JP2000254667A - Water treating device using photocatalyst - Google Patents
Water treating device using photocatalystInfo
- Publication number
- JP2000254667A JP2000254667A JP6266899A JP6266899A JP2000254667A JP 2000254667 A JP2000254667 A JP 2000254667A JP 6266899 A JP6266899 A JP 6266899A JP 6266899 A JP6266899 A JP 6266899A JP 2000254667 A JP2000254667 A JP 2000254667A
- Authority
- JP
- Japan
- Prior art keywords
- treated
- liquid
- reactor
- photocatalyst
- wastewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 70
- 239000007788 liquid Substances 0.000 claims description 53
- 230000003134 recirculating effect Effects 0.000 claims description 2
- 239000002351 wastewater Substances 0.000 abstract description 99
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000008213 purified water Substances 0.000 description 22
- 238000000354 decomposition reaction Methods 0.000 description 19
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- 239000000126 substance Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 150000002894 organic compounds Chemical class 0.000 description 11
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 241000233866 Fungi Species 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000002013 dioxins Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光触媒を用いた水
処理触媒に関し、特に廃水中の有害有機物であるダイオ
キシン、有機ハロゲン化合物、揮発性有機化合物、農薬
および菌類等の酸化分解を光触媒を用いて効率良く分解
し、廃水を浄化する水処理装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment catalyst using a photocatalyst, and more particularly to a photocatalyst for oxidative decomposition of dioxins, organic halogen compounds, volatile organic compounds, pesticides, fungi and the like, which are harmful organic substances in wastewater. The present invention relates to a water treatment apparatus that decomposes wastewater efficiently and purifies wastewater.
【0002】[0002]
【従来の技術】廃水の処理・浄化には、活性炭吸着法、
イオン交換法、沈殿法、接触酸化法および薬液注入法等
があり、対象廃水によって最適な処理方法が用いられて
いるが、複数の方法の組合わせとなることが多く、建設
費、維持・管理費が高くなるという問題があって、これ
らを克服するために、近年、二酸化チタン(TiO2)等
の光触媒に光を照射すると強力な酸化力を生じ、有害有
機物の分解、悪臭物質の分解、殺菌等の作用を示すこと
が注目され、コンパクトで取り扱い易く、安価でしかも
処理効率の高い、光触媒を用いた水処理方法または装置
が提案されている。2. Description of the Related Art For treatment and purification of wastewater, activated carbon adsorption method,
There are ion exchange method, precipitation method, catalytic oxidation method, chemical solution injection method, etc., and the most appropriate treatment method is used depending on the target wastewater, but it is often a combination of multiple methods, construction cost, maintenance and management There is a problem that the cost increases, and in order to overcome these problems, in recent years, when a photocatalyst such as titanium dioxide (TiO 2 ) is irradiated with light, a strong oxidizing power is generated, and decomposition of harmful organic substances, decomposition of malodorous substances, Attention has been paid to the action of sterilization and the like, and a water treatment method or apparatus using a photocatalyst that is compact, easy to handle, inexpensive, and has high treatment efficiency has been proposed.
【0003】図8は、従来技術に基づく光触媒を用いた
水処理装置の一例のフローを示す図である。反応器外管
4の内部に織布に担持した担持光触媒1、および中心部
に蛍光灯2が配置されている。該処理液である廃水5
は、供給口7から供給され、反応器14の内管3と外管
4の間を通り、光触媒の存在下に光照射により有害有機
物等が分解処理された後、排出口9から外部へ排出され
る。このように廃水5が供給または排出される場合、反
応器の側面から供給または排出される。また、反応器内
の廃水の一部を循環させる場合、循環13ポンプにより
反応器の側面(排出口17)から液が抜き出されてライ
ン14を通って側面(供給口18)へ再投入される。こ
の構造の装置を用いて廃水中の有機化合物が分解される
(例えば、特開平8−323347号)。FIG. 8 is a diagram showing a flow of an example of a water treatment apparatus using a photocatalyst based on the prior art. A supported photocatalyst 1 supported on a woven fabric is provided inside a reactor outer tube 4, and a fluorescent lamp 2 is provided at a central portion. Wastewater 5 as the treatment liquid
Is supplied from the supply port 7, passes between the inner pipe 3 and the outer pipe 4 of the reactor 14, and after harmful organic substances are decomposed by light irradiation in the presence of a photocatalyst, is discharged to the outside through the discharge port 9. Is done. When the wastewater 5 is supplied or discharged in this way, it is supplied or discharged from the side of the reactor. When a part of the waste water in the reactor is circulated, the liquid is drawn out from the side surface (discharge port 17) of the reactor by the circulation 13 pump and re-entered into the side surface (supply port 18) through the line 14. You. Organic compounds in wastewater are decomposed using the apparatus having this structure (for example, JP-A-8-323347).
【0004】[0004]
【発明が解決しようとする課題】上記従来技術には以下
のような問題(1)および(2)がある。 (1)装置中心部に光源、装置の反応器内部に光触媒を
設置した場合、反応器内の廃水の通過長さが一定であれ
ば、上記光触媒面積が大きくなると必然的に反応器径が
大きくなり、上記光触媒と光源との間を流れる廃水の流
路幅が広くなるので、光が廃水に吸収されて光触媒に強
力な酸化力が生じず、有害物質の分解効率が低下する。
すなわち、従来の装置では性能を向上させるために、上
記光触媒面積を大きくしても、かえって装置性能の低下
を招くことになる。 (2)反応器へ廃水を供給またはこれから排出する場
合、反応器内の廃水の流れに対して垂直な方向で廃水が
供給または排出されれば、反応器内部の廃水の流れが均
一にならず、反応が不充分になることにある。さらに、
有害成分の分解効率を向上させるために、装置内部の廃
水の一部を循環させる場合も同様である。The above prior art has the following problems (1) and (2). (1) When a light source is installed at the center of the apparatus and a photocatalyst is installed inside the reactor of the apparatus, if the passage length of the wastewater in the reactor is constant, the reactor diameter is necessarily increased as the photocatalyst area increases. Since the width of the flow path of the wastewater flowing between the photocatalyst and the light source is widened, light is absorbed by the wastewater, so that no strong oxidizing power is generated in the photocatalyst and the efficiency of decomposing harmful substances is reduced.
That is, in the conventional apparatus, even if the photocatalyst area is increased in order to improve the performance, the performance of the apparatus is rather lowered. (2) When supplying or discharging wastewater to or from the reactor, if the wastewater is supplied or discharged in a direction perpendicular to the flow of wastewater in the reactor, the flow of wastewater in the reactor will not be uniform. The reaction may be insufficient. further,
The same is true when a part of the wastewater in the apparatus is circulated in order to improve the efficiency of decomposing harmful components.
【0005】本発明の課題は、従来の問題点を解決し、
高効率で廃水中の有害成分を分解できる光触媒を用いた
水処理装置を提供することにある。An object of the present invention is to solve the conventional problems,
An object of the present invention is to provide a water treatment apparatus using a photocatalyst capable of decomposing harmful components in wastewater with high efficiency.
【0006】[0006]
【課題を解決するための手段】上記課題は、下記の装置
によって解決することができる。 (1)内管とその外側に同心状に形成された外管とから
なり、それらの間に被処理液の流路が形成される二重管
と、該内管の中心部に設けられた光源と、前記外管の内
壁に配設された光触媒と、前記被処理液の通路の一端お
よび他端にそれぞれ被処理液の供給口および排出口を有
する反応器であって、被処理液の供給口付近における該
被処理液の通過断面を、前記光源と光触媒の間を流れる
被処理液の通過断面よりも大きくしたことを特徴とする
光触媒を用いた水処理装置。 (2)前記被処理液の供給口付近の外管端部を前記内管
端部よりも延長し、該内管端部を封止して該被処理液の
液溜め部を設けたことを特徴とする光触媒を用いた
(1)記載の水処理装置。 (3)前記被処理液の供給口付近における内管端部の外
径を、前記光源と光触媒の間を流れる被処理液の流通部
の内管の外径よりも小さくしたことを特徴とする(1)
記載の水処理装置。 (4)前記光源を設けた内管の一部または全部に起伏が
設けられていることを特徴とする(1)ないし(3)の
いずれかに記載の水処理装置。 (5)被処理液の排出口付近の外管および内管が前記被
処理液の供給口付近のそれらと同様に構成されている
(1)ないし(4)のいずれかに記載の水処理装置。 (6)前記処理液の供給口と排出口が、前記二重管内を
流れる水処理液の流れ方向と同じ方向に設けられている
ことを特徴とする(1)ないし(5)のいずれかに記載
の水処理装置。 (7)前記反応器管が該反応器内の被処理液の流れ方向
に直列に接続されたことを特徴とする(1)ないし
(6)のいずれかに記載の水処理装置。 (8)前記反応器が被処理液の流れ方向に対し複数個並
列で接続されたことを特徴とする(1)ないし(6)の
いずれかに記載の水処理装置。 (9)前記反応器の管端から該被処理液の一部が抜き出
され、抜き出された個所の反対側の管端へ被処理液を再
循環させる循環設備を有することを特徴とする(1)な
いし(8)のいずれかに記載の水処理装置。The above objects can be attained by the following apparatus. (1) A double pipe comprising an inner pipe and an outer pipe formed concentrically on the outer side thereof, in which a flow path of the liquid to be treated is formed, and a double pipe is provided at the center of the inner pipe. A light source, a photocatalyst disposed on an inner wall of the outer tube, and a reactor having a supply port and a discharge port of the liquid to be treated at one end and the other end of the passage of the liquid to be treated, respectively, A water treatment apparatus using a photocatalyst, wherein a cross section of the liquid to be treated near the supply port is larger than a cross section of the liquid to be treated flowing between the light source and the photocatalyst. (2) The end of the outer tube near the supply port of the liquid to be treated is extended beyond the end of the inner tube, and the end of the inner tube is sealed to provide a liquid reservoir for the liquid to be treated. The water treatment apparatus according to (1), wherein the water treatment apparatus uses a characteristic photocatalyst. (3) The outer diameter of the end of the inner pipe near the supply port of the liquid to be treated is smaller than the outer diameter of the inner pipe of the flow section of the liquid to be treated flowing between the light source and the photocatalyst. (1)
A water treatment apparatus as described in the above. (4) The water treatment apparatus according to any one of (1) to (3), wherein a part or the entirety of the inner tube provided with the light source is provided with undulations. (5) The water treatment apparatus according to any one of (1) to (4), wherein the outer pipe and the inner pipe near the discharge port of the liquid to be treated are configured similarly to those near the supply port of the liquid to be treated. . (6) The method according to any one of (1) to (5), wherein the supply port and the discharge port of the treatment liquid are provided in the same direction as the flow direction of the water treatment liquid flowing in the double pipe. A water treatment apparatus as described in the above. (7) The water treatment apparatus according to any one of (1) to (6), wherein the reactor tubes are connected in series in a flow direction of the liquid to be treated in the reactor. (8) The water treatment apparatus according to any one of (1) to (6), wherein a plurality of the reactors are connected in parallel to a flow direction of the liquid to be treated. (9) A part of the liquid to be treated is withdrawn from the tube end of the reactor, and a circulating device is provided for recirculating the liquid to be treated to the tube end on the opposite side of the extracted portion. The water treatment apparatus according to any one of (1) to (8).
【0007】以下、本発明を図面により説明する。図1
〜3は、本発明の種々の実施例を示す水処理装置の説明
図である。これらの装置では、反応器外管4の内壁に光
触媒1が配置され、反応器中心部に当該光触媒1へ光を
照射するための手段として光源2が設置され、廃水供給
口7および浄化水排出口8付近で廃水の通過断面が大き
く、内管3と光触媒1間を流れる廃水の通過断面が小さ
くなり、供給口7および排出口8付近で液溜り4が形成
されている。図中、6は廃水供給管、10は浄化水排出
管、15は内管3の支持体である。図1の装置では、反
応器内管3は反応器外管4よりも短い構造となってお
り、また、図2の装置では、反応器内管3を供給口7お
よび排出口9付近で細く、担持光触媒1に対面している
部分を太くしている。さらに、図3の装置では、反応器
内管3に部分的に起伏を設けて反応効率を高めるように
している。上記課題(1)は上記図1〜3の装置によっ
て解決することができる。Hereinafter, the present invention will be described with reference to the drawings. FIG.
3 to 3 are explanatory diagrams of a water treatment apparatus showing various embodiments of the present invention. In these devices, the photocatalyst 1 is disposed on the inner wall of the outer tube 4 of the reactor, and the light source 2 is provided at the center of the reactor as a means for irradiating the photocatalyst 1 with light. The passage cross section of the waste water is large near the outlet 8, the passage cross section of the waste water flowing between the inner tube 3 and the photocatalyst 1 is small, and the liquid pool 4 is formed near the supply port 7 and the discharge port 8. In the figure, 6 is a waste water supply pipe, 10 is a purified water discharge pipe, and 15 is a support for the inner pipe 3. In the apparatus of FIG. 1, the inner tube 3 of the reactor has a structure shorter than the outer tube 4 of the reactor. In the apparatus of FIG. 2, the inner tube 3 of the reactor is narrowed near the supply port 7 and the discharge port 9. The portion facing the supported photocatalyst 1 is thickened. Further, in the apparatus shown in FIG. 3, the reactor inner tube 3 is partially provided with undulations to increase the reaction efficiency. The above problem (1) can be solved by the apparatus shown in FIGS.
【0008】次に、上記課題(2)は、図1に示すよう
に、廃水供給口7付近の液溜り4へ反応器内の廃水の流
れ方向に廃水を供給し、浄化水を排出口3付近の液溜り
から上記と同じ方向で排出することによって解決するこ
とができる。この方法は、反応器が複数個直列または並
列で接続される場合も同様に適用される。図4の装置
は、図1の装置を複数個直列で接続したもの、接続配管
12(反応器外管4と同じ径のものが用いられる)を介
して、反応器内の廃水の流れ方向に別の反応器が接続さ
れる。廃水供給口7付近の液溜りへ反応器内の廃水の流
れ方向に廃水5が供給され、浄化水8が浄化水排出口9
付近の液溜りから上記と同じ方向で排出される。Next, the problem (2) is that, as shown in FIG. 1, wastewater is supplied to a liquid pool 4 near a wastewater supply port 7 in the flow direction of the wastewater in the reactor, and purified water is discharged to a discharge port 3. The problem can be solved by discharging the liquid from a nearby liquid reservoir in the same direction as described above. This method is similarly applied when a plurality of reactors are connected in series or in parallel. The apparatus shown in FIG. 4 is obtained by connecting a plurality of the apparatuses shown in FIG. 1 in series, and through a connecting pipe 12 (having the same diameter as the outer pipe 4 of the reactor) in the flow direction of the wastewater in the reactor. Another reactor is connected. The wastewater 5 is supplied to the liquid pool near the wastewater supply port 7 in the flow direction of the wastewater in the reactor, and the purified water 8 is supplied to the purified water discharge port 9.
It is discharged in the same direction as above from the nearby liquid pool.
【0009】反応器が複数個並列で接続される場合も、
上記と同じ方向で廃水が供給され、浄化水が排出される
ように反応器を配置することができる。When a plurality of reactors are connected in parallel,
The reactor can be arranged so that wastewater is supplied in the same direction as above and purified water is discharged.
【0010】反応器内の廃液の一部が循環される場合、
上記と同じ方向で排出口付近の液溜りから廃水が抜き出
されて排出口付近の液溜りへ再投入される。図5の装置
は、図1の装置に循環設備として循環ポンプ13および
循環配管14を設けたものである。循環ポンプ13によ
り浄化水排出口9付近の液溜りから上記方向で廃水5の
一部が抜き出され、廃水供給口7付近の液溜りへ導かれ
て再投入される。廃水5および浄化水8は循環配管14
に設置された廃水供給管7および浄化水排出管9から供
給、排出される。When a part of the waste liquid in the reactor is circulated,
In the same direction as above, wastewater is extracted from the liquid pool near the outlet and re-entered into the liquid pool near the outlet. The apparatus shown in FIG. 5 is obtained by providing a circulation pump 13 and a circulation pipe 14 as circulation equipment in the apparatus shown in FIG. A part of the wastewater 5 is extracted from the liquid pool near the purified water discharge port 9 in the above-mentioned direction by the circulation pump 13, guided to the liquid pool near the wastewater supply port 7, and recharged. The wastewater 5 and the purified water 8 are supplied to a circulation pipe 14.
Is supplied and discharged from a wastewater supply pipe 7 and a purified water discharge pipe 9 installed in the water tank.
【0011】本発明の水処理装置においては、廃水の供
給口付近と浄化水の排出口付近の構造は図の実施例のよ
うに、対称となることが好ましいが、浄化水の排出口付
近の構造は従来装置のままでもよい。In the water treatment apparatus of the present invention, the structures near the wastewater supply port and the purified water discharge port are preferably symmetrical as shown in the embodiment of FIG. The structure may be a conventional device.
【0012】[0012]
【作用】本発明の水処理装置では、廃水の供給口付近で
廃水の通過断面が大きくなり、内管と光触媒の間を流れ
る廃水の通過断面が小さくなっている。したがって、外
管内壁の光触媒面積が大きくなっても、当該反応器内の
廃水の流路幅である外管内壁と内管外壁との距離が狭く
なり、光の廃水への吸収が抑えられる。そのために、上
記光触媒の活性が維持されるので、上記触媒面積の増加
分だけ有機化合物の分解性能が向上する。In the water treatment apparatus of the present invention, the passage of the wastewater near the supply port of the wastewater increases, and the passage of the wastewater flowing between the inner tube and the photocatalyst decreases. Accordingly, even if the photocatalyst area of the inner wall of the outer tube is increased, the distance between the inner wall of the outer tube and the outer wall of the inner tube, which is the flow width of the wastewater in the reactor, is reduced, and absorption of light into the wastewater is suppressed. Therefore, the activity of the photocatalyst is maintained, and the decomposition performance of the organic compound is improved by the increase in the area of the catalyst.
【0013】内管は、外管よりも短いもの、または廃水
供給口と浄化水排出口付近では径が細く、光触媒に対面
している付近では太くなっているもののどちらを用いて
もよい。さらに、内管に起伏を設けると、反応器内の廃
液の流れが乱れて撹拌効果が生じるので、有機化合物の
分解率がさらに向上する。図7は、反応器内の廃水の流
れについて、本発明と従来技術による光触媒を用いた水
処理装置における廃水の流れを比較したモデル図であ
る。The inner pipe may be shorter than the outer pipe, or may be thinner near the wastewater supply port and the purified water discharge port and thicker near the photocatalyst. Further, if the inner pipe is provided with undulations, the flow of the waste liquid in the reactor is disturbed and a stirring effect is generated, so that the decomposition rate of the organic compound is further improved. FIG. 7 is a model diagram comparing the flow of wastewater in the reactor with the flow of wastewater in the water treatment apparatus using a photocatalyst according to the present invention and the conventional technology.
【0014】従来技術の装置では、反応器内の廃水の流
れに対して垂直な方向で廃水が供給または排出されてい
る。そのため、廃水供給口7あるいは浄化水排出口9付
近を通って流れる廃水は遅く、これらと反対側の反応器
外管4内壁付近を流れる廃水は速くなるという偏流が生
じる。しかし、本発明による装置では、当該反応器内の
廃水の流れ方向で廃水が供給または排出されるので、当
該反応器内の廃水の流れ16は均一となる。したがっ
て、本発明による水処理装置の方が従来技術による水処
理装置よりも廃水と担持光触媒との接触効率が高くなる
ので、有機化合物の分解率も向上する。有機化合物の分
解率を向上させるために、当該反応器内部の廃水が循環
される場合も、上記と同じ方向で廃液が抜き出されて再
投入されて循環させれば、装置内の廃水の流れが均一に
なり、同様の効果を生じる。In the prior art apparatus, wastewater is supplied or discharged in a direction perpendicular to the flow of wastewater in the reactor. Therefore, the wastewater flowing through the vicinity of the wastewater supply port 7 or the purified water discharge port 9 is slow, and the wastewater flowing near the inner wall of the reactor outer tube 4 on the opposite side becomes faster. However, in the apparatus according to the present invention, the wastewater is supplied or discharged in the flow direction of the wastewater in the reactor, so that the flow 16 of the wastewater in the reactor is uniform. Therefore, the water treatment apparatus according to the present invention has a higher contact efficiency between the wastewater and the supported photocatalyst than the water treatment apparatus according to the prior art, and thus the decomposition rate of the organic compound is also improved. In order to improve the decomposition rate of organic compounds, even when the wastewater inside the reactor is circulated, if the wastewater is drawn out in the same direction as above and re-circulated, the flow of the wastewater in the apparatus Becomes uniform, and a similar effect is produced.
【0015】しかも、本発明による装置では、当該反応
器の供給口および排出口付近で廃水の通過断面が大き
く、上記光触媒と内管外壁間が狭くなっているので、液
溜りが生じて供給口、排出口付近では廃水の流れの一部
が乱れるだけでなく、従来技術による装置よりも流速が
速くなり、撹拌効果が生じて廃水と上記光触媒との接触
効率が高くなるので、有機化合物の分解率が向上する。
さらに、廃水中の有害成分の処理量が多い場合または分
解速度が遅い場合、本発明による反応器を複数個組み合
わせて使用すれば十分対応することができる。Moreover, in the apparatus according to the present invention, the passage of wastewater is large near the supply port and the discharge port of the reactor, and the space between the photocatalyst and the outer wall of the inner tube is narrow. In the vicinity of the discharge port, not only a part of the flow of the wastewater is disturbed, but also the flow velocity is higher than that of the device according to the related art, and a stirring effect occurs, and the contact efficiency between the wastewater and the photocatalyst is increased, so that the decomposition of the organic compound is The rate is improved.
Further, when the amount of harmful components in wastewater is large or the decomposition rate is low, it is possible to sufficiently cope with the situation by using a plurality of reactors according to the present invention in combination.
【0016】本発明で用いる水処理装置では、反応器が
二重構造となっている。反応器外管は直線構造で、これ
に光触媒が設置される。反応器内管は廃水供給口および
浄化水排出口付近で廃水の通過断面が大きくなり、反応
器内管と担持光触媒の間で廃水の通過断面が小さくなる
ような構造となっており、これに光源が設置される。た
だし、光源の配線部分を水と接触しないようにすれば内
管を用いる必要はない。In the water treatment apparatus used in the present invention, the reactor has a double structure. The outer tube of the reactor has a straight structure, on which a photocatalyst is installed. The inner tube of the reactor has a structure in which the cross section of the waste water increases near the waste water supply port and the outlet of the purified water, and the cross section of the waste water decreases between the inner tube of the reactor and the supported photocatalyst. A light source is installed. However, there is no need to use an inner tube if the wiring portion of the light source is not in contact with water.
【0017】反応器内管はほとんど光を透過し、しかも
耐薬品性、耐腐食性に優れた石英ガラス等の材質であれ
ばいずれでも構わない。反応器外管は光を透過する必要
がなく、耐薬品性、耐腐食性を有する材質であればいず
れでもよく、特に、有機物濃度が低く外管を侵すおそれ
がない場合はポリ塩化ビニル等の有機化合物の材質でも
構わない。The inner tube of the reactor may be made of any material, such as quartz glass, which almost transmits light and is excellent in chemical resistance and corrosion resistance. The outer tube of the reactor does not need to transmit light, and any material having chemical resistance and corrosion resistance may be used.Especially, when the concentration of organic substances is low and there is no risk of attacking the outer tube, polyvinyl chloride or the like is used. The material of the organic compound may be used.
【0018】本発明の装置を複数個組み合わせる場合、
当該反応器を直列または並列で接続することができる。
この場合、反応器内の廃水の流れを均一化するために、
廃水、浄化水は当該反応器内の廃水の流れ方向で供給、
排出されることが好ましい。直列で組み合わせる場合、
反応器間は反応器径と同じ径の配管で接続されることが
好ましく、廃水供給口を有する反応器から浄化水排出口
を有する反応器へ廃水が流れるに従って有機物濃度が小
さくなるので、これに応じて光量あるいは触媒面積を低
減することができる。When combining a plurality of the devices of the present invention,
The reactors can be connected in series or in parallel.
In this case, in order to equalize the flow of wastewater in the reactor,
Wastewater and purified water are supplied in the flow direction of wastewater in the reactor,
It is preferably discharged. When combined in series,
The reactors are preferably connected by a pipe having the same diameter as the reactor diameter, and the concentration of organic substances decreases as wastewater flows from a reactor having a wastewater supply port to a reactor having a purified water discharge port. Accordingly, the light amount or the catalyst area can be reduced.
【0019】本発明で廃水を循環させる場合、その循環
手段としては通常の循環ポンプを利用することができ
る。有害物質の濃度、分解速度に応じて、最適な循環速
度で循環できる。When the wastewater is circulated in the present invention, an ordinary circulating pump can be used as the circulating means. Circulation can be performed at an optimum circulation speed according to the concentration of harmful substances and the decomposition rate.
【0020】上記光触媒としては、二酸化チタン、チタ
ン酸ストロンチウム、酸化亜鉛、酸化鉛およびセレン化
カドミウム等の数多くの半導体が利用可能であるが、分
解効率、安定性および安全性の観点から二酸化チタンの
利用が好ましい。二酸化チタンにはルチル型、アナター
ゼ型の2種類の結晶形態が存在する。これを単独あるい
は併用して用いても構わないが、アナターゼ型はルチル
型よりも光触媒活性が高いので、アナターゼ型の利用が
好ましい。しかし、ルチル型はアナターゼ型よりもバン
ドギャップが低いので、紫外光よりもエネルギーの低い
可視光も利用できる利点がある。As the photocatalyst, many semiconductors such as titanium dioxide, strontium titanate, zinc oxide, lead oxide, and cadmium selenide can be used, but titanium dioxide is used from the viewpoint of decomposition efficiency, stability and safety. Use is preferred. Titanium dioxide has two types of crystal forms, rutile type and anatase type. These may be used alone or in combination, but the use of the anatase type is preferred since the anatase type has a higher photocatalytic activity than the rutile type. However, since the rutile type has a lower band gap than the anatase type, there is an advantage that visible light having lower energy than ultraviolet light can be used.
【0021】さらに、上記光触媒の活性向上や対象廃水
中の成分の選択的分解のために、金、銀、銅、白金、お
よびパラジウム等の貴金属またはこれらの塩化物、硫酸
塩、各種錯体等を上記光触媒を担持させてもよい。Further, in order to improve the activity of the photocatalyst and selectively decompose the components in the target wastewater, noble metals such as gold, silver, copper, platinum and palladium or chlorides, sulfates and various complexes thereof are used. The photocatalyst may be supported.
【0022】前記光触媒をそのまま粒子状態で用いる
と、廃水処理後、光触媒と処理水の分離操作を伴うので
簡略化したシステムにするためには、上記光触媒を強度
があり、加工し易く、耐薬品性、他腐食性および耐光性
等に優れた織布、金属、ガラスおよびポリテトラフロエ
チレン等に担持した方が好ましい。前記光触媒を反応器
外管内壁または反応器内管外壁へコーティングして用い
ることもできる。さらに、前記光触媒を起伏を付けて加
工した担持体を担持すれば、措置内の廃水の撹拌効果に
より廃水と前記光触媒の接触する確率が増加するので装
置の分解性能が向上する。If the photocatalyst is used in the form of particles as it is, after the wastewater treatment, the operation of separating the photocatalyst from the treated water is involved, so that the photocatalyst is strong, easy to process, and chemically resistant. It is preferable to carry on woven cloth, metal, glass, polytetrafluoroethylene, or the like which has excellent properties, corrosion resistance, light resistance and the like. The photocatalyst may be used by coating the inner wall of the outer tube of the reactor or the outer wall of the inner tube of the reactor. Furthermore, if the photocatalyst is provided with a support processed by undulation, the probability of contact between the wastewater and the photocatalyst is increased due to the stirring effect of the wastewater in the measure, so that the decomposition performance of the apparatus is improved.
【0023】上記光触媒へ照射する光源としては、光触
媒を励起するものであればいずれでもよく、ブラックラ
イト、低圧水銀灯、高圧水銀灯、殺菌灯、キセノン灯お
よび補虫灯等の使用が可能である。条件によっては適宜
太陽光の利用も可能である。光源の位置としては、光源
から放射状に光が照射されて光触媒の全面に当たり全光
が有効に利用できる反応器の中心部が好ましい。内管と
して両端が細く、中心部付近が太くなっているものを用
いた場合、光源の長さは内管より長くても短くても構わ
ない。太い部分が光源よりも短く、細い部分の径が光源
の径よりも大きい場合、内管を光源の支持体として用い
ることができる。The light source for irradiating the photocatalyst may be any light source that excites the photocatalyst, and may be a black light, a low-pressure mercury lamp, a high-pressure mercury lamp, a germicidal lamp, a xenon lamp, a worm lamp, or the like. Depending on the conditions, sunlight can be used as appropriate. The position of the light source is preferably the center of the reactor where the light is radiated from the light source radially and hits the entire surface of the photocatalyst so that all the light can be effectively used. In the case of using an inner tube that is thin at both ends and thicker near the center, the length of the light source may be longer or shorter than the inner tube. When the thick part is shorter than the light source and the diameter of the thin part is larger than the diameter of the light source, the inner tube can be used as a support for the light source.
【0024】[0024]
【発明の実施の形態】以下、実施例を用いて本発明をさ
らに詳しく説明するが、本発明はこれらの実施例により
制限されるものではない。 実施例1 装置として図1にフローを示した長さ1,200mm、径
100mmの反応器外管4、長さ1,000mm、径90mm
の反応器内管3から構成される二重管構造の環状反応器
を用いた。デグッサ社製の光触媒P25(商品名)を担
体であるE−グラス上に担持したもの(担持率:12
%、触媒面積:0.35m2)を用い、これを反応器外管
4内壁に配置した。担持光触媒1と反応器内管3外径間
の距離(流路幅)は4mmに調整した。光源2である蛍光
灯には光量40Wのブラックライトブルーを用いた。o
−クロロフェノール(1ppm)を含有した廃水5を150
ml/minの流速で供給し、反応器内でo−クロロフェノー
ルの分解を行なった。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 A reactor outer tube 4 having a length of 1,200 mm and a diameter of 100 mm as shown in FIG. 1 as an apparatus, a length of 1,000 mm and a diameter of 90 mm
Of a double tube structure composed of the reactor inner tube 3 of the above. Photocatalyst P25 (trade name) manufactured by Degussa Company supported on E-glass as a carrier (supporting rate: 12
%, Catalyst area: 0.35 m 2 ), which was placed on the inner wall of the outer tube 4 of the reactor. The distance (flow path width) between the supported photocatalyst 1 and the outer diameter of the reactor inner tube 3 was adjusted to 4 mm. The light source 2 was a fluorescent lamp using black light blue with a light quantity of 40 W. o
-150 effluents containing chlorophenol (1 ppm)
The mixture was supplied at a flow rate of ml / min to decompose o-chlorophenol in the reactor.
【0025】装置として、実施例1で用いた装置の反応
器内管3を廃水供給口7および浄化水排出口9付近で細
く、光触媒に対面している部分で太くしたものを用い
た。この装置のフローを図2に示す。細い部分の長さは
両端あわせて200mm、径は35mm、太い部分の長さは
1,000mm、径は90mmであった。他の条件は実施例
1と同様である。 実施例3 装置として、実施例2で用いた装置の反応器内管3の太
い部分に起伏を設けたものを用いた。この装置フローを
図3に示す。他の条件は実施例1と同様である。 実験例1 実施例1〜3に基づいて行なった実験結果を表1に示
す。実施例3では、反応器内管3の太い部分に起伏が設
置されているので、反応器内管3と担持光触媒1間の廃
水の流れが乱れる。そのために廃水5と担持光触媒1が
実施例1、2よりも効率的に接触するので、分解率が最
も高くなった。As the device, the reactor tube 3 of the device used in Example 1 was thinned near the wastewater supply port 7 and the purified water discharge port 9 and thickened at the portion facing the photocatalyst. FIG. 2 shows the flow of this apparatus. The length of the thin portion was 200 mm at both ends and the diameter was 35 mm, and the length of the thick portion was 1,000 mm and the diameter was 90 mm. Other conditions are the same as in the first embodiment. Example 3 The apparatus used in Example 2 was the apparatus used in Example 2, except that the thick part of the inner tube 3 of the reactor was provided with undulations. This apparatus flow is shown in FIG. Other conditions are the same as in the first embodiment. Experimental Example 1 Table 1 shows the experimental results performed based on Examples 1 to 3. In Example 3, since the undulation is provided in the thick part of the inner tube 3 of the reactor, the flow of the wastewater between the inner tube 3 of the reactor and the supported photocatalyst 1 is disturbed. As a result, the wastewater 5 and the supported photocatalyst 1 contacted more efficiently than in Examples 1 and 2, and the decomposition rate was the highest.
【0026】[0026]
【表1】 [Table 1]
【0027】比較例1 装置として、40Wのブラックライトブルーの径とほぼ
同じで直線形状の反応器内管を有し、流路幅が4mmとな
っているものを用いた。反応器外管長は1,200mm、
反応器内管長は1,200mmである。この装置のフロー
を図8に示す。担持光触媒としてデグッサ社製の光触媒
P25(前出)を担体であるE−グラス上に担持したも
の(担持率:12%、触媒面積:0.15m2)を用い、
これを反応器外管4内壁に配置した。o−クロロフェノ
ール(1ppm)を150ml/minの流速で供給し、反応器内
でo−クロロフェノールの分解を行なった。表2に、こ
の比較例1と実施例1の実験結果を示す。COMPARATIVE EXAMPLE 1 As a device, a device having a linear reactor inner tube having substantially the same diameter as 40 W of black light blue and having a flow passage width of 4 mm was used. The outer tube length of the reactor is 1,200 mm,
The tube length in the reactor is 1,200 mm. FIG. 8 shows the flow of this apparatus. As a supported photocatalyst, a photocatalyst P25 manufactured by Degussa (described above) supported on E-glass as a carrier (supporting rate: 12%, catalyst area: 0.15 m 2 ) was used.
This was arranged on the inner wall of the outer tube 4 of the reactor. O-chlorophenol (1 ppm) was supplied at a flow rate of 150 ml / min to decompose o-chlorophenol in the reactor. Table 2 shows the experimental results of Comparative Example 1 and Example 1.
【0028】[0028]
【表2】 [Table 2]
【0029】比較例1で用いた装置では、光源径と流路
幅で装置の外管径が決まる。比較例1で用いた装置で廃
水へ光が吸収されることを抑えるために、流路幅を実施
例1で用いた装置と同じ4mmとすれば、触媒面積は0.
15m2で実施例1の約42%となった。この面積の減少
分に応じて分解率も低下した。 実施例4 装置として、実施例1で用いた反応器を反応器外管4と
同じ径で4個接続したものを用いた。この装置のフロー
を図4に示す。これを用いれば、高濃度あるいは分解速
度の遅い有機化合物含有廃水を浄化できる。各反応器内
の有機化合物濃度は廃水供給口7を有する反応器から浄
化水排出口9へ行くに従って小さくなっているので、反
応器内の有害成分濃度分布に応じて光源2の光量、担持
光触媒1の担持量を低減することができる。o−クロロ
フェノール(10ppm)を含有した廃水5を150ml/min
の流速で供給し、反応器でo−クロロフェノールを分解
した。In the apparatus used in Comparative Example 1, the outer tube diameter of the apparatus is determined by the light source diameter and the flow path width. In order to suppress the absorption of light into the wastewater in the apparatus used in Comparative Example 1, if the flow path width is set to 4 mm, which is the same as the apparatus used in Example 1, the catalyst area is 0.1 mm.
At 15 m 2 , it was about 42% of Example 1. The decomposition rate also decreased in accordance with the decrease in the area. Example 4 As an apparatus, one in which four reactors used in Example 1 were connected with the same diameter as the reactor outer tube 4 was used. FIG. 4 shows the flow of this apparatus. By using this, it is possible to purify wastewater containing organic compounds having a high concentration or a low decomposition rate. Since the concentration of the organic compound in each reactor decreases from the reactor having the wastewater supply port 7 to the purified water discharge port 9, the light amount of the light source 2 and the amount of the supported photocatalyst depend on the concentration distribution of the harmful components in the reactor. 1 can be reduced. Waste water 5 containing o-chlorophenol (10 ppm) is 150 ml / min.
And o-chlorophenol was decomposed in the reactor.
【0030】装置として、比較例1で用いた反応器を4
個直列で接続したものを用いた。この装置のフローを図
5に示す。o−クロロフェノール(10ppm)を含有した
廃水5を150ml/minの流速で供給し、反応器でo−ク
ロロフェノールを分解する。この装置では、廃水5が反
応器内の廃水の流れに対して垂直な方向で廃水供給口7
へ供給され、当該反応器により浄化された浄化水8が上
記と同じ方向で浄化水排出管10から排出されている。
しかも、反応器内の廃水5の流れが配管接続口12で絞
られている。そのために実施例4で用いた反応器内の廃
水5の流れよりも比較例2の流れが不均一となり、廃水
5と担持光触媒1の接触効率が低下するので、実施例4
の実験結果よりも分解率が10%程度低下した。 実施例5 装置として、実施例1で用いた装置に循環配管14を設
置したものを用いた。この装置のフローを図6に示す。
循環ポンプ13により廃水5の一部は、3L/minで循環
される。他の条件は実施例1と同様である。この装置を
用いれば高濃度または分解速度の遅い有機化合物含有廃
水も浄化できる。各反応器内の有害成分濃度は、廃水供
給口7を有する反応器から浄化水排出口9へ行くに従っ
て小さくなるので、反応器内の有害成分濃度分布に応じ
て蛍光灯2の光量、担持光触媒1の担持量を低減するこ
とができる。The reactor used in Comparative Example 1 was 4
Those connected in series were used. FIG. 5 shows the flow of this apparatus. Waste water 5 containing o-chlorophenol (10 ppm) is supplied at a flow rate of 150 ml / min, and o-chlorophenol is decomposed in a reactor. In this device, wastewater 5 is supplied to wastewater supply port 7 in a direction perpendicular to the flow of wastewater in the reactor.
And purified water 8 purified by the reactor is discharged from the purified water discharge pipe 10 in the same direction as above.
Moreover, the flow of the wastewater 5 in the reactor is restricted at the pipe connection port 12. As a result, the flow of Comparative Example 2 becomes more uneven than the flow of wastewater 5 in the reactor used in Example 4, and the contact efficiency between wastewater 5 and supported photocatalyst 1 is reduced.
The decomposition rate was reduced by about 10% as compared with the experimental result of. Example 5 As the device, a device in which the circulation pipe 14 was installed in the device used in Example 1 was used. FIG. 6 shows the flow of this apparatus.
A part of the wastewater 5 is circulated at 3 L / min by the circulation pump 13. Other conditions are the same as in the first embodiment. The use of this device can also purify wastewater containing organic compounds having a high concentration or a low decomposition rate. Since the concentration of the harmful components in each reactor decreases from the reactor having the wastewater supply port 7 to the purified water discharge port 9, the amount of the fluorescent lamp 2 and the amount of the supported photocatalyst depend on the harmful component concentration distribution in the reactor. 1 can be reduced.
【0031】表3に、実施例1、5で用いた装置により
o−クロロフェノールの分解実験を行なった結果を示
す。廃水が循環されることで装置内の流速が大きくな
り、撹拌効果が生じて廃水と光触媒の接触効率が向上す
るので分解率が向上した。しかも、実施例5の結果の分
解率は、実施例1の結果より大きくなっているので、実
施例1の結果と同じ分解率でよければ、実施例5の光源
2の光量、担持光触媒1の担持量を低減することができ
る。Table 3 shows the results of an experiment for decomposing o-chlorophenol using the apparatus used in Examples 1 and 5. By circulating the wastewater, the flow rate in the apparatus was increased, and a stirring effect was generated to improve the contact efficiency between the wastewater and the photocatalyst, so that the decomposition rate was improved. Moreover, since the decomposition rate of the result of Example 5 is higher than the result of Example 1, if the same decomposition rate as the result of Example 1 is sufficient, the light amount of the light source 2 and the light amount of the supported photocatalyst 1 of Example 5 can be obtained. The carrying amount can be reduced.
【0032】[0032]
【表3】 [Table 3]
【0033】[0033]
【発明の効果】本発明の水処理装置によれば、被処理水
の供給口および排出口付近で被処理水の通過断面を大き
くし、光源と光触媒の間を流れる被処理水の通過断面が
小さくすることにより、装置内の流速を大きくして撹拌
効果を生じさせ、しかも、反応器内の被処理水の流れを
均一化するので、光触媒と有害物質の接触効率が向上
し、高効率で被処理水中の有害成分を分解することがで
きる。具体的には、本発明の水処理装置は光触媒の強力
な酸化力により廃水中に存在するトリクロロエチレン、
ダイオキシン、ベンゼン等の有機化合物、農薬および菌
類の分解ができるため、工場廃水、焼却設備の浸出水、
ゴルフ場廃水、病院廃水等の廃水の浄化に有効に用いる
ことができる。また、光触媒は均一にしかも強固に担持
体へ被覆されているので、光触媒の剥離や脱落の心配が
なく、水処理装置の長期間にわたる連続使用が可能で管
理、維持が容易であるという効果も有する。According to the water treatment apparatus of the present invention, the passage cross section of the treated water near the supply port and the discharge port of the treated water is increased, and the passage cross section of the treated water flowing between the light source and the photocatalyst is increased. By reducing the flow rate, the flow rate in the device is increased to generate a stirring effect, and the flow of the water to be treated in the reactor is made uniform, so that the contact efficiency between the photocatalyst and the harmful substance is improved, and the efficiency is improved. It can decompose harmful components in the water to be treated. Specifically, the water treatment apparatus of the present invention is a water treatment apparatus having a strong oxidizing power of trichlorethylene present in wastewater,
It can decompose organic compounds such as dioxin and benzene, pesticides and fungi.
It can be used effectively for purification of wastewater such as golf course wastewater and hospital wastewater. In addition, since the photocatalyst is uniformly and firmly coated on the carrier, there is no fear of peeling or falling off of the photocatalyst, and the water treatment device can be used continuously for a long period of time, and it is easy to manage and maintain. Have.
【図1】本発明の水処理装置(実施例1)のフロー図。FIG. 1 is a flowchart of a water treatment apparatus (first embodiment) of the present invention.
【図2】本発明の水処理装置(実施例2)のフロー図。FIG. 2 is a flowchart of a water treatment apparatus (Example 2) of the present invention.
【図3】本発明の水処理装置(実施例3)のフロー図。FIG. 3 is a flowchart of a water treatment apparatus (Example 3) of the present invention.
【図4】本発明の水処理装置(実施例4)のフロー図。FIG. 4 is a flowchart of a water treatment apparatus (Example 4) of the present invention.
【図5】従来の水処理装置(比較例1)のフロー図。FIG. 5 is a flowchart of a conventional water treatment apparatus (Comparative Example 1).
【図6】本発明の水処理装置(実施例5)のフロー図。FIG. 6 is a flowchart of a water treatment apparatus (Example 5) of the present invention.
【図7】従来技術と本発明の比較する説明図。FIG. 7 is an explanatory diagram comparing the prior art and the present invention.
【図8】従来技術に基づく水処理装置のフロー図。FIG. 8 is a flowchart of a water treatment apparatus based on a conventional technique.
1…担持光触媒、2…光源、3…反応器内管、4…反応
器外管、5…廃水、6…廃水供給管、7…廃水供給口、
8…浄化水、9…浄化水排出口、10…浄化水排出管、
11…配管接続口、12…接続配管、13…循環ポン
プ、14…循環配管、15…支持体、16…反応器内の
廃水の流れ、17…循環廃液抜き出し口、18…循環廃
液再投入口。DESCRIPTION OF SYMBOLS 1 ... Supported photocatalyst, 2 ... Light source, 3 ... Reactor inner tube, 4 ... Reactor outer tube, 5 ... Wastewater, 6 ... Wastewater supply pipe, 7 ... Wastewater supply port,
8 ... purified water, 9 ... purified water outlet, 10 ... purified water discharge pipe,
11: Pipe connection port, 12: Connection pipe, 13: Circulation pump, 14: Circulation pipe, 15: Support, 16: Flow of wastewater in the reactor, 17: Circulating waste liquid discharge port, 18: Circulating waste liquid re-injection port .
───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 泰良 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 4D037 AA11 AB03 AB14 BA18 4D050 AA12 AB06 AB19 BC04 BC06 BC09 BD02 4G069 AA03 BA04A BA14A BA14B BA48A BB04A BC35A BC36A BC50A BD09A CA05 CA07 CA10 CA11 CA15 CA19 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasuyoshi Kato 3-36 Takara-cho, Kure-shi, Hiroshima Babcock Hitachi Kure Research Laboratory F-term (reference) 4D037 AA11 AB03 AB14 BA18 4D050 AA12 AB06 AB19 BC04 BC06 BC09 BD02 4G069 AA03 BA04A BA14A BA14B BA48A BB04A BC35A BC36A BC50A BD09A CA05 CA07 CA10 CA11 CA15 CA19
Claims (9)
管とからなり、それらの間に被処理液の流路が形成され
る二重管と、該内管の中心部に設けられた光源と、前記
外管の内壁に配設された光触媒と、前記被処理液の通路
の一端および他端にそれぞれ被処理液の供給口および排
出口を有する反応器であって、被処理液の供給口付近に
おける該被処理液の通過断面を、前記光源と光触媒の間
を流れる被処理液の通過断面よりも大きくしたことを特
徴とする光触媒を用いた水処理装置。1. A double pipe comprising an inner pipe and an outer pipe formed concentrically on the outer side thereof, wherein a flow path of the liquid to be treated is formed therebetween, and a double pipe provided at the center of the inner pipe. A light source, a photocatalyst disposed on the inner wall of the outer tube, and a reactor having a supply port and a discharge port for the liquid to be treated at one end and the other end of the passage for the liquid to be treated, respectively. A water treatment apparatus using a photocatalyst, wherein a cross section of the liquid to be treated near the liquid supply port is larger than a cross section of the liquid to be treated flowing between the light source and the photocatalyst.
前記内管端部よりも延長し、該内管端部を封止して該被
処理液の液溜め部を設けたことを特徴とする光触媒を用
いた請求項1記載の水処理装置。2. An end of an outer tube near a supply port of the liquid to be treated is extended beyond an end of the inner tube, and an end of the inner tube is sealed to provide a liquid reservoir for the liquid to be treated. The water treatment apparatus according to claim 1, wherein a photocatalyst is used.
端部の外径を、前記光源と光触媒の間を流れる被処理液
の流通部の内管の外径よりも小さくしたことを特徴とす
る請求項1記載の水処理装置。3. An outer diameter of an end of an inner tube near a supply port of the liquid to be treated is smaller than an outer diameter of an inner tube of a flow portion of the liquid to be treated flowing between the light source and the photocatalyst. The water treatment apparatus according to claim 1, wherein
に起伏が設けられていることを特徴とする請求項1ない
し3のいずれかに記載の水処理装置。4. The water treatment apparatus according to claim 1, wherein a part or the entirety of the inner tube provided with the light source is provided with undulations.
が前記被処理液の供給口付近のそれらと同様に構成され
ている請求項1ないし4のいずれかに記載の水処理装
置。5. The water treatment apparatus according to claim 1, wherein an outer pipe and an inner pipe near a discharge port of the liquid to be treated are configured similarly to those near a supply port of the liquid to be treated. .
重管内を流れる水処理液の流れ方向と同じ方向に設けら
れていることを特徴とする請求項1ないし5のいずれか
に記載の水処理装置。6. The processing liquid supply port and the discharge port are provided in the same direction as the flow direction of the water treatment liquid flowing in the double pipe. A water treatment apparatus as described in the above.
流れ方向に直列に接続されたことを特徴とする請求項1
ないし6のいずれかに記載の水処理装置。7. The reactor according to claim 1, wherein the reactor tubes are connected in series in the flow direction of the liquid to be treated in the reactor.
7. The water treatment apparatus according to any one of claims 6 to 6.
複数個並列で接続されたことを特徴とする請求項1ない
し6のいずれかに記載の水処理装置。8. The water treatment apparatus according to claim 1, wherein a plurality of the reactors are connected in parallel to a flow direction of the liquid to be treated.
が抜き出され、抜き出された個所の反対側の管端へ被処
理液を再循環させる循環設備を有することを特徴とする
請求項1ないし8のいずれかに記載の水処理装置。9. A circulating equipment for extracting a part of the liquid to be treated from the tube end of the reactor and recirculating the liquid to be treated to a tube end opposite to the extracted part. The water treatment apparatus according to any one of claims 1 to 8, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6266899A JP2000254667A (en) | 1999-03-10 | 1999-03-10 | Water treating device using photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6266899A JP2000254667A (en) | 1999-03-10 | 1999-03-10 | Water treating device using photocatalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000254667A true JP2000254667A (en) | 2000-09-19 |
Family
ID=13206913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6266899A Pending JP2000254667A (en) | 1999-03-10 | 1999-03-10 | Water treating device using photocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000254667A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004096441A1 (en) * | 2003-04-18 | 2004-11-11 | Lizer Industry Co., Ltd. | Photocatalyst module, method of manufacturing the same, and cleaning treatment apparatus for water to be treated |
JP2006231150A (en) * | 2005-02-23 | 2006-09-07 | Ebara Corp | Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same |
CN107098432A (en) * | 2017-05-11 | 2017-08-29 | 浙江奇彩环境科技股份有限公司 | A kind of super high power rotational flow pipe type photo catalysis reactor and photocatalytic system |
CN111039348A (en) * | 2017-07-12 | 2020-04-21 | 首尔伟傲世有限公司 | Fluid treatment device |
KR102394149B1 (en) * | 2021-06-14 | 2022-05-06 | 방승섭 | High performance photocatalytic sterilizatio device |
CN114620797A (en) * | 2017-07-12 | 2022-06-14 | 首尔伟傲世有限公司 | Fluid treatment device |
-
1999
- 1999-03-10 JP JP6266899A patent/JP2000254667A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004096441A1 (en) * | 2003-04-18 | 2004-11-11 | Lizer Industry Co., Ltd. | Photocatalyst module, method of manufacturing the same, and cleaning treatment apparatus for water to be treated |
JP2006231150A (en) * | 2005-02-23 | 2006-09-07 | Ebara Corp | Photocatalyst, method for manufacturing the same and method and apparatus for treating water by using the same |
CN107098432A (en) * | 2017-05-11 | 2017-08-29 | 浙江奇彩环境科技股份有限公司 | A kind of super high power rotational flow pipe type photo catalysis reactor and photocatalytic system |
CN111039348A (en) * | 2017-07-12 | 2020-04-21 | 首尔伟傲世有限公司 | Fluid treatment device |
CN114620797A (en) * | 2017-07-12 | 2022-06-14 | 首尔伟傲世有限公司 | Fluid treatment device |
KR102394149B1 (en) * | 2021-06-14 | 2022-05-06 | 방승섭 | High performance photocatalytic sterilizatio device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dijkstra et al. | Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation | |
KR100522515B1 (en) | Discharge electrode and photonic catalyst reactor | |
CN102910767B (en) | Method for removing arsenic by loading titanium dioxide with activated carbon fiber hydrothermal method by means of photoelectrocatalysis oxidation | |
US5932111A (en) | Photoelectrochemical reactor | |
JP2009018282A (en) | Ultraviolet oxidation device and ultraviolet oxidation method | |
JP2010046611A (en) | Ultraviolet oxidation apparatus | |
US20030211022A1 (en) | Method and apparatus for decontaminating water or air by a photolytic and photocatalytic reaction | |
JP2000254667A (en) | Water treating device using photocatalyst | |
KR200314844Y1 (en) | The air sterilization and purification system with the ozone and photocatalyst combination decomposer | |
JP3261959B2 (en) | Photocatalytic material | |
JP3848515B2 (en) | Water treatment equipment | |
KR102001834B1 (en) | Electrode for volatile organic compound decomposition and volatile organic compound removal system using the electrode | |
JP3792577B2 (en) | Water treatment equipment using photocatalyst | |
CN201031159Y (en) | Photoelectric responses cabin used for water processing | |
JPH11262759A (en) | Water-treatment apparatus using photocatalyst and method therefor | |
JPH09155160A (en) | Apparatus for decomposing and removing volatile organic compound and method therefor | |
JP3586732B2 (en) | Water treatment method and apparatus | |
JPH10151453A (en) | Ultraviolet irradiation water-treatment apparatus, ultraviolet lamp, and manufacture thereof | |
JP2002186966A (en) | Wetted wall type water treatment device utilizing photocatalyst | |
JP3430218B2 (en) | Water treatment equipment | |
JP4066041B2 (en) | Water purification equipment | |
JP2002361095A (en) | Photocatalyst body, photocatalytically deodorizing device and photocatalytically water-purifying device, using the same | |
US20230242422A1 (en) | Electrocatalytic reactor and remediation of wastewater using same | |
JP2002079244A (en) | Apparatus and method for treating water by photolysis | |
JP2001029946A (en) | Photocatalytic reaction tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040629 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041021 |