JP3850061B2 - Cylindrical impeller - Google Patents

Cylindrical impeller Download PDF

Info

Publication number
JP3850061B2
JP3850061B2 JP04705796A JP4705796A JP3850061B2 JP 3850061 B2 JP3850061 B2 JP 3850061B2 JP 04705796 A JP04705796 A JP 04705796A JP 4705796 A JP4705796 A JP 4705796A JP 3850061 B2 JP3850061 B2 JP 3850061B2
Authority
JP
Japan
Prior art keywords
blade
cylindrical impeller
impeller
cylindrical
root portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04705796A
Other languages
Japanese (ja)
Other versions
JPH09242694A (en
Inventor
浩光 高田
和文 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Gosei Ltd
Original Assignee
Sanko Gosei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Gosei Ltd filed Critical Sanko Gosei Ltd
Priority to JP04705796A priority Critical patent/JP3850061B2/en
Publication of JPH09242694A publication Critical patent/JPH09242694A/en
Application granted granted Critical
Publication of JP3850061B2 publication Critical patent/JP3850061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和機等に使用されるクロスフローファン等の送風用の筒状羽根車に関するものである。
【0002】
【従来の技術】
従来、前記のような筒状羽根車として、支持板の一端面に軸方向に沿ってまっすぐに延出する多数の羽根を周方向に所定間隔で形成したエレメントを所定数連結したものが知られている。この筒状羽根車を以下、図面に基づき説明する。
図6において、1は合成樹脂の一体成形品からなるエレメントであり、環状または円板状の支持板2の一端面に、軸方向に延出する多数の羽根3を周方向に所定間隔を設けて一体に成形したものである。前記各羽根3は、エレメント1の半径方向に対して傾斜し、近似円弧状に湾曲した翼状の横断面形状に形成してある。また、羽根3が延出していない支持板2の反対側の端面には、別のエレメントをまっすぐにねじれないように連結するために、その羽根の先端部嵌合固定する嵌合溝4が形成されている。
【0003】
図7に示すように、前段のエレメント1の羽根3の先端部を次段のエレメント1の支持板2上に嵌合し保持させて接着または超音波溶着によって固定し、前記操作を繰り返して所定個数のエレメント1を軸方向にねじれないように連結し、先端のエレメント1に羽根3を嵌合、支持する端板2aを設けることにより、筒状羽根車5を構成している。
【0004】
また、図8は、従来の筒状羽根車の要部を羽根先端部11から軸方向に沿って羽根3の根元部12を見た拡大図である。羽根3は、筒状羽根車5の中心から半径R1の位置に半径方向に対する取り付け傾斜角度θ1で根元部12を配置してある。羽根3の先端部11は、軸方向にまっすぐに延出し、抜き勾配分だけ根元部12より小さい。
【0005】
そして、図9に示すように、空気調和機の送風装置として前段の筒状羽根車5をケーシングを形成するスタビライザ6とリアガイダ7の間に配置する。筒状羽根車5が、矢印8の時計方向に回転することにより、矢印9の方向から空気が流入し、矢印10の方向に空気が流出するようにしている。
【0006】
【発明が解決しようとする課題】
前記のエレメント1を配置して筒状羽根車5を構成した場合には、エレメント1の羽根3の枚数zと1分間当たりの回転数nからなる(n×z)/60Hzの周波数の音とその整数倍の周波数の音が発生するという問題があった。この音は、羽根ピッチ音やnz音と呼ばれており、聴覚的に笛を吹くような耳ざわりな音である。
【0007】
以下、この耳ざわりな音をnz音と呼ぶことにする。
このnz音は、エレメン1の羽根3、羽根3の取り付けピッチ、スタビライザ6、リアガイダ7の形状とそれらの位置関係により変化する。たとえば、送風効率を上げるために筒状羽根車5とスタビライザ6の間隔dを狭くすると、nz音が大きくなる。このように、送風効率を上げようとすると、nz音も大きくなってしまい、送風効率を極限まで上げられないという問題があった。
【0008】
また、筒状羽根車のエレメント1は、一般に合成樹脂の成形品であるが、金型から成形品であるエレメント1を取り出すために、羽根3には抜き勾配が必要となる。これにより、羽根3の根元部12の断面形状に対して先端部11の断面形状が小さくなってしまい、送風効率が羽根3の根元部12と先端部11とで異なり、送風効率を極限まで上げられないという問題があった。
【0009】
この発明は、前述のような問題を解決するもので、羽根3の根元部12と羽根先端部11での送風効率の差を少なくして、送風効率を向上させると共に、nz音のない筒状羽根車を提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明は上記の目的を達成するためになされたもので、環状または円板状の支持板の端面に、軸方向に沿って延出する多数の羽根を周方向に所定間隔で形成した筒状羽根車において、前記羽根の根元部を筒状羽根車の中心Oから半径R1の位置に、筒状羽根車の半径方向に対して取り付け傾斜角度θ 1 で配置し、前記羽根の先端部を筒状羽根車の中心Oから異なる半径R2の位置に、筒状羽根車の半径方向に対して前記取り付け傾斜角度θ1と異なる取り付け傾斜角度θ4で軸方向に所定距離だけ前記根元部から延出した位置に配置し、これらの配置によって、前記羽根の筒状羽根車半径方向に対する取り付け傾斜角度と筒状羽根車の中心Oからの取り付け位置とを根元部から先端部にかけて徐々に変化させ、前記羽根の前縁に後倒れになる外周側稜線を構成すると共に前記羽根を外倒れに構成したことを特徴とする。
【0011】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
図1は、この発明に係る筒状羽根車のエレメント1の斜視図であり、図2は、図1に示したエレメント1を複数個軸方向に連結して先端部に端板2aを設けた筒状羽根車5である。この筒状羽根車5は、各エレメント1に設けた各羽根3以外は、図6、図7に示した従来のものと同様である。
【0012】
図3は、この発明の参考例1に係る筒状羽根車の羽根3の先端部11側から軸方向に沿って羽根3の根元部12を見た拡大図である。
図3に示すように、参考例 1 に示す羽根3の根元部12は、筒状羽根車の中心Oから半径R1の位置に、半径方向に対する取り付け傾斜角度θ1で配置してあり、羽根3の先端部11は、筒状羽根車の中心Oから同じ半径R1の位置に、半径方向に対する取り付け傾斜角度θ2で軸方向に所定距離だけ羽根3の根元部12から延出した位置に配置してある。これらの配置によって、羽根3の筒状羽根車半径方向に対する取り付け傾斜角度を、根元から先端にかけて徐々に変化させ、羽根3の前縁に後倒れになる外周側稜線13を構成してある。
【0013】
なお、図3では1枚の羽根3を示して説明したが、筒状羽根車の各羽根のすべてを、前述した羽根と同様に半径方向に対する傾斜角度を根元から先端にかけて徐々に変化させてある。
【0014】
前記のような羽根3の構成にすることにより、抜き勾配によって生じる羽根3の根元部12と先端部11の断面形状の差による送風効率の差を少なくできる。
【0015】
また、羽根3の外周側稜線13とケーシングを構成しているスタビライザ6との間隔d1,d2は、羽根3の根元部12の位置でd1=R0−R1であり、先端部11でd2=R0−R1であるからd1とd2は共に同じ間隔である。しかし、羽根3が矢印8に示す時計方向に回転することにより、羽根3の外周側稜線13は、ケーシングを構成しているスタビライザ6に対して、間隔を一定に保ったまま、一直線上ではなく徐々に変化する位置関係を構成する。このため、羽根3への風の流入9と流出10がなめらかに変化する。これにより、nz音をなくすことができる。
【0016】
図4は、この発明の参考例2に係る筒状羽根車の羽根3の先端部11側から軸方向に沿って羽根3の根元部12を見た拡大図である。
図4に示すように、参考例2に示す羽根3の根元部12は、筒状羽根車の中心Oから半径R1の位置に、半径方向に対する取り付け傾斜角度θ1で配置してあり、羽根3の先端部11は、筒状羽根車の中心Oから異なる半径R2の位置に、半径方向に対する異なる取り付け傾斜角度θ3で軸方向に所定距離だけ根元部12から延出した位置に配置してある。これらの配置によって、羽根3の筒状羽根車中心Oからの取り付け位置を、根元から先端にかけて徐々に変化させ、羽根3を外倒れに構成してある。
【0017】
なお、図4では、1枚の羽根3のみを示して説明したが、筒状羽根車の各羽根のすべてを、前述した羽根と同様に、取り付け位置を根元から先端にかけて徐々に変化させてあり、また、羽根以外の構成は前述した図6,図7に示した従来のものと同様である。
【0018】
前記のような羽根3の構成にすることにより、抜き勾配によって生じる羽根3の根元部12と先端部11の断面形状の差による送風効率の差を少なくできる。
また、羽根3の外周側稜線13とケーシングを構成しているスタビライザ6との間隔d1,d2は、羽根3の根元部12の位置でd1=R0−R1であり、羽根3の先端部11でd2=R0−R2である。そして、羽根3の外周側稜線13は、ケーシングを構成しているスタビライザ6との位置関係では一直線上に並ぶが、羽根3の根元部12から先端部11にかけて間隔が徐々に変化する位置関係を構成するため、羽根3が矢印8に示す時計方向に回転することにより、羽根3への風の流入9と流出10がなめらかに変化する。これにより、nz音をなくすことができる。
【0019】
次に、図5により、この発明の実施の形態について説明する。
図5は、この発明の実施の形態に係る筒状羽根車の羽根3の先端部11側から軸方向に沿って羽根3の根元部12を見た拡大図である。
図5において、この実施の形態に示す羽根3の根元部12は、筒状羽根車の中心Oから半径R1の位置に、半径方向に対する取り付け傾斜角度θ1で配置してあり、羽根3の先端部11は、筒状羽根車の中心Oから異なる半径R2の位置に、半径方向に対する異なる取り付け傾斜角度θ4で軸方向に所定距離だけ根元部12から延出した位置に配置してある。これらの配置によって、羽根3の筒状羽根車半径方向に対する取り付け傾斜角度と、筒状羽根車の中心Oからの取り付け位置とを根元部から先端部にかけて徐々に変化させ、羽根3の前縁に後倒れになる外周側稜線13を構成すると共に、羽根3を外倒れに構成してある。
なお、この実施の形態における羽根の構成は、図3,図4に示した参考例1,2の羽根の構成を、併せて具備させた構成である。
【0020】
なお、図5では1枚の羽根3のみを示して説明したが、筒状羽根車のすべての羽根を、同様に取り付け傾斜角度と取り付け位置とを根元部から先端部にかけて徐々に変化させてあり、また、羽根以外の構成は前述した図6,図7に示した従来のものと同様である。
【0021】
前記のような羽根3の構成にすることにより、抜き勾配によって生じる羽根3の根元部12と先端部11との断面形状の差による送風効率の差を少なくできる。また、羽根3の外周側稜線1 3とケーシングを構成しているスタビライザ6との間隔は、根元部12の位置でd1=R0−R1であり、羽根3の先端部11でd2=R0−R1である。しかし、羽根3の外周側稜線13は、ケーシングを構成しているスタビライザ6との位置関係が一直線上になく、羽根3が矢印8に示す時計方向に回転することにより間隔が徐々に変化する位置関係を構成するため、羽根3への風の流入9と流出10がなめらかに変化する。これにより、nz音をなくすことができる。
【0022】
この発明において、前記各実施形態のものは複数のエレメントを軸方向に連結して筒状羽根車を構成したが、1個のエレメントの羽根の先端部に端板を装着して筒状羽根車を構成してもよい。
【0023】
【発明の効果】
以上説明したように、この発明に係る筒状羽根車は、環状または円板状の支持板の端面に、軸方向に沿って延出する多数の羽根を周方向に所定間隔で形成した筒状羽根車において、前記羽根の根元部を筒状羽根車の中心Oから半径R1の位置に、筒状羽根車の半径方向に対して取り付け傾斜角度θ 1 で配置し、前記羽根の先端部を筒状羽根車の中心Oから異なる半径R2の位置に、筒状羽根車の半径方向に対して前記取り付け傾斜角度θ1と異なる取り付け傾斜角度θ4で軸方向に所定距離だけ前記根元部から延出した位置に配置し、これらの配置によって、前記羽根の筒状羽根車半径方向に対する取り付け傾斜角度と筒状羽根車の中心Oからの取り付け位置とを根元部から先端部にかけて徐々に変化させ、前記羽根の前縁に後倒れになる外周側稜線を構成すると共に前記羽根を外倒れに構成したので、抜き勾配によって生じる羽根の根元部と羽根の先端部との断面形状の差による送風効率の差を少なくして、送風効率を向上させることができるとともに羽根への空気の流入と流出がなめらかに変化する。これにより、耳ざわりなnz音をなくすことができる。
【図面の簡単な説明】
【図1】 この発明の実施形態に係る筒状羽根車のエレメントを示した斜視図。
【図2】 この発明実施形態に係る筒状羽根車を示した一部切り欠き斜視図。
【図3】 この発明の参考例1における筒状羽根車の羽根の先端部から軸方向に沿って羽根の根元部を見た拡大図。
【図4】 この発明の参考例2における筒状羽根車の羽根の先端部から軸方向に沿って羽根の根元部を見た拡大図。
【図5】 この発明の実施形態に係る筒状羽根車の羽根の先端部から軸方向に沿って羽根の根元部を見た拡大図。
【図6】 従来の筒状羽根車のエレメントを示した斜視図。
【図7】 図6に示したエレメントを連結した従来の筒状羽根車の一部切り欠き斜視図。
【図8】 図7に示した筒状羽根車の羽根の先端部から軸方向に沿って羽根の根元部を見た拡大図。
【図9】 空気調和機における筒状羽根車とケーシングとの位置関係を示す断面説明図。
【符号の説明】
1 エレメント
2 支持板
3 羽根
4 嵌合溝
5 筒状羽根車
6 スタビライザ、
7 リアガイダ
8 筒状羽根車の回転方向
9 流入方向
10 流出方向
11 羽根の先端部
12 羽根の根元部
13 羽根の外周側稜線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical impeller for blowing air such as a crossflow fan used in an air conditioner or the like.
[0002]
[Prior art]
Conventionally, as a cylindrical impeller as described above, a structure in which a predetermined number of elements each having a plurality of blades extending straight along the axial direction and formed at predetermined intervals in the circumferential direction is connected to one end surface of a support plate is known. ing. The cylindrical impeller will be described below with reference to the drawings.
In FIG. 6, reference numeral 1 denotes an element made of a synthetic resin integrally molded product. A large number of blades 3 extending in the axial direction are provided on one end surface of an annular or disk-shaped support plate 2 at a predetermined interval in the circumferential direction. Are integrally molded. Each blade 3 is formed in a wing-like cross-sectional shape that is inclined with respect to the radial direction of the element 1 and curved in an approximate arc shape. In addition, a fitting groove 4 for fitting and fixing the tip of the blade is connected to the opposite end surface of the support plate 2 where the blade 3 does not extend so as to prevent another element from being twisted straight. Is formed.
[0003]
As shown in FIG. 7, the tip of the blade 3 of the preceding element 1 is fitted and held on the support plate 2 of the succeeding element 1 and fixed by bonding or ultrasonic welding, and the above operation is repeated to obtain a predetermined value. A cylindrical impeller 5 is configured by connecting a number of elements 1 so as not to be twisted in the axial direction, and providing an end plate 2a for fitting and supporting the blade 3 to the element 1 at the tip.
[0004]
FIG. 8 is an enlarged view of the main part of a conventional cylindrical impeller as viewed from the blade tip 11 along the axial direction of the root 12 of the blade 3. In the blade 3, a root portion 12 is disposed at a mounting inclination angle θ <b> 1 with respect to the radial direction from the center of the cylindrical impeller 5 to a position of a radius R <b> 1. The tip portion 11 of the blade 3 extends straight in the axial direction and is smaller than the root portion 12 by the draft angle.
[0005]
And as shown in FIG. 9, the cylindrical impeller 5 of the front | former stage is arrange | positioned between the stabilizer 6 which forms a casing, and the rear guider 7 as a ventilation apparatus of an air conditioner. When the cylindrical impeller 5 rotates in the clockwise direction of the arrow 8, air flows in from the direction of the arrow 9 and air flows out in the direction of the arrow 10.
[0006]
[Problems to be solved by the invention]
In the case where the element 1 is arranged to form the cylindrical impeller 5, the number z of the blades 3 of the element 1 and the sound having a frequency of (n × z) / 60 Hz composed of the number of rotations n per minute There was a problem that sounds with an integer multiple of the frequency were generated. This sound is called a blade pitch sound or an nz sound, and is an acoustic sound that sounds like a whistle.
[0007]
Hereinafter, this unpleasant sound is referred to as nz sound.
This nz sound changes depending on the blades 3 of the element 1, the mounting pitch of the blades 3, the shapes of the stabilizers 6 and the rear guider 7, and their positional relationships. For example, if the interval d between the cylindrical impeller 5 and the stabilizer 6 is reduced in order to increase the air blowing efficiency, the nz sound increases. As described above, when the air blowing efficiency is increased, the nz sound increases, and there is a problem that the air blowing efficiency cannot be increased to the limit.
[0008]
The element 1 of the cylindrical impeller is generally a synthetic resin molded product. However, in order to take out the element 1 which is a molded product from the mold, the blade 3 needs a draft. As a result, the cross-sectional shape of the tip portion 11 becomes smaller than the cross-sectional shape of the root portion 12 of the blade 3, and the blowing efficiency is different between the root portion 12 and the tip portion 11 of the blade 3, and the blowing efficiency is increased to the limit. There was a problem that it was not possible.
[0009]
The present invention solves the above-described problems, and reduces the difference in the blowing efficiency between the root portion 12 and the blade tip portion 11 of the blade 3 to improve the blowing efficiency, and has a cylindrical shape without nz sound. The purpose is to provide an impeller.
[0010]
[Means for Solving the Problems]
The present invention has been made in order to achieve the above-mentioned object, and has a cylindrical shape in which a large number of blades extending in the axial direction are formed at predetermined intervals in the circumferential direction on the end face of an annular or disk-shaped support plate. In the impeller, the root portion of the blade is disposed at a radius R1 from the center O of the cylindrical impeller at a mounting inclination angle θ 1 with respect to the radial direction of the cylindrical impeller, and the tip portion of the blade is disposed in the cylinder A position extending from the root portion by a predetermined distance in the axial direction at a mounting inclination angle θ4 different from the mounting inclination angle θ1 with respect to the radial direction of the cylindrical impeller at a position of a different radius R2 from the center O of the cylindrical impeller With these arrangements, the mounting inclination angle of the blade with respect to the radial direction of the cylindrical impeller and the mounting position from the center O of the cylindrical impeller are gradually changed from the root portion to the tip portion, Fall to the front edge Characterized by being configured to collapse out of said blade as well as constituting a peripheral side edge line.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings .
FIG. 1 is a perspective view of an element 1 of a cylindrical impeller according to the present invention. FIG. 2 is a diagram in which a plurality of elements 1 shown in FIG. This is a cylindrical impeller 5. The cylindrical impeller 5 is the same as the conventional one shown in FIGS. 6 and 7 except for each blade 3 provided in each element 1.
[0012]
FIG. 3 is an enlarged view of the root portion 12 of the blade 3 viewed along the axial direction from the tip 11 side of the blade 3 of the cylindrical impeller according to Reference Example 1 of the present invention .
As shown in FIG. 3, the base portion 12 of the blade 3 as in Reference Example 1, from the center O of the cylindrical impeller at a radius R1, Yes and placed in the mounting angle of inclination θ1 with respect to the radial direction, the blade 3 The tip portion 11 is disposed at a position of the same radius R1 from the center O of the cylindrical impeller at a position extending from the root portion 12 of the blade 3 by a predetermined distance in the axial direction at an attachment inclination angle θ2 with respect to the radial direction. is there. With these arrangements, the outer peripheral ridgeline 13 is configured such that the attachment inclination angle of the blade 3 with respect to the radial direction of the cylindrical impeller is gradually changed from the root to the tip, and the blade 3 falls backward at the front edge of the blade 3.
[0013]
In FIG. 3, the single blade 3 is shown and described, but all the blades of the cylindrical impeller are gradually changed from the root to the tip with respect to the radial direction in the same manner as the blades described above. .
[0014]
By using the configuration of the blade 3 as described above, the difference in the blowing efficiency due to the difference in the cross-sectional shape of the root portion 12 and the tip portion 11 of the blade 3 caused by the draft can be reduced.
[0015]
Further, the distances d1 and d2 between the outer peripheral ridge line 13 of the blade 3 and the stabilizer 6 constituting the casing are d1 = R0−R1 at the position of the root portion 12 of the blade 3 and d2 = R0 at the tip portion 11. Since -R1, both d1 and d2 are the same interval. However, when the blade 3 rotates in the clockwise direction indicated by the arrow 8, the outer peripheral side ridge line 13 of the blade 3 is not in a straight line with a constant distance from the stabilizer 6 constituting the casing. A gradually changing positional relationship is constructed. For this reason, the inflow 9 and the outflow 10 of the wind to the blade | wing 3 change smoothly. Thereby, nz sound can be eliminated.
[0016]
FIG. 4 is an enlarged view of the root portion 12 of the blade 3 viewed along the axial direction from the tip portion 11 side of the blade 3 of the cylindrical impeller according to Reference Example 2 of the present invention .
Figure 4 As shown in the root portion 12 of the blade 3 as in Reference Example 2, the position of the radius R1 from the center O of the cylindrical impeller, Yes and placed in the mounting angle of inclination θ1 with respect to the radial direction, the blade 3 The tip portion 11 is disposed at a position of a different radius R2 from the center O of the cylindrical impeller, at a position extending from the root portion 12 by a predetermined distance in the axial direction at a different mounting inclination angle θ3 with respect to the radial direction. With these arrangements, the attachment position of the blade 3 from the cylindrical impeller center O is gradually changed from the root to the tip, and the blade 3 is configured to fall outward.
[0017]
In FIG. 4, only one blade 3 is shown and described, but all the blades of the cylindrical impeller are gradually changed from the root to the tip in the same manner as the blades described above. The configuration other than the blades is the same as the conventional one shown in FIGS.
[0018]
By using the configuration of the blade 3 as described above, the difference in the blowing efficiency due to the difference in the cross-sectional shape of the root portion 12 and the tip portion 11 of the blade 3 caused by the draft can be reduced.
Further, the distances d1 and d2 between the outer peripheral side ridge line 13 of the blade 3 and the stabilizer 6 constituting the casing are d1 = R0−R1 at the position of the root portion 12 of the blade 3, and at the tip portion 11 of the blade 3. d2 = R0-R2. The ridge line 13 on the outer peripheral side of the blade 3 is aligned in a straight line with the stabilizer 6 constituting the casing, but has a positional relationship in which the interval gradually changes from the root portion 12 to the tip portion 11 of the blade 3. Since the blade 3 rotates in the clockwise direction indicated by the arrow 8, the wind inflow 9 and the outflow 10 smoothly change into the blade 3. Thereby, nz sound can be eliminated.
[0019]
Next, an embodiment of the present invention will be described with reference to FIG.
FIG. 5 is an enlarged view of the root portion 12 of the blade 3 viewed along the axial direction from the tip portion 11 side of the blade 3 of the cylindrical impeller according to the embodiment of the present invention .
In FIG. 5 , the root portion 12 of the blade 3 shown in this embodiment is disposed at a radius R1 from the center O of the cylindrical impeller at an attachment inclination angle θ1 with respect to the radial direction. 11 is arranged at a position of a different radius R2 from the center O of the cylindrical impeller at a position extending from the root portion 12 by a predetermined distance in the axial direction at a different mounting inclination angle θ4 with respect to the radial direction. With these arrangements, the mounting inclination angle of the blade 3 with respect to the radial direction of the cylindrical impeller and the mounting position from the center O of the cylindrical impeller are gradually changed from the root portion to the tip portion, and the blade 3 has a leading edge. The outer peripheral side ridgeline 13 that falls backward is configured, and the blade 3 is configured to fall outward.
In addition, the structure of the blade | wing in this embodiment is the structure which comprised the structure of the blade | wing of the reference examples 1 and 2 shown in FIG. 3, FIG. 4 collectively.
[0020]
In FIG. 5, only one blade 3 is shown and described. However, for all the blades of the cylindrical impeller, the attachment inclination angle and the attachment position are gradually changed from the root portion to the tip portion. The configuration other than the blades is the same as the conventional one shown in FIGS.
[0021]
By using the configuration of the blade 3 as described above, the difference in blowing efficiency due to the difference in cross-sectional shape between the root portion 12 and the tip portion 11 of the blade 3 caused by the draft angle can be reduced. Further, the distance between the outer peripheral side ridge line 13 of the blade 3 and the stabilizer 6 constituting the casing is d1 = R0−R1 at the position of the root portion 12, and d2 = R0−R1 at the tip portion 11 of the blade 3. It is. However, the ridge line 13 on the outer peripheral side of the blade 3 is not in a straight line with the stabilizer 6 constituting the casing, and the interval gradually changes as the blade 3 rotates in the clockwise direction indicated by the arrow 8. In order to constitute the relationship, the inflow 9 and the outflow 10 of the wind into the blade 3 change smoothly. Thereby, nz sound can be eliminated.
[0022]
In the present invention, in each of the above embodiments, a plurality of elements are connected in the axial direction to form a cylindrical impeller. However, an end plate is attached to the tip of the blade of one element to form a cylindrical impeller. May be configured.
[0023]
【The invention's effect】
As described above, the cylindrical impeller according to the present invention has a cylindrical shape in which a large number of blades extending along the axial direction are formed at predetermined intervals in the circumferential direction on the end face of an annular or disk-shaped support plate. In the impeller, the root portion of the blade is disposed at a radius R1 from the center O of the cylindrical impeller at a mounting inclination angle θ 1 with respect to the radial direction of the cylindrical impeller, and the tip portion of the blade is disposed in the cylinder A position extending from the root portion by a predetermined distance in the axial direction at a mounting inclination angle θ4 different from the mounting inclination angle θ1 with respect to the radial direction of the cylindrical impeller at a position of a different radius R2 from the center O of the cylindrical impeller With these arrangements, the mounting inclination angle of the blade with respect to the radial direction of the cylindrical impeller and the mounting position from the center O of the cylindrical impeller are gradually changed from the root portion to the tip portion, The outer circumference that falls back to the front edge Since the wing line is configured to fall outward while configuring the ridgeline, the difference in the blowing efficiency due to the difference in cross-sectional shape between the root part of the blade and the tip part of the blade caused by the draft is reduced, and the blowing efficiency is improved. And the inflow and outflow of air into the blades change smoothly. As a result, it is possible to eliminate an unpleasant nz sound.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an element of a cylindrical impeller according to an embodiment of the present invention.
FIG. 2 is a partially cutaway perspective view showing a cylindrical impeller according to an embodiment of the present invention.
FIG. 3 is an enlarged view of the root portion of the blade along the axial direction from the tip portion of the blade of the cylindrical impeller in Reference Example 1 of the present invention .
FIG. 4 is an enlarged view of a root portion of a blade as viewed along the axial direction from a tip portion of the blade of the cylindrical impeller in Reference Example 2 of the present invention.
FIG. 5 is an enlarged view of the root portion of the blade along the axial direction from the tip portion of the blade of the cylindrical impeller according to the embodiment of the present invention.
FIG. 6 is a perspective view showing an element of a conventional cylindrical impeller.
7 is a partially cutaway perspective view of a conventional cylindrical impeller to which the elements shown in FIG. 6 are connected. FIG.
8 is an enlarged view of the blade root portion seen from the tip of the blade of the cylindrical impeller shown in FIG. 7 along the axial direction.
FIG. 9 is an explanatory cross-sectional view showing the positional relationship between a cylindrical impeller and a casing in an air conditioner.
[Explanation of symbols]
1 element 2 support plate 3 blade 4 fitting groove 5 cylindrical impeller 6 stabilizer,
7 Rear guider 8 Rotating direction of cylindrical impeller 9 Inflow direction 10 Outflow direction 11 Blade tip 12 Blade root 13 Blade outer edge

Claims (1)

環状または円板状の支持板の端面に、軸方向に沿って延出する多数の羽根を周方向に所定間隔で形成した筒状羽根車において、前記羽根の根元部を筒状羽根車の中心Oから半径R1の位置に、筒状羽根車の半径方向に対して取り付け傾斜角度θ 1 で配置し、前記羽根の先端部を筒状羽根車の中心Oから異なる半径R2の位置に、筒状羽根車の半径方向に対して前記取り付け傾斜角度θ1と異なる取り付け傾斜角度θ4で軸方向に所定距離だけ前記根元部から延出した位置に配置し、これらの配置によって、前記羽根の筒状羽根車半径方向に対する取り付け傾斜角度と筒状羽根車の中心Oからの取り付け位置とを根元部から先端部にかけて徐々に変化させ、前記羽根の前縁に後倒れになる外周側稜線を構成すると共に前記羽根を外倒れに構成したことを特徴とする筒状羽根車。A cylindrical impeller in which a large number of blades extending in the axial direction are formed at predetermined intervals in the circumferential direction on an end surface of an annular or disk-shaped support plate, and the root portion of the blade is the center of the cylindrical impeller It is arranged at a position of radius R1 from O with a mounting inclination angle θ 1 with respect to the radial direction of the cylindrical impeller, and the tip of the blade is cylindrical at a position of different radius R2 from the center O of the cylindrical impeller. Arranged at a position extending from the root portion by a predetermined distance in the axial direction at an attachment inclination angle θ4 different from the attachment inclination angle θ1 with respect to the radial direction of the impeller, and by these arrangements, the cylindrical impeller of the blade The mounting inclination angle with respect to the radial direction and the mounting position from the center O of the cylindrical impeller are gradually changed from the root portion to the tip portion, and an outer peripheral side ridge line that falls backward is formed on the front edge of the blade and the blade It was constructed to fall outside Cylindrical impeller characterized and.
JP04705796A 1996-03-05 1996-03-05 Cylindrical impeller Expired - Fee Related JP3850061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04705796A JP3850061B2 (en) 1996-03-05 1996-03-05 Cylindrical impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04705796A JP3850061B2 (en) 1996-03-05 1996-03-05 Cylindrical impeller

Publications (2)

Publication Number Publication Date
JPH09242694A JPH09242694A (en) 1997-09-16
JP3850061B2 true JP3850061B2 (en) 2006-11-29

Family

ID=12764537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04705796A Expired - Fee Related JP3850061B2 (en) 1996-03-05 1996-03-05 Cylindrical impeller

Country Status (1)

Country Link
JP (1) JP3850061B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209849A (en) * 2009-03-11 2010-09-24 Sharp Corp Cross-flow fan and method of manufacturing the cross-flow fan
JP5041446B2 (en) * 2010-02-16 2012-10-03 シャープ株式会社 Cross-flow fan, blower and impeller molding machine
JP5030115B2 (en) * 2010-02-16 2012-09-19 シャープ株式会社 Cross-flow fan, blower and impeller molding machine
JP6431663B2 (en) * 2013-09-30 2018-11-28 日清紡メカトロニクス株式会社 Blower impeller
JP2017214937A (en) * 2017-09-19 2017-12-07 日清紡メカトロニクス株式会社 Cross flow fan
CN112412832B (en) * 2020-10-28 2022-07-19 青岛海尔空调器有限总公司 Cross-flow fan and air conditioner

Also Published As

Publication number Publication date
JPH09242694A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP4035237B2 (en) Axial blower
JP3850061B2 (en) Cylindrical impeller
JP2005120877A (en) Transverse flow blower and blade for the same
KR100210291B1 (en) Production method of reverse fan
JP4191431B2 (en) cooling fan
JP3360973B2 (en) Centrifugal blower
JPH03194196A (en) Cross flow fan
JP2769211B2 (en) Blower
JPS63289295A (en) Blower
JPS60132098A (en) Sirocco fan (squirrel cage-shaped fan)
JPH01315697A (en) Axially flow fan
EP0259061A2 (en) Axial flow fan and fan blade therefor
JP2902577B2 (en) Propeller fan
JP2001090692A (en) Axial blower
JP2718943B2 (en) Axial fan
JP2001090694A (en) Axial blower
JPH0714192U (en) Centrifugal blower
JPH05321894A (en) Axial flow fan
JP2000064995A (en) Centrifugal turbo blower
JP2002021781A (en) Fan device
CN217381002U (en) Centrifugal impeller and centrifugal fan
JPS6124717Y2 (en)
JP2547598B2 (en) Mixed flow fan
JPH0740718Y2 (en) Cross flow fan
JPH06129388A (en) Blower

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees