JP2016187795A - Heavy metal adsorbent and method for producing the same - Google Patents

Heavy metal adsorbent and method for producing the same Download PDF

Info

Publication number
JP2016187795A
JP2016187795A JP2015069645A JP2015069645A JP2016187795A JP 2016187795 A JP2016187795 A JP 2016187795A JP 2015069645 A JP2015069645 A JP 2015069645A JP 2015069645 A JP2015069645 A JP 2015069645A JP 2016187795 A JP2016187795 A JP 2016187795A
Authority
JP
Japan
Prior art keywords
heavy metal
manganese
manganese oxide
microorganisms
metal adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015069645A
Other languages
Japanese (ja)
Inventor
瀧 寛則
Hironori Taki
寛則 瀧
昌範 根岸
Masanori Negishi
昌範 根岸
直幸 宮田
Naoyuki Miyata
直幸 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Akita Prefectural University
Original Assignee
Taisei Corp
Akita Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Akita Prefectural University filed Critical Taisei Corp
Priority to JP2015069645A priority Critical patent/JP2016187795A/en
Publication of JP2016187795A publication Critical patent/JP2016187795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heavy metal adsorbent that prevents manganese oxide produced by microorganisms from becoming an anaerobic state with a lapse of time and thus prevents decrease in cation adsorption ability, and a method for producing the same.SOLUTION: The present invention provides a heavy metal adsorbent in which manganese oxide produced by microorganisms is subjected to heat treatment and organic matter derived from microorganisms is sufficiently removed. In the heat treatment, manganese oxide produced by microorganisms is heated in the range of 300-500°C, and the heating temperature is regulated at a fixed temperature (500°C) or less, so that the cation adsorption ability of manganese oxide can be maintained.SELECTED DRAWING: Figure 3

Description

本発明は、カドミウム等の金属陽イオンを吸着する重金属吸着剤及びその製造方法に関する。   The present invention relates to a heavy metal adsorbent that adsorbs metal cations such as cadmium and a method for producing the same.

廃棄物や自然土壌中には、鉛や水銀、カドミウムといった重金属などの有害物質が含まれている場合がある。金属は雨水の浸透による洗い出しに伴って浸出水中に溶出する結果環境を汚染する。このような環境汚染対策、すなわち重金属対策には、キレート剤、カルシウム化合物、硫化物、鉄粉等の薬剤を用いた不溶化、セメント固化による土壌からの溶出抑制など様々な方法が知られている。   Waste and natural soil may contain hazardous substances such as heavy metals such as lead, mercury, and cadmium. Metals pollute the environment as a result of leaching into the leachate as they are washed out by rainwater infiltration. For such environmental pollution countermeasures, that is, heavy metal countermeasures, various methods are known such as insolubilization using chemicals such as chelating agents, calcium compounds, sulfides, iron powder, and suppression of elution from soil by cement solidification.

重金属対策のなかでも、重金属吸着剤を利用する方法が知られている。重金属のなかでもカドミウムについては、酸化マンガンをカドミウム吸着剤として利用して環境から除去することが知られている。カドミウム吸着剤として試用する酸化マンガンについては、特に、自然環境中でのマンガンの化学酸化が遅く、微生物の触媒作用が必要であることが知られている(非特許文献1)。なお、非特許文献1には、微生物が生成するマンガン酸化物の構造及び特性について記載されている。   Among the measures for heavy metals, a method using a heavy metal adsorbent is known. Among heavy metals, cadmium is known to be removed from the environment using manganese oxide as a cadmium adsorbent. It is known that manganese oxide to be used as a cadmium adsorbent is particularly slow in chemical oxidation of manganese in the natural environment and requires a catalytic action of microorganisms (Non-patent Document 1). Non-Patent Document 1 describes the structure and characteristics of manganese oxide produced by microorganisms.

また、非特許文献2には、微生物が産生するマンガン酸化物に対して類似構造をもつ酸化物を化学合成することが記載されている。ただし、化学合成した酸化マンガンは、微生物が産生する酸化マンガンと比較して、カドミウム吸着能力が低いことが指摘されている(非特許文献3)。   Non-Patent Document 2 describes that an oxide having a similar structure to a manganese oxide produced by a microorganism is chemically synthesized. However, it has been pointed out that chemically synthesized manganese oxide has lower cadmium adsorption ability than manganese oxide produced by microorganisms (Non-patent Document 3).

Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., Webb, S. M. (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu. Rev. Earth Planet Sci., 32, 287-328.Tebo, BM, Bargar, JR, Clement, BG, Dick, GJ, Murray, KJ, Parker, D., Verity, R., Webb, SM (2004) Biogenic manganese oxides: properties and mechanisms of formation.Annu. Rev. Earth Planet Sci., 32, 287-328. Villalobos, M., Toner, B., Bargar, J., Sposito, G. (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim. Cosmochim. Acta, 67, 2649-2662.Villalobos, M., Toner, B., Bargar, J., Sposito, G. (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim. Cosmochim. Acta, 67, 2649-2662. Tani, Y., Ohashi, M., Miyata, N., Seyama, H., Iwahori, K., Soma, M. (2004) Sorption of Co(II), Ni(II), and Zn(II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2. J. Environ. Sci. Health A, 39, 2641-2660.Tani, Y., Ohashi, M., Miyata, N., Seyama, H., Iwahori, K., Soma, M. (2004) Sorption of Co (II), Ni (II), and Zn (II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2. J. Environ. Sci. Health A, 39, 2641-2660.

ところが、微生物が産生する酸化マンガンは、時間の経過とともに嫌気条件となりやすい。酸化マンガンが嫌気状態に置かれると微生物の働きにより還元的に溶解するため、処理対象に含まれる陽イオンを十分に除去できないか、一旦吸着した陽イオンを放出してしまうといった問題があった。   However, manganese oxide produced by microorganisms tends to become anaerobic over time. When manganese oxide is placed in an anaerobic state, it is reductively dissolved by the action of microorganisms, so that there is a problem that the cations contained in the object to be treated cannot be sufficiently removed or the cations once adsorbed are released.

そこで、本発明は、上述した実用に鑑み、陽イオン吸着能の低下を防止した重金属吸着剤及びその製造方法を提供することを目的とする。   Then, in view of the practical use mentioned above, an object of this invention is to provide the heavy metal adsorbent which prevented the fall of cation adsorption ability, and its manufacturing method.

上述した目的を達成するため、本発明者らが鋭意検討した結果、微生物により酸化マンガンを産生した場合、当該微生物等に由来する有機物が分解される際に環境中の酸素を消費するために嫌気状態になりやすいこと、微生物等に由来する有機物を加熱により除去すれば陽イオン吸着能の低下を防止できることを見いだし、本発明を完成するに至った。本発明は以下を包含する。   As a result of intensive studies by the present inventors in order to achieve the above-described object, when manganese oxide is produced by a microorganism, anaerobic reaction is caused because oxygen in the environment is consumed when organic matter derived from the microorganism is decomposed. It has been found that it is easy to be in a state, and that organic substances derived from microorganisms and the like can be removed by heating to prevent a decrease in cation adsorption capacity, and the present invention has been completed. The present invention includes the following.

(1)微生物が産生した酸化マンガンを加熱処理してなる、重金属吸着剤。
(2)上記加熱処理は、微生物が産生した酸化マンガンを300〜500℃の範囲に加熱することを特徴とする(1)記載の重金属吸着剤。
(3)微生物が産生した酸化マンガンを加熱処理する工程を含む、重金属吸着剤の製造方法。
(4)上記加熱処理は、微生物が産生した酸化マンガンを300〜500℃の範囲に加熱することを特徴とする(3)記載の重金属吸着剤の製造方法。
(1) A heavy metal adsorbent obtained by heat-treating manganese oxide produced by a microorganism.
(2) The heavy metal adsorbent according to (1), wherein the heat treatment heats manganese oxide produced by a microorganism to a range of 300 to 500 ° C.
(3) A method for producing a heavy metal adsorbent, comprising a step of heat-treating manganese oxide produced by a microorganism.
(4) The method for producing a heavy metal adsorbent according to (3), wherein the heat treatment heats manganese oxide produced by a microorganism to a range of 300 to 500 ° C.

本発明に係る重金属吸着剤の適用例を示す概略構成図である。It is a schematic block diagram which shows the application example of the heavy metal adsorbent which concerns on this invention. 本発明に係る重金属吸着剤の他の適用例を示す概略構成図である。It is a schematic block diagram which shows the other application example of the heavy metal adsorbent which concerns on this invention. 加熱処理温度と酸化マンガンに含まれる有機物量との関係、加熱処理温度と陽イオン吸着能との関係を示す特性図である。It is a characteristic view which shows the relationship between heat processing temperature and the amount of organic substances contained in manganese oxide, and the relationship between heat processing temperature and cation adsorption ability. 加熱処理温度による結晶性の変化を示す特性図である。It is a characteristic view which shows the change of crystallinity with heat processing temperature.

以下、本発明に係る重金属吸着剤を図面を参照して詳細に説明する。
本発明に係る重金属吸着剤は、微生物が産生した酸化マンガンを加熱処理することで得られるものである。ここで、微生物が産生した酸化マンガンとは、マンガン酸化能を有する微生物をマンガン存在下に培養することで産生された酸化マンガンを意味する。
Hereinafter, the heavy metal adsorbent according to the present invention will be described in detail with reference to the drawings.
The heavy metal adsorbent according to the present invention is obtained by heat-treating manganese oxide produced by a microorganism. Here, the manganese oxide produced by the microorganism means manganese oxide produced by culturing a microorganism having manganese oxidizing ability in the presence of manganese.

マンガン酸化能を有する微生物としては、特に限定されず、従来公知の微生物を使用することができる。例えば、環境中のマンガン酸化に広く関与していると考えられる新規に単離されたU9-1i株(Miyata, N., Saito, K., Okano, K., and Ozaki, Y.: Manganese(II) oxidation by a unique alphaproteobacterium that grows symbiotically in cocultures with a broad range of microorganisms, 19th International Symposium on Environmental Biogeochemistry, Environmental Changes and Sustainability of Biogeochemical Cycling (Hamburg, Germany), Abstract, p. 166 (September 18, 2009))を使用することができる。   It does not specifically limit as microorganisms which have manganese oxidation ability, A conventionally well-known microorganism can be used. For example, a newly isolated U9-1i strain (Miyata, N., Saito, K., Okano, K., and Ozaki, Y .: Manganese () that is believed to be widely involved in manganese oxidation in the environment. II) oxidation by a unique alphaproteobacterium that grows symbiotically in cocultures with a broad range of microorganisms, 19th International Symposium on Environmental Biogeochemistry, Environmental Changes and Sustainability of Biogeochemical Cycling (Hamburg, Germany), Abstract, p. 166 (September 18, 2009) ) Can be used.

また、マンガン酸化能を有する微生物としては、マンガン酸化細菌及びマンガン酸化真菌を使用することができる。   In addition, manganese-oxidizing bacteria and manganese-oxidizing fungi can be used as microorganisms having manganese oxidizing ability.

マンガン酸化細菌としては、環境中(河川、湖沼、土壌、海洋など)に普遍的に棲息する細菌(B.M. Tebo, H.A. Johnson, J.K. McCarthy, A.S. Templeton (2005). Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13, 421-428. H.L. Ehrlich, D.K. Newman (2009). Geomicrobiology, 5th ed. CRC Press, New York.)を挙げることができる。   Manganese-oxidizing bacteria are ubiquitous in the environment (rivers, lakes, soils, oceans, etc.) (BM Tebo, HA Johnson, JK McCarthy, AS Templeton (2005). Geomicrobiology of manganese (II) oxidation. Trends in Microbiology, 13, 421-428. HL Ehrlich, DK Newman (2009). Geomicrobiology, 5th ed. CRC Press, New York.

さらに、マンガン酸化細菌としては、湿地からの分離例としてLeptothrix discophora(L.F. Adams, W.C.Ghiorse (1987). Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. Journal of Bacteriology, 169, 1279-1285.)を挙げることができる。 Furthermore, as a manganese-oxidizing bacterium, Leptothrix discophora (LF Adams, WCGhiorse (1987). Characterization of extracellular Mn 2+ -oxidizing activity and isolation of an Mn 2+ -oxidizing protein from Leptothrix discophora SS-1 Journal of Bacteriology, 169, 1279-1285.).

さらにまた、マンガン酸化細菌としては、淡水からの分離例としてPseudomonas putida(M. Okazaki, T. Sugita, M. Shimizu, Y. Ohode, K. Iwamoto, E.W. de Vrind-de Jong, J.P.M. de Vrind, P.L.A.M. Corstjens (1997). Applied and Environmental Microbiology, 63, 4793-4799.)を挙げることができる。   Furthermore, as manganese-oxidizing bacteria, Pseudomonas putida (M. Okazaki, T. Sugita, M. Shimizu, Y. Ohode, K. Iwamoto, EW de Vrind-de Jong, JPM de Vrind, PLAM) Corstjens (1997). Applied and Environmental Microbiology, 63, 4793-4799.).

さらにまた、マンガン酸化細菌としては、淡水及び土壌からの分離例としてPedomicrobium sp.(E.I. Larsen, L.I. Sly, A.G. McEwan (1999). Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Archives of Microbiology, 171, 257-264.)を挙げることができる。   Furthermore, as manganese-oxidizing bacteria, Pedomicrobium sp. (EI Larsen, LI Sly, AG McEwan (1999). Manganese (II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Archives of Microbiology, 171, 257-264.

さらにまた、マンガン酸化細菌としては、土壌からの分離例としてArthrobacter sp.(H.L. Ehrlich, D.K. Newman (2009). Geomicrobiology, 5th ed. CRC Press, New York.)を挙げることができる。   Furthermore, examples of manganese-oxidizing bacteria include Arthrobacter sp. (H.L. Ehrlich, D.K. Newman (2009). Geomicrobiology, 5th ed. CRC Press, New York.).

マンガン酸化真菌としては、Acremonium strictum等の多様な不完全菌類(子嚢菌類)が土壌、水環境等広く棲息していることが例が挙げられる(N. Miyata, K. Maruo, Y. Tani, H. Tsuno, H. Seyama, M. Soma, K. Iwahori (2006). Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles. Geomicrobiology Journal, 23, 63-73.)。   Examples of manganese-oxidizing fungi include various incomplete fungi such as Acremonium strictum (Ascomycota) that are widely inhabited in soil and water environments (N. Miyata, K. Maruo, Y. Tani, H. Tsuno, H. Seyama, M. Soma, K. Iwahori (2006). Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles. Geomicrobiology Journal, 23, 63-73.).

マンガン酸化能を有する微生物は、通常、細胞外に酸化マンガンを産生し、細胞表層が酸化マンガンで覆われるような状態となる。本発明に係る重金属吸着剤は、マンガン酸化能を有する微生物をマンガン存在下に培養した後、脱水或いは乾燥した培養物を所定の温度で加熱することで、マンガン酸化能を有する微生物等に由来する有機物を除去したものである。ここで有機物の除去とは、温度処理前に含まれる有機物の50%以上、好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上、最も好ましくは90%以上を除去することを意味する。なお、微生物が産生した酸化マンガンに含まれる有機物の量は、特に限定されないが、例えば、元素分析装置を用いて炭素含量として測定することができる。   Microorganisms having manganese oxidizing ability usually produce manganese oxide outside the cell, and the cell surface layer is covered with manganese oxide. The heavy metal adsorbent according to the present invention is derived from microorganisms having manganese oxidizing ability by culturing microorganisms having manganese oxidizing ability in the presence of manganese and then heating the dehydrated or dried culture at a predetermined temperature. Organic matter is removed. Here, the removal of organic matter means removal of 50% or more, preferably 60% or more, more preferably 70% or more, more preferably 80% or more, and most preferably 90% or more of the organic matter contained before the temperature treatment. Means. The amount of organic matter contained in the manganese oxide produced by the microorganism is not particularly limited, but can be measured as the carbon content using an elemental analyzer, for example.

本発明に係る重金属吸着剤は、微生物に由来する有機物が十分に除去されているため、長期に亘って使用されても嫌気性状態になることを防止し、酸化還元電位の低下による酸化マンガンの構造変化・分解を抑制することができる。なお、このとき、マンガン酸化能を有する微生物に由来する有機物を除去するための加熱処理では、特に限定されないが、有機物を除去できる温度以上で加熱される。マンガン酸化能を有する微生物に由来する有機物を除去するための加熱処理では、例えば、300℃以上とすることが好ましく、350℃以上とすることがより好ましく、400℃以上とすることが更に好ましく500℃以上とすることが最も好ましい。一方で、高温で酸化マンガンを加熱すると、酸化マンガンにおける陽イオン吸着能の低下が顕著になる場合がある。したがって、マンガン酸化能を有する微生物に由来する有機物を除去するための加熱処理では、例えば、700℃未満とすることが好ましく、650℃未満とすることがより好ましく、600℃未満とすることが更に好ましく、550℃未満とすることが最も好ましい。   In the heavy metal adsorbent according to the present invention, organic substances derived from microorganisms are sufficiently removed, so that an anaerobic state is prevented even when used over a long period of time. Structural change / decomposition can be suppressed. In addition, although it does not specifically limit in the heat processing for removing the organic substance derived from the microorganisms which have manganese oxidation ability at this time, it heats more than the temperature which can remove an organic substance. In the heat treatment for removing organic substances derived from microorganisms having manganese oxidizing ability, for example, the temperature is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, and further preferably 400 ° C. or higher. Most preferably, the temperature is set to ° C or higher. On the other hand, when manganese oxide is heated at a high temperature, the decrease in cation adsorption ability of manganese oxide may become significant. Therefore, in the heat treatment for removing organic substances derived from microorganisms having manganese oxidizing ability, for example, the temperature is preferably less than 700 ° C., more preferably less than 650 ° C., and further preferably less than 600 ° C. Preferably, it is less than 550 degreeC.

以上のように構成された本発明に係る重金属吸着剤は、重金属で汚染された環境に使用することができる。重金属で汚染された環境とは、地下水、土壌(岩石含む)、廃棄物、排水、河川、湖沼、海あるいは汚染された環境を通過した水等を挙げることができる。   The heavy metal adsorbent according to the present invention configured as described above can be used in an environment contaminated with heavy metals. Examples of the environment contaminated with heavy metals include groundwater, soil (including rocks), waste, drainage, rivers, lakes, the sea, or water that has passed through the contaminated environment.

本発明に係る重金属吸着剤は、上述した環境に含まれるカドミウム等の金属陽イオンを酸化マンガンによって吸着することで、当該環境に含まれる重金属を除去することができる。   The heavy metal adsorbent according to the present invention can remove heavy metals contained in the environment by adsorbing metal cations such as cadmium contained in the environment described above with manganese oxide.

本発明に係る重金属吸着剤を重金属で汚染された環境に適用する例としては、例えば図1に示すように、重金属を含む廃棄物を集積した施設を挙げることができる。図1に示す適用例では、本発明に係る重金属吸着剤は、施設敷地と外部との間において地中に埋設された浄化壁1として使用することができる。本発明に係る重金属吸着剤を浄化壁1として使用した場合、施設敷地内に集積した廃棄物から重金属が地下水(図1中矢印にて地下水の流れを示す)に溶出した場合であっても、地下水が浄化壁1を通過する際に重金属を除去することができる。   As an example of applying the heavy metal adsorbent according to the present invention to an environment contaminated with heavy metals, for example, as shown in FIG. 1, a facility in which wastes containing heavy metals are accumulated can be mentioned. In the application example shown in FIG. 1, the heavy metal adsorbent according to the present invention can be used as the purification wall 1 buried in the ground between the facility site and the outside. When the heavy metal adsorbent according to the present invention is used as the purification wall 1, even if heavy metal is eluted from the waste accumulated in the facility site into the groundwater (showing the flow of groundwater as indicated by arrows in FIG. 1), Heavy metal can be removed when groundwater passes through the purification wall 1.

また、本発明に係る重金属吸着剤を適用した他の例としては、例えば図2に示すように、自然由来の重金属を含む土壌等の不溶化用資材としての利用形態である。図2に示す適用例では、本発明に係る重金属吸着剤2の上に、重金属を含む、いわゆる掘削ずり3を載置するとともに、掘削ずり3の法面を遮水し、掘削ずり3の表面を舗装する。これにより、重金属を含む掘削ずり3から重金属が溶出したとしても、重金属吸着剤2により吸着することで、重金属吸着剤2の下方の地盤4に重金属が達することを防止できる。   Moreover, as another example to which the heavy metal adsorbent according to the present invention is applied, as shown in, for example, FIG. In the application example shown in FIG. 2, a so-called excavation ladle 3 containing heavy metal is placed on the heavy metal adsorbent 2 according to the present invention, and the slope of the excavation ladle 3 is impermeable, and the surface of the excavation ladle 3 Paving. Thereby, even if heavy metal elutes from the excavation ladle 3 including heavy metal, it is possible to prevent heavy metal from reaching the ground 4 below the heavy metal adsorbent 2 by being adsorbed by the heavy metal adsorbent 2.

以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the technical scope of this invention is not limited to a following example.

〔実施例1〕
本実施例では、微生物が産生する酸化マンガンに対して加熱処理したときの、炭素含有量の変化とカドミウム吸着能の変化とを検討し、また加熱処理による結晶性の変化も検討した。
[Example 1]
In this example, changes in carbon content and changes in cadmium adsorption ability when heat treatment was performed on manganese oxide produced by microorganisms were examined, and changes in crystallinity due to heat treatment were also examined.

<マンガン酸化物含有汚泥の調製>
河川床生物膜を植種として用いて調製したマンガン酸化菌の集積培養系をマンガン汚泥として試験に供した。集積時の培養液の組成を表1に示す。20 L 容ポリバケツを用い、15 L の培地を添加して大量培養した。エアレーションには観賞魚飼育用のエアポンプ2 台を使用し、バケツ底部から散気球により曝気撹拌した。室温にて回分法で培養を行い、培地交換時には15 分程度静置して培養物(以下、Mn 馴養汚泥)を沈降させてから、上澄みをデカンテーションにより除去し、新鮮な培地を投入した。培地交換の頻度は1 週間に2〜3 回とした。また、培地交換時には、パックテストを用いて上澄みのMn(II)濃度を簡易的にモニタリングし、溶存Mn(II)がすべて酸化されて水相中から除去されていることを確認した。以上の培養操作により、マンガン酸化物含有汚泥(以下、マンガン汚泥と称す)を調製した。なお、実験には、マンガン汚泥を凍結乾燥したものを用いた。下記の実験に供したマンガン汚泥のMn含有率は23.2%であった。
<Preparation of manganese oxide-containing sludge>
An integrated culture system of manganese-oxidizing bacteria prepared using riverbed biofilm as a seed was used as a test for manganese sludge. The composition of the culture solution at the time of accumulation is shown in Table 1. Using a 20 L polybucket, 15 L of medium was added and large-scale culture was performed. For aeration, two air pumps for raising ornamental fish were used, and aeration and agitation were performed from the bottom of the bucket with an air balloon. Culturing was carried out at room temperature using a batch method. When the medium was changed, the culture was allowed to stand for about 15 minutes to settle the culture (hereinafter referred to as Mn-adapted sludge), the supernatant was removed by decantation, and a fresh medium was added. The frequency of medium exchange was 2-3 times a week. At the time of medium exchange, the Mn (II) concentration in the supernatant was simply monitored using a pack test, and it was confirmed that all dissolved Mn (II) was oxidized and removed from the aqueous phase. Manganese oxide-containing sludge (hereinafter referred to as manganese sludge) was prepared by the above culture operation. In the experiment, manganese sludge freeze-dried was used. The Mn content of manganese sludge subjected to the following experiment was 23.2%.

Figure 2016187795
Figure 2016187795

<加熱処理>
供試マンガン汚泥の数十mgを石英るつぼに分取し、マッフル炉を用いて、それぞれ100、300、500、700℃で一時間加熱処理したのち、デシケーター中で放冷した。
<Heat treatment>
Tens of mg of the test manganese sludge was dispensed into a quartz crucible, heat-treated at 100, 300, 500, and 700 ° C. for 1 hour using a muffle furnace, respectively, and then allowed to cool in a desiccator.

<炭素含有量の測定>
炭素含有量はパーキンエルマー社製のCHNコーダー2400CHNを用いて測定した。
<Measurement of carbon content>
The carbon content was measured using a CHN coder 2400CHN manufactured by PerkinElmer.

<カドミウム吸着量の測定>
供試試料10mgを125mL容強化硬質バイアル瓶(日電理化硝子社製 V-100、 PTFEコーティングブチルゴム栓およびアルミシールで密栓)に分取し、適宜濃度調整したカドミウム標準液(和光純薬製)50 mLを添加後、pHを5.8±0.1に調整、縦回転振とう機で24時間振とうを行った。振とう後の試料は10,000rpmで10分間遠心分離を行い、上澄み液を0.45μmシリンジフィルターでろ過後、カドミウム濃度を測定した。カドミウム濃度の測定は、ICP/MS(Agilent社製:7700e)を用いて行った。各平衡濃度におけるカドミウム吸着量をグラフにプロットし、Freundlich型の吸着等温式で近似させ、環境基準である0.01 mg/Lを平衡濃度としたときのカドミウム吸着量を算出した。
<Measurement of cadmium adsorption amount>
10 mg of test sample was dispensed into 125 mL hardened hard vials (V-100 manufactured by Nidec Rika Glass Co., Ltd., sealed with PTFE-coated butyl rubber stoppers and aluminum seals), and cadmium standard solution (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to the appropriate concentration 50 After adding mL, the pH was adjusted to 5.8 ± 0.1, and the mixture was shaken for 24 hours with a vertical rotary shaker. The sample after shaking was centrifuged at 10,000 rpm for 10 minutes, and the supernatant was filtered through a 0.45 μm syringe filter, and the cadmium concentration was measured. The cadmium concentration was measured using ICP / MS (Agilent: 7700e). The amount of cadmium adsorbed at each equilibrium concentration was plotted on a graph, approximated by the Freundlich type adsorption isotherm, and the amount of cadmium adsorbed when the environmental standard of 0.01 mg / L was used as the equilibrium concentration was calculated.

上記実験方法で測定した各加熱温度における炭素含有量およびカドミウム吸着量(平衡濃度=0.01mg/L)の変化を図3に示した。図3から分かるように、加熱処理によって、微生物が産生した酸化マンガンに含まれる有機物を大幅に除去することができた。また、加熱温度を300℃以上とした場合には、微生物が産生した酸化マンガンに含まれる有機物を殆ど全て除去できることが明らかとなった。   FIG. 3 shows changes in carbon content and cadmium adsorption amount (equilibrium concentration = 0.01 mg / L) at each heating temperature measured by the above experimental method. As can be seen from FIG. 3, organic substances contained in the manganese oxide produced by the microorganisms could be significantly removed by the heat treatment. It was also found that when the heating temperature was 300 ° C. or higher, almost all organic substances contained in manganese oxide produced by microorganisms could be removed.

一方、加熱処理の温度が高い場合には、陽イオン吸着能が低下することが明らかとなった。言い換えると、加熱処理の温度を一定の温度以下(例えば500℃)とすることで、酸化マンガンによる陽イオン吸着能を維持できることが明らかとなった。   On the other hand, when the temperature of heat treatment was high, it became clear that cation adsorption ability fell. In other words, it has been clarified that the cation adsorption ability by manganese oxide can be maintained by setting the temperature of the heat treatment to a certain temperature or lower (for example, 500 ° C.).

<X線回折による結晶性の検討>
各条件で加熱処理したマンガン汚泥のXRD解析をX線回折装置(リガクRINT-2500)を用いて行った。X線にはCuKα線(40kV、20mA)を用い、スキャンスピードは1.0°/分とした。
<Examination of crystallinity by X-ray diffraction>
XRD analysis of manganese sludge heat-treated under each condition was performed using an X-ray diffractometer (Rigaku RINT-2500). CuKα rays (40 kV, 20 mA) were used as X-rays, and the scan speed was 1.0 ° / min.

その結果を図4に示した。図4から分かるように、未処理および100℃で加熱処理したマンガン汚泥のXRDパターンは層状マンガン(IV)酸化物(バーネサイト;δ-MnO2)のパターンと一致していた。一方、300℃以上に加熱すると、(Mn3O4;Mn(II、III)酸化物)への相転換がみられた。さらに加熱温度を上昇させると、Mn3O4に相当するピーク強度が相対的に大きくなり、結晶性が大きく増大することが明らかとなった。図3に示した結果と併せると、加熱処理の温度が高い場合には、酸化マンガンの結晶性が大きく増大することにより、陽イオン吸着能が低下すると考えられた。 The results are shown in FIG. As can be seen from FIG. 4, the XRD pattern of untreated and heat-treated manganese sludge at 100 ° C. was consistent with the pattern of layered manganese (IV) oxide (bernite; δ-MnO 2 ). On the other hand, when heated to 300 ° C. or higher, phase conversion to (Mn 3 O 4 ; Mn (II, III) oxide) was observed. It was also found that when the heating temperature is further increased, the peak intensity corresponding to Mn 3 O 4 is relatively increased, and the crystallinity is greatly increased. In combination with the results shown in FIG. 3, it was considered that when the temperature of the heat treatment is high, the crystallinity of manganese oxide greatly increases, so that the cation adsorption ability decreases.

1…浄化壁、2…重金属吸着剤、3…掘削ずり、4…地盤
DESCRIPTION OF SYMBOLS 1 ... Purification wall, 2 ... Heavy metal adsorbent, 3 ... Excavation, 4 ... Ground

Claims (4)

微生物が産生した酸化マンガンを加熱処理してなる、重金属吸着剤。   A heavy metal adsorbent obtained by heat-treating manganese oxide produced by microorganisms. 上記加熱処理は、微生物が産生した酸化マンガンを300〜500℃の範囲に加熱することを特徴とする請求項1記載の重金属吸着剤。   The heavy metal adsorbent according to claim 1, wherein the heat treatment heats manganese oxide produced by a microorganism to a range of 300 to 500 ° C. 微生物が産生した酸化マンガンを加熱処理する工程を含む、重金属吸着剤の製造方法。   A method for producing a heavy metal adsorbent, comprising a step of heat-treating manganese oxide produced by a microorganism. 上記加熱処理は、微生物が産生した酸化マンガンを300〜500℃の範囲に加熱することを特徴とする請求項3記載の重金属吸着剤の製造方法。   4. The method for producing a heavy metal adsorbent according to claim 3, wherein the heat treatment heats manganese oxide produced by the microorganism to a range of 300 to 500C.
JP2015069645A 2015-03-30 2015-03-30 Heavy metal adsorbent and method for producing the same Pending JP2016187795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069645A JP2016187795A (en) 2015-03-30 2015-03-30 Heavy metal adsorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069645A JP2016187795A (en) 2015-03-30 2015-03-30 Heavy metal adsorbent and method for producing the same

Publications (1)

Publication Number Publication Date
JP2016187795A true JP2016187795A (en) 2016-11-04

Family

ID=57240198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069645A Pending JP2016187795A (en) 2015-03-30 2015-03-30 Heavy metal adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JP2016187795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025379A (en) * 2017-07-25 2019-02-21 大成建設株式会社 Method for producing microbe-produced manganese oxide, heavy metal adsorption method, and heavy metal adsorbent
CN115121223A (en) * 2022-06-06 2022-09-30 湖北省生态环境科学研究院(省生态环境工程评估中心) High-cadmium biochar-based adsorbent and preparation method thereof
CN116351385A (en) * 2023-04-23 2023-06-30 贵州大学 Preparation method of sludge-electrolytic manganese slag-based heavy metal ion adsorbent
CN116351385B (en) * 2023-04-23 2024-06-04 贵州大学 Preparation method of sludge-electrolytic manganese slag-based heavy metal ion adsorbent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184470A (en) * 2011-03-04 2012-09-27 Hiroshima Univ Method and device for recovering rare metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184470A (en) * 2011-03-04 2012-09-27 Hiroshima Univ Method and device for recovering rare metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"微生物が作るマンガン酸化物の加熱処理による結晶構造と微細構造の変化", J. JPN. SOC. POWDER POWDER METALLURGY, vol. 60, no. 3, JPN6018046081, March 2013 (2013-03-01), JP, pages 92 - 99, ISSN: 0004042118 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025379A (en) * 2017-07-25 2019-02-21 大成建設株式会社 Method for producing microbe-produced manganese oxide, heavy metal adsorption method, and heavy metal adsorbent
CN115121223A (en) * 2022-06-06 2022-09-30 湖北省生态环境科学研究院(省生态环境工程评估中心) High-cadmium biochar-based adsorbent and preparation method thereof
CN116351385A (en) * 2023-04-23 2023-06-30 贵州大学 Preparation method of sludge-electrolytic manganese slag-based heavy metal ion adsorbent
CN116351385B (en) * 2023-04-23 2024-06-04 贵州大学 Preparation method of sludge-electrolytic manganese slag-based heavy metal ion adsorbent

Similar Documents

Publication Publication Date Title
Pan et al. Rates of Cr (VI) generation from Cr x Fe1–x (OH) 3 solids upon reaction with manganese oxide
AU2012213202B2 (en) Composite adsorbent material containing a porous carbon matrix
Piccirillo et al. Bacteria immobilisation on hydroxyapatite surface for heavy metals removal
Hovsepyan et al. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation
Yang et al. In situ chemical fixation of arsenic-contaminated soils: An experimental study
Thouin et al. Characterization and mobility of arsenic and heavy metals in soils polluted by the destruction of arsenic-containing shells from the Great War
WO2014059141A1 (en) Modified biochar treatment media, system and method
Bello et al. Insights into the adsorption of heavy metals from wastewater using diatomaceous earth
Zhao et al. Effect of nanohydroxyapatite on cadmium leaching and environmental risks under simulated acid rain
Wang et al. Transport and retention of microplastics in saturated porous media with peanut shell biochar (PSB) and MgO-PSB amendment: co-effects of cations and humic acid
KR20180109188A (en) Covering material for coverong polluted sediments and method for preparing the same
Feng et al. In-situ formed Prussian blue nanoparticles supported by porous biochar as highly efficient removal of cesium ions
CN112342029A (en) Biological heavy metal contaminated soil remediation agent and preparation method and application thereof
Hu et al. A novel technique for Cd removal from soil based on alginate-derived floatable spheres
JP2006239583A (en) Sintered body for water purification, and production method
Michálková et al. Stability, transformations and stabilizing potential of an amorphous manganese oxide and its surface-modified form in contaminated soils
Li et al. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: Effect of ion type and concentration
JP2016187795A (en) Heavy metal adsorbent and method for producing the same
Thouin et al. Influence of environmental changes on the biogeochemistry of arsenic in a soil polluted by the destruction of chemical weapons: a mesocosm study
JP2012223733A (en) Method for improving ambient water quality
KR101344235B1 (en) Adsorbent for eliminating harmful ions using alum sludge and method for producing the same
JP2016187801A (en) Heavy metal adsorbent
Miyata et al. Reduction test of hydrogen sulfide in silty sediment of Fukuyama Inner Harbor using steelmaking slag
Shakya et al. Investigation on stability and leaching characteristics of mixtures of biogenic arsenosulphides and iron sulphides formed under reduced conditions
JP4052859B2 (en) Arsenic adsorbent and arsenic adsorption removal method in aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190528