JP3848627B2 - Method for producing soil repair agent - Google Patents

Method for producing soil repair agent Download PDF

Info

Publication number
JP3848627B2
JP3848627B2 JP2003043689A JP2003043689A JP3848627B2 JP 3848627 B2 JP3848627 B2 JP 3848627B2 JP 2003043689 A JP2003043689 A JP 2003043689A JP 2003043689 A JP2003043689 A JP 2003043689A JP 3848627 B2 JP3848627 B2 JP 3848627B2
Authority
JP
Japan
Prior art keywords
dust
converter
oxygen concentration
soil
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003043689A
Other languages
Japanese (ja)
Other versions
JP2004250612A (en
Inventor
哲治 茨城
充 山本
孝司 長屋
章次 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003043689A priority Critical patent/JP3848627B2/en
Publication of JP2004250612A publication Critical patent/JP2004250612A/en
Application granted granted Critical
Publication of JP3848627B2 publication Critical patent/JP3848627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Powder Metallurgy (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機ハロゲン化物や六価クロムなどに汚染された土壌を無害化して修復するために用いる、微細な金属鉄と酸化第一鉄を含む粒子で構成される汚染土壌修復剤を製造する方法に関する。
【0002】
【従来の技術】
機械類や半導体の洗浄には、従来は、トリクロロエチレン等の有機ハロゲン化合物が利用されてきた。この有機ハロゲン化合物は発ガン性があることから、有害物質との認識がなされており、近年は、その使用が抑制されるとともに、排出管理が厳しくなっている。しかし、過去の有機ハロゲン化合物の使用が原因での汚染土壌が残っており、環境上の問題となっている。 また、メッキ工場の排水などが原因で六価クロムに汚染されている場合もある。
【0003】
上記有機ハロゲン化物等の揮発性の有機化合物で汚染された土壌を浄化する方法としては、土壌ガス吸引法、地下水揚水法、土壌掘削法等が知られている。土壌ガス吸引法は、不飽和帯に存在する対象物質を強制的に吸引するものであり、ボーリングにより地盤中に吸引用井戸を設置し、真空ポンプによって吸引用井戸内を減圧にし、気化した有機化合物を吸引井戸内に集め、地下に導いて土壌ガス中の有機化合物を活性炭に吸着させるなどの方法によって処理するものである。上記有機化合物による汚染が帯水層にまで及んでいる場合には、吸引用井戸内に水中ポンプを設置し、土壌ガスと同時に揚水して処理する方法が採用されている。地下揚水法は、土壌中に揚水井戸を設置し、汚染地下水を揚水して処理する方法である。さらに、土壌掘削法は、汚染土壌を掘削し、掘削した土壌を風力乾燥、加熱処理を施して有機化合物の除去回収を行う方法である。
【0004】
上記のような集められた汚染水、あるいは地下水等の汚染水を浄化する方法としては、例えば特許第2636171号公報に、汚染水中の溶存酸素を除去した後、汚染水を鉄等の金属表面に接触させ、汚染水中に含まれる有機ハロゲン化物を還元除去する方法が開示されている。このような鉄の還元作用を利用した汚染水の浄化方法は、特開平3−106496号公報、特開平10−263522号公報等にも記載されている。これらの方法はいずれも汚染水を、鉄を含む層、フィルター等の一定部分を通過させて処理を行う方法である。
しかしながら、これらの方法は、土壌を直接浄化する方法ではなく、上記土壌ガス吸引法、地下水揚水法等により集められた汚染水、あるいは河川、地下水等の汚染水を浄化する方法であり、対象となる処理物の量は極めて大量であり、処理は長期間を要する場合が多い。また処理工程が複雑となる場合が多いのも欠点である。このため、汚染源である土壌を直接簡便に浄化する方法が求められている。 また、六価クロムで汚染された土壌については、硫酸第一鉄等の還元剤で浄化する方法が知られているが、クロム鉱滓のように三価及び六価クロムの塊状で存在する場合には、硫酸第1鉄では還元作用を示す時間が短いため、十分な還元を行うことができない。
【0005】
そこで、長期にわたって還元作用を示す浄化剤が発明されており、金属鉄と酸化第一鉄の反応を利用する方法が発明されている。例えば、特開2001−198567号公報に記載される技術では、微細な鉄粉をスラリー化した土壌修復剤を用いた技術が示されている。この方法では、微細な鉄粉のスラリーを直接地中に注入することにより、土壌を修復することが可能である優れた方法である。また、微細な鉄粉として、製鋼転炉から発生する金属鉄を多く含む微細なダスト(以降、これを転炉ダストと称する)を用いる方法も提案されている。この方法は滞留に発生する微細な転炉ダストを用いることから、経済性も高い方法である。
【0006】
【発明が解決しようとする課題】
以上述べたように、転炉ダストを土壌修復剤として用いる方法では、2001−198567号公報に示される方法などのスラリーとして使用する場合だけでなく、低水分の状態で土壌に混合して使用することもあり、乾燥された転炉ダストの需要もある。しかし、転炉ダストは酸化しやすいため、適正な回収方法と乾燥方法を実施しなければ、良質な土壌修復剤にならない問題があった。
特開2001−198567号公報に示される方法などの従来技術では、一般的な転炉集塵装置でただ単に転炉ダストを集塵して、これをスラリーとする方法である。この方法では、水が介在して、転炉ダストの酸化速度が低いため、転炉ダストの酸化の問題は小さかった。しかし、乾燥された転炉ダストの処理や保管においては、酸化防止が重要であるにもかかわらず適切な方法がなかったことから、一般的には、転炉ダストの土壌修復剤は使用されてこなかった。
【0007】
つまり、従来技術では、転炉ダストを回収、乾燥、及び、保管する際に、不適切な処理を行うと、転炉ダストの金属鉄と酸化第一鉄が酸化第二鉄に酸化してしまう問題が解決されていなかった。このように、転炉ダストの金属鉄等が酸化してしまった場合は、有機ハロゲン化物や六価クロムと反応する機能を失ってしまい、また、転炉ダストを土に添加する際に適切な処置を行わない場合にも、施工中の転炉ダストが酸化してしまう問題があった。
このように、転炉ダストには、酸化により性能が低下する問題があり、低水分の転炉ダストを土壌修復剤にすることが難しかった。従来技術による方法では、転炉ダストから製造した、低水分の土壌修復剤を製造するとともに、保管する場合には、上記の種々の問題があった。従って、これらの問題を解決するための新しい技術が求められていた。
【0008】
【課題を解決するための手段】
本発明は、これらのような従来技術が有する問題点を解決するためになされた発明であり、その要旨とするところは以下の(1)から(4)に示す通りである。
(1)製鋼転炉1から発生する転炉ガスを非燃焼式転炉ガス回収装置2にて処理する際に湿式集塵機3で回収して得た転炉ダストと溶存酸素濃度4ppm以下の水との混合物を脱水機14で脱水して脱水物を製造し、該脱水物を微粒ダスト乾燥機16内で、350℃以下の温度、かつ、鉄の酸化の進行を評価する指標である雰囲気の酸素濃度と乾燥時間の積が、200分・容積%以下の条件で、該脱水物を乾燥することを特徴とする土壌修復剤の製造方法。
(2)転炉ダストと溶存酸素濃度4ppm以下の水との混合物を湿式分級装置5にかけて得た、平均粒子径が0.3〜5ミクロン程度の微粒分の転炉ダストと水との混合物を脱水して、水分が概略で30質量%以下の脱水物を製造して、該脱水物を微粒ダスト乾燥機16内の雰囲気が10容積%以下で乾燥することを特徴とする前記(1)に記載の土壌修復剤の製造方法。
(3)前記(1)または(2)に記載のいずれかの方法で乾燥した転炉ダストを酸素濃度が10容積%以下の容器内に充填して、外気から遮断することを特徴とする土壌修復剤の製造方法。
(4)転炉ダストと溶存酸素濃度4ppm以下の水との混合物を湿式分級装置5にかけて得た、平均粒子径が50〜200ミクロン程度の粗粒分の転炉ダストと水との混合物を脱水して得た脱水物を、粗粒ダスト乾燥機15の内部で、350℃以下の温度で、かつ、雰囲気の酸素濃度と乾燥時間の積が800分・容積%以下の条件で乾燥することを特徴とする土壌修復剤の製造方法。
【0009】
【発明の実施の形態】
転炉ダストを回収して乾燥する装置の構成の例を図1に示す。図1の装置は、製鋼用転炉1、非燃焼式ガス回収装置2、湿式集塵装置3、スラリー回収トラフ4、湿式分級装置5、沈殿槽6、オーバー水循環配管7、濃縮スラリーポンプ8、濃縮スラリー配管9、濃縮スラリー槽10、攪拌装置11、濃縮スラリー回収ポンプ12、濃縮スラリー回収配管13、脱水機14、及び、粗粒ダスト乾燥機15、及び、微粒ダスト乾燥機16から構成される。
製鋼転炉1で、溶融鉄に酸素を吹き付けて、溶融鉄中の炭素等を除去する。この際に発生する一酸化炭素を主とする転炉ガスを非燃焼式ガス回収装置2で未燃焼のまま回収する。この転炉ガスには、金属鉄を含む転炉ダストが含まれる。この転炉ダストは、溶融鉄に酸素が吹き付けられた際に、火点で鉄が蒸発して、これが冷却される際に微細な粒子となる微粒ダストと酸素ジェットに吹き飛ばされて形成する粗粒ダストがある。微粒ダストは、平均粒子径0.3〜5ミクロンであり、発生時点では金属鉄を多く含むものである。また、粗粒ダストは、平均粒子径50〜250ミクロンで、発生時点では金属鉄を多く含むものである。
【0010】
この転炉ダストを湿式集塵機3で、転炉ガスから分離する。湿式集塵機3では、スロート部で散水することにより、ダストをガスから分離する。散水した集塵水には数質量%の濃度で転炉ダストが入り、スラリーとして回収される。
このようにして得た転炉ダストを含むスラリーをスラリー回収トラフ4経由して、粗粒分離装置5に送り、ここで平均粒子径50〜250ミクロン程度の粗粒ダストと平均粒子径0.3〜5ミクロン程度の微粒ダスト分離して、粗粒ダストの多いスラリーと微粒ダストの多いスラリーとに分離する。ただし、土壌修復の用途によっては、粗粒分と微粒分を分離する必要はない。その場合は、粗粒分離装置5をバイパスする。
この後に、微粒ダストを含むスラリーを沈殿槽6で沈殿させ、微粒ダストが濃縮したスラリーを製造する。ここで沈殿槽6は、粒子を沈降させる構造であり、一般には、円形シックナーが用いられる。沈殿槽6で、微粒ダストが沈殿する際に発生する上澄みの水は、オーバー水循環配管7で集塵用水として再利用する。
湿式分級装置粗5で粗粒ダストを分離して、これを原料として、土壌修復剤を製造する場合で、粗粒ダストスラリーの濃縮が必要な時は、粗粒ダスト沈降槽14にて、粗粒ダストを沈降させる。
【0011】
濃縮スラリーポンプ8の動力で、沈殿槽6で濃縮された転炉ダストスラリーを濃縮スラリー配管9経由で、濃縮スラリー槽10に移す。濃縮スラリー槽10は、円筒型の槽が望ましく、また、鉄粉粒子が内面に当ることから、鉄鋼製、ステンレス製、または、コンクリート製のものが良い。濃縮スラリー槽10では、微粒ダストが底に沈殿固化しないように、攪拌装置11で、濃縮スラリーを攪拌する。所定の粉体濃度である濃縮スラリーは、濃縮スラリー回収ポンプ12の動力を用いて、濃縮スラリー回収配管13経由で回収する。濃縮スラリー回収配管13は鋼製の円パイプが良い。
回収されたスラリーを脱水機14で水分が30質量%程度以下となるように脱水する。ここで製造された脱水物を微粒ダスト乾燥機16に移し、ここで、水分が5質量%程度以下に乾燥する。微粒ダスト乾燥機16の型式は、内部に送り羽根があり、これで転炉ダストを攪拌しながら乾燥するロータリー式乾燥装置などの型式が最も良いが、他の型式のものでも良い。乾燥中の装置内の酸素濃度をコントロールできる機構を有することが必要である。乾燥された微粒ダストを密閉容器内に入れる。
【0012】
また、湿式分級装置5で分離された粗粒ダストは水切りされた後に、粗粒ダスト乾燥機15に送られて、ここで乾燥される。粗粒ダスト乾燥機15の型式は、ロータリー式乾燥装置などの型式が良いが、他の型式のものでも良い。乾燥中の装置内の酸素濃度をコントロールできる機構を有することが望ましい。乾燥された粗粒ダストは、やはり密閉容器内に入れる。
以上の工程で、転炉ダストを回収して、これを乾燥することにより、土壌修復剤を製造するが、高性能の土壌修復剤を製造するには、転炉ダストの酸化を抑制することが重要である。転炉ダストが土壌修復剤としての機能を発揮するためには、土砂の中で、土壌修復剤粒子の表面での金属鉄と酸化第一鉄を有効に反応させることが重要である。本発明者らの実験では、土壌の修復条件によってやや違いはあるものの、概略で、金属鉄と酸化第一鉄(水酸化第一鉄を含む)の合計比率が40質量%以上であることが本発明での良好な土壌修復剤の条件であることを解明し、本発明では、この条件を満たす土壌修復剤を製造する条件を解明した。
【0013】
まず、転炉ダストを回収する操作で、転炉ダスト中の酸化を防止する。本発明者らの実験では、4ppm以下の低酸素濃度のスラリー水中での酸化速度が遅いことを見出した。また、転炉ダストの酸化を極めて小さくするためには、3ppm以下の溶存酸素濃度が望ましい。なお、溶存酸素濃度を低下させる方法としては、ヒドラジンなどの酸素除去剤を使用する方法や水を50℃以上に加熱して溶存酸素を追い出す方法などがある。
次に、脱水工程では、転炉ダストの水分をある程度確保して、転炉ダストが空気に直接触れることを抑制する。これは、水分を低下させすぎると、転炉ダストと空気が直接接触して、転炉ダストが酸化されるためである。したがって、粗粒分を分離していない転炉ダストや微粒ダストの場合は、水分を17〜30質量%程度とする。30質量%程度以上の水分の場合は、転炉ダストが汚泥状となって、脱水後の処理に手間がかかるため避けた方が良い。粗粒ダストの場合は、水分は5〜15質量%程度が良い。
【0014】
脱水後の乾燥工程では、乾燥装置内での乾燥温度、乾燥時間及び雰囲気の酸素濃度を適正な範囲とする。乾燥時の温度が350℃以上の場合は酸化速度が過大となるため、乾燥温度は350℃以下であることが良い。また、本発明者らは、鉄の酸化速度は雰囲気の酸素濃度と乾燥時間に比例することを見出した。この理由から、微粒ダスト乾燥機16や粗粒ダスト乾燥機15では、乾燥時間と雰囲気の酸素濃度の積を所定の値よりも小さくする。
粒子径が1ミクロン前後の微粒ダストが多く含まれるため、微粒ダスト乾燥機16での乾燥装置内雰囲気の酸素濃度と乾燥時間の積を200分・容積%以下とする、ただし、微粒ダストは酸化が速いため、空気の酸素濃度では、10分間以内に乾燥を終了する必要があり、この条件を作ることが困難である場合もあるため、望ましくは、脱水物を酸素濃度が10容積%以下の雰囲気内で乾燥する。また、粒子径が100ミクロン前後で、比較的酸化反応の遅い粗粒ダストの場合は、粗粒ダスト乾燥機15での乾燥装置内雰囲気の酸素濃度と乾燥時間の積を800分・容積%以下とする。上記の条件で、回収された後に乾燥した転炉ダストは、酸化の少ない状態である。
上記の方法で製造された乾燥状態の転炉ダストを容器に詰める。乾燥状態の転炉ダストは酸化されやすい。特に、微粒ダストを保管するためには、容器内の酸素濃度を10容積%以下とすることが良い。容器内のこの転炉ダストを土壌修復の工事現場まで運搬して、ここで、土砂と混合する。施工後に、本発明の土壌修復剤は土砂中の有害物質と反応して、これを無害化する。
【0015】
【実施例】
本発明の方法を用いて行った土壌修復剤の製造結果を示す。転炉ダストは230トン転炉から発生したものを用いて、図1の装置で回収、脱水、乾燥を行った。脱水機14はフィルタープレス式装置、粗粒ダスト乾燥装置15と微粒ダスト乾燥装置16は、送り羽根のあるロータリー式乾燥装置を用いた。
(実施例1)
この実施例では、粗粒ダストと微粒ダストは混合した転炉ダストを土壌修復剤とした処理の例である。粗粒ダストと微粒ダストを分離しなかったため、粗粒分離装置5をバイパスして、スラリーを沈殿槽6で濃縮処理した。スラリー水の酸素濃度は3.4ppmであった。濃縮スラリー槽10からは、転炉ダスト濃度が25質量%のスラリーを脱水機14に送った。脱水機14では、水分が23質量%の脱水ケーキを製造して、これを微粒ダスト乾燥装置16に送った。微粒ダスト乾燥装置16の乾燥条件は、雰囲気温度310℃、内部酸素濃度8容積%、乾燥時間22分間であった。この処理での乾燥時間・酸素濃度の積は176分間・容積%であり、本発明の範囲内であった。この転炉ダストを酸素濃度が5容積%の密閉容器に入れて保管した。
実施例1の処理の結果、平均粒子径が12ミクロン、金属鉄24質量%かつ酸化第一鉄37質量%であり、水分が2質量%の転炉ダストの土壌修復剤を製造することができた。この土壌修復剤を、トリクロロエチレンの除去反応試験で検査した。土壌1リットルに対して15グラムの配合の条件で、5日間の反応で73%のトリクロロエチレンを分解できた。なお、本試験では、60%以上の除去率が合格である。
【0016】
(実施例2)
この実施例では、微粒ダストを土壌修復剤とした処理の例である。スラリー水の酸素濃度は2.3ppmであった。濃縮スラリー槽10からは、転炉ダスト濃度が22質量%のスラリーを脱水機14に送った。脱水機14では、水分が26質量%の脱水ケーキを製造して、これを微粒ダスト乾燥装置16に送った。微粒ダスト乾燥装置16の乾燥条件は、雰囲気温度200℃、内部酸素濃度5容積%、乾燥時間20分間であった。この処理での乾燥時間・酸素濃度の積は100分間・容積%であり、本発明の範囲内であった。この転炉ダストを酸素濃度が3容積%の密閉容器に入れて保管した。
実施例2の処理の結果、平均粒子径が2.2ミクロン、金属鉄19質量%かつ酸化第一鉄39質量%であり、水分が5質量%の転炉ダストの土壌修復剤を製造することができた。この土壌修復剤を、トリクロロエチレンの除去反応試験で検査した。土壌1リットルに対して15グラムの配合の条件で、5日間の反応で81%のトリクロロエチレンを分解できた。
【0017】
(実施例3)
この実施例では、粗粒ダストを土壌修復剤とした処理の例である。粗粒分離装置5から粗粒ダストを分離回収し、水切りして、水分が11質量%の粗粒ダストを得た。これを粗粒ダスト乾燥装置15に送った。スラリー水の酸素濃度は2.5ppmであった。粗粒ダスト乾燥装置15の乾燥条件は、雰囲気温度300℃、内部酸素濃度16容積%、乾燥時間30分間であった。この処理での乾燥時間・酸素濃度の積は480分間・容積%であり、本発明の範囲内であった。この転炉ダストを酸素濃度が8容積%の密閉容器に入れて保管した。
実施例3の処理の結果、平均粒子径が81ミクロン、金属鉄45質量%かつ酸化第一鉄22質量%であり、水分が1質量%の転炉ダストの土壌修復剤を製造することができた。この土壌修復剤を、トリクロロエチレンの除去反応試験で検査した。土壌1リットルに対して15グラムの配合の条件で、100日間の反応で66%のトリクロロエチレンを分解できた。なお、本試験では、粗粒ダストの長期間の反応剤性能を測定した。
【0018】
(比較例1)
この比較例では、微粒ダストを土壌修復剤とした処理であるが、本発明の条件を外れた例である。スラリー水の酸素濃度は、実施例2と同様に3.5ppmであった。濃縮スラリー槽10からは、転炉ダスト濃度が23質量%のスラリーを脱水機14に送った。脱水機14では、水分が24質量%の脱水ケーキを製造して、これを微粒ダスト乾燥装置16に送った。微粒ダスト乾燥装置16の乾燥条件は、雰囲気温度230℃、内部酸素濃度12容積%、乾燥時間20分間であった。この処理での乾燥時間・酸素濃度の積は240分間・容積%であり、本発明の範囲外であった。
比較例1の処理の結果、平均粒子径が1.7ミクロン、金属鉄10質量%かつ酸化第一鉄28質量%であり、水分が3質量%の転炉ダストの土壌修復剤を製造することができた。この土壌修復剤を、土壌1リットルに対して15グラムの配合の条件のトリクロロエチレンの除去反応試験を行った。5日間の反応で41%のトリクロロエチレンしか分解できた。このように、本発明の条件外で処理した転炉ダストの活性は低かった。
【0019】
(比較例2)
この比較例では、微粒ダストを土壌修復剤とした処理したものの、スラリー水の酸素濃度が高かった処理の例である。スラリー水の酸素濃度は5.4ppmであった。濃縮スラリー槽10からは、転炉ダスト濃度が20質量%のスラリーを脱水機14に送った。脱水機14では、水分が29質量%の脱水ケーキを製造して、これを微粒ダスト乾燥装置16に送った。微粒ダスト乾燥装置16の乾燥条件は、雰囲気温度250℃、内部酸素濃度8容積%、乾燥時間20分間であった。この処理での乾燥時間・酸素濃度の積は160分間・容積%であり、これは本発明の範囲内であった。
比較例2の処理の結果、平均粒子径が2.1ミクロン、金属鉄9質量%かつ酸化第一鉄27質量%の転炉ダストの土壌修復剤を製造することができた。この土壌修復剤を、トリクロロエチレンの除去反応試験で検査した。土壌1リットルに対して15グラムの配合の条件で、5日間の反応で38%トリクロロエチレンしか分解できた。この処理でも転炉ダストの活性は低かった。
【0020】
【発明の効果】
本発明の方法で、転炉ダストを修復剤原料とすることから、アトマイズ法等の鉄粒子製造方法と比較して、安価な土壌修復剤を製造できる。また、鉄を含む粒子の酸化度の管理が行えるため、反応活性の安定した高品質の土壌修復剤を製造できること0から、施工が容易となり、総合的な工事費用も低下する。更に、一度の大量の土壌修復剤の製造ができることから、大規模工事への土壌修復剤の供給も可能となる。
【図面の簡単な説明】
【図1】 本発明の方法を実施するための転炉ダストから鉄を多く含有する粉体からなる、乾燥状態の土壌修復剤を製造する装置の図である。
【符号の説明】
1・・・製鋼用転炉、
2・・・ 非燃焼式ガス回収装置、
3・・・ 湿式集塵装置、
4・・・ スラリー回収トラフ、
5・・・ 粗粒分離装置、
6・・・ 沈殿槽、
7・・・ オーバー水循環配管、
8・・・ 濃縮スラリーポンプ、
9・・・ 濃縮スラリー配管、
10・・・ 濃縮スラリー槽、
11・・・ 攪拌装置、
12・・・ 濃縮スラリー回収ポンプ、
13・・・ 濃縮スラリー回収配管、
14・・・脱水機、
15・・・粗粒ダスト乾燥装置、
16・・・微粒ダスト乾燥装置
[0001]
BACKGROUND OF THE INVENTION
The present invention produces a contaminated soil repairing agent composed of particles containing fine metallic iron and ferrous oxide, which is used to detoxify and repair soil contaminated with organic halides, hexavalent chromium and the like. Regarding the method.
[0002]
[Prior art]
In the past, organic halogen compounds such as trichlorethylene have been used for cleaning machinery and semiconductors. Since these organic halogen compounds are carcinogenic, they are recognized as harmful substances. In recent years, their use has been suppressed and emission management has become strict. However, contaminated soil due to past use of organohalogen compounds remains, which is an environmental problem. Moreover, it may be contaminated with hexavalent chromium due to the drainage of the plating factory.
[0003]
Known methods for purifying soil contaminated with volatile organic compounds such as organic halides include a soil gas suction method, a groundwater pumping method, and a soil excavation method. The soil gas suction method forcibly sucks the target substances present in the unsaturated zone. A suction well is installed in the ground by boring, and the inside of the suction well is depressurized by a vacuum pump, and the vaporized organic The compounds are collected in a suction well, guided to the underground, and treated by a method such as adsorption of organic compounds in soil gas onto activated carbon. When the contamination by the organic compound extends to the aquifer, a method is adopted in which a submersible pump is installed in the suction well and the water is pumped up simultaneously with the soil gas. The underground pumping method is a method of setting up a pumping well in soil and pumping up contaminated groundwater. Furthermore, the soil excavation method is a method in which contaminated soil is excavated, and the excavated soil is subjected to wind drying and heat treatment to remove and collect organic compounds.
[0004]
As a method of purifying contaminated water such as collected water or ground water as described above, for example, in Japanese Patent No. 2636171, after removing dissolved oxygen in contaminated water, the contaminated water is applied to a metal surface such as iron. A method for reducing and removing organic halide contained in contaminated water by contacting is disclosed. Such a method for purifying contaminated water using the reducing action of iron is also described in JP-A-3-106496, JP-A-10-263522, and the like. In any of these methods, the contaminated water is treated by passing it through a certain portion such as a layer containing iron or a filter.
However, these methods are not methods for directly purifying soil, but methods for purifying contaminated water collected by the soil gas suction method, groundwater pumping method, etc., or contaminated water such as rivers and groundwater. The amount of processed material is extremely large, and the processing often takes a long time. It is also a drawback that the processing steps are often complicated. For this reason, a method for directly and simply purifying soil that is a source of contamination is required. In addition, for soil contaminated with hexavalent chromium, a method of purifying with a reducing agent such as ferrous sulfate is known, but when it exists in the form of trivalent and hexavalent chromium as in the case of chromium ore, Since ferrous sulfate has a short time to exhibit a reducing action, it cannot be sufficiently reduced.
[0005]
Therefore, a purifying agent that exhibits a reducing action over a long period of time has been invented, and a method that utilizes a reaction between metallic iron and ferrous oxide has been invented. For example, in the technique described in Japanese Patent Application Laid-Open No. 2001-198567, a technique using a soil restoration agent obtained by slurrying fine iron powder is shown. This method is an excellent method capable of repairing the soil by directly injecting a fine iron powder slurry into the ground. In addition, a method has been proposed in which fine dust containing a large amount of metallic iron generated from a steelmaking converter (hereinafter referred to as converter dust) is used as the fine iron powder. This method is highly economical because it uses fine converter dust generated during stagnation.
[0006]
[Problems to be solved by the invention]
As described above, in the method of using converter dust as a soil restoration agent, not only when used as a slurry in the method disclosed in 2001-198567, but also mixed with soil in a low moisture state. There is also a demand for dried converter dust. However, because converter dust is easily oxidized, there is a problem that it cannot be a good soil remedial agent unless proper recovery and drying methods are implemented.
In the prior art such as the method disclosed in Japanese Patent Application Laid-Open No. 2001-198567, the converter dust is simply collected by a general converter dust collector and used as a slurry. In this method, since the oxidation rate of the converter dust is low due to the presence of water, the problem of the oxidation of the converter dust is small. However, in the treatment and storage of dried converter dust, soil remediators for converter dust are generally used because of the lack of appropriate methods despite the importance of oxidation prevention. There wasn't.
[0007]
In other words, in the prior art, when the converter dust is recovered, dried, and stored, if an inappropriate treatment is performed, metallic iron and ferrous oxide in the converter dust are oxidized to ferric oxide. The problem was not solved. Thus, when metallic iron or the like of converter dust has been oxidized, it loses the function of reacting with organic halides and hexavalent chromium, and is suitable for adding converter dust to the soil. Even when no measures were taken, there was a problem that the converter dust under construction was oxidized.
As described above, the converter dust has a problem that the performance is deteriorated by oxidation, and it is difficult to use the low-moisture converter dust as a soil repair agent. The method according to the prior art has the above-mentioned various problems when producing and storing a low moisture soil remediation agent produced from converter dust. Therefore, a new technique for solving these problems has been demanded.
[0008]
[Means for Solving the Problems]
The present invention has been made in order to solve the problems of the prior art as described above, and the gist thereof is as shown in the following (1) to (4).
(1) When the converter gas generated from the steelmaking converter 1 is processed by the non-combustion converter gas recovery device 2, the converter dust obtained by collecting the converter gas with the wet dust collector 3 and water having a dissolved oxygen concentration of 4 ppm or less The dehydrated product is dehydrated with a dehydrator 14 to produce a dehydrated product, and the dehydrated product is heated to a temperature of 350 ° C. or lower in the fine dust dryer 16 and oxygen in an atmosphere that is an index for evaluating the progress of iron oxidation A method for producing a soil repairing agent, comprising drying the dehydrated product under the condition that the product of the concentration and the drying time is 200 minutes / volume% or less.
(2) A mixture of converter dust and water obtained by applying a mixture of converter dust and water having a dissolved oxygen concentration of 4 ppm or less to the wet classifier 5 and having an average particle diameter of about 0.3 to 5 microns and water. (1), characterized in that dehydration is performed by dehydrating to produce a dehydrated product having a water content of approximately 30% by mass or less, and drying the dehydrated product in an atmosphere of fine dust dryer 16 at 10% by volume or less The manufacturing method of the soil restoration agent of description.
(3) Soil characterized in that the converter dust dried by any of the methods described in (1) or (2) above is filled in a container having an oxygen concentration of 10% by volume or less and blocked from outside air. A method for producing a restoration agent.
(4) Dehydration of a mixture of converter dust and water of coarse particles having an average particle size of about 50 to 200 microns obtained by applying a mixture of converter dust and water having a dissolved oxygen concentration of 4 ppm or less to the wet classifier 5 The dehydrated product thus obtained is dried inside the coarse dust dryer 15 at a temperature of 350 ° C. or less and under the condition that the product of the oxygen concentration in the atmosphere and the drying time is 800 minutes / volume% or less. A method for producing a soil repairing agent.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An example of the configuration of an apparatus for collecting and drying converter dust is shown in FIG. 1 includes a steelmaking converter 1, a non-combustion gas recovery device 2, a wet dust collector 3, a slurry recovery trough 4, a wet classification device 5, a precipitation tank 6, an over water circulation pipe 7, a concentrated slurry pump 8, Concentrated slurry pipe 9, concentrated slurry tank 10, stirring device 11, concentrated slurry recovery pump 12, concentrated slurry recovery pipe 13, dehydrator 14, coarse dust dryer 15, and fine dust dryer 16 .
In the steelmaking converter 1, oxygen is blown to the molten iron to remove carbon and the like in the molten iron. The converter gas mainly composed of carbon monoxide generated at this time is recovered by the non-combustion gas recovery device 2 without being burned. This converter gas contains converter dust containing metallic iron. This converter dust is a coarse particle formed when oxygen is blown to the molten iron, the iron evaporates at the fire point, and becomes fine particles when it is cooled and blown off by the oxygen jet There is dust. The fine dust has an average particle diameter of 0.3 to 5 microns and contains a large amount of metallic iron at the time of generation. The coarse dust has an average particle size of 50 to 250 microns and contains a large amount of metallic iron at the time of generation.
[0010]
The converter dust is separated from the converter gas by the wet dust collector 3. In the wet dust collector 3, the dust is separated from the gas by sprinkling water at the throat portion. The dust collected from the sprayed water contains converter dust at a concentration of several mass% and is recovered as a slurry.
The slurry containing the converter dust thus obtained is sent to the coarse particle separator 5 via the slurry collection trough 4, where coarse dust having an average particle size of about 50 to 250 microns and an average particle size of 0.3. Separating fine dust of about -5 microns into a slurry with a lot of coarse dust and a slurry with a lot of fine dust. However, depending on the application of soil restoration, it is not necessary to separate the coarse and fine particles. In that case, the coarse-grain separator 5 is bypassed.
Thereafter, a slurry containing fine dust is precipitated in the settling tank 6 to produce a slurry in which fine dust is concentrated. Here, the sedimentation tank 6 has a structure for sedimenting particles, and generally a circular thickener is used. The supernatant water generated when the fine dust is precipitated in the settling tank 6 is reused as dust collecting water in the over water circulation pipe 7.
When the coarse particle dust is separated by the wet classifier coarse 5 and the soil restoration agent is produced using this as a raw material, when the coarse particle slurry needs to be concentrated, Allow the grain dust to settle.
[0011]
The converter dust slurry concentrated in the settling tank 6 is transferred to the concentrated slurry tank 10 via the concentrated slurry pipe 9 by the power of the concentrated slurry pump 8. The concentrated slurry tank 10 is preferably a cylindrical tank, and since iron powder particles hit the inner surface, the one made of steel, stainless steel, or concrete is preferable. In the concentrated slurry tank 10, the concentrated slurry is stirred by the stirring device 11 so that the fine dust does not settle and solidify at the bottom. The concentrated slurry having a predetermined powder concentration is recovered via the concentrated slurry recovery pipe 13 using the power of the concentrated slurry recovery pump 12. The concentrated slurry recovery pipe 13 is preferably a steel circular pipe.
The recovered slurry is dehydrated by the dehydrator 14 so that the water content is about 30% by mass or less. The dehydrated product produced here is transferred to the fine dust dryer 16 where the moisture is dried to about 5% by mass or less. The type of the fine dust dryer 16 has a feed blade inside, and the type such as a rotary type drying device that dries the converter dust while stirring it is the best, but other types may also be used. It is necessary to have a mechanism that can control the oxygen concentration in the apparatus during drying. Place the dried fine dust in a closed container.
[0012]
The coarse dust separated by the wet classifier 5 is drained and then sent to the coarse dust dryer 15 where it is dried. The type of the coarse dust dryer 15 may be a type such as a rotary dryer, but may be another type. It is desirable to have a mechanism that can control the oxygen concentration in the apparatus during drying. The dried coarse dust is also placed in a closed container.
In the above process, converter dust is collected and dried to produce a soil restoration agent. To produce a high-performance soil restoration agent, it is necessary to suppress oxidation of the converter dust. is important. In order for converter dust to function as a soil restoration agent, it is important that metal iron and ferrous oxide react effectively on the surface of the soil restoration agent particles in the earth and sand. In our experiments, although there is a slight difference depending on the soil repair conditions, it is roughly that the total ratio of metallic iron and ferrous oxide (including ferrous hydroxide) is 40% by mass or more. It was clarified that the conditions of the soil repairing agent were good in the present invention, and in the present invention, the conditions for producing a soil repairing agent satisfying this condition were clarified.
[0013]
First, oxidation in converter dust is prevented by operation which collects converter dust. In the experiments by the present inventors, it was found that the oxidation rate is low in slurry water having a low oxygen concentration of 4 ppm or less. In order to minimize the oxidation of converter dust, a dissolved oxygen concentration of 3 ppm or less is desirable. As a method for reducing the dissolved oxygen concentration, there are a method using an oxygen removing agent such as hydrazine and a method of heating water to 50 ° C. or more to drive out dissolved oxygen.
Next, in the dehydration process, the converter dust is secured to some extent to prevent the converter dust from directly contacting the air. This is because if the moisture is reduced too much, the converter dust comes into direct contact with air and the converter dust is oxidized. Therefore, in the case of converter dust or fine dust from which coarse particles are not separated, the water content is set to about 17 to 30% by mass. In the case of moisture of about 30% by mass or more, it is better to avoid converter dust because it becomes sludge and it takes time to process after dehydration. In the case of coarse dust, the water content is preferably about 5 to 15% by mass.
[0014]
In the drying process after dehydration, the drying temperature, drying time, and oxygen concentration of the atmosphere in the drying apparatus are set to an appropriate range. When the temperature during drying is 350 ° C. or higher, the oxidation rate becomes excessive, so the drying temperature is preferably 350 ° C. or lower. Further, the present inventors have found that the oxidation rate of iron is proportional to the oxygen concentration of the atmosphere and the drying time. For this reason, in the fine dust dryer 16 and the coarse dust dryer 15, the product of the drying time and the oxygen concentration of the atmosphere is made smaller than a predetermined value.
Since there are many fine dust particles with a particle size of around 1 micron, the product of the oxygen concentration in the drying device atmosphere in the fine dust dryer 16 and the drying time is 200 minutes / volume% or less. However, the fine dust is oxidized Therefore, it is necessary to finish the drying within 10 minutes at an oxygen concentration of air, and it may be difficult to make this condition. Therefore, it is desirable that the oxygen concentration is 10% by volume or less. Dry in the atmosphere. In the case of coarse dust having a particle size of around 100 microns and a relatively slow oxidation reaction, the product of the oxygen concentration in the drying apparatus atmosphere and the drying time in the coarse dust dryer 15 is 800 minutes / volume% or less. And Under the above conditions, the converter dust dried after being recovered is in a state of little oxidation.
The dried converter dust produced by the above method is packed in a container. Dry converter dust is easily oxidized. In particular, in order to store fine dust, the oxygen concentration in the container is preferably 10% by volume or less. This converter dust in the container is transported to the soil repair site where it is mixed with earth and sand. After construction, the soil repairing agent of the present invention reacts with harmful substances in the soil and renders them harmless.
[0015]
【Example】
The manufacture result of the soil restoration agent performed using the method of this invention is shown. The converter dust generated from the 230-ton converter was collected, dehydrated and dried by the apparatus shown in FIG. The dehydrator 14 was a filter press type device, and the coarse particle dust drying device 15 and the fine particle dust drying device 16 were rotary type drying devices having feed blades.
Example 1
In this embodiment, coarse dust and fine dust are an example of treatment using mixed converter dust as a soil repair agent. Since the coarse dust and fine dust were not separated, the coarse separator 5 was bypassed and the slurry was concentrated in the settling tank 6. The oxygen concentration of the slurry water was 3.4 ppm. From the concentrated slurry tank 10, a slurry having a converter dust concentration of 25 mass% was sent to the dehydrator 14. In the dehydrator 14, a dehydrated cake having a moisture content of 23% by mass was produced and sent to the fine dust drying device 16. The drying conditions of the fine dust drying device 16 were an atmospheric temperature of 310 ° C., an internal oxygen concentration of 8% by volume, and a drying time of 22 minutes. The product of drying time and oxygen concentration in this treatment was 176 minutes and volume%, and was within the scope of the present invention. This converter dust was stored in an airtight container having an oxygen concentration of 5% by volume.
As a result of the treatment of Example 1, a soil restoration agent for converter dust having an average particle size of 12 microns, metallic iron of 24% by mass and ferrous oxide of 37% by mass and moisture of 2% by mass can be produced. It was. The soil remediation agent was examined by a trichlorethylene removal reaction test. 73% of trichlorethylene was able to be decomposed | disassembled by reaction for 5 days on the conditions of the mixing | blending of 15 gram with respect to 1 liter of soil. In this test, a removal rate of 60% or more is acceptable.
[0016]
(Example 2)
This example is an example of treatment using fine dust as a soil repair agent. The oxygen concentration of the slurry water was 2.3 ppm. From the concentrated slurry tank 10, a slurry having a converter dust concentration of 22 mass% was sent to the dehydrator 14. In the dehydrator 14, a dehydrated cake having a water content of 26% by mass was produced and sent to the fine dust drying device 16. The drying conditions of the fine dust drying device 16 were an atmospheric temperature of 200 ° C., an internal oxygen concentration of 5% by volume, and a drying time of 20 minutes. The product of drying time and oxygen concentration in this treatment was 100 minutes and volume%, and was within the scope of the present invention. The converter dust was stored in an airtight container having an oxygen concentration of 3% by volume.
As a result of the treatment of Example 2, a soil restoration agent for converter dust having an average particle size of 2.2 microns, 19% by mass of metallic iron and 39% by mass of ferrous oxide and 5% by mass of water is produced. I was able to. The soil remediation agent was examined by a trichlorethylene removal reaction test. Under the condition of blending 15 grams per liter of soil, 81% of trichlorethylene could be decomposed by reaction for 5 days.
[0017]
Example 3
This example is an example of treatment using coarse dust as a soil repair agent. Coarse-grain dust was separated and recovered from the coarse-grain separator 5 and drained to obtain coarse-grain dust having a moisture content of 11% by mass. This was sent to the coarse dust drying device 15. The oxygen concentration of the slurry water was 2.5 ppm. The drying conditions of the coarse dust dryer 15 were an atmospheric temperature of 300 ° C., an internal oxygen concentration of 16% by volume, and a drying time of 30 minutes. The product of drying time and oxygen concentration in this treatment was 480 minutes and volume%, and was within the scope of the present invention. This converter dust was stored in an airtight container having an oxygen concentration of 8% by volume.
As a result of the treatment of Example 3, a soil restoration agent for converter dust having an average particle size of 81 microns, 45% by mass of metallic iron and 22% by mass of ferrous oxide and 1% by mass of water can be produced. It was. The soil remediation agent was examined by a trichlorethylene removal reaction test. Under the condition of blending 15 grams per liter of soil, 66% of trichlorethylene could be decomposed after 100 days of reaction. In this test, the long-term reactant performance of coarse dust was measured.
[0018]
(Comparative Example 1)
In this comparative example, the processing is performed using fine dust as a soil repairing agent, but this is an example outside the conditions of the present invention. The oxygen concentration of the slurry water was 3.5 ppm as in Example 2. From the concentrated slurry tank 10, a slurry having a converter dust concentration of 23 mass% was sent to the dehydrator 14. In the dehydrator 14, a dehydrated cake having a water content of 24% by mass was produced and sent to the fine dust drying device 16. The drying conditions of the fine dust drying device 16 were an atmospheric temperature of 230 ° C., an internal oxygen concentration of 12% by volume, and a drying time of 20 minutes. The product of drying time and oxygen concentration in this treatment was 240 minutes and volume%, which was outside the scope of the present invention.
As a result of the treatment of Comparative Example 1, a soil repair agent for converter dust having an average particle size of 1.7 microns, 10% by mass of metallic iron and 28% by mass of ferrous oxide and 3% by mass of water is manufactured. I was able to. This soil restoration agent was subjected to a trichlorethylene removal reaction test under the condition of 15 grams per liter of soil. Only 41% of trichlorethylene was decomposed in the reaction for 5 days. Thus, the activity of the converter dust treated outside the conditions of the present invention was low.
[0019]
(Comparative Example 2)
This comparative example is an example of treatment in which fine dust was treated with a soil repairing agent, but the oxygen concentration of slurry water was high. The oxygen concentration of the slurry water was 5.4 ppm. From the concentrated slurry tank 10, a slurry having a converter dust concentration of 20 mass% was sent to the dehydrator 14. In the dehydrator 14, a dehydrated cake having a moisture content of 29% by mass was produced and sent to the fine dust drying device 16. The drying conditions of the fine dust drying device 16 were an atmospheric temperature of 250 ° C., an internal oxygen concentration of 8% by volume, and a drying time of 20 minutes. The product of drying time and oxygen concentration in this treatment was 160 minutes and volume%, which was within the scope of the present invention.
As a result of the treatment in Comparative Example 2, it was possible to produce a soil repair agent for converter dust having an average particle diameter of 2.1 microns, metal iron of 9% by mass and ferrous oxide of 27% by mass. The soil remediation agent was examined by a trichlorethylene removal reaction test. Only 38% trichlorethylene could be decomposed in the reaction for 5 days under the condition of blending 15 grams per liter of soil. Even in this treatment, the activity of the converter dust was low.
[0020]
【The invention's effect】
In the method of the present invention, since converter dust is used as a restoration material, an inexpensive soil restoration agent can be produced as compared with an iron particle production method such as an atomization method. In addition, since the degree of oxidation of particles containing iron can be controlled, it is possible to manufacture a high-quality soil restoration agent having a stable reaction activity, so that the construction becomes easy and the overall construction cost is reduced. Furthermore, since a large amount of soil restoration agent can be produced once, supply of the soil restoration agent to a large-scale construction is also possible.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram of an apparatus for producing a dry soil repair agent consisting of powders containing a large amount of iron from converter dust for carrying out the method of the present invention.
[Explanation of symbols]
1 ... Steelmaking converter,
2 ... Non-combustion gas recovery device,
3 ... wet dust collector,
4 ... Slurry recovery trough,
5 ... Coarse grain separator,
6 ... sedimentation tank,
7 ... Over water circulation piping,
8 ... Concentrated slurry pump,
9 ... Concentrated slurry piping,
10 ... Concentrated slurry tank,
11: Stirring device,
12 ... concentrated slurry recovery pump,
13 ... Concentrated slurry recovery piping,
14 ... dehydrator,
15 ... Coarse-grain dust drying device,
16 ... Fine dust drying device

Claims (4)

製鋼転炉から発生する転炉ガスを非燃焼式転炉ガス回収装置にて処理する際に湿式集塵機で回収して得た転炉ダストと溶存酸素濃度4ppm以下の水との混合物を脱水して脱水物を製造し、該脱水物を350℃以下の温度で、かつ、乾燥装置内雰囲気の酸素濃度と乾燥時間の積が200分・容積%以下の条件で乾燥することを特徴とする土壌修復剤の製造方法。When the converter gas generated from a steelmaking converter is processed by a non-combustion converter gas recovery device, a mixture of converter dust and water having a dissolved oxygen concentration of 4 ppm or less recovered by a wet dust collector is dehydrated. Soil remediation characterized by producing a dehydrated product and drying the dehydrated product at a temperature of 350 ° C. or lower and a product of the oxygen concentration in the drying apparatus atmosphere and the drying time of 200 minutes / volume% or less. Manufacturing method. 転炉ダストと溶存酸素濃度4ppm以下の水との混合物を湿式分級装置にかけて得た微粒分の転炉ダストと水との混合物を脱水して、水分が30質量%以下の脱水物を製造して、該脱水物を酸素濃度が10容積%以下の雰囲気内で乾燥することを特徴とする請求項1に記載の土壌修復剤の製造方法。A mixture of the converter dust and water having a dissolved oxygen concentration of 4 ppm or less was applied to a wet classifier to dehydrate the finely divided converter dust and water to produce a dehydrated product having a water content of 30% by mass or less. The method for producing a soil repairing agent according to claim 1, wherein the dehydrated product is dried in an atmosphere having an oxygen concentration of 10% by volume or less. 請求項1または請求項2に記載のいずれかの方法で乾燥した転炉ダストを酸素濃度が10容積%以下の容器内に充填することを特徴とする土壌修復剤の製造方法。A method for producing a soil repairing agent, comprising filling the converter dust dried by the method according to claim 1 or 2 into a container having an oxygen concentration of 10% by volume or less. 転炉ダストと溶存酸素濃度4ppm以下の水との混合物を湿式分級装置にかけて得た粗粒分の転炉ダストと水との混合物を脱水して得た脱水物を、350℃以下の温度で、かつ、乾燥装置内雰囲気の酸素濃度と乾燥時間の積が800分・容積%以下の条件で乾燥することを特徴とする土壌修復剤の製造方法。A dehydration product obtained by dehydrating a mixture of the converter dust and water of coarse particles obtained by applying a mixture of the converter dust and water having a dissolved oxygen concentration of 4 ppm or less to a wet classifier at a temperature of 350 ° C. or less, And the manufacturing method of the soil repair agent characterized by drying on condition that the product of the oxygen concentration of drying apparatus atmosphere and drying time is 800 minutes and volume% or less.
JP2003043689A 2003-02-21 2003-02-21 Method for producing soil repair agent Expired - Fee Related JP3848627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043689A JP3848627B2 (en) 2003-02-21 2003-02-21 Method for producing soil repair agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043689A JP3848627B2 (en) 2003-02-21 2003-02-21 Method for producing soil repair agent

Publications (2)

Publication Number Publication Date
JP2004250612A JP2004250612A (en) 2004-09-09
JP3848627B2 true JP3848627B2 (en) 2006-11-22

Family

ID=33026619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043689A Expired - Fee Related JP3848627B2 (en) 2003-02-21 2003-02-21 Method for producing soil repair agent

Country Status (1)

Country Link
JP (1) JP3848627B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116430A (en) * 2004-10-21 2006-05-11 Actree Corp Method for recovering dehydrated cake
JP2010284582A (en) * 2009-06-10 2010-12-24 Astec Irie Co Ltd Method of dehydrating coarse dust

Also Published As

Publication number Publication date
JP2004250612A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
BR112021015843A2 (en) MECANOCHEMICAL PROCESS, USE OF AN ELECTRIC MOTOR, AND MECHANICAL AND MECHANICAL AND MECHANICAL MILLS
CN106315742B (en) The method of Cr VI in sodium humate/charcoal magnetic composite removal waste water
BR112018016047B1 (en) COMPOSITION CONTAINING MODIFIED CHROMATE DEFICIENT RED MUD, ITS PRODUCTION METHOD AND ITS USE
CN109833849B (en) Modified biochar for arsenic-polluted soil remediation and preparation method and application thereof
CN110201628A (en) A kind of doping boron nitride and preparation method thereof removing heavy metal in high-temperature flue gas
CN111495958A (en) Contaminated soil remediation method
CN110898805A (en) Preparation method and application of graphene-like structure biochar loaded nano zero-valent iron composite material
Abdel-Samad et al. Synthesis and characterization of functionalized activated carbon for removal of uranium and iron from phosphoric acid
CN1942406B (en) Process for the treatment of sludge
JP3848627B2 (en) Method for producing soil repair agent
CN114452936A (en) Preparation method and application of fenton sludge-based magnetic adsorbent
El-Shafey et al. Sorption of lead and silver from aqueous solution on phosphoric acid dehydrated carbon
Liu et al. Fabrication of a confined pyrite cinder-based photo-Fenton catalyst and its degradation performance for ciprofloxacin
CN111925016B (en) Method for treating high-arsenic waste acid by using honeycomb briquette slag
CN113600133A (en) Phosphorus removal adsorbent and preparation method and application thereof
JP6042237B2 (en) Purification method
JP2016187795A (en) Heavy metal adsorbent and method for producing the same
JP2004292806A (en) Soil renewing agent and method for renewal of soil
JP2003160338A (en) Arsenic-adsorptive manganese compound, arsenic adsorbent, and method for adsorbing and removing arsenic in aqueous solution
CN114733486A (en) Preparation method of phosphorus-removing modified biochar
CN112774631A (en) Method for preparing biochar-based composite adsorbing material by using aquatic product processing waste and application of biochar-based composite adsorbing material in antimony-containing wastewater treatment
CN100355676C (en) Sludge treatment method
JP5721255B2 (en) Method for producing iron powder for treating organohalogen compounds, and purification method for soil / groundwater contamination
KR102469438B1 (en) Foam type hydrochar stablizer based on wood waste and Stabilization method for contaminated soil comprising arsenic and cationic heavy metals mixed using thereof
JP4272551B2 (en) Method for producing iron powder for soil repair agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees