマー等が挙げられる。
【0044】
粘度を調整するため、各層に同一の屈折率を有するポリマーを用いた場合には中心から外周に向かって連続的な屈折率分布を有するプラスチック光伝送体が得られるので好ましい。特に、ポリメチルメタクリレートは透明性に優れ及びそれ自体の屈折率も高いので本発明の屈折率分布型光伝送体を作成するに際して用いるポリマーとしては好適なものである。
【0045】
前記未硬化状物より形成した糸状体を硬化するには未硬化物中に熱硬化触媒あるいは光硬化触媒を添加しておくことが好ましい。熱硬化触媒としては普通パーオキサイド系又はアゾ系の触媒が用いられる。光硬化触媒としてはベンゾフェノン、ベンゾインアルキルエーテル、4'ーイソプロピルー2ーヒドロキシー2ーメチルプロピオフェノン、1ーヒドロキシシクロヘキシルフェニルケトン、ベンジルメチルケタール、2,2-ジエトキシアセトフェノン、クロロチオキサントン、チオキサントン系化合物、ベンゾフェノン系化合物、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、N−メチルジエタノールアミン、トリエチルアミンなどが挙げられる。
【0046】
次いで未硬化状物を硬化させるには、硬化部において好ましくは紫外線を周囲から作用させ、熱硬化触媒及び/又は光硬化触媒を含有する糸状体を熱処理ないし光硬化処理する。
【0047】
本発明の製法において、光吸収剤と単量体の分子量の大小関係は特に限定されないが、未硬化状物として前記単量体と重合体との混合物を使用し、光吸収剤として前記染料等を使用する場合は、光吸収剤の方が、単量体よりも分子量がはるかに大きいので未硬化状物中における拡散速度がはるかに遅い。従って光吸収剤を実質的に拡散させることなく、未硬化状物層相互間において単量体を拡散させることができる。
【0048】
尚、重合硬化に長時間を要する熱重合の場合は、光吸収剤が拡散して、遮光層内の濃度が不均一となり、また、屈折率分布が正常な部分にまで染料等が移動して光伝送体の透光機能が損なわれるおそれがある。このため短時間で重合可能な光重合によって硬化させることが望ましい。
【0049】
ところで光重合法により重合硬化させるためには、未硬化状物層中を光重合用の光を透過させることが必要である。しかしながら、光吸収剤の種類は多くあり、光吸収の波長依存性は様々である。即ち、光伝送体の伝送光を吸収するとともに重合用の光をそれと同等以上に吸収する光吸収剤も存在する。従って光重合法により重合硬化処理する場合は、光伝送体の伝送光を吸収するが、重合用の光を吸収せず透過させる特性を有する光吸収剤を用いることが望ましい。
【0050】
光伝送体の伝送光として実際に用いられる光は通常波長が400〜750nmの可視光から近赤外光の範囲のものである。一方、光重合に用いる光の発光波長は通常300〜370nmの紫外線である。よって400〜750nmの特定波長域の吸光度が、300〜370nmにおける吸光度の、2倍以上である光吸収剤を用いることが好ましい。
【0051】
このような光吸収剤の代表的な例として以下のものがあげられる。LEDプリンタ用のLED光の発光波長である740nmをカバーするものとして、700nm以上に吸収のある日本化薬製Kayasorb CYー10が挙げられる。また、ファクシミリ等のイメージスキャナのLEDの発光波長である570nmをカバーするものとして、550〜670nmに吸収のある日本化薬製Kayaset Blue ACRや同業他社の同等品が挙げられる。その他の波長領域に対して有効な光吸収剤としては、400〜500nmに吸収のあるものとして、日本化薬製Kayasorb Yellow 2G、Orange G、Yellow A−G、Yellow E−Gとそのそれぞれの同業他社の同等品、三井東圧染料のMS Yellow HDー180とその同業他社の同等品があげられる。500〜600nmに吸収のあるものとして、日本化薬製Kayasorb Red G、Red 130、Red Bとその同業他社の同等品及び三井東圧染料MS Magenta HMー1450とその同業他社同等品があげられる。これらの染料は単独で用いることも可能であり、また、複数を組み合わせて用いることになる。
【0052】
図8及び図9は本発明において用いられる代表的な染料であるCYー10とBlue ACRの吸収スペクトルを示す図であって、横軸は波長(nm)、縦軸は紫外可視スペクトル測定装置でセンサーにより実測した電流値(アンペア)であり、この電流値は、吸光度に比例するものである。それぞれ紫外線域(300〜370nm)の吸収が少なく、そこでの吸光度は光伝送体の実使用波長域740nmあるいは570nmのそれぞれの波長での吸光度の1/2以下であることがわかる。このような光吸収剤を使用すると、未硬化状物層中を紫外線が透過し、光重合が効率的に進行する。
【0053】
本発明の光伝送体は例えば図5の糸状体成形装置を用いて製造することができる。図5は糸状体成形装置を図式的に示す工程図であり、相互拡散部12及び硬化処理部13の部分だけを縦断面図で示してある。図中の記号10は同心円状複合ノズル、11は押し出された未硬化の糸状体、12は糸状体の各層の単量体を相互に拡散させて屈折率分布を与えるための相互拡散部、13は未硬化状物を硬化させるための硬化処理部、14は引き取りローラー、15は製造された光伝送体、16は巻き取り部、17は不活性ガス導入口、18は不活性ガス排出口である。糸状体11から遊離する揮発性物質を相互拡散部12及び硬化処理部13から除去するため、不活性ガス導入口17から不活性ガス例えば窒素ガスが導入される。
【0054】
光重合に用いる光源としては150〜600nmの波長の光を発生する炭素アーク灯、高圧水銀灯、中圧水銀灯、低圧水銀灯、超高圧水銀灯、ケミカルランプ、キセノンランプ、レーザー光等が挙げられる。
【0055】
【実施例】
以下実施例により本発明を具体的に説明する。尚、実施例及び比較例において屈折率分布及びレンズ性能(MTF)の測定は下記の方法により行った。
【0056】
(1)屈折率分布の測定
カールツアイス社製インターファコ干渉顕微鏡を用いて公知の方法により測定した。
【0057】
(2)レンズ性能(MTF)の測定
光伝送体の解像度を示すMTFは、空間周波数4(ラインペア/mm,Lp/mm)を有する格子、光軸に垂直な両端面を研磨した単レンズあるいは図6の23に示すような光伝送体を複数本並べたアレイ、及び光源を図6に示すように配列し、結像面に設置したCCDラインセンサーにより格子画像を読みとり、その測定光量の最大値(iMAX)と最小値(iMIN)を図7に示すごとく測定し、次式により求めた。
【0058】
MTF(%)=(iMAX−iMIN)/(iMAX+iMIN)×100・・・(2)ここで空間周波数とは、図6の格子に示すごとく、白ラインと黒ラインとの組み合わせを1ラインとし、このラインの組み合わせが1mmの幅の中に何組設けてあるかを示すものである。
【0059】
比較例1
ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)50重量部、ベンジルメタクリレート36重量部、メチルメタクリレート14重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部及びハイドロキノン0.1重量部を70℃に加熱混練して第1層形成用原液とした。ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)51重量部、メチルメタクリレート49重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第2層形成用原液とした。ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)48重量部、メチルメタクリレート37重量部、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート15重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第3層形成用原液とした。ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)45重量部、メチルメタクリレート25重量部、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート30重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第4層形成用原液とした。ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)42重量部、メチルメタクリレート15重量部、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート43重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第5層形成用原液とした。この5種類の原液を同心円状5層複合ノズルを用い中心から順次未硬化物の屈折率が低くなるように配列し同時に押し出した。
【0060】
複合紡糸ノズルの温度は55℃であった。押し出し時の粘度は第1層の成分が4.5×104ポイズ、第2層が3.8×104ポイズ、第3層が3.5×104ポイズ、第4層が2.9×104ポイズ、第5層が3.2×104ポイズであった。第1層から第5層の吐出比は半径の比で35/38/20/6/1であった。
ついで長さ55cmの各層相互拡散処理部を通しその後長さ120cm、40Wのケミカルランプ12本を円状に等間隔に配設された光照射部の中心にストランドファイバを通過させて、70cm/minの速度でニップローラーで引き取った。
【0061】
得られた光伝送体は半径(r0)が0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。この光伝送体の両端面を研磨してレンズ長6.6mmとし、4Lp/mmの格子を用いてこの単レンズの特性を測定したところ、570nmの波長の光に対する共役長は14.4mmであり共役長におけるMTFは65%であった。また740nmの波長に対する共役長は15.4mmであり共役長におけるMTFは61%であった。
【0062】
更にこの光伝送体複数本を用い、側板にはフェノール樹脂(厚さ1.2mm)2枚を用い、接着剤にはカーボンブラックを2wt%添加したエピフォーム(ソマール社製)を用い、側板の間に光伝送体を1列に配列し接着剤を充填し、接着剤を硬化し、その後両端面を切断して研磨し、レンズ長6.6mmのレンズアレイを製作した。4Lp/mmの格子を用いてこのレンズアレイの特性を測定したところ、570nmの波長の光に対する共役長は14.4mmであり共役長におけるMTFは63%であった。
【0063】
この光伝送体アレイを用いて570nmの発光波長を有するLEDを光源とし、CCDを受光素子としたイメージスキャナを組み立てた。このイメージスキャナはフレア光による影響で解像度が若干低く画像をクリアに伝送することが困難であった。
【0064】
比較例2
比較例1で作成した光伝送体を温度35℃のクロロホルム中に1分間浸漬して膨潤させた。次いでこの光伝送体を半径0.25mmの穴をあけたシリコーンゴムの穴の中を強制的に通過させた。光伝送体の外周部から半径方向の35μmの深さの部分が削除された。
【0065】
得られた光伝送体は半径(r0)が0.435mmであり、屈折率分布は中心部が1.512、外周部が1.470であった。
この光伝送体を用いて比較例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。
【0066】
この光伝送体アレイを70℃に設定した熱風乾燥機中に24時間放置したところレンズ特性の変化が起きた。レンズ特性を測定したところMTFが約10%低下し、共役長が約1mm長くなっていた。これは、レンズ中に残存するクロロホルムの拡散によるものと推定された。
【0067】
比較例3
比較例1で作成した光伝送体をオリエント化学(株)製の染料バリファストブラック0.5wt%を溶解したクロロホルム溶液中に温度25℃で1分間浸漬した後70℃の乾燥炉にて3分間処理した。光伝送体の外周部から35μmの範囲で外周部ほど濃く染色されているのを確認した。
【0068】
この光伝送体を用いて比較例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。
レンズアレイのMTFは単レンズの性能から想定されるものよりかなり性能の低いものであった。レンズアレイ中の染料の濃度を確認すると光伝送体外周部にあった染料が接着剤層に拡散して、光伝送体から抜けていることが確認できた。
【0069】
実施例1
第1層目〜第5層目の原液を比較例1と同様とし、更に4層目の原液中に日本化薬(株)製赤外線吸収染料CY−10を0.04wt%添加して比較例1と同様にして70℃にて加熱混練し、4層目の原液とした。紡糸時の粘度は比較例1と同様であった。複合紡糸時の吐出比、各層相互拡散処理部の通過条件、光照射条件、ニップローラーの引き取り条件を比較例1と同様にして光伝送体を得た。尚、この実施例で使用したCYー10は紫外線を吸収しないものである。
【0070】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から5μmの部分は染色されていない層でありその内側に28μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0071】
レンズ長を6.6mmとし570nmの波長の光を用いレンズ特性を比較例1と同様にして測定したところ、共役長は14.4mmであり共役長におけるMTFは65%であった。一方、740nmの光源に対しては、共役長は15.4mmであり共役長におけるMTFは77%であり比較例1のものより高い値を示した。染料の吸収波長領域に発光波長を有するLED光に対してはレンズの解像力が向上することが確認された。
【0072】
この光伝送体を用い、側板にはフェノール樹脂(厚さ1.2mm)2枚を用い、接着剤にはカーボンブラックを2wt%添加したエピフォーム(ソマール社製)を用い、側板の間に光伝送体を1列に配列し接着剤を充填し、接着剤を硬化し、その後両端面を切断して研磨し、レンズ長6.6mmのアレイを作製した。このアレイの570nmの波長の光に対する共役長は14.4mmであり共役長におけるMTFは63%であった。また、、740nmの波長の光に対する共役長は15.4mmであり共役長におけるMTFは75%であった。このMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。
【0073】
実施例2
実施例1において、第4層目に添加する染料として、CY−10の代わりに日本化薬(株)製染料Blue ACR(0.02wt%)を用い、また、紫外線照射量を1.1倍とし、それ以外の条件は実施例1と同様にして光伝送体を得た。尚、この実施例で用いたBlue ACRは紫外線領域に吸収が存在するので透過光量を調節するために紫外線光量を1.1倍としたものである。
【0074】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から5μmの部分は染色されていない層でありその内側に28μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0075】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。
【0076】
この光伝送体アレイを用いて570nmの発光波長を有するLEDを光源とし、CCDを受光素子としたイメージスキャナを組み立てた。このイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0077】
実施例3
実施例1において、4層目の原液中に添加する染料をBlue ACR(0.03wt%)及びCY−10(0.03wt%)とし、光照射部における紫外線光量を1.2倍とし、それ以外は実施例1と同様にして光伝送体を得た。
【0078】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から5μmの部分は染色されていない層でありその内側に28μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0079】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。また実施例2と同様にして組み立て評価したイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0080】
実施例4
第1層〜第5層の原液を比較例1と同様とし、更に第4層及び第5層の原液中にCY−10を0.04wt%添加して比較例1と同様にして光伝送体を得た。
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部表面から中心部に向かって35μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0081】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。
【0082】
実施例5
実施例4において、第4層及び第5層に添加する染料として、CY−10の代わりにBlue ACR(0.02wt%)を用い、また、紫外線照射量を1.1倍とし、それ以外の条件は実施例4と同様にして同様にして光伝送体を得た。
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部表面から中心部に向かって35μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0083】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。また実施例2と同様にして組み立て評価したイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0084】
実施例6
実施例4において、第4層及び第5層の原液中に添加する染料をBlue ACR(0.03wt%)及びCY−10(0.03wt%)とし、光照射部における紫外線光量を1.2倍とし、それ以外は実施例4と同様にして光伝送体を得た。
【0085】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から35μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0086】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。また実施例2と同様にして組み立て評価したイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0087】
実施例7
ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)52重量部、ベンジルメタクリレート32重量部、メチルメタクリレート16重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部及びハイドロキノン0.1重量部を70℃に加熱混練して第1層形成用原液とした。ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)51重量部、メチルメタクリレート35重量部、ベンジルメタクリレート7重量部、2,2,3,3-テトラフルオロプロピルメタクリレート7重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第2層形成用原液とした。ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)48重量部、メチルメタクリレート37重量部、2,2,3,3-テトラフルオロプロピルメタクリレート15重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部を70℃に加熱混練して第3層形成用原液とした。
【0088】
ポリメチルメタクリレート(〔η〕=0.40,MEK中,25℃にて測定)43重量部、メチルメタクリレート20重量部、2,2,3,3-テトラフルオロプロピルメタクリレート37重量部、1ーヒドロキシシクロヘキシルフェニルケトン0.25重量部、ハイドロキノン0.1重量部、及びBlue ACR 0.05重量部を70℃に加熱混練して第4層形成用原液とした。
この4種類の原液を同心円状4層複合ノズルを用い中心から順次未硬化物の屈折率が低くなるように配列し同時に押し出した。
複合紡糸ノズルの温度は50℃であった。押し出し時の粘度は第1層の成分が5.7×104ポイズ、第2層が3.9×104ポイズ、第3層が3.2×104ポイズ、第4層が3.3×104ポイズであった。第1層から第4層の吐出比は半径の比で37/36/21/8であった。
ついで長さ55cmの各層相互拡散処理部を通しその後長さ120cm、40Wのケミカルランプ12本を円状に等間隔に配設された光照射部の中心にストランドファイバを通過させて、60cm/minの速度でニップローラーで引き取った。
【0089】
得られた光伝送体は半径(r0)が0.45mmであり、屈折率分布は中心部が1.510、外周部が1.470であった。光伝送体の外周部表面から中心部に向かって36μmの染色層が形成されており、染料の濃度はほぼ均一であった。 この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。また実施例2と同様にして組み立て評価したイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0090】
実施例8
この実施例は6層の複合紡糸に関するものであり、第4層及び第5層に染料を混在させた。第1層、第2層、3層、第4層、第5層及び第6層の原液は、それぞれ比較例1の第1層、第2層、3層、第3層、第4層及び第5層と同様のものであって、第4層と第5層の原液にはBlue ACR(0.03wt%)及びCY−10(0.03wt%)を添加した。複合紡糸における各層の吐出半径比は35/38/15/5/6/1で、また、紫外線光量を1.3倍としそれ以外は実施例4と同様にして光伝送体を得た。
【0091】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から60μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0092】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。また実施例2と同様にして組み立て評価したイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0093】
実施例9
第1層目〜第5層目の原液を比較例1と同様とし、更に4層目の原液中にCY−10を0.04wt%、Blue ACRを0.14wt%、三井東圧染料のMS Yellow HDー180 0.10wt%、及び三井東圧染料MS Magenta HMー1450 0.08wt%を添加し、比較例1と同様にして70℃にて加熱混練した。
【0094】
紡糸時の粘度は比較例1と同様であった。複合紡糸時の吐出比、各層相互拡散処理部の通過条件、ニップローラーの引き取り条件を比較例1と同様にして光伝送体を得た。尚、この実施例で使用したCYー10は紫外線を吸収しないものであり、Blue ACR,HDー180,HMー1450は紫外線も吸収するために紫外線光量は比較例1の1.5倍で光重合を行った。
【0095】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から5μmの部分は染色されていない層でありその内側に28μmの染色層が形成されており、染料の濃度はほぼ均一であった。
【0096】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。この単レンズは可視光域全波長領域においてMTFの向上が確認できた。これらの染料の組み合わせによって可視光域全波長領域の光に対してレンズの解像力が向上することが確認された。またレンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。
【0097】
この光伝送体アレイを用いて570nmの発光波長を有するLEDを光源とし、CCDを受光素子としたイメージスキャナを組み立てた。このイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。同様に450nm付近の波長を有する青色の光源を用いてイメージスキャナを組み立てた場合も、611nm付近の波長を有する赤色の光源を用いてイメージスキャナを組み立てた場合も、フレア光による影響がほとんどなく解像度が高く画像をクリアに伝送することができた。
【0098】
実施例10
実施例1において、4層目の原液中に添加する染料として、CY−10を0.04wt%、Blue ACRを0.14wt%、MS Yellow HDー180を0.08wt%、及びMS Magenta HMー1450を0.08wt%添加し、また5層目の原液中に添加する染料として、CYー10を0.02wt%,Blue ACRを0.60wt%、MS Yellow HDー180を0.18wt%、及びMS Magenta HMー1450を0.20wt%添加して比較例1と同様にして70℃にて加熱混練した。
【0099】
紡糸時の粘度は染料添加前の原液とほぼ同じであった。また、光照射部における紫外線光量を1.4倍とした以外は実施例1と同様にして光伝送体を得た。
【0100】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から5μmの部分は特にBlue ACR、HDー180、HMー1450が高濃度で存在する層で、その内側にそれらの染料が最外層部よりも低濃度で存在する28μmの染色層が形成されており、2つの染色層の中の染料の濃度はほぼ均一であった。
【0101】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。この単レンズは可視光域全波長領域においてMTFの向上が確認できた。これらの染料の組み合わせによって可視光域全波長領域の光に対してレンズの解像力が向上することが確認された。またレンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。
【0102】
また実施例9と同様に各波長に対応して組み立てたイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0103】
実施例11
第1層〜第5層の原液を比較例1と同様とし、更に4層と5層の原液中に平均粒径0.5μmのシリカ系微粒子(東レシリコ−ン(株)製 トスパ−ル105)を0.5重量%添加して比較例1と同様にして70℃にて加熱混練し、第4層及び第5層の原液とした。比較例1に対して4層及び5層の原液の紡糸時の粘度は増加し、第4層が3.2×104ポイズ、第5層が4.0×104ポイズであった。
【0104】
シリカ系微粒子の添加によって、紫外線の遮光がわずかながら起きるので、透過光量を調節するために比較例1に対して紫外線光量を1.05倍とした。その他の条件、即ち、複合紡糸時の吐出比、各層相互拡散処理部の通過条件、光照射条件、ニップローラーの引き取り条件は比較例1と同様にして光伝送体を得た。
【0105】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から35μmの部分にはほぼ均一な濃度の微粒子層が形成されていた。
【0106】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。また実施例2と同様にして組み立て評価したイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0107】
このように光伝送体の外周部に光散乱体を混在させることによって、比較例2のような後工程なしに、比較例2の場合と同等以上の光学性能の向上が図れることを確認した。尚、比較例2では残存溶剤によりレンズ性能が劣化する点を考慮すると、この実施例のレンズの性能が優れていることが分かる。
【0108】
実施例12
第1層〜第5層の原液を比較例1と同様とし、更に第4層の原液中に粒径5〜30μmのポリスチレン系微粒子(綜研化学(株)製 SGP−70C)を1.0重量%添加して比較例1と同様にして70℃にて加熱混練し、第4層の原液とした。比較例1に対して第4層の原液の紡糸時の粘度は増加し、4.1×104ポイズであった。
【0109】
比較例1に対して紫外線光量を1.05倍とし、その他の条件、即ち、複合紡糸時の吐出比、各層相互拡散処理部の通過条件、光照射条件、ニップローラーの引き取り条件は比較例1と同様にして光伝送体を得た。
【0110】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から5μmの部分は微粒子が存在しない層であり、その内側に30μmの微粒子層が形成されており、微粒子層中の微粒子の濃度はほぼ均一であった。
【0111】
この光伝送体を用いて実施例1と同様にして単レンズ、レンズアレイを製作し、単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。第5層の部分には微粒子(光散乱剤)が存在しないにも拘わらず光伝送体の光学性能は実施例11とほぼ程度であった。レンズアレイのMTFは単レンズの性能から想定されるものであり、染料の接着剤層への拡散も認められなかった。また実施例2と同様にして組み立て評価したイメージスキャナはフレア光による影響がほとんど無く解像度が高く画像をクリアに伝送することができた。
【0112】
実施例13
第1層〜第5層の原液を比較例1と同様とし、更に第5層の原液中に平均粒径6μmのポリスチレン系微粒子(住友精化(株)製 フロ−ビ−ズLE−1080)を2.0重量%添加して比較例1と同様にして70℃にて加熱混練し、第5層の原液とした。比較例1に対して第5層の原液の紡糸時の粘度は増加し、5.5×104ポイズであった。
【0113】
比較例1に対して紫外線光量を1.02倍とし、その他の条件、即ち、複合紡糸時の吐出比、各層相互拡散処理部の通過条件、光照射条件、ニップローラーの引き取り条件は比較例1と同様にして光伝送体を得た。
【0114】
この光伝送体の半径は0.47mmであり、屈折率分布は中心部が1.512、外周部が1.468であった。光伝送体の外周部から5μmの部分にはほぼ均一濃度の微粒子層が形成されていた。
【0115】
実施例1と同様にして単レンズ特性、レンズアレイ特性を評価し表1の結果を得た。第4層の部分には微粒子(光散乱剤)が存在しないにも拘わらず光伝送体の光学性能は実施例1とほぼ程度であった。
【0116】
実施例1と同様にしてイメージスキャナを組み立てた。このイメージスキャナはフレア光による影響がまだ若干残っていたが、比較例1と比べると解像度が高く画像をクリアに伝送することができた。光伝送体の外周部のわずかな部分にでも光拡散剤を混在させることによりMTFが向上できることを確認した。
【0117】
【表1】

Figure 0003771636
【0118】
【発明の効果】
本発明の光伝送体は外周部の屈折率分布が不整な部分に光吸収剤または光散乱剤がほぼ均一な濃度で存在するためにフレア光を効率的且つ簡単に抑制することができ、解像度の高いレンズ、レンズアレイを提供することができる。
【0119】
また、本発明の製法によれば光伝送体中に光吸収剤または光散乱剤を容易に混在させることができる。また、この製法は溶剤を用いないので、光伝送体内部に溶剤が残留してレンズ性能が経時変化するという問題も生じさせない。
【図面の簡単な説明】
【図1】本発明の光伝送体の縦断面図である。
【図2】図1の光伝送体の横断面図である。
【図3】本発明の他の態様の光伝送体の縦断面図である。
【図4】図3の光伝送体の横断面図である。
【図5】本発明の光伝送体を製造するための製造装置の概略図である。
【図6】光伝送体の解像度(MTF)測定装置の概略を示す図である。
【図7】CCDセンサーにより解像度を測定した図である。
【図8】本発明で用いるCYー10の吸収特性を示す図である。
【図9】本発明で用いるBlue ACRの吸収特性を示す図である。
【符号の説明】
1 レンズ素材
2 光吸収剤または光拡散剤
3 光吸収剤または光拡散剤が存在しない最外周部
10 同心円状複合ノズル
11 未硬化の糸状体
12 相互拡散部
13 硬化処理部
14 引き取りローラー
15 光伝送体
16 巻き取り部
17 不活性ガス導入口
18 不活性ガス排出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plastic optical transmission body that can be used as various optical transmission paths such as a light focusing optical fiber, a light focusing rod-like lens, and a light sensor, and a method for manufacturing the same.
[0002]
[Prior art]
An optical transmission body having a continuous refractive index distribution therein has already been proposed in Japanese Patent Publication No. 47-816. A synthetic resin body has been proposed in Japanese Patent Publication No. 47-28059. Thereafter, optical transmission bodies made of glass or synthetic resin have been proposed by various methods. In general, the gradient index optical transmission body is mirror-polished to a parallel plane perpendicular to the central axis at both end faces, and used alone as a microlens. Many of them are closely arranged and bonded and integrated to form a lens array, which is widely used as a line sensor component for copying machines, facsimiles, scanners, etc., and for a writing device of an LED printer. In a specific application, one end surface or both end surfaces are used as spherical surfaces having a slight curvature. In the gradient index lens and lens array used for image transmission, a lens having high resolving power and excellent optical characteristics is required, and so-called flare light becomes a problem in obtaining high resolving power and good image contrast. .
[0003]
In a gradient index lens, a light beam incident from one end face travels in a sine curve in the lens body and exits from the other end face to form an image. In general, the refractive index distribution in the lens body is not always ideal. It is not consistent with the distribution. In particular, it deviates from the ideal distribution near the outer periphery, and contributes to image formation called flare light around the lens due to distortion of the refractive index distribution near the outer periphery and external light entering the lens through the lens side peripheral surface. Does not generate blurry light. This flare light adversely affects the resolving power of the lens and the contrast of the image.
[0004]
In order to prevent the occurrence of flare light as described above, the outer peripheral surface of a gradient index lens element used in a lens array has been conventionally made into a rough surface with fine irregularities by chemical etching or the like, thereby forming the outermost layer in the lens. The light beam that travels is allowed to escape to the outside by irregular reflection on the rough surface, and external light incident on the outer peripheral surface is irregularly reflected to suppress light transmission into the lens. Further, a black resin is used as an adhesive for bonding the lens elements. Even if these measures are taken, the black pigment in the adhesive that bonds the lens elements is not uniformly dispersed, and a locally transparent portion is formed between adjacent lens elements, or the above-mentioned when the lens array is assembled. Due to the high viscosity of the adhesive, the resin does not sufficiently conform to the irregularities on the outer peripheral surface of the lens, and a non-impregnated part is locally generated. As a result, light leakage occurs and sufficient optical performance cannot be obtained. There was a problem. In addition, since the rough outer surface of the lens is microscopically sharp and uneven, it tends to cause stress concentration and has relatively deep cracks apart from the average unevenness. However, there is a problem in that the strength of the lens array is weak and often breaks during assembly of the lens array.
[0005]
As a method of processing a synthetic resin lens, in JP-A-6-222218, etc., an optical transmission body in which an irregular portion of the refractive index distribution in the outer peripheral portion that causes flare light is deleted using a solvent or a cutter is deleted. A method has been proposed. Although the method of deleting in this way is a very effective method, there have been problems such as waste disposal after the deletion, solvent recovery, and the cutting blade has a very short life.
[0006]
Further, in JP-A-7-120604 and JP-A-7-146436, after removing an irregular portion of the refractive index distribution at the outer peripheral part that causes flare light using a solvent or a knife, the solvent absorbs light. There has been proposed a technique in which a light absorber is immersed in a solution in which the agent is dissolved, the light absorber is diffused from the outside thereof, and the light absorber is introduced into the light transmitter. By using these methods, the optical properties of the optical transmission body are remarkably high. However, as described above, the processing of waste after removal, the recovery of the solvent, the cutting blade has a very short life, etc. There was a problem.
[0007]
JP-A-1-105202 proposes an optical transmitter, an optical transmitter array, and a method of manufacturing the same, in which a light absorber is present in the composition constituting the optical transmitter at the outer periphery of the optical transmitter. Has been.
[0008]
[Problems to be solved by the invention]
However, since the present invention is manufactured by a method in which the light absorber dissolved in the solvent is absorbed from the outer periphery of the optical transmission body, the concentration distribution of the optical absorber is inevitable, and the light in the radial direction of the cross section of the optical transmission body is unavoidable. The concentration distribution of the absorbent is higher at the outer peripheral portion and lower at the center side.
[0009]
By the way, light traveling in a cylindrical optical transmission body (hereinafter referred to as “lens” where appropriate) whose refractive index continuously decreases from the center toward the outer peripheral portion is located at the position of the outer peripheral surface in the cross section of the lens. It is the smallest, and the more the position is closer to the center, the more it is. In addition, when the irregular portion of the refractive index distribution exists in a predetermined range of the outer peripheral portion of the lens, it is necessary to mix a light absorber over the entire irregular portion. However, in the light absorber concentration distribution according to this prior art method, since the concentration of the light absorber is lower toward the center side where the amount of light traveling is larger, it is difficult to efficiently remove flare light caused by this irregularity. . Then, if an attempt is made to impregnate a light absorber having a sufficient concentration at the innermost position (center side) of the irregular portion, the light absorber is impregnated even in a portion that is not an irregular portion on the central portion side. As a result, there arises a problem that the amount of light transmission is reduced.
[0010]
In addition, when these optical transmission bodies are used as a single lens, an adhesive is used to fix the lens to other members, and when an optical transmission body array is used, an adhesive is used to fix the lenses to each other and the lens and the substrate. An agent is used. However, when the light absorber is present up to the outer peripheral surface of the optical transmission body and the amount of the light absorber is increased as it goes to the outer peripheral portion side, the light absorber is bonded by the adhesive. Difficulties are likely to occur such as diffusion to the adhesive layer, reaction between the adhesive and the light absorber causing interaction, shifting of the light absorption peak of the light absorber, and inhibition of curing of the adhesive. is there.
[0011]
Furthermore, the method disclosed in Japanese Patent Application Laid-Open No. 1-105202 has a problem in that since the solvent is used, the solvent remains in the optical transmission body, and the lens performance changes with time due to the solvent. Another problem is that the outer dimensions of the optical transmission body change due to the solvent treatment and dimensional spots are likely to occur.
[0012]
Japanese Patent Application Laid-Open No. 6-51141 discloses a multifilament type optical fiber in which a colorant is added to the protective layer (outermost layer) of the optical fiber. However, the present invention is a technique for blocking the light entering the optical fiber from the outside, and the portion where the colorant is mixed is outside the optical transmission body and is a protective layer portion for preventing damage to the optical fiber. is there.
[0013]
Also, in this optical fiber manufacturing method, a thermoplastic resin is used as the outermost light blocking protective layer, but a plastic gradient index optical transmission manufactured by multilayer spinning of an uncured resin composition. It is virtually impossible to apply a technique of arranging a thermoplastic resin in the outermost layer to the body manufacturing technique.
[0014]
JP-A-4-251805 discloses a refractive index distribution type optical transmission body in which a plurality of spinning solutions having different dye concentrations are subjected to multilayer spinning. However, the present invention aims to make the light quantity distribution of the light emitted from the optical transmission body uniform, and the dye is present throughout the optical transmission body. That is, this prior art has a technical idea with the present invention having a structure in which a dye or the like is present only in an irregular portion of the refractive index distribution of the optical transmission body, and a dye or the like is not substantially present in the optical transmission section of the optical transmission body. It is completely different.
[0015]
In addition, since the photopolymerization method needs to transmit light for photopolymerization from the outer peripheral portion to the central portion, the concentration of the mixed light absorber must be extremely low.
That is, in these prior arts, an optical transmission body having good optical transmission characteristics of the optical transmission unit and less flare light has not been obtained, and an efficient manufacturing method of an optical transmission body that exhibits such performance is not available. Not obtained.
[0016]
An object of the present invention is to provide an optical transmission body, a high-resolution lens, and a lens array, in which the optical transmission section of the optical transmission section is good and flare light is small.
[0017]
Another object of the present invention is to provide a method for efficiently and easily mixing a light absorber or the like having a uniform concentration for suppressing flare light in the optical transmission body or the lens outer peripheral portion that exhibits the above performance.
[0018]
[Means for Solving the Problems]
The gist of the present invention is a cylindrical optical transmission body in which the refractive index continuously decreases from the center toward the outer periphery, Only in a predetermined range from 1 μm to 100 μm from the position of the outer peripheral surface toward the center Further, there is an optical transmission body in which a layer having a uniform concentration of light absorber or light scattering agent is formed.
[0019]
The gist of the present invention is The optical transmission body does not contain a light absorbing agent and a light scattering agent in a portion within 5 μm from the position of the outer peripheral surface toward the center. It is in.
[0020]
The gist of the present invention is a cylindrical optical transmission body in which the refractive index continuously decreases from the center toward the outer peripheral portion in the optical transmission body, and is within 100 μm from the position of the outer peripheral surface toward the central direction. In the optical transmission body, two or more layers having a uniform concentration of the light absorbing agent or the light scattering agent are formed in a predetermined range.
[0021]
Furthermore, the gist of the present invention is that the refractive index of the cured product obtained after curing is n. 1 , N 2 , ..., n N (N is an integer greater than or equal to 3) N uncured materials are concentrically laminated to form a fiber-shaped uncured material laminate in which the refractive index decreases sequentially from the center to the outer periphery. , While performing the interdiffusion treatment of components between adjacent layers so that the refractive index distribution between each layer of this laminate continuously changes, or after performing the interdiffusion treatment, the laminate is cured, and the refractive index In the method for producing a distributed fiber, the laminate is formed in a state where a light absorber or a light scattering agent is mixed in at least one of N / 2 or more uncured layers from the center. It is in.
[0022]
Further, the gist of the present invention is directed to the center direction from the position of the outer peripheral surface of the optical transmission body after curing in the manufacturing method of the optical transmission body. 1μm or more It is to form a laminate in a state where a light absorber or a light scattering agent is mixed in at least one layer of an uncured material layer corresponding to a predetermined range within 100 μm.
[0023]
The gist of the present invention is to mix a light absorber or light scattering agent into at least the (N-1) th uncured material layer in any one of the above-mentioned methods for producing an optical transmission body.
[0024]
Further, the gist of the present invention is to mix a light absorber or light scattering agent into two or more adjacent uncured material layers in any of the above-mentioned methods for producing an optical transmission body.
[0025]
Further, the gist of the present invention is to perform a curing treatment by a photopolymerization method in the method for producing any one of the above optical transmitters, and the absorbance in a specific wavelength region of 400 to 750 nm is the absorbance at 300 to 370 nm. The purpose is to perform a curing treatment by a photopolymerization method using ultraviolet rays having an emission wavelength of 300 to 370 nm using a light absorber that is twice or more.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the optical transmission body and the manufacturing method thereof according to the present invention will be described in detail.
1 and 2 are a longitudinal sectional view and a transverse sectional view, respectively, of a gradient index lens which is an example of the optical transmission body of the present invention. 3 and 4 are a longitudinal sectional view and a transverse sectional view of the optical transmission body when the light absorbing agent or the light scattering agent is not present in the outermost peripheral portion. Each lens material 1 has a refractive index on the central axis 4 of N 0 If the refractive index distribution constant is A, a transparent cylinder having a refractive index distribution in which the refractive index N (r) at a distance r in the radial direction from the central axis is approximately expressed by the relationship of the following equation. is there.
N (r) = N 0 (1-Ar 2 (1)
The optical transmission body of the present invention is characterized in that a light absorbing agent or a light scattering agent is mixed almost uniformly in a portion where the refractive index of the outer peripheral portion is irregular. Since the light absorbing agent or the light scattering agent is dispersed in the outer peripheral portion, flare light generated in the vicinity thereof is completely absorbed by the light absorbing agent without being reflected at the interface, or is scattered by the light scattering agent. That is, since the light absorber or the light scattering agent is uniformly present in the thickness direction in the composition constituting the optical transmission body, the flare light is more effectively absorbed inside the lens by the light absorber, or the light It is scattered inside the lens by the scattering agent.
[0027]
In the cylindrical light transmission body of the present invention, the light absorber or the light scattering agent is mixed in a predetermined range within 100 μm from the position of the outer peripheral surface. The thickness of the layer in which the light absorber or light scattering agent exists (hereinafter referred to as “light shielding layer” as appropriate) is appropriately determined depending on the width of the irregular portion of the refractive index distribution, the concentration of the light absorber or the light scattering agent, and the like. However, it is usually about 5 to 70 μm.
[0028]
The thickness of the light shielding layer may be the whole or a part of the irregular portion of the refractive index distribution. However, in the latter case, it is necessary to mix a light absorber or the like in a concentration that can sufficiently absorb or scatter flare light by using a portion including the innermost irregular portion as a light shielding layer. Furthermore, considering the effect of preventing crosstalk, it is preferable to determine the concentration of the light absorber and the like in the light shielding layer and the thickness of the light shielding layer for the purpose of preventing the incidence of light from the outside of the optical transmission body.
[0029]
That is, the light shielding layer can be formed between 1) a predetermined position of 100 μm or less from the outer peripheral surface toward the center to the outer surface, and 2) a predetermined 2 of 100 μm or less from the outer surface to the center. Can be formed between two positions. Specifically, the light shielding layer can be present in a predetermined range of a position within a range of 1 μm to 100 μm from the position of the outer peripheral surface toward the center.
[0030]
The light shielding layer may be divided into two or more layers and the concentration in each layer may be changed. For example, in the case of aiming to prevent the incidence of light from the outside of the optical transmission body, the light shielding layer can be two or more layers, and the concentration in the outer light shielding layer can be increased.
[0031]
Specifically, for example, only the Nth layer (outermost layer), only the N-1th layer, two layers of the Nth layer and the N-1th layer, the N-1th layer and the N-2th layer The two layers, the Nth layer, the N−1th layer, and the N−2th layer can be used as a light shielding layer. In addition, when the light absorber of the same density | concentration is mix | blended with two adjacent layers at the time of manufacture, the light shielding layer is regarded as one layer in the obtained optical transmission body.
[0032]
As the light absorber in the present invention, various dyes, pigments and pigments suitable for the emission wavelength of the optical system in which the optical transmission body is used can be used. For the purpose of absorbing all the light in the visible light region, a black one in which various dyes, pigments and pigments are mixed can be selected. Of course, light absorbers such as carbon black and graphite carbon can also be used. Other materials that absorb light are not particularly limited. In the present invention, it is preferable that the light absorber is present dispersed in the composition constituting the optical transmission body. In this state, dye molecules and pigment molecules are dispersed or bonded in an organic polymer body in a physical or chemical affinity field.
[0033]
The concentration of the light absorber contained in the uncured product is 0.01 to 10% by weight, preferably 0.01 to 1% by weight. If the concentration is too low, there is no effect of preventing flare light.
[0034]
In the present invention, as the light scattering agent, resin fine particles such as nylon, polystyrene, polyethylene, polyester and silicone resin, inorganic fine particles such as titanium oxide, silica and alumina, calcium carbonate, cellulose, clay, wheat flour, water-soluble starch and the like Fine powder. In addition, fine powders that are insoluble in the monomer that is the raw material of the optical transmission body can be used. In the present invention, it is desirable that the light scattering agent is uniformly dispersed in order to increase the effect of adding the light scattering agent. From these points, it is preferable that the fine powder (light scattering agent) has a small particle size and a uniform particle size.
[0035]
The concentration of the light scattering agent contained in the uncured product is in the range of 0.2 to 10% by weight, preferably 0.25 to 5% by weight. If the concentration is too low, there is no effect of preventing flare light.
[0036]
The optical transmission body of the present invention can be manufactured, for example, as follows.
The refractive index of the cured product obtained after curing is n 1 , N 2 , ..., n N A light absorber or a light scattering agent is mixed in at least one of N / 2 or more uncured material layers from the center among N uncured materials that are (N is an integer of 3 or more), These uncured materials are arranged so that the refractive index gradually decreases from the center toward the outer peripheral surface, and are a stack of uncured materials that are concentrically laminated (hereinafter referred to as “threads” as appropriate). ) And curing the filamentous material while performing the interdiffusion treatment of the material between adjacent layers so that the refractive index distribution between each layer of the filamentous material becomes a continuous distribution or after the mutual diffusion treatment. It is manufactured by.
[0037]
Further, in a state where a light absorber or light scattering agent is mixed in at least one layer of the uncured material layer corresponding to a predetermined range within 100 μm from the position of the outer peripheral surface of the optical transmission body after curing toward the center direction. It can also be shaped into a filament.
[0038]
In order to make the refractive index distribution of the obtained optical transmission body close to an ideal distribution, N is preferably at least 4 or more. In consideration of ease of production, N is preferably about 6 or less. However, N can be increased to 10 or more in order to obtain a high-performance optical transmission body. The thicknesses of the layers may be different or the same.
[0039]
The uncured material used in the present invention has a viscosity of 10 Three -10 8 It is preferably poise and curable. If the viscosity is too small, thread breakage occurs during shaping, and it is difficult to form a thread. On the other hand, if the viscosity is too large, the operability is poor at the time of shaping, and the concentricity of each layer is impaired, or a filamentous body having a large thickness is liable to be formed.
[0040]
As a substance constituting the uncured material, a radical polymerizable vinyl monomer or a composition comprising the monomer and a polymer soluble in the monomer can be used.
[0041]
Specific examples of the radical polymerizable vinyl monomer include methyl methacrylate (n = 1.49), styrene (n = 1.59), chlorostyrene (n = 1.61), vinyl acetate (n = 1.47). 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl (meth) acrylate, 2,2,3,4,4 1,4-hexafluorobutyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, etc., fluorinated alkyl (meth) acrylate (n = 1.37 to 1.44), refractive index 43-1.62 (meth) acrylates such as ethyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, hydroxyalkyl (meth) acrylate, alkylene glycol (meth) acrylate, trimethyl Dipropane glycol di or tri (meth) acrylate, pentaerythritol di, tri or tetra (meth) acrylate, diglycerin tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and other diethylene glycol bisallyl carbonate, fluorinated alkylene glycol Examples thereof include poly (meth) acrylate.
[0042]
In order to easily adjust the viscosity of the uncured material when forming the filament from these uncured materials, and to have a continuous refractive index distribution from the center to the outer periphery of the filament, The material is preferably composed of a vinyl monomer and a soluble polymer.
[0043]
The polymer that can be used here needs to have good compatibility with the polymer produced from the radical polymerizable vinyl monomer, for example, polymethyl methacrylate (n = 1.49), polymethyl methacrylate copolymer ( n = 1.47-1.50), poly-4-methylpentene-1 (n = 1.46), ethylene / vinyl acetate copolymer (n = 1.46-1.50), polycarbonate (n = 1) .50 to 1.57), polyvinylidene fluoride (n = 1.42), vinylidene fluoride / tetrafluoroethylene copolymer (n = 1.42 to 1.46), vinylidene fluoride / tetrafluoroethylene / hexa Examples thereof include a fluoropropene copolymer (n = 1.40 to 1.46) and a polyfluorinated alkyl (meth) acrylate polymer.
[0044]
In order to adjust the viscosity, it is preferable to use a polymer having the same refractive index in each layer because a plastic optical transmission body having a continuous refractive index distribution from the center toward the outer periphery can be obtained. In particular, polymethylmethacrylate is excellent in transparency and has a high refractive index, so that it is suitable as a polymer for use in preparing the gradient index optical transmission body of the present invention.
[0045]
In order to cure the filament formed from the uncured material, it is preferable to add a thermosetting catalyst or a photocuring catalyst to the uncured material. As the thermosetting catalyst, a peroxide-based or azo-based catalyst is usually used. Photocuring catalysts include benzophenone, benzoin alkyl ether, 4'-isopropyl-2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, benzyl methyl ketal, 2,2-diethoxyacetophenone, chlorothioxanthone, thioxanthone compounds, benzophenone Examples thereof include ethyl compounds, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, N-methyldiethanolamine, and triethylamine.
[0046]
Next, in order to cure the uncured product, ultraviolet rays are preferably applied from the surroundings in the cured part, and the filament containing the thermosetting catalyst and / or the photocuring catalyst is subjected to heat treatment or photocuring treatment.
[0047]
In the production method of the present invention, the magnitude relationship between the molecular weight of the light absorber and the monomer is not particularly limited, but a mixture of the monomer and the polymer is used as an uncured product, and the dye or the like is used as the light absorber. Is used, the light absorber has a much higher molecular weight than the monomer, so the diffusion rate in the uncured product is much slower. Accordingly, the monomer can be diffused between the uncured material layers without substantially diffusing the light absorber.
[0048]
In the case of thermal polymerization that requires a long time for polymerization and curing, the light absorber diffuses, the concentration in the light shielding layer becomes non-uniform, and the dye or the like moves to a portion where the refractive index distribution is normal. There is a possibility that the light transmission function of the optical transmission body may be impaired. For this reason, it is desirable to cure by photopolymerization capable of polymerization in a short time.
[0049]
By the way, in order to polymerize and cure by the photopolymerization method, it is necessary to transmit light for photopolymerization through the uncured material layer. However, there are many types of light absorbers, and the wavelength dependency of light absorption varies. That is, there exists a light absorber that absorbs the transmission light of the optical transmission body and absorbs the light for polymerization at the same level or higher. Therefore, in the case of polymerizing and curing by the photopolymerization method, it is desirable to use a light absorber that absorbs the transmitted light of the optical transmission body but has a property of transmitting the polymerization light without absorbing it.
[0050]
The light actually used as the transmission light of the optical transmission body is usually in the range of visible light to near infrared light having a wavelength of 400 to 750 nm. On the other hand, the emission wavelength of light used for photopolymerization is usually 300 to 370 nm. Therefore, it is preferable to use a light absorber having an absorbance in a specific wavelength region of 400 to 750 nm that is twice or more of an absorbance at 300 to 370 nm.
[0051]
Typical examples of such a light absorber include the following. As a cover for 740 nm, which is the emission wavelength of LED light for LED printers, Kayasorb CY-10 manufactured by Nippon Kayaku Co., Ltd., which absorbs at 700 nm or more can be mentioned. Further, as a cover for the light emission wavelength of the LED of an image scanner such as a facsimile, 570 nm, Nippon Kayaku Kayset Blue ACR which absorbs at 550 to 670 nm, and equivalents of other companies in the same industry can be mentioned. As light absorbers effective for other wavelength regions, those having absorption at 400 to 500 nm include Nippon Kayaku Kaysorb Yellow 2G, Orange G, Yellow AG, Yellow EG, and their respective businesses. Other company's equivalents, Mitsui Toatsu Dye's MS Yellow HD-180 and its competitors' equivalents. Examples of those having absorption at 500 to 600 nm include Kaysorb Red G, Red 130, Red B, and equivalents of the same industry, and Mitsui Toatsu Dye MS Magenta HM-1450 and equivalents thereof. These dyes can be used alone or in combination.
[0052]
8 and 9 are diagrams showing absorption spectra of CY-10 and Blue ACR, which are typical dyes used in the present invention, where the horizontal axis is wavelength (nm) and the vertical axis is an ultraviolet-visible spectrum measuring apparatus. This is a current value (ampere) actually measured by the sensor, and this current value is proportional to the absorbance. It can be seen that there is little absorption in the ultraviolet region (300 to 370 nm), and the absorbance there is less than or equal to ½ of the absorbance at each wavelength in the actual use wavelength range of 740 nm or 570 nm. When such a light absorber is used, ultraviolet rays are transmitted through the uncured material layer, and photopolymerization proceeds efficiently.
[0053]
The optical transmission body of the present invention can be manufactured, for example, using the filamentous body forming apparatus of FIG. FIG. 5 is a process diagram schematically showing the thread-like body forming apparatus, in which only the portions of the mutual diffusion portion 12 and the curing processing portion 13 are shown in a longitudinal sectional view. In the figure, symbol 10 is a concentric composite nozzle, 11 is an uncured extruded filament, 12 is an interdiffusion section for diffusing the monomers of each layer of the filament to give a refractive index distribution, 13 Is a curing processing unit for curing the uncured material, 14 is a take-up roller, 15 is a manufactured light transmission body, 16 is a winding unit, 17 is an inert gas inlet, and 18 is an inert gas outlet. is there. In order to remove the volatile substance released from the filament 11 from the interdiffusion unit 12 and the curing processing unit 13, an inert gas such as nitrogen gas is introduced from the inert gas inlet 17.
[0054]
Examples of the light source used for photopolymerization include a carbon arc lamp that generates light having a wavelength of 150 to 600 nm, a high-pressure mercury lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a xenon lamp, and a laser beam.
[0055]
【Example】
The present invention will be specifically described below with reference to examples. In Examples and Comparative Examples, refractive index distribution and lens performance (MTF) were measured by the following methods.
[0056]
(1) Refractive index distribution measurement
Measurement was performed by a known method using an Interfaco interference microscope manufactured by Carl Zeiss.
[0057]
(2) Measurement of lens performance (MTF)
The MTF indicating the resolution of the optical transmission body is a grating having a spatial frequency of 4 (line pairs / mm, Lp / mm), a single lens whose both end surfaces perpendicular to the optical axis are polished, or optical transmission as shown in FIG. An array in which a plurality of bodies are arranged and a light source are arranged as shown in FIG. 6, and a lattice image is read by a CCD line sensor installed on the imaging plane, and the maximum value (i MAX ) And minimum value (i MIN ) Was measured as shown in FIG.
[0058]
MTF (%) = (i MAX -I MIN ) / (I MAX + I MIN ) × 100 (2) Here, as shown in the grid of FIG. 6, the spatial frequency is a combination of white lines and black lines, and the number of combinations of these lines within a width of 1 mm. It shows whether it is provided.
[0059]
Comparative Example 1
50 parts by weight of polymethyl methacrylate ([η] = 0.40, measured at 25 ° C. in MEK), 36 parts by weight of benzyl methacrylate, 14 parts by weight of methyl methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone and hydroquinone 0.1 parts by weight was heated and kneaded at 70 ° C. to obtain a stock solution for forming the first layer. 51 parts by weight of polymethyl methacrylate ([η] = 0.40, measured in MEK at 25 ° C.), 49 parts by weight of methyl methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone, 0.1 part by weight of hydroquinone The mixture was heated and kneaded at 70 ° C. to obtain a second layer forming stock solution. 48 parts by weight of polymethyl methacrylate ([η] = 0.40, measured in MEK at 25 ° C.), 37 parts by weight of methyl methacrylate, 2,2,3,3,4,4,5,5-octafluoropentyl 15 parts by weight of methacrylate, 0.25 parts by weight of 1-hydroxycyclohexyl phenyl ketone and 0.1 parts by weight of hydroquinone were heated and kneaded at 70 ° C. to obtain a third layer forming stock solution. 45 parts by weight of polymethyl methacrylate ([η] = 0.40, measured in MEK at 25 ° C.), 25 parts by weight of methyl methacrylate, 2,2,3,3,4,4,5,5-octafluoropentyl 30 parts by weight of methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone and 0.1 part by weight of hydroquinone were heated and kneaded at 70 ° C. to obtain a fourth layer forming stock solution. 42 parts by weight of polymethyl methacrylate ([η] = 0.40, measured in MEK at 25 ° C.), 15 parts by weight of methyl methacrylate, 2,2,3,3,4,4,5,5-octafluoropentyl 43 parts by weight of methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone and 0.1 part by weight of hydroquinone were heated and kneaded at 70 ° C. to obtain a fifth layer forming stock solution. These five types of undiluted solutions were arrayed sequentially from the center using a concentric five-layer composite nozzle so that the refractive index of the uncured product was lowered and extruded simultaneously.
[0060]
The temperature of the composite spinning nozzle was 55 ° C. The viscosity at the time of extrusion is 4.5 x 10 for the first layer component Four Poise, second layer is 3.8 × 10 Four Poise, third layer is 3.5 × 10 Four Poise, 4th layer is 2.9 × 10 Four Poise, 5th layer is 3.2 × 10 Four It was a poise. The ejection ratio from the first layer to the fifth layer was 35/38/20/6/1 in terms of radius.
Then, the strand fiber was passed through the center of the light irradiation section disposed at equal intervals in a circular manner at 12 chemical lamps of 120 cm in length and 40 W in length through each layer interdiffusion treatment section of 55 cm in length, and 70 cm / min. It was taken up with a nip roller at a speed of.
[0061]
The obtained optical transmission body has a radius (r 0 ) Was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. Both ends of this optical transmission body were polished to a lens length of 6.6 mm, and the characteristics of this single lens were measured using a 4 Lp / mm grating. The conjugate length with respect to light having a wavelength of 570 nm was 14.4 mm. The MTF at the conjugate length was 65%. The conjugate length with respect to the wavelength of 740 nm was 15.4 mm, and the MTF at the conjugate length was 61%.
[0062]
Furthermore, using this optical transmission body, two phenolic resins (thickness 1.2 mm) are used for the side plates, and an epiform (manufactured by Somar) to which 2 wt% of carbon black is added is used as the adhesive. The optical transmitters were arranged in a row and filled with an adhesive, the adhesive was cured, and then both end surfaces were cut and polished to produce a lens array with a lens length of 6.6 mm. When the characteristics of this lens array were measured using a 4 Lp / mm grating, the conjugate length with respect to light having a wavelength of 570 nm was 14.4 mm, and the MTF at the conjugate length was 63%.
[0063]
Using this optical transmitter array, an image scanner having an LED having a light emission wavelength of 570 nm as a light source and a CCD as a light receiving element was assembled. This image scanner has a slightly low resolution due to the influence of flare light, and it is difficult to transmit an image clearly.
[0064]
Comparative Example 2
The optical transmission member prepared in Comparative Example 1 was immersed in chloroform at a temperature of 35 ° C. for 1 minute to swell. Next, the optical transmission body was forcibly passed through a hole in a silicone rubber having a hole having a radius of 0.25 mm. A portion having a depth of 35 μm in the radial direction was deleted from the outer peripheral portion of the optical transmission body.
[0065]
The obtained optical transmission body had a radius (r0) of 0.435 mm, and the refractive index distribution was 1.512 at the center and 1.470 at the outer periphery.
Using this optical transmission body, single lenses and lens arrays were manufactured in the same manner as in Comparative Example 1, and single lens characteristics and lens array characteristics were evaluated, and the results shown in Table 1 were obtained.
[0066]
When this optical transmitter array was left in a hot air dryer set at 70 ° C. for 24 hours, a change in lens characteristics occurred. When the lens characteristics were measured, the MTF was reduced by about 10% and the conjugate length was increased by about 1 mm. This was presumed to be due to the diffusion of chloroform remaining in the lens.
[0067]
Comparative Example 3
The optical transmission body prepared in Comparative Example 1 was immersed in a chloroform solution in which 0.5 wt% of dye varifast black manufactured by Orient Chemical Co., Ltd. was dissolved for 1 minute at a temperature of 25 ° C. and then 3 minutes in a drying furnace at 70 ° C. Processed. It was confirmed that the outer periphery of the optical transmission body was stained more densely in the range of 35 μm.
[0068]
Using this optical transmission body, single lenses and lens arrays were manufactured in the same manner as in Comparative Example 1, and single lens characteristics and lens array characteristics were evaluated, and the results shown in Table 1 were obtained.
The MTF of the lens array was considerably lower than that expected from the performance of a single lens. When the density | concentration of the dye in a lens array was confirmed, it has confirmed that the dye which existed in the optical transmission body outer peripheral part was spread | diffused in the adhesive bond layer, and has come out from the optical transmission body.
[0069]
Example 1
The stock solution of the first layer to the fifth layer is the same as that of Comparative Example 1, and 0.04 wt% of infrared absorbing dye CY-10 manufactured by Nippon Kayaku Co., Ltd. is further added to the stock solution of the fourth layer. In the same manner as in No. 1, the mixture was heated and kneaded at 70 ° C. to obtain a fourth layer stock solution. The viscosity at the time of spinning was the same as in Comparative Example 1. An optical transmission body was obtained in the same manner as in Comparative Example 1 with respect to the discharge ratio at the time of composite spinning, the passage conditions of each layer interdiffusion treatment section, the light irradiation conditions, and the nip roller take-up conditions. Incidentally, CY-10 used in this example does not absorb ultraviolet rays.
[0070]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A portion of 5 μm from the outer peripheral portion of the optical transmission body was an undyed layer, and a dyed layer of 28 μm was formed on the inside thereof, and the dye concentration was almost uniform.
[0071]
When the lens length was 6.6 mm and the lens characteristics were measured in the same manner as in Comparative Example 1 using light having a wavelength of 570 nm, the conjugate length was 14.4 mm and the MTF in the conjugate length was 65%. On the other hand, for a 740 nm light source, the conjugate length was 15.4 mm and the MTF at the conjugate length was 77%, which was higher than that of Comparative Example 1. It was confirmed that the resolving power of the lens is improved for LED light having an emission wavelength in the absorption wavelength region of the dye.
[0072]
Using this optical transmission body, two phenolic resins (thickness 1.2 mm) are used for the side plates, and epiform (made by Somar) with 2 wt% carbon black added to the adhesive, and light is transmitted between the side plates. The bodies were arranged in one row, filled with adhesive, and the adhesive was cured, and then both end faces were cut and polished to produce an array with a lens length of 6.6 mm. The conjugate length of this array with respect to light having a wavelength of 570 nm was 14.4 mm, and the MTF at the conjugate length was 63%. Further, the conjugate length with respect to light having a wavelength of 740 nm was 15.4 mm, and the MTF at the conjugate length was 75%. This MTF was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed.
[0073]
Example 2
In Example 1, as a dye added to the fourth layer, Nippon Kayaku Co., Ltd. dye Blue ACR (0.02 wt%) was used instead of CY-10, and the ultraviolet irradiation amount was 1.1 times. Other conditions were the same as in Example 1 to obtain an optical transmission body. The Blue ACR used in this example has absorption in the ultraviolet region, so the amount of ultraviolet light is 1.1 times to adjust the amount of transmitted light.
[0074]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A portion of 5 μm from the outer peripheral portion of the optical transmission body was an undyed layer, and a dyed layer of 28 μm was formed on the inside thereof, and the dye concentration was almost uniform.
[0075]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The MTF of the lens array was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed.
[0076]
Using this optical transmitter array, an image scanner having an LED having a light emission wavelength of 570 nm as a light source and a CCD as a light receiving element was assembled. This image scanner was hardly affected by flare light and had high resolution and could transmit images clearly.
[0077]
Example 3
In Example 1, the dye added to the stock solution of the fourth layer is Blue ACR (0.03 wt%) and CY-10 (0.03 wt%), and the amount of ultraviolet light in the light irradiation part is increased by 1.2 times. Except for the above, an optical transmission body was obtained in the same manner as in Example 1.
[0078]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A portion of 5 μm from the outer peripheral portion of the optical transmission body was an undyed layer, and a dyed layer of 28 μm was formed on the inside thereof, and the dye concentration was almost uniform.
[0079]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The MTF of the lens array was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed. In addition, the image scanner assembled and evaluated in the same manner as in Example 2 was hardly affected by flare light, and had high resolution and could transmit an image clearly.
[0080]
Example 4
The optical transmission medium was prepared in the same manner as in Comparative Example 1, except that the stock solutions of the first to fifth layers were the same as those in Comparative Example 1, and 0.04 wt% of CY-10 was further added to the stock solutions in the fourth and fifth layers. Got.
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A dyed layer of 35 μm was formed from the outer peripheral surface of the optical transmission body toward the center, and the dye concentration was almost uniform.
[0081]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained.
[0082]
Example 5
In Example 4, as a dye added to the fourth layer and the fifth layer, Blue ACR (0.02 wt%) was used instead of CY-10, and the ultraviolet irradiation amount was 1.1 times. The conditions were the same as in Example 4, and an optical transmission body was obtained in the same manner.
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A dyed layer of 35 μm was formed from the outer peripheral surface of the optical transmission body toward the center, and the dye concentration was almost uniform.
[0083]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The MTF of the lens array was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed. In addition, the image scanner assembled and evaluated in the same manner as in Example 2 was hardly affected by flare light, and had high resolution and could transmit an image clearly.
[0084]
Example 6
In Example 4, the dyes added to the stock solutions of the fourth layer and the fifth layer are Blue ACR (0.03 wt%) and CY-10 (0.03 wt%), and the amount of ultraviolet light in the light irradiation unit is 1.2. The optical transmission body was obtained in the same manner as in Example 4 except for the above.
[0085]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A dyed layer of 35 μm was formed from the outer periphery of the optical transmission body, and the dye concentration was almost uniform.
[0086]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The MTF of the lens array is assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed. Further, the image scanner assembled and evaluated in the same manner as in Example 2 had almost no influence by flare light, and had high resolution and could transmit an image clearly.
[0087]
Example 7
52 parts by weight of polymethyl methacrylate ([η] = 0.40, measured in MEK at 25 ° C.), 32 parts by weight of benzyl methacrylate, 16 parts by weight of methyl methacrylate, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone and hydroquinone 0.1 parts by weight was heated and kneaded at 70 ° C. to obtain a stock solution for forming the first layer. 51 parts by weight of polymethyl methacrylate ([η] = 0.40, measured at 25 ° C. in MEK), 35 parts by weight of methyl methacrylate, 7 parts by weight of benzyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate 7 Part by weight, 0.25 part by weight of 1-hydroxycyclohexyl phenyl ketone and 0.1 part by weight of hydroquinone were heated and kneaded at 70 ° C. to obtain a stock solution for forming the second layer. 48 parts by weight of polymethyl methacrylate ([η] = 0.40, measured at 25 ° C. in MEK), 37 parts by weight of methyl methacrylate, 15 parts by weight of 2,2,3,3-tetrafluoropropyl methacrylate, 1-hydroxy 0.25 parts by weight of cyclohexyl phenyl ketone and 0.1 parts by weight of hydroquinone were heated and kneaded at 70 ° C. to obtain a third layer forming stock solution.
[0088]
43 parts by weight of polymethyl methacrylate ([η] = 0.40, measured in MEK at 25 ° C.), 20 parts by weight of methyl methacrylate, 37 parts by weight of 2,2,3,3-tetrafluoropropyl methacrylate, 1-hydroxy 0.25 parts by weight of cyclohexyl phenyl ketone, 0.1 parts by weight of hydroquinone, and 0.05 parts by weight of Blue ACR were heated and kneaded at 70 ° C. to obtain a fourth layer forming stock solution.
These four types of undiluted solutions were sequentially arranged from the center so that the refractive index of the uncured product was lowered using a concentric four-layer composite nozzle and extruded simultaneously.
The temperature of the composite spinning nozzle was 50 ° C. The viscosity at the time of extrusion is 5.7 × 10 for the first layer component Four Poise, second layer is 3.9 × 10 Four Poise, third layer is 3.2 × 10 Four Poise, 4th layer is 3.3 × 10 Four It was a poise. The ejection ratio from the first layer to the fourth layer was 37/36/21/8 as a ratio of radii.
Then, the strand fiber was passed through the center of the light irradiation section disposed at equal intervals in a circular manner at 12 chemical lamps of 120 cm in length and 40 W in length through each layer interdiffusion treatment section of 55 cm in length, and 60 cm / min. It was taken up with a nip roller at a speed of.
[0089]
The obtained optical transmission body has a radius (r 0 ) Was 0.45 mm, and the refractive index distribution was 1.510 at the center and 1.470 at the outer periphery. A dyed layer of 36 μm was formed from the outer peripheral surface of the optical transmission body toward the center, and the dye concentration was almost uniform. Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The MTF of the lens array was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed. Further, the image scanner assembled and evaluated in the same manner as in Example 2 had almost no influence by flare light, and had high resolution and could transmit an image clearly.
[0090]
Example 8
This example relates to a composite spinning of 6 layers, and dyes were mixed in the fourth layer and the fifth layer. The first layer, the second layer, the third layer, the fourth layer, the fifth layer, and the sixth layer undiluted solutions are the first layer, the second layer, the third layer, the third layer, the fourth layer, and the fourth layer of Comparative Example 1, respectively. It was the same as the fifth layer, and Blue ACR (0.03 wt%) and CY-10 (0.03 wt%) were added to the stock solutions of the fourth layer and the fifth layer. The discharge radius ratio of each layer in the composite spinning was 35/38/15/5/6/1, and the amount of ultraviolet light was 1.3 times. Otherwise, an optical transmission member was obtained in the same manner as in Example 4.
[0091]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A dye layer of 60 μm was formed from the outer periphery of the optical transmission body, and the dye concentration was almost uniform.
[0092]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The MTF of the lens array was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed. Further, the image scanner assembled and evaluated in the same manner as in Example 2 had almost no influence by flare light, and had high resolution and could transmit an image clearly.
[0093]
Example 9
The first to fifth layer stock solutions were the same as in Comparative Example 1, and CY-10 was 0.04 wt%, Blue ACR was 0.14 wt%, and Mitsui Toatsu Dye MS was used in the fourth layer stock solution. Yellow HD-180 0.10 wt% and Mitsui Toatsu dye MS Magenta HM-1450 0.08 wt% were added, and the mixture was heated and kneaded at 70 ° C. in the same manner as in Comparative Example 1.
[0094]
The viscosity at the time of spinning was the same as in Comparative Example 1. An optical transmission body was obtained in the same manner as in Comparative Example 1 with respect to the discharge ratio at the time of composite spinning, the passage conditions of each layer interdiffusion treatment section, and the nip roller take-up conditions. The CY-10 used in this example does not absorb ultraviolet light, and the Blue ACR, HD-180, and HM-1450 also absorb ultraviolet light, so the amount of ultraviolet light is 1.5 times that of Comparative Example 1. Polymerization was performed.
[0095]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A portion of 5 μm from the outer peripheral portion of the optical transmission body was an undyed layer, and a dyed layer of 28 μm was formed on the inside thereof, and the dye concentration was almost uniform.
[0096]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. This single lens was confirmed to have improved MTF in the entire visible light wavelength range. It was confirmed that the combination of these dyes improves the resolving power of the lens with respect to light in the entire visible light wavelength range. The MTF of the lens array is assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed.
[0097]
Using this optical transmitter array, an image scanner having an LED having a light emission wavelength of 570 nm as a light source and a CCD as a light receiving element was assembled. This image scanner was hardly affected by flare light and had high resolution and could transmit images clearly. Similarly, when an image scanner is assembled using a blue light source having a wavelength near 450 nm, or when an image scanner is assembled using a red light source having a wavelength near 611 nm, the resolution is hardly affected by flare light. The image could be transmitted clearly.
[0098]
Example 10
In Example 1, 0.04 wt% of CY-10, 0.14 wt% of Blue ACR, 0.08 wt% of MS Yellow HD-180, and MS Magenta HM- 0.08 wt% of 1450 is added, and the dye added to the stock solution of the fifth layer is 0.02 wt% of CY-10, 0.60 wt% of Blue ACR, 0.18 wt% of MS Yellow HD-180, In addition, 0.20 wt% of MS Magenta HM-1450 was added, and the mixture was heated and kneaded at 70 ° C. in the same manner as in Comparative Example 1.
[0099]
The viscosity at the time of spinning was almost the same as the stock solution before adding the dye. Further, an optical transmission body was obtained in the same manner as in Example 1 except that the amount of ultraviolet light in the light irradiation part was 1.4 times.
[0100]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. The part 5 μm from the outer periphery of the optical transmission body is a layer in which Blue ACR, HD-180, and HM-1450 are present in a high concentration, and 28 μm in which these dyes are present in a lower concentration than the outermost layer. A dyed layer was formed, and the dye concentrations in the two dyed layers were almost uniform.
[0101]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. This single lens was confirmed to have improved MTF in the entire visible light wavelength range. It was confirmed that the combination of these dyes improves the resolving power of the lens with respect to light in the entire visible light wavelength range. The MTF of the lens array is assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed.
[0102]
Further, as in Example 9, the image scanner assembled for each wavelength was hardly affected by flare light and had high resolution and could transmit an image clearly.
[0103]
Example 11
The stock solutions of the first layer to the fifth layer were the same as those in Comparative Example 1, and silica-based fine particles having an average particle size of 0.5 μm (Tospar 105 manufactured by Toray Silicone Co., Ltd.) were added to the 4-layer and 5-layer stock solutions. ) Was added at 0.5% by weight and heated and kneaded at 70 ° C. in the same manner as in Comparative Example 1 to obtain a stock solution of the fourth layer and the fifth layer. Compared to Comparative Example 1, the viscosity of the four-layer and five-layer stock solutions during spinning increased, and the fourth layer was 3.2 × 10. Four Poise, 5th layer is 4.0 × 10 Four It was a poise.
[0104]
The addition of the silica-based fine particles causes a slight shading of ultraviolet rays, so that the amount of ultraviolet rays was set to 1.05 times that of Comparative Example 1 in order to adjust the amount of transmitted light. The other conditions, that is, the discharge ratio at the time of composite spinning, the passing condition of each layer interdiffusion treatment section, the light irradiation condition, and the nip roller take-up condition were the same as in Comparative Example 1 to obtain an optical transmission body.
[0105]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A fine particle layer having a substantially uniform concentration was formed in a portion 35 μm from the outer periphery of the optical transmission body.
[0106]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The MTF of the lens array was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed. Further, the image scanner assembled and evaluated in the same manner as in Example 2 had almost no influence by flare light, and had high resolution and could transmit an image clearly.
[0107]
As described above, it was confirmed that by mixing the light scatterer in the outer peripheral portion of the optical transmission body, the optical performance can be improved to be equal to or higher than that in the comparative example 2 without the post-process as in the comparative example 2. In Comparative Example 2, it can be seen that the performance of the lens of this example is excellent considering that the lens performance is degraded by the residual solvent.
[0108]
Example 12
The stock solution of the first layer to the fifth layer is the same as that in Comparative Example 1, and 1.0 weight of polystyrene fine particles (SGP-70C manufactured by Soken Chemical Co., Ltd.) having a particle size of 5 to 30 μm is further added to the stock solution of the fourth layer. % And heated and kneaded at 70 ° C. in the same manner as in Comparative Example 1 to obtain a fourth layer stock solution. Compared with Comparative Example 1, the viscosity during spinning of the fourth layer undiluted solution increased to 4.1 × 10 Four It was a poise.
[0109]
The amount of ultraviolet light is 1.05 times that of Comparative Example 1, and the other conditions, that is, the discharge ratio at the time of composite spinning, the passing condition of each layer interdiffusion treatment unit, the light irradiation condition, and the nip roller take-up condition are Comparative Example 1. In the same manner, an optical transmission body was obtained.
[0110]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. The part 5 μm from the outer periphery of the optical transmission body is a layer in which fine particles do not exist, and a fine particle layer of 30 μm is formed on the inside thereof, and the concentration of the fine particles in the fine particle layer is almost uniform.
[0111]
Using this optical transmission body, a single lens and a lens array were manufactured in the same manner as in Example 1, the single lens characteristics and the lens array characteristics were evaluated, and the results shown in Table 1 were obtained. The optical performance of the optical transmission body was almost the same as that of Example 11 despite the absence of fine particles (light scattering agent) in the fifth layer portion. The MTF of the lens array was assumed from the performance of a single lens, and no diffusion of dye into the adhesive layer was observed. Further, the image scanner assembled and evaluated in the same manner as in Example 2 had almost no influence by flare light, and had high resolution and could transmit an image clearly.
[0112]
Example 13
The stock solution of the first layer to the fifth layer is the same as that of Comparative Example 1, and the polystyrene-based fine particles having an average particle diameter of 6 μm (Flobez LE-1080 manufactured by Sumitomo Seika Co., Ltd.) in the stock solution of the fifth layer. Was added in an amount of 2.0% by weight and heated and kneaded at 70 ° C. in the same manner as in Comparative Example 1 to obtain a stock solution of the fifth layer. Compared to Comparative Example 1, the viscosity of the fifth layer stock solution during spinning increased to 5.5 × 10. Four It was a poise.
[0113]
The amount of ultraviolet light is set to 1.02 times that of Comparative Example 1, and other conditions, that is, the discharge ratio at the time of composite spinning, the passing condition of each layer interdiffusion treatment unit, the light irradiation condition, and the nip roller take-up condition are Comparative Example 1. In the same manner, an optical transmission body was obtained.
[0114]
The radius of this optical transmission member was 0.47 mm, and the refractive index distribution was 1.512 at the center and 1.468 at the outer periphery. A fine particle layer having a substantially uniform concentration was formed at a portion of 5 μm from the outer periphery of the optical transmission body.
[0115]
The single lens characteristics and lens array characteristics were evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained. The optical performance of the optical transmission body was almost the same as that of Example 1 despite the absence of fine particles (light scattering agent) in the fourth layer.
[0116]
An image scanner was assembled in the same manner as in Example 1. Although this image scanner still had a slight influence due to flare light, the image scanner had higher resolution than that of Comparative Example 1 and was able to transmit an image clearly. It was confirmed that the MTF can be improved by mixing a light diffusing agent even in a small portion of the outer periphery of the optical transmission body.
[0117]
[Table 1]
Figure 0003771636
[0118]
【The invention's effect】
The optical transmission body of the present invention can suppress flare light efficiently and easily because the light absorber or light scattering agent is present at a substantially uniform concentration in a portion where the refractive index distribution of the outer peripheral portion is irregular. High lens and lens array can be provided.
[0119]
Moreover, according to the manufacturing method of this invention, a light absorber or a light-scattering agent can be easily mixed in an optical transmission body. Further, since this manufacturing method does not use a solvent, the problem that the solvent remains in the optical transmission body and the lens performance changes with time does not occur.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an optical transmission body of the present invention.
2 is a cross-sectional view of the optical transmission body of FIG. 1. FIG.
FIG. 3 is a longitudinal sectional view of an optical transmission body according to another aspect of the present invention.
4 is a cross-sectional view of the optical transmission body of FIG. 3;
FIG. 5 is a schematic view of a manufacturing apparatus for manufacturing the optical transmission body of the present invention.
FIG. 6 is a diagram showing an outline of a resolution (MTF) measuring apparatus of an optical transmission body.
FIG. 7 is a diagram in which the resolution is measured by a CCD sensor.
FIG. 8 is a graph showing absorption characteristics of CY-10 used in the present invention.
FIG. 9 is a graph showing the absorption characteristics of Blue ACR used in the present invention.
[Explanation of symbols]
1 Lens material
2 Light absorber or light diffusing agent
3 Outermost peripheral part without light absorber or light diffusing agent
10 Concentric composite nozzle
11 Uncured filament
12 Interdiffusion section
13 Curing section
14 Pick-up roller
15 Optical transmitter
16 Winding part
17 Inert gas inlet
18 Inert gas outlet

Claims (4)

中心から外周部に向かって屈折率が連続的に減少してなる円柱状の光伝送体であって、外周表面の位置から中心方向に向かう1μm以上100μm以内の所定範囲の部分のみに光吸収剤または光散乱剤の濃度が均一な層が形成されてなる光伝送体。A cylindrical optical transmission body in which the refractive index continuously decreases from the center toward the outer peripheral portion, and is a light absorber only in a predetermined range from 1 μm to 100 μm from the position of the outer peripheral surface toward the center. Alternatively, an optical transmission body in which a layer having a uniform concentration of the light scattering agent is formed. 外周表面の位置から中心方向に向かう5μm以内の部分には光吸収剤及び光散乱剤を含有しない、請求項1記載の光伝送体。The optical transmission body according to claim 1, wherein a light absorber and a light scattering agent are not contained in a portion within 5 μm from the position of the outer peripheral surface toward the center. 硬化させた後に得られる硬化物の屈折率がn、n、・・・、n(Nは3以上の整数)であるN個の未硬化状物を同心円状に積層して、中心部から外周部に向かって屈折率が順次減少したファイバ状の未硬化物積層体を形成し、この積層体の各層間の屈折率分布が連続的に変化するように隣接層間の成分の相互拡散処理を行いながら、または相互拡散処理を行った後、積層体を硬化処理して屈折率分布型ファイバを製造する方法において、中心部からN/2番目以上の未硬化状物層の少なくとも一つの層に光吸収剤または光散乱剤を混入させた状態で積層体を形成することを特徴とする請求項1または2のいずれか1項記載の光伝送体の製造方法。 N uncured products having a refractive index of n 1 , n 2 ,..., N N (N is an integer of 3 or more) are concentrically stacked to obtain a cured product obtained after curing. Forming a fiber-like uncured laminate with a refractive index that gradually decreases from the outer periphery to the outer periphery, and interdiffusion of components between adjacent layers so that the refractive index distribution between each layer of the laminate changes continuously In the method of manufacturing a gradient index fiber by curing the laminate while performing the treatment or after performing the mutual diffusion treatment, at least one of N / 2 or more uncured layers from the center portion the process according to claim 1 or 2 of the optical transmission body according to any one and forming a stacked body in a state of being mixed with light absorber or a light scattering agent in the layer. 硬化させた後に得られる硬化物の屈折率がn、n、・・・、n(Nは3以上の整数)であるN個の未硬化状物を同心円状に積層して、中心部から外周部に向かって屈折率が順次減少したファイバ状の未硬化物積層体を形成し、この積層体の各層間の屈折率分布が連続的に変化するように隣接層間の成分の相互拡散処理を行いながら、または相互拡散処理を行った後、積層体を硬化処理して半径Rの屈折率分布型ファイバを製造する方法において、硬化後における光伝送体の外周表面の位置から中心方向に向かう1μm以上100μm以内の所定範囲に対応する未硬化状物層の少なくとも一つの層に光吸収剤または光散乱剤を混入させた状態で積層体を形成することを特徴とする請求項1または2のいずれか1項記載の光伝送体の製造方法。 N uncured products having a refractive index of n 1 , n 2 ,..., N N (N is an integer of 3 or more) are concentrically stacked to obtain a cured product obtained after curing. Forming a fiber-like uncured laminate with a refractive index that gradually decreases from the outer periphery to the outer periphery, and interdiffusion of components between adjacent layers so that the refractive index distribution between each layer of the laminate changes continuously In the method of manufacturing a gradient index fiber having a radius R by performing a curing process on the laminated body after performing the treatment or after performing the interdiffusion process, the position of the outer peripheral surface of the optical transmission body after the curing is moved in the center direction. claim 1 or 2, characterized in that in a state in which at least one layer is mixed with light absorber or light scattering agent of uncured material layer corresponding to a predetermined range within 100μm or more 1μm towards forming a laminate Production of an optical transmission body according to any one of Method.
JP19260596A 1995-07-21 1996-07-22 Optical transmission body and manufacturing method thereof Expired - Lifetime JP3771636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19260596A JP3771636B2 (en) 1995-07-21 1996-07-22 Optical transmission body and manufacturing method thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP18599795 1995-07-21
JP7-218940 1995-08-28
JP21894095 1995-08-28
JP7-185997 1995-08-28
JP7-218939 1995-08-28
JP21893995 1995-08-28
JP19260596A JP3771636B2 (en) 1995-07-21 1996-07-22 Optical transmission body and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004123042A Division JP2004264862A (en) 1995-07-21 2004-04-19 Optical transmission member and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH09127353A JPH09127353A (en) 1997-05-16
JP3771636B2 true JP3771636B2 (en) 2006-04-26

Family

ID=27475254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19260596A Expired - Lifetime JP3771636B2 (en) 1995-07-21 1996-07-22 Optical transmission body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3771636B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026574A1 (en) * 2021-08-26 2023-03-02 株式会社村田製作所 Optical element

Also Published As

Publication number Publication date
JPH09127353A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
WO2013146873A1 (en) Rod lens array and image sensor head that uses same
KR101263969B1 (en) Plastic rod lens rod lens array rod lens plate image sensor and printer
JP3771636B2 (en) Optical transmission body and manufacturing method thereof
JP2000035519A (en) Optical transmission body, optical transmission body array and image sensor
JP4087503B2 (en) Optical transmitter, optical transmitter array, method of using optical transmitter array, and color image sensor
JP2004264862A (en) Optical transmission member and its manufacturing method
JP3794828B2 (en) Optical transmitter, optical transmitter array and plate lens
JP4323121B2 (en) Plastic rod lens, lens array, and image sensor
JP2005164703A (en) Rod lens and rod lens array
JPH10221558A (en) Optical transmitter, its manufacture, array, and these usage
JP2012078656A (en) Plastic rod lens and plastic rod lens array
JP3986638B2 (en) Optical transmission
JP3850941B2 (en) Optical transmitter array
JP2006313381A (en) Optical transmission material for optical transmission array, and usage method
JP4323100B2 (en) Plastic rod lens and rod lens array
JP3945849B2 (en) OPTICAL TRANSMITTER, OPTICAL TRANSMITTER ARRAY, USE THEREOF, AND COLOR IMAGE SENSOR
Uozu et al. Improvement of Chromatic Aberration of the Plastic Rod‐Lens Array, 2
JP4990171B2 (en) Rod lens manufacturing method and rod lens array
JP2013101233A (en) Refractive index distribution type lens and method of manufacturing the same, and refractive index distribution type lens array and method of manufacturing the same
JP2001337244A (en) Plastic optical transmission body, method for manufacturing the same and plastic optical transmission array
JP2005178361A (en) Method for manufacturing plastic rod lens and method for manufacturing plastic rod lens array
JP5063399B2 (en) Plastic rod lens, rod lens array, rod lens plate, image sensor and printer
JP4160982B2 (en) Manufacturing method of optical transmission body
JP3291583B2 (en) Indexable plastic optical transmitter, optical transmitter array, and image scanner
JP3072116B2 (en) Manufacturing method of graded index plastic optical transmitter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term