JP3848773B2 - 1 can 2 water channel type water heater and pouring hot water supply simultaneous use discrimination method - Google Patents

1 can 2 water channel type water heater and pouring hot water supply simultaneous use discrimination method Download PDF

Info

Publication number
JP3848773B2
JP3848773B2 JP00779898A JP779898A JP3848773B2 JP 3848773 B2 JP3848773 B2 JP 3848773B2 JP 00779898 A JP00779898 A JP 00779898A JP 779898 A JP779898 A JP 779898A JP 3848773 B2 JP3848773 B2 JP 3848773B2
Authority
JP
Japan
Prior art keywords
hot water
channel
water supply
water
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00779898A
Other languages
Japanese (ja)
Other versions
JPH11201549A (en
Inventor
良彦 田中
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP00779898A priority Critical patent/JP3848773B2/en
Publication of JPH11201549A publication Critical patent/JPH11201549A/en
Application granted granted Critical
Publication of JP3848773B2 publication Critical patent/JP3848773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浴槽内の水の循環する追い焚き流路内の水と給水の通る給湯流路内の水の双方にバーナーからの熱を1つの熱交換器で伝える1缶2水路型給湯器およびその注湯給湯同時使用判別方法に関する。
【0002】
【従来の技術】
従来から使用されている1缶2水路型給湯器には、給湯流路を通じて加熱された湯を連絡路を通じて追い焚き流路側に流し込むことで浴槽への注湯動作を行うものがある。このような1缶2水路型給湯器では、通常、浴槽への注湯動作と給湯動作とが並行して行われたとき、連結路に設けた切替弁を閉じて注湯動作を中断し、給湯側を優先するようになっている。
【0003】
注湯動作と給湯動作とが同時に行われているか否かは、給湯流路のうち連絡路の接続箇所よりも下流側の箇所に専用の流量センサを設け、これを用いて検知していた。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の技術では、注湯動作と給湯動作とが同時に行われているか否かを検知するために、別途、専用の流量センサを設けていたので、その分、構造が複雑になり装置価格が高騰するという問題があった。
【0005】
本発明は、このような従来の技術が有する問題点に着目してなされたもので、専用の流量センサを設けることなく、注湯と給湯とが同時使用されているか否かを判別することのできる1缶2水路型給湯器および注湯給湯同時使用判別方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。
]浴槽(30)内の水の循環する追い焚き流路(40)内の水と給水の通る給湯流路(20)内の水の双方にバーナー(12)からの熱を1つの熱交換器(11)で伝える1缶2水路型給湯器であって、前記熱交換器(11)を経由した後の前記給湯流路(20)内の湯を前記追い焚き流路(40)側に流すための連絡路(50)と、前記連絡路(50)の途中に設けられ前記給湯流路(20)内の湯を前記追い焚き流路(40)側へ流すか否かを切り替える切替弁(51)とを備え、前記浴槽(30)への注湯動作を行う際に前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込んだ水が当該追い焚き流路(40)を通じて前記熱交換器(11)を再度経由するものと前記熱交換器(11)を再度経由しないものの二手に分かれて前記浴槽(30)に流れ込むものにおいて、
前記熱交換器(11)を経由する前の前記給湯流路(20)内の水温を検知する入水温度検知手段(24)と、前記熱交換器(11)を経由した後の前記給湯流路(20)内の水温を検知する出湯温度検知手段(27、29)と、前記給湯流路(20)を通じて前記熱交換器(11)を経由する水の流量を検知する流量検知手段(25)と、前記給湯流路(20)から前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込む水が二手に分かれる際の分配比を記憶した分配比記憶手段(63)と、前記バーナー(12)からの供給熱量と前記給湯流路(20)側での吸熱量と前記給湯流路(20)を通じて加熱された後であって前記追い焚き流路(40)を通じて前記熱交換器(11)で再加熱される前の水の温度である再加熱前温度と前記追い焚き流路(40)を通じ前記熱交換器(11)で再加熱されて前記浴槽(30)に流れ込む水の流量とから成る4つのパラメータの関係を表したデータを予め求めて記憶したデータ記憶手段(62)と、前記注湯単独での使用中か注湯と給湯との同時使用中かを判別する同時使用判別手段(61)とを備え、
前記同時使用判別手段(61)は、前記入水温度検知手段(24)の検知する温度と前記出湯温度検知手段(27、29)の検知する温度と前記流量検知手段(25)の検知する流量とから前記給湯流路(20)側での実際の吸熱量を求め、前記バーナー(12)からの供給熱量と前記給湯流路(20)側での実際の吸熱量と前記出湯温度検知手段(27、29)の検知する前記再加熱前温度と前記給湯流路(20)を通じて加熱された給水の全てが前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込みかつ前記分配比記憶手段(63)に記憶されている分配比に従って二手に分かれた際に前記熱交換器(11)で再加熱されて前記浴槽(30)に流れ込む水の流量との関係が、前記データ記憶手段(62)に記憶してあるこれら4つのパラメータの関係と略一致するか否かを基にして注湯単独での使用中か注湯と給湯との同時使用中かを判別することを特徴とする1缶2水路型給湯器(10)。
【0008】
]浴槽(30)内の水の循環する追い焚き流路(40)内の水と給水の通る給湯流路(20)内の水の双方にバーナー(12)からの熱を1つの熱交換器(11)で伝える1缶2水路型給湯器であって、前記熱交換器(11)を経由した後の前記給湯流路(20)内の湯を前記追い焚き流路(40)側に流すための連絡路(50)と、前記連絡路(50)の途中に設けられ前記給湯流路(20)内の湯を前記追い焚き流路(40)側へ流すか否かを切り替える切替弁(51)とを備え、前記浴槽(30)への注湯動作を行う際に前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込んだ水が当該追い焚き流路(40)を通じて前記熱交換器(11)を再度経由するものと前記熱交換器(11)を再度経由しないものの二手に分かれて前記浴槽(30)に流れ込むものにおいて、
前記熱交換器(11)を経由する前の前記給湯流路(20)内の水温を検知する入水温度検知手段(24)と、前記熱交換器(11)を経由した後の前記給湯流路(20)内の水温を検知する出湯温度検知手段(27、29)と、前記給湯流路(20)を通じて前記熱交換器(11)を経由する水の流量を検知する流量検知手段(25)と、前記給湯流路(20)から前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込む水が二手に分かれる際の分配比を記憶した分配比記憶手段(63)と、前記バーナー(12)からの供給熱量と前記給湯流路(20)側での吸熱量と前記給湯流路(20)を通じて加熱された後であって前記追い焚き流路(40)を通じて前記熱交換器(11)で再加熱される前の水の温度である再加熱前温度と前記追い焚き流路(40)を通じ前記熱交換器(11)で再加熱されて前記浴槽(30)に流れ込む水の流量とから成る4つのパラメータの関係を表したデータを予め求めて記憶したデータ記憶手段(62)と、前記注湯単独での使用中か注湯と給湯との同時使用中かを判別する同時使用判別手段(61)とを備え、
前記同時使用判別手段(61)は、前記入水温度検知手段(24)の検知する温度と前記出湯温度検知手段(27、29)の検知する温度と前記流量検知手段(25)の検知する流量とから前記給湯流路(20)側での実際の吸熱量を求め、この吸熱量と前記出湯温度検知手段(27、29)の検知する前記再加熱前温度と前記バーナー(12)からの供給熱量とに基づいて前記追い焚き流路(40)を通じ前記熱交換器(11)で再加熱される水の流量である実再加熱流量を前記データ記憶手段(62)の記憶しているデータから求め、前記給湯流路(20)を通じて加熱された水の全てが前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込む場合に前記熱交換器(11)で再加熱されて前記浴槽(30)に流れ込む水の流量を前記流量検知手段(25)の検知する流量と前記分配比記憶手段(63)の記憶している分配比とから求め、当該分配比から求めた流量と前記実再加熱流量とを比較することで注湯単独での使用中か注湯と給湯との同時使用中かを判別することを特徴とする1缶2水路型給湯器(10)。
【0009】
]注湯単独で使用している状態における前記バーナー(12)からの供給熱量と給湯流路(20)側での実際の吸熱量と前記給湯流路(20)を通じて加熱された後であって前記追い焚き流路(40)を通じて前記熱交換器(11)で再加熱される前における実際の水温とに基づいて前記熱交換器(11)で再加熱されて前記浴槽(30)に流れ込む水の流量を前記データ記憶手段(62)に記憶してあるデータから求め、これと前記流量検知手段(25)によって検知された流量とから前記分配比を求め、これを前記分配比記憶手段(63)に記憶することを特徴とする[]または[]記載の1缶2水路型給湯器(10)。
【0010】
]前記分配比を求める際に前記切替弁(51)を一旦閉じ、そのとき前記給湯流路(20)に通水があるか否かを基にして注湯単独での使用状態を形成できるか否かを判別することを特徴とする[]記載の1缶2水路型給湯器(10)。
【0011】
]前記同時使用判別手段(61)が注湯単独での使用中であると判別した際における実際の分配比を求め、前記実際の分配比の値あるいはその変動量が所定の許容値を越えたとき、前記同時使用判別手段(61)が注湯単独での使用中か否かを判別する際に用いる分配比の値を最新の分配比に更新することを特徴とする[]、[]、[]または[]記載の1缶2水路型給湯器(10)。
【0012】
]浴槽(30)内の水の循環する追い焚き流路(40)内の水と給水の通る給湯流路(20)内の水の双方にバーナー(12)からの熱を1つの熱交換器(11)で伝える1缶2水路型給湯器であって、前記熱交換器(11)を経由した後の前記給湯流路(20)内の湯を前記追い焚き流路(40)側に流すための連絡路(50)と、前記連絡路(50)の途中に設けられ前記給湯流路(20)内の湯を前記追い焚き流路(40)側へ流すか否かを切り替える切替弁(51)とを備え、前記浴槽(30)への注湯動作を行う際に前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込んだ水が当該追い焚き流路(40)を通じて前記熱交換器(11)を再度経由するものと前記熱交換器(11)を再度経由しないものの二手に分かれて前記浴槽(30)に流れ込むものが、注湯動作のみを単独で行っているか注湯動作と水栓への給湯動作とを同時に行っているかを判別する注湯給湯同時使用判別方法において、
前記給湯流路(20)から前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込む水が二手に分かれる際の分配比を予め求めて記憶し、
前記バーナー(12)からの供給熱量と前記給湯流路(20)側での吸熱量と前記給湯流路(20)を通じて加熱された後であって前記追い焚き流路(40)を通じて前記熱交換器(11)で再加熱される前の水の温度と前記追い焚き流路(40)を通じ前記熱交換器(11)で再加熱されて前記浴槽(30)に流れ込む水の流量とから成る4つのパラメータの関係を表したデータを予め求めて記憶し、
前記熱交換器(11)を経由する前の前記給湯流路(20)内の水温を検知し、
前記熱交換器(11)を経由した後の前記給湯流路(20)内の水温を検知し、
前記給湯流路(20)を通じて前記熱交換器(11)を経由する水の流量を検知し、
前記熱交換器(11)を経由する前の前記給湯流路(20)内の水温と前記熱交換器(11)を経由した後の前記給湯流路(20)内の水温と前記給湯流路(20)を通じて前記熱交換器(11)を経由する水の流量とから前記給湯流路(20)側での実際の吸熱量を求め、
前記バーナー(12)からの供給熱量と前記給湯流路(20)側での実際の吸熱量と前記熱交換器(11)を経由した後の前記給湯流路(20)内の水温と前記給湯流路(20)を通じて加熱された給水の全てが前記連絡路(50)を通じて前記追い焚き流路(40)に流れ込みかつ前記分配比に従って二手に分かれた際に前記熱交換器(11)で再加熱されて前記浴槽(30)に流れ込む水の流量との関係が、前記予め記憶してあるこれら4つのパラメータの関係と略一致するか否かを基にして注湯単独での使用中か注湯と給湯との同時使用中かを判別することを特徴とする注湯給湯同時使用判別方法。
【0013】
前記本発明は次のように作用する。
この給湯器は、浴槽(30)内の水の循環する追い焚き流路(40)内の水と給水の通る給湯流路(20)内の水の双方にバーナー(12)からの熱を1つの熱交換器(11)で伝える1缶2水路型給湯器である。また、給湯流路(20)と追い焚き流路(40)とを結ぶ連絡路(50)に設けた切替弁(51)を開くことで給湯流路(20)側で加熱された湯を連絡路(50)を通じて追い焚き流路(40)側に流して浴槽(30)へ注湯する機能を備えている。
【0014】
連絡路(50)を通じて追い焚き流路(40)に流れ込んだ水は、少なくともその一部あるいは全部が熱交換器(11)を再度経由して浴槽(30)に流れ込むようになっている。すなわち、連絡路(50)から追い焚き流路(40)に流れ込んだ水のすべてが再度熱交換器(11)を経由し再び加熱されてから浴槽(30)へ流れ込むもの、あるいは連絡路(50)から追い焚き流路(40)に流れ込んだ水が二手に分かれ、その一方のみが熱交換器(11)を再度経由して浴槽(30)へ流れ込み、他方は熱交換器(11)を再度経由することなく浴槽(30)へ流れ込むものであってもよい。
【0015】
実吸熱比取得手段(67)は、浴槽(30)への注湯動作を行っているとき、バーナー(12)からの供給熱量のうち追い焚き流路(40)側で吸熱される熱量と給湯流路(20)側で吸熱される熱量との比である実吸熱比を求め、同時使用判別手段(61)は、注湯単独での使用中に実吸熱比が変化したとき注湯動作と並行して給湯動作が開始されたものと判別する。
【0016】
注湯単独での使用中に、水栓への給湯が開始されると、給湯流路(20)で加熱された湯の一部が水栓への出湯に費やされ、追い焚き流路(40)を通じて熱交換器(11)で再加熱されるものの流量が減少する。このため、バーナー(12)からの供給熱量のうち追い焚き流路(40)側での吸熱量と給湯流路(20)側での吸熱量との比率が変動する。したがって、実吸熱比が変化したことを捉えることによって、注湯単独での使用中に給湯動作が開始されたことを検知することができる。
【0017】
なお、吸熱比は、バーナー(12)からの供給熱量、給湯流路(20)側の流量、給湯流路(20)への入水温度、給湯流路(20)において加熱された後の湯温等によって求めることができるので、同時使用を検知するために専用の流量センサを設ける必要がなく、装置価格の低減を図ることができる。
【0018】
また吸熱比の変化ではなく、注湯単独使用時における吸熱比の絶対値と実際の吸熱比とを以下のように比較することにより、注湯単独での使用中か注湯と給湯との同時使用中かを判別することもできる。
【0019】
すなわち、給湯流路(20)から連絡路(50)を通じて追い焚き流路(40)に流れ込む水が二手に分かれる際の分配比を予め求めて分配比記憶手段(63)に記憶しておく。また、バーナー(12)からの供給熱量と、給湯流路(20)側での吸熱量と、給湯流路(20)を通じて加熱された後であって追い焚き流路(40)を通じて熱交換器(11)で再加熱される前の水の温度である再加熱前温度と、追い焚き流路(40)を通じ熱交換器(11)で再加熱されて浴槽(30)に流れ込む水の流量と、から成る4つのパラメータの関係を表したデータを予め求めてデータ記憶手段(62)に記憶しておく。
【0020】
入水温度検知手段(24)は、熱交換器(11)を経由する前の給湯流路(20)内の水温を検知し、出湯温度検知手段(27、29)は、熱交換器(11)を経由した後の給湯流路(20)内の水温を検知し、流量検知手段(25)は、給湯流路(20)を通じて熱交換器(11)を経由する水の流量を検知する。
【0021】
同時使用判別手段(61)は、入水温度検知手段(24)の検知する温度と出湯温度検知手段(27、29)の検知する温度と流量検知手段(25)の検知する流量とから給湯流路(20)側での実際の吸熱量を求める。また同時使用判別手段(61)は、バーナー(12)からの供給熱量と、給湯流路(20)側での実際の吸熱量と、出湯温度検知手段(27、29)の検知する再加熱前温度と、給湯流路(20)を通じて加熱された給水の全てが連絡路(50)を通じて追い焚き流路(40)に流れ込みかつ分配比記憶手段(63)に記憶されている分配比に従って二手に分かれた際に熱交換器(11)で再加熱されて浴槽(30)に流れ込む水の流量との関係が、データ記憶手段(62)に記憶してあるこれら4つのパラメータの関係と略一致するか否かを基にして注湯単独での使用中か注湯と給湯との同時使用中かを判別する。
【0022】
データ記憶手段(62)に記憶してある4つのパラメータの関係は、熱交換器(11)の形状等が定まれば一義的に定まり、実験等により予め求めておくことができる。またパラメータ相互の関係が一義的に定まるので、たとえば、再加熱されて浴槽(30)に流れ込むものの流量を注湯単独で動作していると仮定して求め、かつ残り3つのパラメータを実測すれば、これら4つのパラメータの相互関係が予め記憶してあるデータと一致するか否かにより、注湯単独動作であるか否かを判別することができる。
【0023】
より具体的には、同時使用判別手段(61)は、入水温度検知手段(24)の検知する温度と出湯温度検知手段(27、29)の検知する温度と流量検知手段(25)の検知する流量とから給湯流路(20)側での実際の吸熱量を求める。そしてこの吸熱量と出湯温度検知手段(27、29)の検知する再加熱前温度とバーナー(12)からの供給熱量とに基づいてデータ記憶手段(62)の記憶しているデータから追い焚き流路(40)を通じ熱交換器(11)で再加熱される水の流量である実再加熱流量を求める。
【0024】
さらに、給湯流路(20)を通じて加熱された水の全てが連絡路(50)を通じて追い焚き流路(40)に流れ込む場合に熱交換器(11)で再加熱されて浴槽(30)に流れ込む水の流量を、流量検知手段(25)の検知する流量と分配比記憶手段(63)に予め記憶してある分配比とから求め、当該分配比から求めた流量と先に求めた実再加熱流量とを比較することで注湯単独使用中か注湯と給湯との同時使用中かを判別する。
【0025】
このように、追い焚き流路(40)側で再加熱されるものの流量を実際の吸熱比を基にして演算で求めるとともに、予め求めて記憶してある分配比と給湯側の総流量とから注湯単独動作中であると仮定した場合における再加熱されるものの流量を求め、これらの流量を比較することによって、注湯単独使用か否かを判別することができる。
【0026】
なお、4つのパラメータの一致を判断する際に、再加熱されるものの流量を比較するのみならず、たとえば、給湯流路(20)側での実際の吸熱量が、注湯単独での使用中であると仮定した場合における給湯流路(20)側の吸熱量と一致するか否かによって、同時使用か否かを判別してもよい。
【0027】
すなわち、同時使用判別手段(61)は、入水温度検知手段(24)の検知する温度と出湯温度検知手段(27、29)の検知する再加熱前温度と流量検知手段(25)の検知する流量とから給湯流路(20)側での実際の吸熱量を求める。さらに給湯流路(20)を通じて加熱された水の全てが連絡路(50)を通じて追い焚き流路(40)に流れ込む場合に熱交換器(11)で再加熱されて浴槽(30)に流れ込む水の流量を、分配比記憶手段(63)に予め記憶してある分配比と流量検知手段(25)の検知する流量とから求める。
【0028】
こうして分配比から求めた流量と出湯温度検知手段(27、29)の検知する温度とバーナー(12)からの供給熱量とに基づいてデータ記憶手段(62)の記憶しているデータから給湯流路(20)を通じて加熱された水の全てが連絡路(50)を通じて追い焚き流路(40)に流れ込む場合における給湯流路(20)側の吸熱量を求める。そして当該求めた吸熱量と実際の吸熱量とを比較することで注湯単独使用中か注湯と給湯との同時使用中かを判別する。
【0029】
また、分配比は次のようにして求める。注湯単独で使用している際におけるバーナー(12)からの供給熱量と、給湯流路(20)側での実際の吸熱量と、追い焚き流路(40)を通じて熱交換器(11)で再加熱される前における実際の水温とをデータ記憶手段(62)に記憶してあるデータに適用することで、再加熱されて浴槽(30)に流れ込む水の流量を求める。この流量と給湯流路(20)を通じて熱交換器(11)を経由する水の総流量とから、実際の分配比を求める。これにより、設置後などに適宜、分配比を計測することができる。
【0030】
また、分配比を求める際に、切替弁(51)を一旦閉じ、そのとき給湯流路(20)側に通水があるか否かを基にして、注湯単独使用の状態を形成できるか否かを判別する。これにより分配比を的確に調べることができる。
【0031】
さらに、同時使用判別手段(61)が注湯単独使用の状態にあると判別した際に、その時点における実際の分配比を求め、当該実際の分配比の値が所定の許容値を越えたとき、あるいは前回求めた分配比と今回求めた分配比との変動量が許容値を越えたとき、同時使用判別手段(61)が注湯単独使用か否かを判別する際に用いる分配比の値を最新の値に更新する。
【0032】
浴槽(30)からの戻り流路には、通常、ゴミ取り用のフィルタを設けてあるので、ゴミの付着量が増加すると次第に分配比が変動する。またフィルタを掃除すると分配比が一気に変化する。そこで、分配比の変化量が許容値を越えた際に、同時使用か否かの判定のための演算に用いる分配比の値を校正することで、フィルタ等の目詰まりにかかわらず、同時使用か否かを的確に判別することができる。
【0033】
【発明の実施の形態】
以下、図面に基づき本発明の一実施の形態を説明する。
各図は本発明の一実施の形態を示している。
図1に示すように、本実施の形態にかかる1缶2水路型給湯器10は、給水を加熱するための給湯流路20と、浴槽30内の湯を追い焚きするための追い焚き流路40の双方が通る熱交換器11と、当該熱交換器11を加熱するためのバーナー12とを備えている。当該バーナー12には、燃焼ガスの供給路であるガス供給管13が接続されており、ガス供給管13の途中には、燃焼ガスの供給量を調整するためのガス量調整弁14(比例弁)が取り付けられている。
【0034】
給湯流路20は、熱交換器11のフィンプレートから受熱する配管部分である給湯系受熱管21と、給湯系受熱管21の入口部に通じ、給水の流れ込み側となる給水管22と、給湯系受熱管21の出口部から延びる給湯管23とから構成されている。給水管22には、流入する給水の温度(Tin)を検知するための入水サーミスタ24と、通水量(Q)を検知するための流量センサー25が設けられている。
【0035】
また、給湯系受熱管21のうち、熱交換器11の外部で折り返すUベント部には、当該部分における水温(Tz1)を検知する水管サーミスタ26が設けてある。給湯系受熱管21の出口部近傍には、給湯系受熱管21で加熱された後の水温(Tout)を検知する熱交サーミスタ27が配置されている。
【0036】
給湯管23のうち熱交サーミスタ27よりも下流側の箇所と給水管22のうち流量センサー25より上流側の箇所との間は、熱交換器11を介さずに給水を給湯管23へ送り込むためのバイパス通路28によって接続されている。また、当該バイパス通路28の途中には、熱交換器11を迂回させる給水の流量を調整するための流量制御弁28aが設けられている。
【0037】
給湯管23には、バイパス通路28との接続位置よりも下流側の箇所に、熱交換器11で加熱された湯とバイパス通路28を通じて熱交換器11を迂回した給水とがミキシングされた後の水温(Tmix)を検知するための出湯サーミスタ29が配置されている。
【0038】
追い焚き流路40は、熱交換器11のフィンプレートから受熱する配管部分である追い焚き系受熱管41と、追い焚き系受熱管41の一端部(追い焚き循環時における入口側)と浴槽30との間を接続する追い焚き戻り管42と、追い焚き系受熱管41の他端部と浴槽30との間を接続する追い焚き往き管43とから構成されている。追い焚き戻り管42の途中には、浴槽30内の湯を追い焚き系受熱管41に向けて送る循環ポンプ44が設けられている。
【0039】
追い焚き戻り管42のうち循環ポンプ44よりも追い焚き系受熱管41側の箇所と給湯管23のうち出湯サーミスタ29よりも下流側の箇所との間は、給湯管23内の水を追い焚き流路40に送り込むための連絡路50によって接続されている。また、連絡路50の途中には、給湯管23からの水を追い焚き戻り管42に流すか否かを切り替えるための切替弁51が設けられている。
【0040】
1缶2水路型給湯器10は、給湯動作、注湯動作、追い焚き動作など各種の動作を制御するための制御部60を備えている。制御部60には、ガス量調整弁14、入水サーミスタ24、流量センサー25、水管サーミスタ26、熱交サーミスタ27、流量制御弁28a、出湯サーミスタ29、循環ポンプ44、切替弁51等の各種の制御部品やセンサ類が電気的に接続されている。
【0041】
ここでは、制御部60のうち注湯と給湯とが同時使用されているか否かを判別するための回路部分のみを示してある。制御部60は、同時使用判別部61と、データ記憶部62と、分配比記憶部63と、切替弁制御部64と、分配比履歴記憶部65と、分配比更新部66とを備えている。同時使用判別部61は、注湯動作と給湯動作とが同時に行われているか否かを判別する回路部分であり、実吸熱量取得部67と演算比較部68とから構成されている。
【0042】
分配比記憶部63は、給湯管23から連絡路50を通じて追い焚き戻り管42に流れ込んだ湯のうち追い焚き系受熱管41を通り熱交換器11で再加熱されて浴槽30に向かうものの流量(再加熱流量…Q2)と、循環ポンプ44の存在する側の配管を通り熱交換器11で再加熱されることなく浴槽30に流れ込むものの流量(Q1)との比である分配比を記憶する回路部分である。
【0043】
データ記憶部62は、バーナー12からの供給熱量(G)と給湯流路20側での吸熱量(G1)と給湯流路20を通じて加熱された後であって追い焚き系受熱管41を通じて熱交換器11で再加熱される前の水の温度である再加熱前温度(Tpre)と再加熱流量(Q2)とから成る4つのパラメータの関係を表したデータを予め求めて記憶している回路部分である。
【0044】
同時使用判別部61の有する実吸熱量取得部67は、入水サーミスタ24の検知する入水温度(Tin)と、熱交サーミスタ27の検知する出湯温度(Tout)と、流量センサー25の検知する流量(Q)とから給湯流路20側での吸熱量(G1)を演算で求める回路部分である。なお、ここでは、流量制御弁28aは閉じた状態にあるとし、熱交サーミスタ27と出湯サーミスタ29はそれらの検知する温度(Tout、Tmix)が同一であるものとする。
【0045】
演算比較部68は、出湯サーミスタ29の検知する温度(Tmix)と、バーナー12からの供給熱量(G)と、実吸熱量取得部67の求めた給湯流路20側での吸熱量(G1)とを基にして、追い焚き系受熱管41で再加熱されている水の実際の流量(実再加熱流量…Q2j)をデータ記憶部62の記憶しているデータを参照して求める機能を備えている。
【0046】
また演算比較部68は、流量センサー25の検知した流量(Q)とデータ記憶部62の記憶している分配比とから、注湯単独使用であると仮定した場合に追い焚き系受熱管41を流れる水の流量である想定再加熱流量(Q2c)を求める機能を有している。そして演算比較部68は、先に求めた実再加熱流量(Q2j)と想定再加熱流量(Q2c)とを比較することによって、注湯単独での使用中であるか注湯と給湯との同時使用中であるかを判定する機能を備えている。
【0047】
切替弁制御部64は、切替弁51の開閉を制御する回路部分であり、同時使用判別部61によって注湯単独での使用中に給湯動作が開始されたことが検知されたとき、切替弁51を閉じるよう機能する。分配比履歴記憶部65は、同時使用判別部61が注湯単独使用中であると判定した際における実際の分配比を求めてその履歴を記憶する回路部分である。
【0048】
分配比更新部66は、分配比履歴記憶部65の記憶している過去の分配比と最新の分配比との差が一定以上になったとき、あるいは最新の分配比と前回計測した分配比との差が所定値以上あるとき、分配比記憶部63の記憶している分配比を最新の分配比に更新する機能を果たす回路部分である。
【0049】
なお、制御部60は、実際には、CPU(中央処理装置)とROM(リード・オンリ・メモリ)とRAM(ランダム・アクセス・メモリ)とを主要部とする回路によって構成されている。
【0050】
図2は、データ記憶部62に記憶される4つのパラメータの相互関係を求めるためのグラフを表している。縦軸は、熱量としての号数を、横軸は、給湯設定温度、すなわち、熱交サーミスタ27の検知する出湯温度(Tout)を示している。この図は、バーナー12からの供給熱量(G)が18号の場合を示したものであり、残る3つのパラメータ、すなわち給湯流路20側での吸熱量(G1)と、再加熱流量(Q2)と再加熱される前の温度(Tpre)と、さらに給湯流路(20)側で湯温(設定温度…Tout)との相互関係を示している。
【0051】
図中、右下がりに傾斜した6つの直線71a〜71fは、それぞれ再加熱流量(Q2)と再加熱の前の水温である再加熱前温度(Tpre)の2つの要因の組み合わせに対応するものである。
【0052】
直線71aは、再加熱流量(Q2)が毎分4リットルで、再加熱前の水温(再加熱前温度…Tpre)が40℃の場合に対応する。また直線71bは、再加熱流量が5リットル/分で再加熱前温度が40℃の場合に、直線71cは、再加熱前流量が6リットル/分で再加熱前温度が40℃の場合にそれぞれ対応している。
【0053】
直線71d〜直線71fは、再加熱前温度がともに18℃であり、直線71dは再加熱前流量が4リットル/分の場合に、直線71eは再加熱前流量が5リットル/分の場合に、直線71fは再加熱前流量が6リットル/分の場合にそれぞれ対応するものである。
【0054】
図2に示すデータは、実験等によって経験的に求めたものである。また、図2はあくまでも例示であり、実際には、再加熱流量(Q2)と再加熱前温度(Tpre)との種々の組み合わせに対応した多数の直線が描かれる。また図2はバーナー12からの供給号数(G)が18号である場合を示しており、図2と同様のグラフは、供給号数(G)の値に応じて各種用意される。
【0055】
注湯動作を行う際には、給湯流路20で加熱された湯が追い焚き系受熱管41に流れ込むので、図2のグラフにおける給湯設定温度(Tout)と再加熱前温度(Tpre)とは同一の温度になる。したがって、給湯設定温度が40℃の場合には、図2において再加熱前温度が40℃の直線のうちのいずれかを参照することになる。なお、この場合、バーナー12からの供給熱量(G)と、給湯流路20側での吸熱量(G1)と、再加熱前の水温(Tpre)と、再加熱流量(Q2)とから成る4つのパラメータの相互関係は、熱交換器11の形状等が定まれば一義的に定まる。
【0056】
たとえば、バーナー12からの供給熱量が18号で、再加熱前温度(Tpre、Tout)が40℃で、再加熱流量(Q2)が6リットル/分の場合には、給湯流路20側での吸熱量(号数)は、図2の交点73から一義的に求まることになる。逆に、バーナー12からの供給熱量(G)と、給湯流路20側での吸熱量(号数…G1)と、再加熱前温度(Tpre、Tout)とが求まれば、図2から再加熱流量(Q2)を一義的に求めることができる。
【0057】
次に作用を説明する。
図3は、制御部60の行う動作の流れを示したものである。図示しない風呂リモコン等から注湯指示を受けると、制御部60は、バーナー12を燃焼させるとともに切替弁51を開き、注湯動作を開始させる(ステップS101)。制御部60は、熱交サーミスタ27の検知する出湯温度(Tout)が安定するのを待ってから(ステップS102;Y)、注湯と給湯とが同時使用中か否かの判別を開始する。
【0058】
すなわち、入水サーミスタ24の検知する入水温度(Tin)と、熱交サーミスタ27の検知する出湯温度(Tout)と、流量センサー25の検知する流量(Q)とから、次式に従って給湯流路20側での吸熱量(G1)を求める(ステップS103)。
G1=(Tout−Tin)×Q (1)
次に、ガス量調整弁14に与えている比例弁電流の値からバーナー12による供給熱量(G)を号数として求める(ステップS104)。なお、比例弁電流の値と供給熱量(G)との対応関係は予めROMに記憶されている。
【0059】
次に、このようにして求めた供給熱量(G)と給湯流路20側での吸熱量(G1)と熱交サーミスタ27の検知する出湯温度(Tout…言い換えると再加熱前温度)とを適用してデータ記憶部62の記憶しているデータから、追い焚き系受熱管41を通じて再加熱されている水の流量(実再加熱流量…Q2j)を求める(ステップS105)。たとえば、供給号数(G)が18号で、給湯流路20側での吸熱量(G1)が15.8号で、再加熱前温度(Tout、Tpre)が40℃の場合には、図2に示したグラフから実再加熱流量(Q2j)として6リットル/分を得る。
【0060】
さらに、分配比記憶部63に記憶してある分配比と、流量センサー25の検知する総流量(Q)とから、注湯単独使用中であると仮定した場合における再加熱流量(想定再加熱流量…Q2c)を求める(ステップS106)。そして、実再加熱流量(Q2j)と想定再加熱流量(Q2c)とを比較し、これらの差が予め定めた許容誤差範囲内にあるか否かにより、注湯単独での使用中か注湯と給湯との同時使用中であるかを判別する(ステップS107)。
【0061】
実再加熱流量(Q2j)と想定再加熱流量(Q2c)との差が許容誤差範囲を越える場合には、注湯と給湯とが同時使用されているものと判別し(ステップS107;N)、切替弁制御部64によって切替弁51を閉じ、注湯動作を一時的に停止する(ステップS108)。
【0062】
実再加熱流量(Q2j)と想定再加熱流量(Q2c)との差が許容誤差範囲内にあるときは注湯単独での使用中であると判別し(ステップS107;Y)、注湯動作が継続している間(ステップS109;N)、ステップS103に戻り、同時使用中か否かの判別動作を繰り返し行う。
【0063】
なお、注湯動作の終了は、注湯した湯の量によって判別される。また、注湯と給湯とが同時使用中であると判別して、注湯動作を一時停止したときは、給湯動作が終了した後、すなわち、流量センサー25によって通水が検知されなくなってから、注湯動作を再開するようになっている。
【0064】
上述の動作では、実再加熱流量(Q2j)と想定再加熱流量(Q2c)との差が許容誤差範囲内にあるか否かによって、注湯と給湯とが同時使用中であるか否かを判別するようにしたが、注湯単独使用中であると仮定した場合における給湯流路20での吸熱量を、データ記憶部62を参照して求め、これと給湯流路20での実際の吸熱量とを比較することで、同時使用中か否かを判別するようにしてもよい。
【0065】
すなわち、入水温度(Tin)と出湯温度(Tout)と流量センサー25の検知する流量(Q)とから給湯流路20側での実際の吸熱量(G1)を求める。そして給湯流路20を通じて加熱された水の全てが連絡路50を通じて追い焚き流路40に流れ込む場合に熱交換器11で再加熱されて浴槽30に流れ込む水の流量(想定再加熱流量…Q2c)を、分配比記憶部63に予め記憶してある分配比と流量センサー25の検知する流量(Q)とから求める。
【0066】
こうして求めた想定再加熱流量と出湯温度(Tout…再加熱前温度)とバーナー12からの供給熱量(G)とを適用して、データ記憶部62の記憶しているデータから、注湯単独使用中であると仮定した場合における給湯流路20側での吸熱量(想定吸熱量)を求める。そしてデータ記憶部62から求めた給湯流路20側ので想定吸熱量と実際の給湯流路20での吸熱量とを比較することで注湯単独使用中か否かを判別するようにしてもよい。
【0067】
このほか、給湯流路20側での実際の吸熱量(G1)と、注湯単独動作中であると仮定した場合における再加熱流量(想定再加熱流量…Q2c)と実測された再加熱前温度(Tout)とをデータ記憶部62に適用して、注湯単独使用中であると仮定した場合における供給熱量を求め、これと実際の供給熱量とを比較することで同時使用中か否かを判別するようにしてもよい。
【0068】
次に、分配比の計測およびその更新について説明する。
分配比は、1缶2水路型給湯器10を設置した際の試運転時に計測する。また浴槽30内の水を追い焚き流路40へ取り込む入口部に取り付けてあるフィルターが目詰まりした際や、目詰まりの原因になっているゴミを掃除した際に変動するので、注湯と給湯とが同時使用されているか否かを的確に判別できるように、適宜のタイミングで分配比を計測し直し更新するようになっている。
【0069】
分配比の計測は、以下のようにして行う。まず、注湯単独での動作が保証される状態にあるか否かを判定する。たとえば、切替弁51を閉じた際に、通水があるか否かによって給湯動作が行われているか否かを確認することで、注湯単独使用可能な状況にあるか否かを確認する。
【0070】
注湯単独使用が可能であることを確認した後、注湯動作を開始し、その際の、入水温度(Tin)、出湯温度(Tout)、流量センサー25の検知する流量(Q)とから、給湯流路20側での実際の吸熱量を求める。さらに、バーナー12からの供給熱量(G)を求め、これと給湯流路20側での実際の吸熱量(G1)と熱交サーミスタ27の検知する再加熱前温度(Tout)とを適用して、データ記憶部62の記憶しているデータから、追い焚き系受熱管41を通じて再加熱されている湯の流量である実再加熱流量(Q2j)を求める。そして、実再加熱流量(Q2j)と流量センサー25の検知する総流量(Q)とから、分配比を求める。
【0071】
フィルターの目詰まりやその除去による分配比の変動は以下のようにして求める。同時使用判別部61は、注湯単独使用状態であると判別した際に、上述の方法によってその時点における実際の分配比を求め、その履歴を分配比履歴記憶部65に順次記憶する。
【0072】
フィルターが目詰まりしていない初期状態から、ゴミが付着して圧損が除々に増加すると、実測される分配比が次第に変化する。分配比更新部66は、目詰まりを起こしていない初期状態における分配比と最新の分配比との差が基準値以上になったか否かを判断し、基準値を越える差が発生したとき、分配比記憶部63の記憶内容を最新の分配比に書き換えて更新する。
【0073】
一方、フィルターに付着しているゴミが掃除され除去されると、掃除前の分配比に比べて、掃除後の分配比は一時に大きく変化する。そこで、分配比履歴記憶部65に記憶してある前回の分配比と最新の分配比との差が一定以上あるときは、フィルターの目詰まりが掃除されたものと判別し、分配比記憶部63の記憶内容を最新の分配比で書き換える。
【0074】
以上説明した実施の形態では、データ記憶部62や分配比記憶部63に記憶しているデータを基にして、注湯と給湯とが同時使用されているか否かを判別したが、このほか、給湯流路20側と追い焚き流路40側との吸熱比が変化するか否かによって、注湯動作中に、給湯動作が開始されたことを判別するようにしてもよい。
【0075】
すなわち、浴槽30への注湯動作を行っているとき、バーナー12からの供給熱量(G)のうち追い焚き流路40側で吸熱される熱量(G2)と給湯流路20側で吸熱される熱量(G1)との比である実吸熱比を求め、これが注湯単独使用中に変化したことをもって注湯動作と並行して給湯動作が開始されたものと判別する。
【0076】
注湯単独での使用中に、水栓への給湯が開始されると、給湯流路20側で加熱された湯の一部が水栓への出湯に費やされるので、バーナー12からの供給熱量のうち追い焚き流路40側での吸熱量と給湯流路20側での吸熱量との比率が変動する。したがって、実吸熱比が変化したことを捉えることによって、注湯単独での使用中に給湯動作が開始されたことを検知することができる。なお、この場合は吸熱比の変動を基に判別するので、注湯動作と給湯動作とが同時に開始された場合には、同時使用か否かを区別することはできない。
【0077】
【発明の効果】
本発明にかかる1缶2水路型給湯器および注湯給湯同時使用判別方法によれば、給湯流路側と追い焚き流路側との吸熱比等を基にして、注湯と給湯とが同時使用されているか否かを判別するので、同時使用を判別するために専用の流量センサを設ける必要がなく、装置構造の簡略化と価格の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る1缶2水路型給湯器の構成の概要を示す説明図である。
【図2】データ記憶部に記憶されている4つのパラメータの相互関係の一部をグラフとして表した説明図である。
【図3】本発明の一実施の形態に係る1缶2水路型給湯器が注湯と給湯とが同時使用中であるか否かを判別する際の動作の流れを示す流れ図である。
【符号の説明】
10…1缶2水路型給湯器
11…熱交換器
12…バーナー
13…ガス供給管
14…ガス量調整弁
20…給湯流路
21…給湯系受熱管
22…給水管
23…給湯管
24…入水サーミスタ
25…流量センサー
27…熱交サーミスタ
29…出湯サーミスタ
30…浴槽
40…追い焚き流路
41…追い焚き系受熱管
42…追い焚き戻り管
43…追い焚き往き管
50…連絡路
51…切替弁
60…制御部
61…同時使用判別部
62…データ記憶部
63…分配比記憶部
64…切替弁制御部
65…分配比履歴記憶部
66…分配比更新部
67…実吸熱量取得部
68…演算比較部
[0001]
BACKGROUND OF THE INVENTION
The present invention is a one-can two-water channel type water heater that transmits heat from a burner to both water in a reheating channel through which water in a bathtub circulates and water in a hot water flow channel through which the water is supplied with one heat exchanger. The present invention also relates to a method for determining the simultaneous use of pouring hot water and hot water.
[0002]
[Prior art]
One can and two water channel type hot water heaters that have been used in the past perform a hot water pouring operation to a bathtub by pouring hot water heated through a hot water flow channel through a communication channel to the reflow channel side. In such a single can / two water channel type water heater, when the pouring operation to the bathtub and the hot water supply operation are performed in parallel, the switching valve provided in the connection path is closed to interrupt the pouring operation, The hot water supply side is given priority.
[0003]
Whether or not the pouring operation and the hot water supply operation are performed at the same time has been detected using a dedicated flow rate sensor provided at a location downstream of the connection location of the communication path in the hot water supply channel.
[0004]
[Problems to be solved by the invention]
However, in such a conventional technique, a dedicated flow sensor is separately provided to detect whether the pouring operation and the hot water supply operation are performed at the same time, so that the structure is complicated accordingly. There was a problem that the price of the equipment soared.
[0005]
The present invention has been made paying attention to such problems of the conventional technology, and it is possible to determine whether or not pouring and hot water are used simultaneously without providing a dedicated flow sensor. An object of the present invention is to provide a single can / two water channel type hot water heater and a method for determining simultaneous use of hot water and hot water.
[0007]
[Means for Solving the Problems]
The gist of the present invention for achieving the object lies in the inventions of the following items.
[ 1 The heat from the burner (12) is supplied to both the water in the reheating channel (40) through which water in the bathtub (30) circulates and the water in the hot water supply channel (20) through which the water is supplied. (1) is a one-can / two-channel type hot-water supply apparatus that transmits the hot water in the hot-water supply channel (20) after passing through the heat exchanger (11) toward the reheating channel (40). And a switching valve (2) for switching whether or not hot water in the hot water supply flow path (20) flows to the reheating flow path (40) side is provided in the middle of the communication path (50). 51), and water flowing into the reheating channel (40) through the communication channel (50) when performing the pouring operation to the bathtub (30) is performed through the reheating channel (40). Divided into two types: one that passes through the heat exchanger (11) again and one that does not pass through the heat exchanger (11) again In those flowing into the tub (30),
The incoming water temperature detecting means (24) for detecting the water temperature in the hot water supply passage (20) before passing through the heat exchanger (11), and the hot water supply passage after passing through the heat exchanger (11). (20) Hot water temperature detection means (27, 29) for detecting the water temperature in the water flow rate detection means (25) for detecting the flow rate of water passing through the heat exchanger (11) through the hot water supply channel (20). A distribution ratio storage means (63) for storing a distribution ratio when water flowing into the reheating channel (40) from the hot water supply channel (20) through the communication channel (50) is divided into two hands, and the burner The amount of heat supplied from (12), the amount of heat absorbed on the hot water supply flow path (20) side, and after being heated through the hot water supply flow path (20) and through the reheating flow path (40), the heat exchanger ( The temperature before reheating which is the temperature of water before being reheated in 11) And preliminarily obtained and stored data representing the relationship of the four parameters consisting of the flow rate of water re-heated in the heat exchanger (11) through the reheating channel (40) and flowing into the bathtub (30) Data storage means (62), and simultaneous use determining means (61) for determining whether the pouring alone is being used or whether the pouring and hot water are being used simultaneously,
The simultaneous use determining means (61) includes a temperature detected by the incoming water temperature detecting means (24), a temperature detected by the tapping temperature detecting means (27, 29), and a flow rate detected by the flow rate detecting means (25). The actual heat absorption amount on the hot water supply flow path (20) side is obtained from the above, the heat supply amount from the burner (12), the actual heat absorption amount on the hot water supply flow path (20) side, and the hot water temperature detection means ( 27, 29) and the temperature before reheating and the water supplied through the hot water supply channel (20) all flow into the reheating channel (40) through the communication channel (50) and store the distribution ratio. The relationship with the flow rate of water re-heated by the heat exchanger (11) and flowing into the bathtub (30) when divided into two according to the distribution ratio stored in the means (63) is the data storage means ( 62) 1 can 2 water channel type water heater characterized by discriminating whether it is in use with pouring alone or simultaneously with pouring and hot water supply based on whether or not it substantially matches the relationship of the four parameters 10).
[0008]
[ 2 The heat from the burner (12) is supplied to both the water in the reheating channel (40) through which water in the bathtub (30) circulates and the water in the hot water supply channel (20) through which the water is supplied. (1) is a one-can / two-channel type hot-water supply apparatus that transmits the hot water in the hot-water supply channel (20) after passing through the heat exchanger (11) toward the reheating channel (40). And a switching valve (2) for switching whether or not hot water in the hot water supply flow path (20) flows to the reheating flow path (40) side is provided in the middle of the communication path (50). 51), and water flowing into the reheating channel (40) through the communication channel (50) when performing the pouring operation to the bathtub (30) is performed through the reheating channel (40). Divided into two types: one that passes through the heat exchanger (11) again and one that does not pass through the heat exchanger (11) again In those flowing into the tub (30),
The incoming water temperature detecting means (24) for detecting the water temperature in the hot water supply passage (20) before passing through the heat exchanger (11), and the hot water supply passage after passing through the heat exchanger (11). (20) Hot water temperature detection means (27, 29) for detecting the water temperature in the water flow rate detection means (25) for detecting the flow rate of water passing through the heat exchanger (11) through the hot water supply channel (20). A distribution ratio storage means (63) for storing a distribution ratio when water flowing into the reheating channel (40) from the hot water supply channel (20) through the communication channel (50) is divided into two hands, and the burner The amount of heat supplied from (12), the amount of heat absorbed on the hot water supply flow path (20) side, and after being heated through the hot water supply flow path (20) and through the reheating flow path (40), the heat exchanger ( The temperature before reheating which is the temperature of water before being reheated in 11) And preliminarily obtained and stored data representing the relationship of the four parameters consisting of the flow rate of water re-heated in the heat exchanger (11) through the reheating channel (40) and flowing into the bathtub (30) Data storage means (62), and simultaneous use determining means (61) for determining whether the pouring alone is being used or whether the pouring and hot water are being used simultaneously,
The simultaneous use determining means (61) includes a temperature detected by the incoming water temperature detecting means (24), a temperature detected by the tapping temperature detecting means (27, 29), and a flow rate detected by the flow rate detecting means (25). The actual endothermic amount at the hot water supply flow path (20) side is obtained from the above, the endothermic temperature detected by the tapping temperature detecting means (27, 29) and the supply from the burner (12). From the data stored in the data storage means (62), the actual reheating flow rate, which is the flow rate of water reheated in the heat exchanger (11) through the reheating channel (40) based on the amount of heat, is determined. In addition, when all the water heated through the hot water supply channel (20) flows into the reheating channel (40) through the communication channel (50), the water is reheated by the heat exchanger (11) and the bath Flow rate of water flowing into (30) By obtaining from the flow rate detected by the flow rate detection means (25) and the distribution ratio stored in the distribution ratio storage means (63), and comparing the flow rate obtained from the distribution ratio with the actual reheating flow rate. A one-can / two-channel water heater (10) characterized in that it is discriminated whether the pouring water is being used alone or the pouring and hot water are being used simultaneously.
[0009]
[ 3 The amount of heat supplied from the burner (12) and the actual amount of heat absorbed on the side of the hot water supply channel (20) and after being heated through the hot water supply channel (20) Water that is reheated in the heat exchanger (11) and flows into the bathtub (30) based on the actual water temperature before being reheated in the heat exchanger (11) through the reheating channel (40). Is obtained from the data stored in the data storage means (62), and the distribution ratio is obtained from this and the flow rate detected by the flow rate detection means (25), and is obtained from the distribution ratio storage means (63 ) To memorize [ 1 ] Or [ 2 ] 1 can 2 water channel type water heater (10) of description.
[0010]
[ 4 When the distribution ratio is obtained, the switching valve (51) is once closed, and at that time, whether or not the state of use of pouring alone can be formed based on whether or not there is water flow in the hot water supply channel (20). It is characterized by determining whether or not [ 3 ] 1 can 2 water channel type water heater (10) of description.
[0011]
[ 5 The actual distribution ratio when the simultaneous use determining means (61) determines that the pouring alone is being used is obtained, and the actual distribution ratio value or its fluctuation amount exceeds a predetermined allowable value. The simultaneous use determining means (61) updates the distribution ratio value used when determining whether or not the pouring alone is in use to the latest distribution ratio [ 1 ], [ 2 ], [ 3 ] Or [ 4 ] 1 can 2 water channel type water heater (10) of description.
[0012]
[ 6 The heat from the burner (12) is supplied to both the water in the reheating channel (40) through which water in the bathtub (30) circulates and the water in the hot water supply channel (20) through which the water is supplied. (1) is a one-can / two-channel type hot-water supply apparatus that transmits the hot water in the hot-water supply channel (20) after passing through the heat exchanger (11) toward the reheating channel (40). And a switching valve (2) for switching whether or not hot water in the hot water supply flow path (20) flows to the reheating flow path (40) side is provided in the middle of the communication path (50). 51), and water flowing into the reheating channel (40) through the communication channel (50) when performing the pouring operation to the bathtub (30) is performed through the reheating channel (40). Divided into two types: one that passes through the heat exchanger (11) again and one that does not pass through the heat exchanger (11) again Which flows into the tub (30), in pouring hot water concurrent determination method of determining whether done hot water supply operation at the same time of the note to or pouring operation and faucet is performing hot water operation only alone,
The distribution ratio when the water flowing into the reheating channel (40) from the hot water supply channel (20) through the communication channel (50) is divided into two hands is obtained and stored in advance.
The amount of heat supplied from the burner (12), the amount of heat absorbed on the hot water supply channel (20) side, and the heat exchange through the reheating channel (40) after being heated through the hot water supply channel (20). 4 consisting of the temperature of water before being reheated in the vessel (11) and the flow rate of water reheated in the heat exchanger (11) and flowing into the bathtub (30) through the reheating channel (40). Preliminarily obtain and store data representing the relationship between two parameters,
Detecting the water temperature in the hot water supply channel (20) before passing through the heat exchanger (11),
Detecting the water temperature in the hot water supply channel (20) after passing through the heat exchanger (11),
Detecting the flow rate of water passing through the heat exchanger (11) through the hot water supply channel (20);
The water temperature in the hot water supply channel (20) before passing through the heat exchanger (11), the water temperature in the hot water supply channel (20) after passing through the heat exchanger (11), and the hot water supply channel. The actual heat absorption amount on the hot water supply flow path (20) side is determined from the flow rate of water passing through the heat exchanger (11) through (20),
The amount of heat supplied from the burner (12), the actual amount of heat absorbed on the hot water supply passage (20) side, the water temperature in the hot water supply passage (20) after passing through the heat exchanger (11), and the hot water supply When all of the feed water heated through the flow path (20) flows into the reheating flow path (40) through the communication path (50) and is divided into two according to the distribution ratio, the water is regenerated in the heat exchanger (11). Whether the hot water is being used alone or not based on whether or not the relationship between the flow rate of water that is heated and flows into the bathtub (30) substantially matches the relationship between the four parameters stored in advance. A method for determining the simultaneous use of hot water and hot water, wherein it is determined whether hot water and hot water are being used simultaneously.
[0013]
The present invention operates as follows.
This water heater supplies heat from the burner (12) to both the water in the reheating channel (40) through which water in the bathtub (30) circulates and the water in the hot water flow channel (20) through which the water is supplied. It is a 1-can 2-water-channel type water heater that is conveyed by one heat exchanger (11). Moreover, the hot water heated by the hot water supply flow path (20) side is connected by opening the switching valve (51) provided in the communication path (50) connecting the hot water supply flow path (20) and the reheating flow path (40). It has a function of pouring into the bathtub (30) by flowing to the reheating channel (40) side through the path (50).
[0014]
At least part or all of the water flowing into the reheating channel (40) through the communication channel (50) flows into the bathtub (30) again through the heat exchanger (11). That is, all the water that has flowed from the communication channel (50) into the reheating channel (40) is heated again through the heat exchanger (11) and then flows into the bathtub (30), or the communication channel (50 ), The water flowing into the reheating channel (40) is split into two, only one of which flows again through the heat exchanger (11) into the bathtub (30) and the other through the heat exchanger (11) again. It may flow into the bathtub (30) without going through.
[0015]
When the actual heat absorption ratio acquisition means (67) performs the pouring operation to the bathtub (30), the amount of heat absorbed by the reheating channel (40) side and the hot water supply in the amount of heat supplied from the burner (12) An actual endothermic ratio, which is a ratio to the amount of heat absorbed at the flow path (20) side, is obtained, and the simultaneous use determining means (61) performs the pouring operation when the actual endothermic ratio changes during use of the pouring alone. It is determined that the hot water supply operation has started in parallel.
[0016]
When hot water supply to the faucet is started during use of the pouring hot water alone, a part of the hot water heated in the hot water supply passage (20) is expended in the hot water supply to the faucet, 40) the flow rate of what is reheated in the heat exchanger (11) decreases. For this reason, the ratio of the heat absorption amount on the reheating channel (40) side and the heat absorption amount on the hot water supply channel (20) side of the heat supply amount from the burner (12) varies. Therefore, by detecting that the actual heat absorption ratio has changed, it is possible to detect that the hot water supply operation has been started during use of the pouring alone.
[0017]
The heat absorption ratio is defined as the amount of heat supplied from the burner (12), the flow rate on the hot water supply channel (20) side, the incoming water temperature to the hot water supply channel (20), and the hot water temperature after being heated in the hot water supply channel (20). Therefore, it is not necessary to provide a dedicated flow sensor for detecting simultaneous use, and the apparatus price can be reduced.
[0018]
Also, instead of changing the endothermic ratio, compare the absolute value of the endothermic ratio when using the pouring alone and the actual endothermic ratio as shown below, so that either the pouring alone or the pouring and hot water can be used simultaneously. You can also determine if it is in use.
[0019]
That is, the distribution ratio when the water flowing from the hot water supply flow path (20) to the reheating flow path (40) through the communication path (50) is split into two is obtained in advance and stored in the distribution ratio storage means (63). Further, the amount of heat supplied from the burner (12), the amount of heat absorbed on the hot water supply channel (20) side, and the heat exchanger after being heated through the hot water supply channel (20) and through the reheating channel (40). The pre-reheating temperature, which is the temperature of the water before being reheated in (11), and the flow rate of water that is reheated in the heat exchanger (11) through the reheating channel (40) and flows into the bathtub (30) Are obtained in advance and stored in the data storage means (62).
[0020]
The incoming water temperature detecting means (24) detects the water temperature in the hot water supply channel (20) before passing through the heat exchanger (11), and the outgoing hot water temperature detecting means (27, 29) is the heat exchanger (11). The water temperature in the hot-water supply channel (20) after passing through is detected, and the flow rate detecting means (25) detects the flow rate of water passing through the heat exchanger (11) through the hot-water supply channel (20).
[0021]
The simultaneous use discriminating means (61) is based on the temperature detected by the incoming water temperature detecting means (24), the temperature detected by the hot water temperature detecting means (27, 29), and the flow rate detected by the flow rate detecting means (25). The actual endothermic amount on the (20) side is obtained. Further, the simultaneous use determining means (61) includes the amount of heat supplied from the burner (12), the actual heat absorption amount on the hot water supply flow path (20) side, and before reheating detected by the hot water temperature detecting means (27, 29). According to the distribution ratio stored in the distribution ratio storage means (63), all the water supplied through the hot water supply flow path (20) flows into the reheating channel (40) through the communication path (50). When separated, the relationship with the flow rate of water reheated by the heat exchanger (11) and flowing into the bathtub (30) is substantially the same as the relationship between these four parameters stored in the data storage means (62). Based on whether or not the pouring alone is being used or whether the pouring and hot water are being used simultaneously is determined.
[0022]
The relationship between the four parameters stored in the data storage means (62) is uniquely determined when the shape and the like of the heat exchanger (11) are determined, and can be obtained in advance by experiments or the like. Also, since the relationship between parameters is uniquely determined, for example, if the flow rate of the reheated and flowing into the bathtub (30) is determined assuming that the pouring is operating alone, and the remaining three parameters are measured. Whether or not the pouring is a single operation can be determined based on whether or not the correlation between these four parameters matches the data stored in advance.
[0023]
More specifically, the simultaneous use determining means (61) detects the temperature detected by the incoming water temperature detecting means (24), the temperature detected by the tapping temperature detecting means (27, 29), and the flow rate detecting means (25). The actual endothermic amount on the hot water supply channel (20) side is obtained from the flow rate. Based on the amount of heat absorbed, the temperature before reheating detected by the tapping temperature detection means (27, 29), and the amount of heat supplied from the burner (12), the reflow from the data stored in the data storage means (62). An actual reheating flow rate, which is a flow rate of water reheated in the heat exchanger (11) through the path (40), is obtained.
[0024]
Further, when all of the water heated through the hot water supply channel (20) flows into the reheating channel (40) through the communication channel (50), it is reheated by the heat exchanger (11) and flows into the bathtub (30). The flow rate of water is obtained from the flow rate detected by the flow rate detection means (25) and the distribution ratio stored in advance in the distribution ratio storage means (63), and the flow rate obtained from the distribution ratio and the actual reheating previously obtained. By comparing the flow rate, it is determined whether the pouring alone is being used or whether the pouring and hot water are being used simultaneously.
[0025]
Thus, while calculating | requiring the flow volume of what is reheated by the reheating flow path (40) side by calculation based on an actual endothermic ratio, from the distribution ratio calculated | required and memorize | stored beforehand and the total flow volume on the hot water supply side, By determining the flow rate of what is reheated when it is assumed that a single pouring operation is being performed, and comparing these flow rates, it is possible to determine whether or not the pouring is used alone.
[0026]
When determining whether the four parameters match, not only the flow rate of the reheated ones is compared, but, for example, the actual endothermic amount on the hot water supply flow path (20) side is in use with the pouring alone. It may be determined whether or not they are used at the same time depending on whether or not the heat absorption amount on the hot water supply flow path (20) side in the case where it is assumed.
[0027]
That is, the simultaneous use determining means (61) detects the temperature detected by the incoming water temperature detecting means (24), the temperature before reheating detected by the tapping temperature detecting means (27, 29), and the flow rate detected by the flow rate detecting means (25). The actual heat absorption amount on the hot water supply channel (20) side is obtained from the above. Furthermore, when all of the water heated through the hot water supply channel (20) flows into the reheating channel (40) through the communication channel (50), the water is reheated by the heat exchanger (11) and flows into the bathtub (30). Is obtained from the distribution ratio stored in advance in the distribution ratio storage means (63) and the flow rate detected by the flow rate detection means (25).
[0028]
Based on the flow rate thus obtained from the distribution ratio, the temperature detected by the hot water temperature detection means (27, 29), and the amount of heat supplied from the burner (12), the hot water flow path is determined from the data stored in the data storage means (62). The amount of heat absorbed on the hot water supply channel (20) side when all of the water heated through (20) flows into the reheating channel (40) through the communication channel (50) is obtained. Then, by comparing the obtained endothermic amount with the actual endothermic amount, it is determined whether the pouring alone is being used or the simultaneous use of pouring and hot water is being used.
[0029]
The distribution ratio is obtained as follows. In the heat exchanger (11) through the amount of heat supplied from the burner (12) when used alone, the actual amount of heat absorbed on the hot water supply channel (20) side, and the reheating channel (40) By applying the actual water temperature before reheating to the data stored in the data storage means (62), the flow rate of the water reheated and flowing into the bathtub (30) is obtained. The actual distribution ratio is obtained from this flow rate and the total flow rate of water passing through the heat exchanger (11) through the hot water supply channel (20). Thereby, a distribution ratio can be measured appropriately after installation or the like.
[0030]
In addition, when the distribution ratio is obtained, the switching valve (51) is once closed, and then whether or not the pouring alone can be formed based on whether or not there is water flow on the hot water supply channel (20) side. Determine whether or not. As a result, the distribution ratio can be accurately checked.
[0031]
Further, when it is determined that the simultaneous use determining means (61) is in a state where the pouring is used alone, an actual distribution ratio at that time is obtained, and the actual distribution ratio value exceeds a predetermined allowable value. Alternatively, when the fluctuation amount between the distribution ratio obtained last time and the distribution ratio obtained this time exceeds the allowable value, the value of the distribution ratio used when the simultaneous use determining means (61) determines whether or not the pouring is used alone. Is updated to the latest value.
[0032]
Since a filter for removing dust is usually provided in the return flow path from the bathtub (30), the distribution ratio gradually changes as the amount of attached dust increases. When the filter is cleaned, the distribution ratio changes at a stroke. Therefore, when the amount of change in the distribution ratio exceeds the allowable value, the distribution ratio value used in the calculation for determining whether or not to use at the same time is calibrated. It is possible to accurately determine whether or not.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Each figure shows an embodiment of the present invention.
As shown in FIG. 1, a single can / two water channel type water heater 10 according to the present embodiment includes a hot water supply channel 20 for heating the water supply, and a reheating channel for reheating the hot water in the bathtub 30. The heat exchanger 11 through which both 40 pass and the burner 12 for heating the heat exchanger 11 are provided. A gas supply pipe 13 that is a combustion gas supply path is connected to the burner 12, and a gas amount adjusting valve 14 (proportional valve) for adjusting the supply amount of the combustion gas is provided in the middle of the gas supply pipe 13. ) Is attached.
[0034]
The hot water supply flow path 20 leads to a hot water supply heat receiving pipe 21 that is a pipe portion that receives heat from the fin plate of the heat exchanger 11, an inlet portion of the hot water supply heat receiving pipe 21, and a hot water supply pipe 22 that serves as a flow-in side of hot water, and hot water supply The hot water supply pipe 23 extends from the outlet of the system heat receiving pipe 21. The water supply pipe 22 is provided with a water inlet thermistor 24 for detecting the temperature (Tin) of the incoming water and a flow rate sensor 25 for detecting the water flow rate (Q).
[0035]
Further, a water pipe thermistor 26 that detects a water temperature (Tz1) in the portion is provided in a U vent portion that is folded outside the heat exchanger 11 in the hot water supply heat receiving pipe 21. A heat exchange thermistor 27 that detects the water temperature (Tout) after being heated by the hot water supply heat receiving pipe 21 is disposed in the vicinity of the outlet of the hot water supply heat receiving pipe 21.
[0036]
In order to feed water into the hot water supply pipe 23 without passing through the heat exchanger 11 between the hot water supply pipe 23 at a position downstream of the heat exchange thermistor 27 and the hot water supply pipe 22 at a position upstream of the flow rate sensor 25. Are connected by a bypass passage 28. In addition, a flow rate control valve 28 a for adjusting the flow rate of the feed water that bypasses the heat exchanger 11 is provided in the middle of the bypass passage 28.
[0037]
In the hot water supply pipe 23, the hot water heated by the heat exchanger 11 and the water supply bypassing the heat exchanger 11 through the bypass passage 28 are mixed at a location downstream of the connection position with the bypass passage 28. A hot water thermistor 29 for detecting a water temperature (Tmix) is disposed.
[0038]
The reheating channel 40 includes a reheating system heat receiving pipe 41 that is a pipe portion that receives heat from the fin plate of the heat exchanger 11, one end of the reheating system heat receiving pipe 41 (inlet side during reheating circulation), and the bathtub 30. The recirculation return pipe 42 is connected to the other end of the reheating system heat receiving pipe 41, and the retreat pipe 43 is connected to the bathtub 30. A circulation pump 44 that sends hot water in the bathtub 30 toward the reheating system heat receiving pipe 41 is provided in the middle of the reheating return pipe 42.
[0039]
The water in the hot water supply pipe 23 is reclaimed between a part of the reheating return pipe 42 closer to the reheating system heat receiving pipe 41 than the circulation pump 44 and a part of the hot water supply pipe 23 downstream of the hot water thermistor 29. They are connected by a communication path 50 for feeding into the flow path 40. In addition, a switching valve 51 is provided in the middle of the communication path 50 to switch whether or not the water from the hot water supply pipe 23 is repelled and flowed to the return pipe 42.
[0040]
The single can / two water channel type water heater 10 includes a control unit 60 for controlling various operations such as a hot water supply operation, a pouring operation, and a chasing operation. The control unit 60 includes a gas amount adjusting valve 14, an incoming thermistor 24, a flow sensor 25, a water pipe thermistor 26, a heat exchange thermistor 27, Flow control valve 28a Various control parts and sensors such as the hot water thermistor 29, the circulation pump 44, and the switching valve 51 are electrically connected.
[0041]
Here, only the circuit part for discriminating whether or not the pouring and hot water supply are simultaneously used in the control unit 60 is shown. The control unit 60 includes a simultaneous use determination unit 61, a data storage unit 62, a distribution ratio storage unit 63, a switching valve control unit 64, a distribution ratio history storage unit 65, and a distribution ratio update unit 66. . The simultaneous use determination unit 61 is a circuit portion that determines whether or not the pouring operation and the hot water supply operation are performed simultaneously, and includes an actual heat absorption amount acquisition unit 67 and an operation comparison unit 68.
[0042]
The distribution ratio storage unit 63 is the flow rate of the hot water that has flowed from the hot water supply pipe 23 through the communication path 50 to the recirculation return pipe 42, is reheated by the heat exchanger 11 through the reheating system heat receiving pipe 41, and travels toward the bathtub 30. A circuit for storing a distribution ratio which is a ratio between the reheating flow rate (Q2) and the flow rate (Q1) of the reflow rate flowing through the piping on the side where the circulation pump 44 is present and flowing into the bathtub 30 without being reheated by the heat exchanger 11 Part.
[0043]
The data storage unit 62 exchanges heat through the reheating system heat receiving pipe 41 after being heated through the hot water supply passage 20 after being heated through the hot water supply passage 20 (G1), the heat absorption amount (G1) on the hot water supply passage 20 side. A circuit portion that preliminarily obtains and stores data representing the relationship between the four parameters consisting of the pre-reheating temperature (Tpre), which is the temperature of water before being reheated in the vessel 11, and the reheating flow rate (Q2). It is.
[0044]
The actual heat absorption amount acquisition unit 67 included in the simultaneous use determination unit 61 includes an incoming water temperature (Tin) detected by the incoming water thermistor 24, a tapping temperature (Tout) detected by the heat exchanger thermistor 27, and a flow rate detected by the flow sensor 25 ( Q) and a circuit portion for obtaining an endothermic amount (G1) on the hot water supply flow path 20 side by calculation. Here, it is assumed that the flow control valve 28a is in a closed state, and the heat exchange thermistor 27 and the hot water thermistor 29 have the same detected temperatures (Tout, Tmix).
[0045]
The operation comparison unit 68 detects the temperature (Tmix) detected by the tapping thermistor 29, the amount of heat supplied from the burner 12 (G), and the amount of heat absorbed on the side of the hot water supply channel 20 determined by the actual heat absorption amount acquisition unit 67 (G1). Based on the above, the actual flow rate of water reheated in the reheating system heat receiving pipe 41 (actual reheat flow rate... Q2j) is obtained by referring to the data stored in the data storage unit 62. ing.
[0046]
Further, the calculation comparison unit 68 sets the reheating system heat receiving pipe 41 when it is assumed that the pouring is used alone from the flow rate (Q) detected by the flow rate sensor 25 and the distribution ratio stored in the data storage unit 62. It has a function of obtaining an assumed reheating flow rate (Q2c) that is a flow rate of flowing water. Then, the operation comparison unit 68 compares the actual reheating flow rate (Q2j) obtained previously with the assumed reheating flow rate (Q2c) to determine whether the pouring alone is in use or whether the pouring and hot water supply are performed simultaneously. It has a function to determine whether it is in use.
[0047]
The switching valve control unit 64 is a circuit part that controls opening and closing of the switching valve 51, and when the simultaneous use determination unit 61 detects that a hot water supply operation is started during use of pouring alone, the switching valve 51. Function to close. The distribution ratio history storage unit 65 is a circuit part that obtains an actual distribution ratio and stores the history when the simultaneous use determination unit 61 determines that pouring alone is being used.
[0048]
The distribution ratio update unit 66, when the difference between the past distribution ratio stored in the distribution ratio history storage unit 65 and the latest distribution ratio exceeds a certain value, or the latest distribution ratio and the previously measured distribution ratio This is a circuit portion that performs a function of updating the distribution ratio stored in the distribution ratio storage unit 63 to the latest distribution ratio when the difference between them is equal to or greater than a predetermined value.
[0049]
The control unit 60 is actually composed of a circuit having a CPU (central processing unit), a ROM (read only memory), and a RAM (random access memory) as main parts.
[0050]
FIG. 2 shows a graph for determining the correlation between the four parameters stored in the data storage unit 62. The vertical axis represents the number as the amount of heat, and the horizontal axis represents the hot water supply set temperature, that is, the hot water temperature (Tout) detected by the heat exchanger thermistor 27. This figure shows the case where the supply heat amount (G) from the burner 12 is No. 18, the remaining three parameters, namely, the heat absorption amount (G1) on the hot water supply channel 20 side, and the reheating flow rate (Q2). ), The temperature before reheating (Tpre), and the hot water temperature (set temperature... Tout) on the hot water supply channel (20) side.
[0051]
In the figure, six straight lines 71a to 71f inclined downward to the right correspond to combinations of two factors of the reheating flow rate (Q2) and the temperature before reheating (Tpre) which is the water temperature before reheating. is there.
[0052]
The straight line 71a corresponds to the case where the reheating flow rate (Q2) is 4 liters per minute and the water temperature before reheating (temperature before reheating... Tpre) is 40.degree. A straight line 71b is obtained when the reheating flow rate is 5 liters / minute and the temperature before reheating is 40 ° C., and a straight line 71c is obtained when the flow rate before reheating is 6 liters / minute and the temperature before reheating is 40 ° C. It corresponds.
[0053]
The straight line 71d to the straight line 71f both have a temperature before reheating of 18 ° C., the straight line 71d has a flow rate before reheating of 4 liters / minute, and the straight line 71e has a flow rate before reheating of 5 liters / minute. The straight lines 71f correspond to cases where the flow rate before reheating is 6 liters / minute, respectively.
[0054]
The data shown in FIG. 2 is obtained empirically by experiments or the like. Further, FIG. 2 is merely an example, and in practice, a large number of straight lines corresponding to various combinations of the reheating flow rate (Q2) and the temperature before reheating (Tpre) are drawn. FIG. 2 shows a case where the supply number (G) from the burner 12 is 18, and various graphs similar to those in FIG. 2 are prepared according to the value of the supply number (G).
[0055]
When performing the pouring operation, the hot water heated in the hot water supply flow path 20 flows into the reheating system heat receiving pipe 41, so that the hot water supply set temperature (Tout) and the pre-reheating temperature (Tpre) in the graph of FIG. It becomes the same temperature. Therefore, when the hot water supply set temperature is 40 ° C., one of the straight lines in FIG. 2 where the temperature before reheating is 40 ° C. is referred to. In this case, the amount of heat supplied from the burner 12 (G), the amount of heat absorbed on the hot water supply channel 20 side (G1), the water temperature (Tpre) before reheating, and the reheating flow rate (Q2) 4 The mutual relationship between the two parameters is uniquely determined if the shape of the heat exchanger 11 is determined.
[0056]
For example, when the amount of heat supplied from the burner 12 is No. 18, the temperature before reheating (Tpre, Tout) is 40 ° C., and the reheating flow rate (Q2) is 6 liters / minute, the hot water supply channel 20 side The endothermic amount (number) is uniquely determined from the intersection 73 in FIG. Conversely, if the amount of heat supplied from the burner 12 (G), the amount of heat absorbed at the hot water supply flow path 20 (number ... G1), and the temperature before reheating (Tpre, Tout) are obtained, the calculation is repeated from FIG. The heating flow rate (Q2) can be uniquely determined.
[0057]
Next, the operation will be described.
FIG. 3 shows the flow of operations performed by the control unit 60. When receiving a pouring instruction from a bath remote controller (not shown) or the like, the controller 60 burns the burner 12 and opens the switching valve 51 to start the pouring operation (step S101). The control unit 60 waits for the hot water temperature (Tout) detected by the heat exchanger thermistor 27 to stabilize (step S102; Y), and then starts to determine whether the pouring and the hot water supply are in use at the same time.
[0058]
That is, from the incoming water temperature (Tin) detected by the incoming water thermistor 24, the hot water temperature (Tout) detected by the heat exchange thermistor 27, and the flow rate (Q) detected by the flow sensor 25, The amount of heat absorption (G1) at the time is obtained (step S103).
G1 = (Tout−Tin) × Q (1)
Next, the amount of heat (G) supplied by the burner 12 is obtained as a number from the value of the proportional valve current applied to the gas amount adjusting valve 14 (step S104). The correspondence relationship between the value of the proportional valve current and the amount of heat supplied (G) is stored in advance in the ROM.
[0059]
Next, the supply heat amount (G) thus obtained, the endothermic amount (G1) at the hot water supply flow path 20 side, and the hot water temperature detected by the heat exchange thermistor 27 (Tout, in other words, the temperature before reheating) are applied. Then, from the data stored in the data storage unit 62, the flow rate of water reheated through the reheating system heat receiving pipe 41 (actual reheating flow rate... Q2j) is obtained (step S105). For example, when the supply number (G) is 18, the endothermic amount (G1) on the hot water supply channel 20 side is 15.8, and the temperature before reheating (Tout, Tpre) is 40 ° C., FIG. From the graph shown in FIG. 2, 6 liters / minute is obtained as the actual reheating flow rate (Q2j).
[0060]
Furthermore, the reheating flow rate (assumed reheating flow rate) when it is assumed that the pouring alone is being used from the distribution ratio stored in the distribution ratio storage unit 63 and the total flow rate (Q) detected by the flow rate sensor 25. ... Q2c) is obtained (step S106). Then, the actual reheating flow rate (Q2j) is compared with the assumed reheating flow rate (Q2c), and depending on whether or not these differences are within a predetermined allowable error range, whether or not the pouring alone is in use. It is determined whether the hot water supply and hot water are being used simultaneously (step S107).
[0061]
When the difference between the actual reheating flow rate (Q2j) and the assumed reheating flow rate (Q2c) exceeds the allowable error range, it is determined that the pouring and the hot water supply are simultaneously used (step S107; N), The switching valve 51 is closed by the switching valve control unit 64, and the pouring operation is temporarily stopped (step S108).
[0062]
When the difference between the actual reheating flow rate (Q2j) and the assumed reheating flow rate (Q2c) is within the allowable error range, it is determined that the pouring alone is being used (step S107; Y), and the pouring operation is performed. While it continues (step S109; N), the process returns to step S103, and the operation of determining whether or not it is simultaneously used is repeated.
[0063]
The end of the pouring operation is determined by the amount of hot water poured. Further, when it is determined that the pouring and the hot water supply are being used at the same time and the pouring operation is temporarily stopped, after the hot water supply operation is finished, that is, after the flow rate sensor 25 no longer detects water flow, The pouring operation is resumed.
[0064]
In the above-described operation, whether or not the pouring and the hot water supply are being used simultaneously depends on whether or not the difference between the actual reheating flow rate (Q2j) and the assumed reheating flow rate (Q2c) is within an allowable error range. Although it is determined, the amount of heat absorption in the hot water supply passage 20 when it is assumed that the pouring alone is being used is obtained with reference to the data storage unit 62, and this and the actual absorption in the hot water supply passage 20. You may make it discriminate | determine whether it is in simultaneous use by comparing with calorie | heat amount.
[0065]
That is, the actual heat absorption amount (G1) on the hot water supply flow path 20 side is obtained from the incoming water temperature (Tin), the outgoing hot water temperature (Tout), and the flow rate (Q) detected by the flow rate sensor 25. And when all the water heated through the hot water supply flow path 20 flows into the reheating flow path 40 through the communication path 50, the flow rate of the water reheated by the heat exchanger 11 and flows into the bathtub 30 (assumed reheating flow rate ... Q2c) Is obtained from the distribution ratio stored in advance in the distribution ratio storage unit 63 and the flow rate (Q) detected by the flow rate sensor 25.
[0066]
By applying the estimated reheating flow rate thus obtained, the tapping temperature (Tout... Temperature before reheating) and the amount of heat supplied from the burner 12 (G), it is possible to use the pouring alone from the data stored in the data storage unit 62. The amount of heat absorption (assumed heat absorption amount) on the hot water supply flow path 20 side when it is assumed to be inside is obtained. Then, it may be determined whether or not the pouring alone is being used by comparing the assumed heat absorption amount on the hot water supply flow path 20 side obtained from the data storage unit 62 with the actual heat absorption amount in the hot water supply flow path 20. .
[0067]
In addition, the actual heat absorption amount (G1) on the hot water supply flow path 20 side, the reheating flow rate (assumed reheating flow rate ... Q2c) when it is assumed that the pouring operation is being performed alone, and the actually measured temperature before reheating. (Tout) is applied to the data storage unit 62 to determine the amount of heat supplied when it is assumed that the pouring alone is being used, and whether this is being used simultaneously by comparing this with the actual amount of heat supplied. You may make it discriminate | determine.
[0068]
Next, the distribution ratio measurement and its update will be described.
The distribution ratio is measured at the time of trial operation when the single can / two water channel type water heater 10 is installed. Also, when the filter attached to the inlet portion for taking in the water in the bathtub 30 is clogged or when the clogging which causes clogging is cleaned, it changes when pouring and hot water supply. The distribution ratio is measured again and updated at an appropriate timing so that it can be accurately determined whether or not and are simultaneously used.
[0069]
The distribution ratio is measured as follows. First, it is determined whether or not the operation of pouring alone is guaranteed. For example, when the switching valve 51 is closed, whether or not the hot water supply operation is performed is checked based on whether or not there is water flow, thereby confirming whether or not the pouring is possible.
[0070]
After confirming that the pouring water can be used alone, the pouring operation is started. From the water temperature (Tin), the hot water temperature (Tout), and the flow rate (Q) detected by the flow sensor 25 at that time, An actual heat absorption amount on the hot water supply flow path 20 side is obtained. Further, the amount of heat supplied (G) from the burner 12 is obtained, and the actual heat absorption amount (G1) on the hot water supply flow path 20 side and the pre-reheating temperature (Tout) detected by the heat exchange thermistor 27 are applied. The actual reheating flow rate (Q2j), which is the flow rate of hot water reheated through the reheating system heat receiving pipe 41, is obtained from the data stored in the data storage unit 62. Then, the distribution ratio is obtained from the actual reheating flow rate (Q2j) and the total flow rate (Q) detected by the flow rate sensor 25.
[0071]
Changes in distribution ratio due to filter clogging and removal are determined as follows. When the simultaneous use discriminating unit 61 discriminates that it is in the pouring sole use state, the actual distribution ratio at that time is obtained by the above-described method, and the history is sequentially stored in the distribution ratio history storage unit 65.
[0072]
From the initial state where the filter is not clogged, when the dust adheres and the pressure loss gradually increases, the actually measured distribution ratio gradually changes. The distribution ratio update unit 66 determines whether or not the difference between the distribution ratio in the initial state where clogging does not occur and the latest distribution ratio is equal to or greater than a reference value. The content stored in the ratio storage unit 63 is updated to the latest distribution ratio.
[0073]
On the other hand, when the dust adhering to the filter is cleaned and removed, the distribution ratio after cleaning changes greatly at one time as compared with the distribution ratio before cleaning. Therefore, when the difference between the previous distribution ratio stored in the distribution ratio history storage unit 65 and the latest distribution ratio is equal to or greater than a certain value, it is determined that the filter is clogged, and the distribution ratio storage unit 63 is determined. Rewrite the stored contents with the latest distribution ratio.
[0074]
In the embodiment described above, it is determined based on the data stored in the data storage unit 62 and the distribution ratio storage unit 63 whether or not the pouring and the hot water supply are used at the same time. Depending on whether or not the heat absorption ratio between the hot water supply channel 20 side and the reheating channel 40 side changes, it may be determined that the hot water supply operation has been started during the pouring operation.
[0075]
That is, when the hot water pouring operation to the bathtub 30 is performed, the amount of heat (G2) absorbed in the reheating channel 40 side of the amount of heat (G) supplied from the burner 12 and the heat supply channel 20 side are absorbed. An actual endothermic ratio, which is a ratio with the amount of heat (G1), is obtained, and it is determined that the hot water supply operation is started in parallel with the pouring operation when the actual heat absorption ratio changes during the single use of the pouring.
[0076]
When hot water supply to the water faucet is started during use of the pouring hot water alone, a part of the hot water heated on the hot water supply flow path 20 side is consumed for hot water discharge to the water faucet, so the amount of heat supplied from the burner 12 Of these, the ratio between the amount of heat absorbed on the reheating channel 40 side and the amount of heat absorbed on the hot water supply channel 20 side varies. Therefore, by detecting that the actual heat absorption ratio has changed, it is possible to detect that the hot water supply operation has been started during use of the pouring alone. In this case, since the determination is based on the change in the heat absorption ratio, when the pouring operation and the hot water supply operation are started at the same time, it is not possible to distinguish between simultaneous use and not.
[0077]
【The invention's effect】
According to the one-can / two-channel water heater and the pouring hot water / hot water simultaneous use determination method according to the present invention, pouring and hot water are used simultaneously based on the heat absorption ratio between the hot water flow channel side and the reheating channel side. Therefore, it is not necessary to provide a dedicated flow sensor for determining simultaneous use, and the structure of the apparatus can be simplified and the price can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a configuration of a single can / two water channel type water heater according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a part of a correlation between four parameters stored in a data storage unit as a graph.
FIG. 3 is a flow chart showing an operation flow when it is determined whether or not a single can two-water channel type water heater according to an embodiment of the present invention is simultaneously using pouring and hot water supply.
[Explanation of symbols]
10 ... 1 can 2 water channel type water heater
11 ... Heat exchanger
12 ... Burner
13. Gas supply pipe
14 ... Gas amount adjustment valve
20 ... Hot water supply channel
21 ... Hot water supply heat pipe
22 ... Water supply pipe
23 ... Hot water supply pipe
24 ... Incoming thermistor
25 ... Flow sensor
27 ... Thermistor Thermistor
29 ... Hot spring thermistor
30 ... bathtub
40 ... Reheating channel
41 ... Reheating tube
42 ... Rebirth pipe
43.
50 ... Connection way
51. Switching valve
60 ... Control unit
61 ... Simultaneous use determination unit
62: Data storage unit
63: Distribution ratio storage unit
64. Switching valve control unit
65: Distribution ratio history storage unit
66. Distribution ratio update unit
67 ... Actual endothermic amount acquisition unit
68. Calculation comparison unit

Claims (6)

浴槽内の水の循環する追い焚き流路内の水と給水の通る給湯流路内の水の双方にバーナーからの熱を1つの熱交換器で伝える1缶2水路型給湯器であって、前記熱交換器を経由した後の前記給湯流路内の湯を前記追い焚き流路側に流すための連絡路と、前記連絡路の途中に設けられ前記給湯流路内の湯を前記追い焚き流路側へ流すか否かを切り替える切替弁とを備え、前記浴槽への注湯動作を行う際に前記連絡路を通じて前記追い焚き流路に流れ込んだ水が当該追い焚き流路を通じて前記熱交換器を再度経由するものと前記熱交換器を再度経由しないものの二手に分かれて前記浴槽に流れ込むものにおいて、
前記熱交換器を経由する前の前記給湯流路内の水温を検知する入水温度検知手段と、前記熱交換器を経由した後の前記給湯流路内の水温を検知する出湯温度検知手段と、前記給湯流路を通じて前記熱交換器を経由する水の流量を検知する流量検知手段と、前記給湯流路から前記連絡路を通じて前記追い焚き流路に流れ込む水が二手に分かれる際の分配比を記憶した分配比記憶手段と、前記バーナーからの供給熱量と前記給湯流路側での吸熱量と前記給湯流路を通じて加熱された後であって前記追い焚き流路を通じて前記熱交換器で再加熱される前の水の温度である再加熱前温度と前記追い焚き流路を通じ前記熱交換器で再加熱されて前記浴槽に流れ込む水の流量とから成る4つのパラメータの関係を表したデータを予め求めて記憶したデータ記憶手段と、前記注湯単独での使用中か注湯と給湯との同時使用中かを判別する同時使用判別手段とを備え、
前記同時使用判別手段は、前記入水温度検知手段の検知する温度と前記出湯温度検知手段の検知する温度と前記流量検知手段の検知する流量とから前記給湯流路側での実際の吸熱量を求め、前記バーナーからの供給熱量と前記給湯流路側での実際の吸熱量と前記出湯温度検知手段の検知する前記再加熱前温度と前記給湯流路を通じて加熱された給水の全てが前記連絡路を通じて前記追い焚き流路に流れ込みかつ前記分配比記憶手段に記憶されている分配比に従って二手に分かれた際に前記熱交換器で再加熱されて前記浴槽に流れ込む水の流量との関係が、前記データ記憶手段に記憶してあるこれら4つのパラメータの関係と略一致するか否かを基にして注湯単独での使用中か注湯と給湯との同時使用中かを判別することを特徴とする1缶2水路型給湯器。
One can two water channel type water heater that transfers heat from a burner to both water in a reheating channel through which water in a bathtub circulates and water in a hot water flow channel through which water is supplied, with one heat exchanger, A communication path for flowing hot water in the hot water supply passage after passing through the heat exchanger to the reheating flow path side, and hot water in the hot water supply flow path provided in the middle of the communication path. A switching valve that switches whether to flow to the road side, and water that has flowed into the reheating channel through the communication path when performing a pouring operation to the bathtub. In what flows into the bathtub divided into two, one that passes again and one that does not pass the heat exchanger again,
An incoming water temperature detecting means for detecting the water temperature in the hot water supply flow path before passing through the heat exchanger, and a hot water temperature detection means for detecting the water temperature in the hot water supply flow path after passing through the heat exchanger, A flow rate detecting means for detecting a flow rate of water passing through the heat exchanger through the hot water supply channel, and a distribution ratio when the water flowing from the hot water supply channel into the reheating channel through the communication channel is divided into two hands The distribution ratio storage means, the amount of heat supplied from the burner, the amount of heat absorbed on the hot water supply channel side, and after being heated through the hot water supply channel, are reheated by the heat exchanger through the reheating channel. The data representing the relationship between the four parameters consisting of the temperature before reheating which is the temperature of the previous water and the flow rate of water reheated by the heat exchanger through the reheating channel and flowing into the bathtub is obtained in advance. Memorized data Comprising a 憶 means and simultaneous use determination means for determining whether in co-use with pouring hot water supply in use in the teeming alone,
The simultaneous use determination means obtains an actual heat absorption amount on the hot water supply flow path side from a temperature detected by the incoming water temperature detection means, a temperature detected by the hot water temperature detection means, and a flow rate detected by the flow rate detection means. The amount of heat supplied from the burner, the actual amount of heat absorbed on the side of the hot water supply channel, the temperature before reheating detected by the hot water temperature detecting means, and all the hot water supplied through the hot water channel are all passed through the communication path. The relationship between the flow rate of the water flowing into the reheating channel and re-heated by the heat exchanger and flowing into the bathtub when divided into two according to the distribution ratio stored in the distribution ratio storage means is the data storage. Based on whether or not the relationship between these four parameters stored in the means substantially coincides, it is determined whether the pouring alone is being used or whether the pouring and hot water are being used simultaneously 1 2 cans of water Type water heater.
浴槽内の水の循環する追い焚き流路内の水と給水の通る給湯流路内の水の双方にバーナーからの熱を1つの熱交換器で伝える1缶2水路型給湯器であって、前記熱交換器を経由した後の前記給湯流路内の湯を前記追い焚き流路側に流すための連絡路と、前記連絡路の途中に設けられ前記給湯流路内の湯を前記追い焚き流路側へ流すか否かを切り替える切替弁とを備え、前記浴槽への注湯動作を行う際に前記連絡路を通じて前記追い焚き流路に流れ込んだ水が当該追い焚き流路を通じて前記熱交換器を再度経由するものと前記熱交換器を再度経由しないものの二手に分かれて前記浴槽に流れ込むものにおいて、
前記熱交換器を経由する前の前記給湯流路内の水温を検知する入水温度検知手段と、前記熱交換器を経由した後の前記給湯流路内の水温を検知する出湯温度検知手段と、前記給湯流路を通じて前記熱交換器を経由する水の流量を検知する流量検知手段と、前記給湯流路から前記連絡路を通じて前記追い焚き流路に流れ込む水が二手に分かれる際の分配比を記憶した分配比記憶手段と、前記バーナーからの供給熱量と前記給湯流路側での吸熱量と前記給湯流路を通じて加熱された後であって前記追い焚き流路を通じて前記熱交換器で再加熱される前の水の温度である再加熱前温度と前記追い焚き流路を通じ前記熱交換器で再加熱されて前記浴槽に流れ込む水の流量とから成る4つのパラメータの関係を表したデータを予め求めて記憶したデータ記憶手段と、前記注湯単独での使用中か注湯と給湯との同時使用中かを判別する同時使用判別手段とを備え、
前記同時使用判別手段は、前記入水温度検知手段の検知する温度と前記出湯温度検知手段の検知する温度と前記流量検知手段の検知する流量とから前記給湯流路側での実際の吸熱量を求め、この吸熱量と前記出湯温度検知手段の検知する前記再加熱前温度と前記バーナーからの供給熱量とに基づいて前記追い焚き流路を通じ前記熱交換器で再加熱される水の流量である実再加熱流量を前記データ記憶手段の記憶しているデータから求め、前記給湯流路を通じて加熱された水の全てが前記連絡路を通じて前記追い焚き流路に流れ込む場合に前記熱交換器で再加熱されて前記浴槽に流れ込む水の流量を前記流量検知手段の検知する流量と前記分配比記憶手段の記憶している分配比とから求め、当該分配比から求めた流量と前記実再加熱流量とを比較することで注湯単独での使用中か注湯と給湯との同時使用中かを判別することを特徴とする1缶2水路型給湯器。
One can two water channel type water heater that transfers heat from a burner to both water in a reheating channel through which water in a bathtub circulates and water in a hot water flow channel through which water is supplied, with one heat exchanger, A communication path for flowing hot water in the hot water supply passage after passing through the heat exchanger to the reheating flow path side, and hot water in the hot water supply flow path provided in the middle of the communication path. A switching valve that switches whether to flow to the road side, and water that has flowed into the reheating channel through the communication path when performing a pouring operation to the bathtub. In what flows into the bathtub divided into two, one that passes again and one that does not pass the heat exchanger again,
An incoming water temperature detecting means for detecting the water temperature in the hot water supply flow path before passing through the heat exchanger, and a hot water temperature detection means for detecting the water temperature in the hot water supply flow path after passing through the heat exchanger, A flow rate detecting means for detecting a flow rate of water passing through the heat exchanger through the hot water supply channel, and a distribution ratio when the water flowing from the hot water supply channel into the reheating channel through the communication channel is divided into two hands The distribution ratio storage means, the amount of heat supplied from the burner, the amount of heat absorbed on the hot water supply channel side, and after being heated through the hot water supply channel, are reheated by the heat exchanger through the reheating channel. The data representing the relationship between the four parameters consisting of the temperature before reheating which is the temperature of the previous water and the flow rate of water reheated by the heat exchanger through the reheating channel and flowing into the bathtub is obtained in advance. Memorized data Comprising a 憶 means and simultaneous use determination means for determining whether in co-use with pouring hot water supply in use in the teeming alone,
The simultaneous use determination means obtains an actual heat absorption amount on the hot water supply flow path side from a temperature detected by the incoming water temperature detection means, a temperature detected by the hot water temperature detection means, and a flow rate detected by the flow rate detection means. The flow rate of water reheated by the heat exchanger through the reheating channel based on the heat absorption amount, the temperature before reheating detected by the tapping temperature detecting means, and the amount of heat supplied from the burner. The reheating flow rate is obtained from the data stored in the data storage means, and when all of the water heated through the hot water supply channel flows into the reheating channel through the communication channel, it is reheated by the heat exchanger. The flow rate of water flowing into the bathtub is obtained from the flow rate detected by the flow rate detection means and the distribution ratio stored in the distribution ratio storage means, and the flow rate obtained from the distribution ratio is compared with the actual reheating flow rate. 1 can 2 water channel type water heater, characterized in that to determine either simultaneously while using the pouring hot water supply in use in pouring itself by.
注湯単独で使用している状態における前記バーナーからの供給熱量と給湯流路側での実際の吸熱量と前記給湯流路を通じて加熱された後であって前記追い焚き流路を通じて前記熱交換器で再加熱される前における実際の水温とに基づいて前記熱交換器で再加熱されて前記浴槽に流れ込む水の流量を前記データ記憶手段に記憶してあるデータから求め、これと前記流量検知手段によって検知された流量とから前記分配比を求め、これを前記分配比記憶手段に記憶することを特徴とする請求項または記載の1缶2水路型給湯器。The amount of heat supplied from the burner, the actual amount of heat absorbed on the side of the hot water supply flow path, and after being heated through the hot water supply flow path in the state where the hot water is used alone, Based on the actual water temperature before being reheated, the flow rate of water reheated by the heat exchanger and flowing into the bathtub is obtained from the data stored in the data storage means, and this and the flow rate detection means 3. The single can / two water channel type water heater according to claim 1 or 2 , wherein the distribution ratio is obtained from the detected flow rate and is stored in the distribution ratio storage means. 前記分配比を求める際に前記切替弁を一旦閉じ、そのとき前記給湯流路に通水があるか否かを基にして注湯単独での使用状態を形成できるか否かを判別することを特徴とする請求項記載の1缶2水路型給湯器。When the distribution ratio is determined, the switching valve is temporarily closed, and at that time, it is determined whether or not the use state of the pouring alone can be formed based on whether or not there is water flow in the hot water supply passage. The can of 1 waterway type water heater of Claim 3 characterized by the above-mentioned. 前記同時使用判別手段が注湯単独での使用中であると判別した際における実際の分配比を求め、前記実際の分配比の値あるいはその変動量が所定の許容値を越えたとき、前記同時使用判別手段が注湯単独での使用中か否かを判別する際に用いる分配比の値を最新の分配比に更新することを特徴とする請求項1、2、3または4記載の1缶2水路型給湯器。An actual distribution ratio is determined when the simultaneous use determining means determines that the pouring alone is in use, and when the actual distribution ratio value or its variation exceeds a predetermined allowable value, the simultaneous distribution ratio is determined. The can according to claim 1, 2, 3 or 4, wherein the use determining means updates the distribution ratio value used when determining whether or not the pouring alone is in use to the latest distribution ratio. Two water channel type water heater. 浴槽内の水の循環する追い焚き流路内の水と給水の通る給湯流路内の水の双方にバーナーからの熱を1つの熱交換器で伝える1缶2水路型給湯器であって、前記熱交換器を経由した後の前記給湯流路内の湯を前記追い焚き流路側に流すための連絡路と、前記連絡路の途中に設けられ前記給湯流路内の湯を前記追い焚き流路側へ流すか否かを切り替える切替弁とを備え、前記浴槽への注湯動作を行う際に前記連絡路を通じて前記追い焚き流路に流れ込んだ水が当該追い焚き流路を通じて前記熱交換器を再度経由するものと前記熱交換器を再度経由しないものの二手に分かれて前記浴槽に流れ込むものが、注湯動作のみを単独で行っているか注湯動作と水栓への給湯動作とを同時に行っているかを判別する注湯給湯同時使用判別方法において、
前記給湯流路から前記連絡路を通じて前記追い焚き流路に流れ込む水が二手に分かれる際の分配比を予め求めて記憶し、
前記バーナーからの供給熱量と前記給湯流路側での吸熱量と前記給湯流路を通じて加熱された後であって前記追い焚き流路を通じて前記熱交換器で再加熱される前の水の温度と前記追い焚き流路を通じ前記熱交換器で再加熱されて前記浴槽に流れ込む水の流量とから成る4つのパラメータの関係を表したデータを予め求めて記憶し、
前記熱交換器を経由する前の前記給湯流路内の水温を検知し、
前記熱交換器を経由した後の前記給湯流路内の水温を検知し、
前記給湯流路を通じて前記熱交換器を経由する水の流量を検知し、
前記熱交換器を経由する前の前記給湯流路内の水温と前記熱交換器を経由した後の前記給湯流路内の水温と前記給湯流路を通じて前記熱交換器を経由する水の流量とから前記給湯流路側での実際の吸熱量を求め、
前記バーナーからの供給熱量と前記給湯流路側での実際の吸熱量と前記熱交換器を経由した後の前記給湯流路内の水温と前記給湯流路を通じて加熱された給水の全てが前記連絡路を通じて前記追い焚き流路に流れ込みかつ前記分配比に従って二手に分かれた際に前記熱交換器で再加熱されて前記浴槽に流れ込む水の流量との関係が、前記予め記憶してあるこれら4つのパラメータの関係と略一致するか否かを基にして注湯単独での使用中か注湯と給湯との同時使用中かを判別することを特徴とする注湯給湯同時使用判別方法。
One can two water channel type water heater that transfers heat from a burner to both water in a reheating channel through which water in a bathtub circulates and water in a hot water flow channel through which water is supplied, with one heat exchanger, A communication path for flowing hot water in the hot water supply passage after passing through the heat exchanger to the reheating flow path side, and hot water in the hot water supply flow path provided in the middle of the communication path. A switching valve that switches whether to flow to the road side, and water that has flowed into the reheating channel through the communication path when performing a pouring operation to the bathtub. The one that passes through again and the one that does not pass through the heat exchanger again and flows into the bathtub are either performing the pouring operation alone or performing the pouring operation and the hot water supply operation to the faucet at the same time. In the method for determining whether to use hot water or hot water at the same time,
Pre-determining and storing the distribution ratio when the water flowing into the reheating channel from the hot water flow channel through the communication channel is split into two hands,
The amount of heat supplied from the burner, the amount of heat absorbed on the hot water supply channel side, the temperature of water after being heated through the hot water supply channel and before being reheated by the heat exchanger through the reheating channel, and Preliminarily determining and storing data representing the relationship of four parameters consisting of the flow rate of water that is reheated by the heat exchanger and flows into the bathtub through the reheating channel,
Detecting the water temperature in the hot water supply flow path before passing through the heat exchanger,
Detecting the water temperature in the hot water flow path after passing through the heat exchanger,
Detecting the flow rate of water passing through the heat exchanger through the hot water supply channel,
The water temperature in the hot water supply channel before passing through the heat exchanger, the water temperature in the hot water supply channel after passing through the heat exchanger, and the flow rate of water passing through the heat exchanger through the hot water supply channel, To determine the actual endothermic amount on the hot water supply flow path side,
All of the supply heat amount from the burner, the actual heat absorption amount on the hot water supply channel side, the water temperature in the hot water supply channel after passing through the heat exchanger, and all the hot water supplied through the hot water supply channel are in the communication path. These four parameters are stored in advance in relation to the flow rate of water that flows into the reheating channel through and is reheated by the heat exchanger when divided into two according to the distribution ratio. A method for determining the simultaneous use of hot water and hot water, wherein it is determined whether the hot water is being used alone or the simultaneous use of the hot water and the hot water is based on whether or not they substantially coincide with each other.
JP00779898A 1998-01-19 1998-01-19 1 can 2 water channel type water heater and pouring hot water supply simultaneous use discrimination method Expired - Fee Related JP3848773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00779898A JP3848773B2 (en) 1998-01-19 1998-01-19 1 can 2 water channel type water heater and pouring hot water supply simultaneous use discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00779898A JP3848773B2 (en) 1998-01-19 1998-01-19 1 can 2 water channel type water heater and pouring hot water supply simultaneous use discrimination method

Publications (2)

Publication Number Publication Date
JPH11201549A JPH11201549A (en) 1999-07-30
JP3848773B2 true JP3848773B2 (en) 2006-11-22

Family

ID=11675668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00779898A Expired - Fee Related JP3848773B2 (en) 1998-01-19 1998-01-19 1 can 2 water channel type water heater and pouring hot water supply simultaneous use discrimination method

Country Status (1)

Country Link
JP (1) JP3848773B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458924B1 (en) * 2001-03-16 2004-12-03 지충현 apparatus for warm-water tank in gas boiler

Also Published As

Publication number Publication date
JPH11201549A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US10824178B2 (en) Heating and hot water supply apparatus and control method thereof
JP3848773B2 (en) 1 can 2 water channel type water heater and pouring hot water supply simultaneous use discrimination method
JP3824758B2 (en) 1 can 2 water channel type water heater and hot water supply interruption discrimination method
JPH06249507A (en) Circulation and heat insulation type hot water supply device
JPH09280647A (en) Hot water feeding machine
JP3743015B2 (en) Bathtub water level detector
JPH07103564A (en) Hot water supplying device
JP2000161782A (en) Bath hot-water supplier
JP3674014B2 (en) Water heater
ITPR980016A1 (en) COMBINED TYPE BOILER FOR HEATING AND FOR SANITARY WATER PRODUCTION, AND PROCEDURE
JP4310894B2 (en) Hot water storage water heater
JP3119550B2 (en) Water heater
JPH08193751A (en) Hot water feeder and method for controlling hot water filling and hot water feeding
JP3748610B2 (en) Hot water supply device with memorial function
JP2002349952A (en) Single-boiler double water passage hot water feeder for bath
JP3952485B2 (en) Bath water heater
JP3731450B2 (en) Hot water storage water heater
JPH06123489A (en) Hot water supplier
JP3203630B2 (en) 1 can 2 circuit heating device
JPH0944257A (en) Hot water supplier
JP3792316B2 (en) Combustion equipment
JPH04278143A (en) Method of setting capability of feeding out hot water in combustion device
JP2002228262A (en) Hot water storage type warm water heater
JPH0756409B2 (en) Method of determining water mixture ratio and determining other plug usage in water heater with automatic bath drop function
JP3531508B2 (en) Bath water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees