JP3848515B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP3848515B2
JP3848515B2 JP2000049599A JP2000049599A JP3848515B2 JP 3848515 B2 JP3848515 B2 JP 3848515B2 JP 2000049599 A JP2000049599 A JP 2000049599A JP 2000049599 A JP2000049599 A JP 2000049599A JP 3848515 B2 JP3848515 B2 JP 3848515B2
Authority
JP
Japan
Prior art keywords
reactor
photocatalyst
water treatment
treatment apparatus
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049599A
Other languages
Japanese (ja)
Other versions
JP2001232357A (en
Inventor
輝史 宮田
豊 武田
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000049599A priority Critical patent/JP3848515B2/en
Publication of JP2001232357A publication Critical patent/JP2001232357A/en
Application granted granted Critical
Publication of JP3848515B2 publication Critical patent/JP3848515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水処理装置に関し、特に光触媒を用いて廃水中の有害有機物であるダイオキシン、有機ハロゲン化合物、揮発性有機化合物、農薬および菌類等の酸化分解を効率よく分解し、廃水を浄化する水処理装置および方法、ならびに光触媒体に関するものである。
【0002】
【従来の技術】
廃水の処理・浄化には、活性炭吸着法、イオン交換法、沈澱法、接触酸化法および薬液注入法等があり、対象廃水によって最適な処理方法が単独または複数の組合わせで用いられているが、これらの方法は建設費、維持・管理費が高くなるという問題がある。これらの問題点を克服するため、コンパクトで取扱い易く、安価でしかも処理効率の高い装置として二酸化チタン(TiO2 )等の光触媒を利用した水処理装置が提案されている。この水処理装置は、光触媒への光照射で生じた強力な酸化力により殺菌、有害有機物または悪臭等を分解するものである。
【0003】
従来の光触媒を用いた水処理装置として、光源を内蔵する管状の反応器に被処理水を通過させる管状の装置が提案されているが、これは、流速を上げて生じた撹拌効果により液中の有機物の拡散抵抗を小さくし、有機物と光触媒の接触効率を大きくして有機物の分解率を高めようとするものである。
【0004】
図4に従来技術に基づく光触媒を用いた水処理装置の概略を示す。この装置は、反応器外管4内壁に設けられた織布に担持された光触媒体1と、反応器内の中心部に設けられた光源2と、反応器の側面に設けられた廃水5の供給孔7および排出孔9とからなる。廃水5は、供給孔7から反応器外管内に入り、反応器外管4内壁と光源2との間隙を流れ、処理された後、排出孔9から外部へ排出される。図中、8は処理水、15は支持体を示す。
【0005】
【発明が解決しようとする課題】
図4に示すように反応器内壁に光触媒1、内部に光源2を設置した場合、反応器内の廃水が光触媒と接触する長さが一定であれば、光触媒と光源との間を流れる廃水の流路幅を狭くしたほうが、反応器内の廃水の流速が大きくなり、撹拌効果が生じるので分解率が高くなる。しかし、流路幅を狭くすることには限界があり、また流路幅が狭くなると反応器の圧損が大きくなるという問題がある。
本発明の課題は、従来の問題点を解決し、廃水中の有害成分を高効率で分解できる、光触媒を用いた水処理装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本願で特許請求する発明は以下のとおりである。
(1)被処理液が流通する筒状反応器の内部に光源および光触媒体を有する水処理装置において、前記光触媒体は、反応器壁面に沿って螺旋状突起を形成した円筒状光触媒体で、その内部に光源を有し、かつ該円筒状光触媒体の螺旋状突起の先端部と該光源との間に隙間を有し、該隙間の間に被処理液が通過して液の乱れを生じるように構成されていることを特徴とする水処理装置。
(2)螺旋構造を有する光触媒体が円筒状反応器内面に挿入され、反応器壁を構成するようにしたことを特徴とする(1)記載の水処理装置。
(3)前記光触媒体が光触媒成分以外の触媒成分を担持していることを特徴とする(1)または(2)記載の水処理装置。
(4)前記反応器の管端から有機化合物含有廃水をその長さ方向に供給し、当該反応器により浄化処理された処理水を供給口と反対位置の管端から上記と同じ方向で排出することを特徴とする(1)記載の水処理装置を用いた水処理方法。
【0007】
本発明でいう反応器壁面に沿って螺旋状突起を有する円筒状光触媒体とは、螺旋状突起を有する反応管壁に光触媒成分を担持したものや、円筒状反応管内に、あらかじめ光触媒成分を螺旋突起を有する円筒状に成形した光触媒体を挿入したものが例示される。
【0008】
光触媒成分としては、二酸化チタン、チタンストロンチウム、酸化亜鉛、酸化鉛およびセレン化カドミウム等の数多くの半導体が利用可能であるが、分解効率、安定性および安全性の観点から二酸化チタンの利用が好ましい。二酸化チタンにはルチル型、アナターゼ型の2種類の結晶形態が存在する。これは単独あるいは併用して用いてもかまわないが、アナターゼ型はルチル型よりも光触媒活性が高いのでアナターゼ型の利用が好ましい。しかし、ルチル型はアナターゼ型よりもバンドギャップが低いので、紫外光よりもエネルギーの低い可視光も利用できる利点がある。
【0009】
光触媒を螺旋突起を有する反応管に担持させる場合には、光触媒と蓚酸アンモニウムを水中に懸濁させた液を反応管の内面にコーティングすればよい。一方、螺旋状突起を有する光触媒体をあらかじめ成形して用いる場合には、光触媒、ポリビニルアルコールおよびシリカゾルを水中に懸濁させた液を無機繊維織布に含浸させたものを成形したり、光触媒、ガラス繊維、蓚酸およびシリカゾルを混練してペースト状としたものを成形する方法などにより本発明の光触媒体を得ることができる。
【0010】
これら光触媒体をそのまま用いてもかまわないが、光触媒体の活性向上あるいは対象廃水中の成分の選択的分解のために、金、銀、白金およびパラジウム等の貴金属またはこれらの塩化物、硫酸塩および各種錯体等を当該光触媒を担持させてもよい。
しかし、以上の方法は一例であって、表面に螺旋状突起を有する円筒状触媒体内部に光源が配置され、その間隙を被処理液が流れるようにすれば、いずれも本発明の範囲内である。
【0011】
さらに、本発明の装置においては、反応器内の円筒状触媒体内には光源が設置されている。光源は反応器に内管を設けてその内部に設置してもよいし、光源の配線部分が水と接触しないようにすれば、反応器内管を用いず、そのまま円筒状触媒体内に設置してもよい。
光触媒体へ照射する光源としては、光触媒を励起するものであればいずれでもよく、ブラックライト、低圧水銀灯、高圧水銀灯、殺菌灯、キセノン灯および補虫灯等の使用が可能である。条件によっては太陽光の利用も可能である。光源の位置としては、光源から放射状に光が照射されて光触媒体の全面に当たり、全光が有効に利用できる反応器の中心部が好ましい。
【0012】
反応器外管は光を透過する必要がなく、耐薬品性、耐腐食性を有する材質であればいずれでもよく、特に有機物濃度が低く外管を侵すおそれがない場合はポリ塩化ビニル等の有機化合物の材質でもよい。反応器内管はほとんど光を透過し、しかも耐薬品性、耐腐食性に優れた石英ガラス等の材質であればいずれでもよい。
【0013】
本発明の装置を複数個組合わせる場合、当該反応器を直列または並列で接続することができる。この場合、反応器内の廃水の流れを均一化するために、廃水、浄化水は当該反応器内の長さ方向、または廃水の流れ方向に対して平行な方向で供給、排出されることが好ましい。直列で組合わせる場合、反応器間は反応器径と同じ径の配管で接続されることが好ましく、廃水供給口を有する反応器から浄化水排出口を有する反応器へ廃水が流れるに従って有機物濃度が小さくなるので、これに応じて光量または触媒面積を低減してもよい。
【0014】
【作用】
螺旋状突起を有する光触媒体を用いれば、反応器内の廃水の流れが乱れて液が撹拌されるので、廃水と光触媒体の接触効率が向上する。そのため、従来技術よりも流速を小さくしても従来とほぼ同じ分解率が得られ、圧損も低減できる。
また、光触媒体が螺旋構造を有しているために従来より光触媒面積が増加しているだけでなく、螺旋流も生じて反応器内の液の滞留時間が長くなるので光触媒作用が促進される。
【0015】
以下、本発明を図面により具体的に説明する。
図1は、反応器外管4内に螺旋突起19を有する円筒状光触媒体1を設置した場合の説明図である。
【0016】
螺旋構造を有する円筒状光触媒体1は、図1のように反応器外管4内へ挿入され、光源2は反応器内部に配置され、支持体15により反応器内に固定される。上記装置において、廃水5は反応器の側面の廃水供給口7から反応器外管4内に供給され、反応器外管4内壁と光源2との間隙を流れ、浄化処理された後、反応器側面の浄化水排出口9から系外に排出される。
【0017】
上記反応器を用いれば、反応器内に螺旋流が生じて液が撹拌され、廃水と光触媒体の接触効率が向上するので、有害な有機化合物の分解が促進される。
【0018】
光触媒体としては、光触媒、ポリビニルアルコールおよびシリカゾルから構成される含浸液を織布、金属またはガラス等に含浸させて螺旋状突起を有する円筒状に成形したものを用いてもよく、光触媒、ガラス繊維、蓚酸およびシリカゾルを混練してペースト状としたものを螺旋構造を有する円筒状に成形したものを用いてもよい。
反応器内に円筒状触媒体を挿入するかわりに、反応器自体の内壁を上記触媒体の成形原料で螺旋状に形成してもよく、また反応器自体の内壁を螺旋状に加工した後、触媒体材料を塗布してもよい。
【0019】
図1に示すように、反応器内の廃水の流れに対して直角方向に廃水が供給または排出される場合、廃水供給口7または浄化水排出口9付近を通って流れる廃水は遅く、これらと反対側の反応器外管4内壁付近を流れる廃水は速くなるという偏流が生じる。しかし、図2に示すように、廃水の流れに対して平行な方向で廃水供給口7または排出口9から廃水が供給または排出されれば、当該反応器内の廃水の流れ16が均一となり、螺旋流を形成しながら効率よく有機物の分解が行われる。
【0020】
【発明の実施の形態】
以下、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれらの実施例により制限されるものではない。
実施例1
図3に本発明の実施例に用いた水処理装置の概略を示す。反応器はガラス管の二重構造となっている。反応器外管4はパイレックス製で、長さは350mm、径は50mm、反応器内管3は石英製で、長さは400mm、径は42mmで、内部に光源を有する。光触媒体1Aはデグッサ社製光触媒P25(高品質)、酸化チタンCR50、ポリビニルアルコール(クラレ社製#117)およびシリカゾルから構成される含浸液をE−ガラスに含浸させ、螺旋構造を有する円筒状の鋳型を用いて円筒状に成形後、450℃で8時間焼成して調製された。光触媒P25の担持率は12%であった。光触媒体上の螺旋状突起物は幅3mm、高さ1.5mmで、円筒の長さ方向に8本形成されている。この円筒状触媒体1Aを反応器内管3として反応器外管4内壁に挿入した。光源として、光量10Wのブラックライトブルー蛍光灯を反応器内管3の中心部に配置し、光触媒体1Aへ均一に光を照射できるようにした。このような装置において、廃水5は反応器内の廃水5の流れに対して垂直な方向に循環タンク17から循環ポンプ13を用いて15L/minの流速で供給される。廃水中の有機化合物は反応器内で分解されて廃水5が浄化される。浄化水8は上記と同じ方向で供給側と反対の位置から循環タンク17へ排出される。この場合、反応器内の廃液の流れ16が螺旋流となり、廃水と光触媒が効率的に接触するので有機化合物の分解率を向上させることができる。
【0021】
比較例1
実施例1で用いた水処理装置で、螺旋突起を有する円筒状光触媒体の代わりに突起のない円筒状光触媒体を設置してo−クロロフェノールの分解実験を行った。比較例1と実施例1による分解実験の結果を比較したものを表1に示す。なお、表中の分解率は光照射後1時間のものである。
【0022】
【表1】

Figure 0003848515
実施例1では螺旋流による廃水の撹拌効果が見られ、比較例1よりも分解率が向上していることがわかる。
実施例2
螺旋状突起を有した円筒状の光触媒体を用いる代わりに、反応器外管4の内壁に光触媒体をコーティングした幅3mm、高さ1.5mmの螺旋状突起物を8本設置したものを用い、それ以外は実施例1で示した反応器と同じ構造のものを用いた。光触媒体のコーティングは、前記光触媒体P25および蓚酸チタンアンモニウムから構成される懸濁液中に反応器内管を浸し、室温で充分乾燥後、450℃8時間焼成することにより行った。担持率は、実施例1の場合と同じく12%であった。
【0023】
実施例3
実施例1に示した反応器で、廃水5が反応器内の廃水5の流れに対して平行な方向で反応器へ供給し、上記と同じ方向で浄化水8が反応器から排出されるようにした。この場合、反応器内の廃液の流れが均一となるので、実施例1よりさらに廃水と光触媒体が効率的に接触することになる。
実験例1
実施例1〜3で用いた水処理装置でo−クロロフェノールの分解実験を行った。表2にその結果を示す。なお、表中の分解率は光照射後1時間のものである。
【0024】
【表2】
Figure 0003848515
実施例1、2の分解率は同じであり、螺旋状突起を有する円筒状の光触媒体または螺旋状突起を有する反応器外管内壁に光触媒体をコーティングしたもののどちらを用いても、反応器内に螺旋流が生じて同じ効果が得られる。
【0025】
実施例3の分解率は実施例1、2より大きくなっている。これは実施例3で廃水の供給、浄化水の排出を反応器内の廃水の流れと平行な方向とすることで反応器内の廃液の流れが均一化され、実施例1、2より廃水と光触媒体が効率的に接触するようにしたためである。
【0026】
【発明の効果】
本発明の光触媒を用いて廃水中の有害物質を分解する水処理装置では、反応器内の均一な螺旋流により撹拌効果を生じさせるため、光触媒と有害物質の接触効率が向上し、光触媒の強力な酸化力と相まって廃水中の有害成分を高効率で分解できるという効果を有する。本発明は、例えば廃水中に存在するトリクロロエチレン、ダイオキシン、ベンゼン等の有機化合物、農薬および菌類の分解ができるため、工場廃水、焼却設備の浸出水、ゴルフ場廃水、病院廃水等の廃水の浄化に本発明の水処理装置を用いることができる。
【図面の簡単な説明】
【図1】本発明の水処理装置に用いる反応器の概略図。
【図2】本発明の水処理装置に用いる反応器の部分図。
【図3】本発明による水処理装置の廃水の流れを示す系統図。
【図4】従来の水処理装置に用いる反応器の概略図。
【符号の説明】
1…担持光触媒、2…光源、3…反応器内管、4…反応器外管、5…廃水、7…廃水供給口、8…浄化水、9…浄化水排出口、13…循環ポンプ、15…支持体、16…反応器内の廃水の流れ、17…循環タンク、18…撹拌機、19…螺旋構造。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment apparatus, and in particular, a water treatment that purifies wastewater by efficiently decomposing oxidative degradation of dioxins, organic halogen compounds, volatile organic compounds, agricultural chemicals, fungi, and the like that are harmful organic substances in wastewater using a photocatalyst. The present invention relates to an apparatus and method, and a photocatalyst.
[0002]
[Prior art]
There are activated carbon adsorption method, ion exchange method, precipitation method, catalytic oxidation method, chemical solution injection method, etc. for the treatment and purification of wastewater, and the most suitable treatment method is used singly or in combination depending on the target wastewater. However, these methods have a problem that the construction cost and the maintenance / management cost become high. In order to overcome these problems, a water treatment apparatus using a photocatalyst such as titanium dioxide (TiO 2 ) has been proposed as a compact, easy to handle, inexpensive and high treatment efficiency apparatus. This water treatment apparatus decomposes sterilization, harmful organic substances, bad odors and the like by a strong oxidizing power generated by light irradiation to the photocatalyst.
[0003]
As a conventional water treatment apparatus using a photocatalyst, a tubular apparatus that allows water to be treated to pass through a tubular reactor having a built-in light source has been proposed. The diffusion resistance of the organic matter is reduced, the contact efficiency between the organic matter and the photocatalyst is increased, and the decomposition rate of the organic matter is increased.
[0004]
FIG. 4 shows an outline of a water treatment apparatus using a photocatalyst based on the prior art. This apparatus includes a photocatalyst 1 supported on a woven cloth provided on the inner wall of the reactor outer tube 4, a light source 2 provided in the center of the reactor, and waste water 5 provided on the side of the reactor. It consists of a supply hole 7 and a discharge hole 9. The waste water 5 enters the reactor outer tube through the supply hole 7, flows through the gap between the inner wall of the reactor outer tube 4 and the light source 2, is treated, and is discharged to the outside through the discharge hole 9. In the figure, 8 indicates treated water and 15 indicates a support.
[0005]
[Problems to be solved by the invention]
As shown in FIG. 4, when the photocatalyst 1 is installed on the inner wall of the reactor and the light source 2 is installed inside the reactor, the wastewater flowing between the photocatalyst and the light source is constant if the length of the wastewater in the reactor is in contact with the photocatalyst. When the flow path width is narrowed, the flow rate of waste water in the reactor is increased and the stirring effect is produced, so that the decomposition rate is increased. However, there is a limit to narrowing the channel width, and there is a problem that the pressure loss of the reactor increases when the channel width is narrowed.
The subject of this invention is providing the water treatment apparatus using a photocatalyst which can decompose | dissolve the conventional problem and can decompose | disassemble the harmful component in wastewater with high efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) In a water treatment apparatus having a light source and a photocatalyst body inside a cylindrical reactor through which a liquid to be treated flows, the photocatalyst body is a cylindrical photocatalyst body in which a spiral protrusion is formed along the reactor wall surface. There is a light source inside, and there is a gap between the tip of the spiral projection of the cylindrical photocatalyst and the light source, and the liquid to be treated passes through the gap to cause turbulence of the liquid. It is comprised so that the water treatment apparatus characterized by the above-mentioned.
(2) The water treatment apparatus according to (1), wherein a photocatalyst having a spiral structure is inserted into the inner surface of the cylindrical reactor to constitute a reactor wall.
(3) The water treatment apparatus according to (1) or (2), wherein the photocatalyst body carries a catalyst component other than the photocatalyst component.
(4) Supply organic compound-containing wastewater from the pipe end of the reactor in the length direction, and discharge the treated water purified by the reactor from the pipe end opposite to the supply port in the same direction as above. A water treatment method using the water treatment apparatus according to (1).
[0007]
The cylindrical photocatalyst having spiral protrusions along the reactor wall surface in the present invention means that the photocatalyst component is supported on the reaction tube wall having spiral protrusions, or that the photocatalyst component is spiraled in advance in the cylindrical reaction tube. The thing which inserted the photocatalyst body shape | molded by the cylindrical shape which has a processus | protrusion is illustrated.
[0008]
As the photocatalyst component, a large number of semiconductors such as titanium dioxide, titanium strontium, zinc oxide, lead oxide, and cadmium selenide can be used, but titanium dioxide is preferably used from the viewpoint of decomposition efficiency, stability, and safety. Titanium dioxide has two crystal forms, a rutile type and an anatase type. This may be used alone or in combination, but the anatase type is preferable because the anatase type has higher photocatalytic activity than the rutile type. However, since the rutile type has a lower band gap than the anatase type, visible light having lower energy than ultraviolet light can be used.
[0009]
When the photocatalyst is supported on a reaction tube having a spiral projection, a liquid in which the photocatalyst and ammonium oxalate are suspended in water may be coated on the inner surface of the reaction tube. On the other hand, when a photocatalyst having a spiral protrusion is formed and used in advance, a photocatalyst, a solution obtained by impregnating a liquid in which polyvinyl alcohol and silica sol are suspended in water, is molded, or a photocatalyst, The photocatalyst of the present invention can be obtained by a method of forming a paste by kneading glass fiber, oxalic acid and silica sol.
[0010]
These photocatalysts may be used as they are, but in order to improve the activity of the photocatalysts or to selectively decompose the components in the target wastewater, noble metals such as gold, silver, platinum and palladium or their chlorides, sulfates and Various complexes and the like may be supported on the photocatalyst.
However, the above method is merely an example, and any light source is disposed inside a cylindrical catalyst body having a spiral projection on the surface, and the liquid to be treated flows through the gap, all within the scope of the present invention. is there.
[0011]
Furthermore, in the apparatus of the present invention, a light source is installed in the cylindrical catalyst body in the reactor. The light source may be installed inside the reactor with an inner tube, or if the wiring part of the light source is not in contact with water, it can be installed in the cylindrical catalyst body without using the reactor inner tube. May be.
As the light source for irradiating the photocatalyst body, any light source that excites the photocatalyst may be used, and a black light, a low pressure mercury lamp, a high pressure mercury lamp, a germicidal lamp, a xenon lamp, an insect lamp, and the like can be used. Depending on the conditions, sunlight can be used. The position of the light source is preferably the central portion of the reactor that is irradiated with light radially from the light source and hits the entire surface of the photocatalyst, so that all light can be used effectively.
[0012]
The outer tube of the reactor does not need to transmit light, and any material having chemical resistance and corrosion resistance may be used. Especially when the organic matter concentration is low and there is no possibility of damaging the outer tube, an organic material such as polyvinyl chloride is used. The material of the compound may be used. The reactor inner tube may be any material as long as it transmits light and is excellent in chemical resistance and corrosion resistance, such as quartz glass.
[0013]
When combining a plurality of the apparatuses of the present invention, the reactors can be connected in series or in parallel. In this case, in order to equalize the flow of waste water in the reactor, waste water and purified water may be supplied and discharged in the length direction in the reactor or in a direction parallel to the flow direction of the waste water. preferable. When combined in series, it is preferable that the reactors are connected by a pipe having the same diameter as the reactor diameter, and the organic matter concentration increases as the wastewater flows from the reactor having the wastewater supply port to the reactor having the purified water discharge port. Accordingly, the light amount or the catalyst area may be reduced accordingly.
[0014]
[Action]
If a photocatalyst having a spiral protrusion is used, the flow of wastewater in the reactor is disturbed and the liquid is stirred, so that the contact efficiency between the wastewater and the photocatalyst is improved. Therefore, even if the flow velocity is made lower than that of the prior art, the same decomposition rate as that of the prior art can be obtained and the pressure loss can be reduced.
In addition, since the photocatalyst body has a spiral structure, not only the photocatalyst area is increased, but also a spiral flow is generated and the residence time of the liquid in the reactor is increased, so that the photocatalytic action is promoted. .
[0015]
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is an explanatory diagram when a cylindrical photocatalyst body 1 having a spiral protrusion 19 is installed in the reactor outer tube 4.
[0016]
The cylindrical photocatalyst body 1 having a spiral structure is inserted into the reactor outer tube 4 as shown in FIG. 1, and the light source 2 is disposed inside the reactor and is fixed in the reactor by a support 15. In the above apparatus, the waste water 5 is supplied into the reactor outer tube 4 from the waste water supply port 7 on the side surface of the reactor, flows through the gap between the inner wall of the reactor outer tube 4 and the light source 2 and is purified. It is discharged out of the system from the side purified water discharge port 9.
[0017]
When the reactor is used, a spiral flow is generated in the reactor, the liquid is stirred, and the contact efficiency between the waste water and the photocatalyst is improved, so that the decomposition of harmful organic compounds is promoted.
[0018]
As the photocatalyst body, a woven fabric, metal or glass impregnated with an impregnation liquid composed of a photocatalyst, polyvinyl alcohol and silica sol and formed into a cylindrical shape having spiral protrusions may be used. Alternatively, a paste obtained by kneading oxalic acid and silica sol into a cylindrical shape having a spiral structure may be used.
Instead of inserting the cylindrical catalyst body into the reactor, the inner wall of the reactor itself may be formed in a spiral shape from the above-mentioned catalyst body forming raw material, and after the inner wall of the reactor itself is processed into a spiral shape, A catalyst body material may be applied.
[0019]
As shown in FIG. 1, when waste water is supplied or discharged in a direction perpendicular to the flow of waste water in the reactor, the waste water flowing through the vicinity of the waste water supply port 7 or the purified water discharge port 9 is slow. There is a drift that wastewater flowing near the inner wall of the reactor outer pipe 4 on the opposite side becomes faster. However, as shown in FIG. 2, if waste water is supplied or discharged from the waste water supply port 7 or the discharge port 9 in a direction parallel to the flow of waste water, the waste water flow 16 in the reactor becomes uniform, Organic matter is efficiently decomposed while forming a spiral flow.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, this invention is not restrict | limited by these Examples.
Example 1
FIG. 3 shows an outline of the water treatment apparatus used in the embodiment of the present invention. The reactor has a double structure of glass tubes. The reactor outer tube 4 is made of Pyrex and has a length of 350 mm and a diameter of 50 mm. The reactor inner tube 3 is made of quartz, has a length of 400 mm and a diameter of 42 mm, and has a light source inside. The photocatalyst body 1A is made by impregnating E-glass with an impregnation liquid composed of photocatalyst P25 (high quality) manufactured by Degussa Co., Ltd., titanium oxide CR50, polyvinyl alcohol (Kuraray Co., Ltd. # 117), and silica sol. After forming into a cylindrical shape using a mold, it was prepared by firing at 450 ° C. for 8 hours. The supporting rate of the photocatalyst P25 was 12%. The spiral projections on the photocatalyst are 3 mm wide and 1.5 mm high, and are formed in the length direction of the cylinder. This cylindrical catalyst body 1A was inserted into the inner wall of the reactor outer tube 4 as the reactor inner tube 3. As a light source, a black light blue fluorescent lamp with a light quantity of 10 W was arranged at the center of the reactor inner tube 3 so that the photocatalyst 1A could be irradiated with light uniformly. In such an apparatus, the waste water 5 is supplied at a flow rate of 15 L / min from the circulation tank 17 using the circulation pump 13 in a direction perpendicular to the flow of the waste water 5 in the reactor. The organic compound in the wastewater is decomposed in the reactor to purify the wastewater 5. The purified water 8 is discharged to the circulation tank 17 from the position opposite to the supply side in the same direction as described above. In this case, the waste liquid flow 16 in the reactor becomes a spiral flow, and the waste water and the photocatalyst efficiently contact each other, so that the decomposition rate of the organic compound can be improved.
[0021]
Comparative Example 1
In the water treatment apparatus used in Example 1, a cylindrical photocatalyst without protrusions was installed instead of the cylindrical photocatalyst having spiral protrusions, and an o-chlorophenol decomposition experiment was conducted. Table 1 shows a comparison of the results of the decomposition experiment according to Comparative Example 1 and Example 1. In addition, the decomposition rate in a table | surface is a thing for 1 hour after light irradiation.
[0022]
[Table 1]
Figure 0003848515
In Example 1, the stirring effect of the wastewater by a spiral flow is seen, and it turns out that the decomposition rate is improving rather than the comparative example 1.
Example 2
Instead of using a cylindrical photocatalyst having a spiral projection, an inner wall of the reactor outer tube 4 coated with a photocatalyst and having eight spiral projections with a width of 3 mm and a height of 1.5 mm was used. Other than that, the reactor having the same structure as that shown in Example 1 was used. Coating of the photocatalyst was performed by immersing the reactor inner tube in a suspension composed of the photocatalyst P25 and ammonium ammonium oxalate, thoroughly drying at room temperature, and firing at 450 ° C. for 8 hours. The loading rate was 12% as in the case of Example 1.
[0023]
Example 3
In the reactor shown in Example 1, the waste water 5 is supplied to the reactor in a direction parallel to the flow of the waste water 5 in the reactor, and the purified water 8 is discharged from the reactor in the same direction as described above. I made it. In this case, since the flow of the waste liquid in the reactor becomes uniform, the waste water and the photocatalyst body come into more efficient contact than in Example 1.
Experimental example 1
The decomposition experiment of o-chlorophenol was conducted with the water treatment apparatus used in Examples 1-3. Table 2 shows the results. In addition, the decomposition rate in a table | surface is a thing for 1 hour after light irradiation.
[0024]
[Table 2]
Figure 0003848515
The decomposition rates of Examples 1 and 2 are the same, and either the cylindrical photocatalyst having spiral protrusions or the inner wall of the reactor outer tube having spiral protrusions coated with the photocatalyst is used in the reactor. The same effect can be obtained by generating a spiral flow.
[0025]
The decomposition rate of Example 3 is larger than Examples 1 and 2. This is because the wastewater flow in the reactor is made uniform by setting the wastewater supply and the discharge of the purified water in the direction parallel to the wastewater flow in the reactor in Example 3, and the wastewater and This is because the photocatalyst is in efficient contact.
[0026]
【The invention's effect】
In the water treatment apparatus for decomposing harmful substances in wastewater using the photocatalyst of the present invention, since the stirring effect is generated by the uniform spiral flow in the reactor, the contact efficiency between the photocatalyst and the harmful substances is improved, and the photocatalyst is powerful. It has the effect of being able to decompose harmful components in wastewater with high efficiency in combination with its oxidizing power. The present invention is capable of decomposing organic compounds such as trichlorethylene, dioxin, and benzene, agricultural chemicals and fungi that exist in wastewater, for example. The water treatment apparatus of the present invention can be used.
[Brief description of the drawings]
FIG. 1 is a schematic view of a reactor used in the water treatment apparatus of the present invention.
FIG. 2 is a partial view of a reactor used in the water treatment apparatus of the present invention.
FIG. 3 is a system diagram showing the flow of wastewater from the water treatment apparatus according to the present invention.
FIG. 4 is a schematic view of a reactor used in a conventional water treatment apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Supported photocatalyst, 2 ... Light source, 3 ... Reactor inner tube, 4 ... Reactor outer tube, 5 ... Waste water, 7 ... Waste water supply port, 8 ... Purified water, 9 ... Purified water discharge port, 13 ... Circulation pump, DESCRIPTION OF SYMBOLS 15 ... Support body, 16 ... Flow of the wastewater in a reactor, 17 ... Circulation tank, 18 ... Stirrer, 19 ... Spiral structure.

Claims (4)

被処理液が流通する筒状反応器の内部に光源および光触媒体を有する水処理装置において、前記光触媒体は、反応器壁面に沿って螺旋状突起を形成した円筒状光触媒体で、その内部に光源を有し、かつ該円筒状光触媒体の螺旋状突起の先端部と該光源との間に隙間を有し、該隙間の間に被処理液が通過して液の乱れを生じるように構成されていることを特徴とする水処理装置。In a water treatment apparatus having a light source and a photocatalyst body inside a cylindrical reactor through which a liquid to be treated flows, the photocatalyst body is a cylindrical photocatalyst body in which a spiral projection is formed along the reactor wall surface. A light source and a gap between the light source and the tip of the spiral protrusion of the cylindrical photocatalyst body, and the liquid to be processed passes through the gap to cause liquid disturbance The water treatment apparatus characterized by the above-mentioned. 螺旋構造を有する光触媒体が円筒状反応器内面に挿入され、反応器壁を構成するようにしたことを特徴とする請求項1記載の水処理装置。 2. The water treatment apparatus according to claim 1, wherein a photocatalyst having a spiral structure is inserted into an inner surface of the cylindrical reactor to constitute a reactor wall. 前記光触媒体が光触媒成分以外の触媒成分を担持していることを特徴とする請求項1または2記載の水処理装置。 The water treatment apparatus according to claim 1 or 2, wherein the photocatalyst body supports a catalyst component other than the photocatalyst component. 前記反応器の管端から有機化合物含有廃水をその長さ方向に供給し、当該反応器により浄化処理された処理水を供給口と反対位置の管端から上記と同じ方向で排出することを特徴とする請求項1記載の水処理装置を用いた水処理方法。 Organic compound-containing wastewater is supplied in the length direction from the pipe end of the reactor, and treated water purified by the reactor is discharged from the pipe end opposite to the supply port in the same direction as described above. A water treatment method using the water treatment apparatus according to claim 1.
JP2000049599A 2000-02-25 2000-02-25 Water treatment equipment Expired - Fee Related JP3848515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049599A JP3848515B2 (en) 2000-02-25 2000-02-25 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049599A JP3848515B2 (en) 2000-02-25 2000-02-25 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2001232357A JP2001232357A (en) 2001-08-28
JP3848515B2 true JP3848515B2 (en) 2006-11-22

Family

ID=18571513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049599A Expired - Fee Related JP3848515B2 (en) 2000-02-25 2000-02-25 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3848515B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057736A1 (en) * 2010-10-26 2012-05-03 Empire Technology Development Llc Water treatment apparatus and systems
JP6306355B2 (en) * 2014-01-24 2018-04-04 シャープ株式会社 Water treatment apparatus and wet cleaning machine using the water treatment apparatus
CN107098432A (en) * 2017-05-11 2017-08-29 浙江奇彩环境科技股份有限公司 A kind of super high power rotational flow pipe type photo catalysis reactor and photocatalytic system
KR101950021B1 (en) * 2018-06-26 2019-05-02 재단법인 한국환경산업연구원 Vortex induction type Contamination water purification device
CN113929175A (en) * 2021-11-26 2022-01-14 齐鲁工业大学 Photocatalytic device and method for degrading organic pollutants in wastewater by using same

Also Published As

Publication number Publication date
JP2001232357A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP3049068B2 (en) Matrix for treating organic contaminants, method and apparatus using the same
CN100473453C (en) Photolytic and photocatalytic reaction enhancement device
US5032241A (en) Fluid purification
US5449443A (en) Photocatalytic reactor with flexible supports
KR19990024785A (en) Wastewater treatment system using electrolysis and photocatalyst and synthetic method of the catalyst
JP3848515B2 (en) Water treatment equipment
US20030211022A1 (en) Method and apparatus for decontaminating water or air by a photolytic and photocatalytic reaction
JP2002263176A (en) Photocatalyst device
KR200314844Y1 (en) The air sterilization and purification system with the ozone and photocatalyst combination decomposer
JPH11335187A (en) Photocatalyst module and equipment for photocatalyst
JP2567273Y2 (en) UV irradiation device for photochemical reaction treatment
KR102036263B1 (en) Device for removing volatile organic compounds generated by phase change of organic compounds in wastewater
KR102001834B1 (en) Electrode for volatile organic compound decomposition and volatile organic compound removal system using the electrode
JP2000254667A (en) Water treating device using photocatalyst
JP2008522695A (en) Inactivation of biofactors dispersed in gas media by photoactivated semiconductors.
JPH09155160A (en) Apparatus for decomposing and removing volatile organic compound and method therefor
CN205351511U (en) Photocatalysis air purifier
RU2259866C1 (en) Method of photocatalytic gas purification
JP2004089953A (en) Method of continuously decomposing and removing organic substance contained in gas
CN207546219U (en) A kind of air purifier of photocatalyst catalytic exhaust
CN103638889B (en) Photocatalysis device and valve control application thereof
JP3900460B2 (en) Water treatment equipment
JP3586732B2 (en) Water treatment method and apparatus
JP2000176469A (en) Photocatalyst reactor
JP2002079244A (en) Apparatus and method for treating water by photolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees