JP3847887B2 - Exhaust gas purification catalyst-carrying filter and manufacturing method thereof - Google Patents

Exhaust gas purification catalyst-carrying filter and manufacturing method thereof Download PDF

Info

Publication number
JP3847887B2
JP3847887B2 JP08160897A JP8160897A JP3847887B2 JP 3847887 B2 JP3847887 B2 JP 3847887B2 JP 08160897 A JP08160897 A JP 08160897A JP 8160897 A JP8160897 A JP 8160897A JP 3847887 B2 JP3847887 B2 JP 3847887B2
Authority
JP
Japan
Prior art keywords
catalyst
filter
metal fiber
fiber filter
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08160897A
Other languages
Japanese (ja)
Other versions
JPH10272339A (en
Inventor
正人 今村
紀一 中島
龍彦 加藤
光一 後夷
幸雄 相澤
容夫 関戸
知成 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Eneos Corp
Original Assignee
Sintokogio Ltd
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Nippon Oil Corp filed Critical Sintokogio Ltd
Priority to JP08160897A priority Critical patent/JP3847887B2/en
Priority to EP98911006A priority patent/EP0903476A1/en
Priority to PCT/JP1998/001334 priority patent/WO1998042963A1/en
Publication of JPH10272339A publication Critical patent/JPH10272339A/en
Application granted granted Critical
Publication of JP3847887B2 publication Critical patent/JP3847887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関やボイラ等の燃焼装置から排出される排気ガス中の炭素系微粒子や未燃炭化水素等の処理或いはファンヒータ、ストーブ等の燃焼器から出る排気ガス中の臭気成分等の除去に用いられる排気ガス浄化用触媒担持フィルタ及びその製造方法に関する。
【0002】
【従来の技術】
この種排気ガス浄化用触媒担持フィルタを製造するに当たって、金属繊維フィルタ(以下、単にフィルタ)に触媒を担持する方法として、ウォッシュコート法、ゾルゲル法等が知られている。
前記ウォッシュコート法は、触媒スラリー中にフィルタを浸漬し、乾燥、焼成することにより、フィルタ上に担体層を形成する方法である。
【0003】
又、前記ゾルゲル法は担体層セラミックを形成する金属の有機塩(例えば、アルコキシド)を加水分解し、得られたゾルをフィルタにコーティングし、水蒸気等との接触によりコロイド粒子の膜を生成させた後、乾燥、焼成して触媒の担体層をフィルタ上に形成する。
尚、その他にフィルタに触媒を含浸する含浸法も知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述したウォッシュコート法、ゾルゲル法、含浸法ともに、フィルタへの触媒担持量を細かく制御できない上に、フィルタの表面のみに触媒を担持させることが困難である。
又、各方法とも、浸漬工程を含むため、フィルタの孔に余分な触媒が担持される。
【0005】
この結果、フィルタの圧力損失が大きくなってしまうと共に、触媒の無駄を生じる。
更に、ウォッシュコート法にあっては、所定の触媒担持量に到達するまでに、数回もの浸漬工程を経なければならないこと、ゾルゲル法では加水分解反応に最低でも数時間を要すること等、従来の触媒担持方法では、触媒担持フィルタの製作時間がかかり、生産性に劣るという問題がある。
【0006】
本発明は以上のような従来の課題を解決するためなされたものであり、圧力損失が小さく、金属繊維フィルタに触媒を担持するようにした排気ガス浄化用触媒担持フィルタであって、触媒の無駄を生じない排気ガス浄化用触媒担持フィルタを提供することを目的とする。
又、本発明は、金属繊維フィルタに担持する触媒の量が容易に制御できると共に、フィルタの表面のみに短時間でかつ効率良く触媒が担持できる等の利点を有する排気ガス浄化用触媒担持フィルタの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、請求項1に係る発明は、金属繊維フィルタに触媒を担持した排気ガス浄化用触媒担持フィルタにおいて、通電により抵抗発熱性を有する高温耐熱性金属から成る金属繊維をフィルタ状に成形した金属繊維フィルタの表面に向けて、触媒を含むスラリーを噴霧し、前記触媒を金属繊維フィルタの外表面から垂直方向に0〜 300 μmの厚さの範囲内にのみ、金属繊維フィルタ1g当たり 150mg 以下で担持させたものである
【0008】
請求項2に係る発明は、通電により抵抗発熱性を有する高温耐熱性金属から成る金属繊維をフィルタ状に成形した金属繊維フィルタの表面に向けて、 0.1 50wt %の触媒を含むスラリーを噴霧する工程と、前記スラリーが噴霧された金属繊維フィルタを100 200 ℃の温度下で乾燥させかつ300 1000 ℃の温度下で焼成する乾燥及び焼成工程と、を行い、前記触媒を金属繊維フィルタの外表面から垂直方向に0〜 300 μmの厚さの範囲内にのみ、金属繊維フィルタ1g当たり 150mg 以下で担持させるものである
【0009】
かかる本発明の作用について説明する。
請求項1に係る発明において、金属繊維フィルタの外表面から垂直方向に0〜 300 μmの厚さの範囲内のみに触媒を担持させた構成により、フィルタの圧力損失が小さく抑えられ、触媒の無駄も生じない。
請求項2に係る発明において、金属繊維フィルタの表面に向けて、 0.1 50wt %の触媒を含むスラリーを噴霧し、前記スラリーが噴霧された金属繊維フィルタを100 200 ℃の温度下で乾燥させかつ300 1000 ℃の温度下で焼成するようにしたから、ウォッシュコート法、ゾルゲル法、含浸法と比較して、フィルタへの触媒担持量を制御するのが容易となると共に、短時間で触媒をフィルタ表面にのみ担持させることが可能となる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
本発明者らは、上述した従来の課題を解決するべく、金属繊維フィルタに触媒を担持する手法について鋭意研究した結果、溶媒で均一に触媒を混合した触媒スラリーをノズル等を使用してフィルタに噴霧し、この噴霧工程後、乾燥、焼成という工程を経て触媒を担持することができれば、金属繊維フィルタの表面にのみ触媒を担持することができ、金属繊維フィルタの圧力損失の増大を防止できることを見いだし、この知見に基づいて本発明を提案するに至った。
【0011】
即ち、本発明の排気ガス浄化用触媒担持フィルタ1は、例えば、図1に示すように構成され、例えば触媒を担持した構成触媒を含むスラリーを、例えば後述する金属繊維2からなる金属繊維フィルタの表面に向けて噴霧することにより、金属繊維フィルタの表面にのみ触媒が担持された構成を特徴としている。
又、本発明の排気ガス浄化用触媒担持フィルタの製造方法は、金属繊維フィルタ9に触媒を含むスラリー(溶媒と触媒とを混ぜた)を、例えば図2に示すようなスプレーノズル3等を用いた噴霧装置により噴霧する工程と、前記スラリーを噴霧した後に金属繊維フィルタ9を乾燥させかつ焼成する乾燥及び焼成工程と、を含み、触媒を金属繊維フィルタ9の表面にのみ担持するようにしたことを特徴としている。
【0012】
尚、上記噴霧装置は、図2に示すように、金属繊維フィルタ9に対面して配設されるスプレーノズル3に、触媒スラリー4が貯留された容器5から該触媒スラリー4をポンプ6を介装した触媒スラリー供給通路7から供給すると共に、図示しないコンプレッサ等の加圧空気供給源から導かれる加圧空気を加圧空気供給通路8から供給して、スプレーノズル3から金属繊維フィルタ9に触媒スラリーを噴霧する構成である。
【0013】
次に、以上の本発明の構成を具体的に説明する。
先ず、排気ガス浄化材の基材となる金属繊維フィルタを構成する金属繊維について説明すると、金属繊維の原料は高温耐熱性金属である。この高温耐熱性金属とは、通電により抵抗発熱性を有する材質のもの、例えば、Fe−Cr−Al−REM系のステンレス鋼を用いることが望ましい。具体的には、重量比でCrは15〜23%、Alは2.5〜6%、REMとしては、La、Y、Ceの1種又は2種以上が用いられ、添加量は0.02〜1%である。又、Cr15〜21%、Ni57〜77%、残部Feのニッケルクロム材も用いることができる。尚、他の組成として、不可避成分を含んでも良い。
【0014】
かかる発熱性を有する高温耐熱性金属を引抜法、溶融紡糸法、コイル材切削法、ワイヤ切削法、びびり振動切削法、コーティング法、ウイスカー法等の加工法で高温耐熱性金属繊維を製造するが、特にこれらの製造法に限定することはなく、どのような製造法を使用しても構わない。高温耐熱性金属繊維の平均直径は、5〜500μm、より好ましくは10〜100μmが良い。
【0015】
上記高温耐熱性金属繊維をフィルタ状に成形する。成形フィルタは、形状を保持させるために、焼結したり、金属等の成形体に入れたり、ニードルパンチ等して機械的に繊維を絡ませたりする。焼結は、真空若しくは非酸化性雰囲気中で800〜1300°Cの範囲で10分〜10時間加熱することで行う。この焼結時に荷重をかけることも好適である。
【0016】
その後、空気等の酸化性雰囲気中にて600〜1100°Cで1〜20時間の条件で熱処理して、繊維表面にアルミナ被膜を形成させた金属繊維フィルタを得る。
フィルタ表面とは、フィルタ外表面から垂直方向に0〜300μmの厚さの範囲を言い、好ましくは0〜150μm、更に好ましくは0〜50μmの厚さの範囲を指している。
【0017】
スラリーを調製する際に必要となる溶媒は、水やメタノール、エタノール、トルエン、ヘキサン等の有機溶媒全てを含むが、特に、これらに限定されることはなく、どのような液体を使用しても良い。
触媒の担体は、特に限定されるものではないが、アルミナ、シリカ、ジルコニア、チタニア、ZSM−5、USY、SAPO、Y型ゼオライト、MOR等のゼオライト類、シリカ−アルミナ、アルミナ−ジルコニア、アルミナ−チタニア、シリカ−チタニア、シリカ−ジルコニア、チタニア−ジルコニアから選ばれる少なくとも1種類が好ましく用いられ、なかでもチタニア、ジルコニア等が好ましく用いられる。
【0018】
かかる担体粒子の粒子径は、0.01μmから20μmが好ましく、0.1μmから10μmが更に好ましい。
この理由は、触媒の担体の粒子径が0.01μm未満は製造が極めて困難であり、又、20μmを越えるとフィルタの孔を閉塞或いはフィルタからの剥離が生じ易くなるからである。
【0019】
触媒担体に担持する触媒活性成分は、Pt、Pd、Cu、K、Rb、Cs、Mo、Cr、Mn、Rh、Ag、Ba、Ba、Ca、Zr、Co、Fe、La、Ceから選ばれる少なくとも1種類が、中でも好ましくはPt、Pd、Rh、Cu、K、Mo、Mn、Fe、Ceが使用され、更に好ましくはCu、K、Moが使用される。
【0020】
これらの金属或いは金属酸化物の触媒担体への担持量は、夫々の金属分に換算して担体1g当たり0.01gから2gまでが好ましいが、更には0.05gから1.0gにするのが好ましい。
この理由は、0.01g未満ではほとんどの触媒の活性が実現しないこと、又、2gを越えて担持すると触媒粒子が触媒の担持段階で凝集し、それが大きくなってスプレーノズルの先端部が詰まる原因となり得るためである。
【0021】
触媒粒子の金属繊維フィルタへの担持量は、金属繊維フィルタ1g当たり150mg以下が好ましく、80mg以下が更に好ましい。
この理由は、150mgを越えるとフィルタの孔を閉塞させてしまうからである。
触媒スラリー中の触媒の濃度は、スラリー全体に対して0.1wt%から50wt%が良く、1wt%から30wt%が更に好ましい。0.1wt%未満では、フィルタに噴霧するスラリーの量が多くなり、フィルタ表面が溶媒で覆われ、触媒が付着し難くなる。又、50wt%を越えると、粘性が大きくなり、ノズルの先端部分を詰まらせしまう。
【0022】
触媒スラリーは、触媒を溶媒に対して上記の範囲に収まる濃度にして、ボールミルのポットに入れ、例えば24時間から48時間攪拌、粉砕することによって調製する。
触媒を金属繊維フィルタにスプレーコートするためのスプレーノズルは、1流体噴口、2流体噴口のどちらでも良いが、好ましくは、2流体噴口を使用し、噴口径が2mm以下が好ましく、0.5mm以下にするのが更に好ましい。
【0023】
噴口径が2mmを越えると、噴霧粒子径が大きくなりすぎてフィルタを閉塞させてしまう。
又、噴射圧力は、1kg/cm2 から30kg/cm2 の範囲が良い。1kg/cm2 未満であると、噴霧粒子径が大きくなりすぎること30kg/cm2 を越えると、噴霧された粒子の運動エネルギが大きく、フィルタに衝突しても担持され難いことがその理由である。
【0024】
以上のような条件のもとで、金属繊維フィルタに触媒を担持した後、100°Cから200°Cの間の温度下で乾燥させた後、300°Cから1000°Cの間の温度で焼成することにより、触媒担持フィルタを作ることができる。
尚、図3は、前述した金属繊維2等からなる金属繊維フィルタに触媒10を担持して構成した触媒担持フィルタ1の断面の概略図であり、フィルタ表面(フィルタ外表面から垂直方向に0〜300μmの厚さの範囲、好ましくは0〜150μm、更に好ましくは0〜50μmの厚さの範囲)のみに、触媒10が担持されている状態を示している。
【0025】
又、図4は、触媒担持フィルタの深さ方向と触媒担持量との関係、即ち、触媒担持フィルタの深さ方向の触媒担持量分布を示す図であり、即ち、フィルタ表面に多量の触媒が担持され、フィルタが深くなるに連れ、担持量が極小化していることを示している。
以上説明した排気ガス浄化用触媒担持フィルタによると、フィルタの表面のみに触媒を担持させた構成であるから、フィルタの圧力損失を小さく抑えることができると共に、触媒の無駄を生じず、経済的である。
【0026】
又、以上説明した排気ガス浄化用触媒担持フィルタの製造方法によると、金属繊維フィルタに触媒を含むスラリーを噴霧し、その後に金属繊維フィルタを乾燥させかつ焼成するようにしたから、ウォッシュコート法、ゾルゲル法、含浸法と比較して、フィルタへの触媒担持量を制御するのが容易となると共に、短時間で触媒をフィルタ表面にのみ担持させることが可能となる。
【0027】
この結果、フィルタの孔に余分な触媒が担持されることがなくなり、フィルタの圧力損失を小さくできると共に、触媒の無駄をなくすことが可能となる。
更に、触媒担持フィルタの製作時間を低減でき、生産性の向上を図ることができる。
尚、特に、金属繊維を成形、焼結、熱処理してできる金属繊維フィルタは表面積が大きく、形状が多様化できることや金属繊維表面にアルミナ被膜が形成されるため、触媒が担持し易く、剥離し難いという利点がある。
【0028】
ここで、本発明の触媒担持フィルタの具体例(発明品)と、従来の触媒担持フィルタの具体例(比較品)と、両者の比較結果の一例について説明する。
(発明品1)
Cr:20.02 %、Al:4.9 %、La:0.08%、残部Fe及び不可避的不純物からなるステンレス鋼からコイル材切削法により作製した断面が50×10μmの金属繊維を長さ70mmに切断し、目付け重量が1200g/m2 になるように、フィルタ状に集積し、金属繊維フィルタを作製した。
【0029】
市販チタニア粒子7gに硝酸銅3水和塩3.8gを含む水溶液、硝酸カリウム2.6gを含む水溶液、モリブデン酸アンモニウム4水和塩1.8gを含む水溶液を順次含浸担持し、110°Cで1時間乾燥した後、500°Cで2時間焼成し乾燥、焼成してできた触媒10gを純度99%のエタノール溶液90mlと混合させる。その混合溶液をボールミルで24時間粉砕混合して触媒スラリーを調製した。このスラリーを噴口径が0.4mmの2流体噴口のスプレーノズルを用いて、空気圧力3kg/cm2 で距離15cmのところから先に作製した金属繊維フィルタを3cm四方に切断した。フィルタに20秒間噴霧した。その後、このフィルタを110°Cで1時間乾燥した後、500°Cで2時間焼成し、排気ガス浄化用触媒担持フィルタ(試料A)を製造した。
(比較品1)
市販チタニア粒子7gに硝酸銅3水和塩3.8gを含む水溶液、硝酸カリウム2.6gを含む水溶液、モリブデン酸アンモニウム4水和塩1.8gを含む水溶液を順次含浸担持し、110°Cで1時間乾燥した後、500°Cで2時間焼成し乾燥、焼成してできた触媒10gを純度99%のエタノール溶液90mlと混合させる。その混合溶液をボールミルで24時間粉砕混合して触媒スラリーを調製した。このスラリーを噴口径が0.4mmの2流体噴口のスプレーノズルを用いて、空気圧力3kg/cm2 で距離15cmのところから発明品1で使用したものと同様の5cm四方の金属繊維フィルタにウォッシュコートして110°Cで1時間乾燥した後、500°Cで2時間焼成する操作を金属繊維フィルタ1g当たり70mgの触媒粒子が担持されるまで繰り返し、排気ガス浄化用触媒担持フィルタ(試料B)を製造した。
【0030】
そして、以上の本発明の触媒担持フィルタの試料Aと、従来の触媒担持フィルタの試料Bと、触媒を担持しない金属繊維フィルタの試料Cとを夫々用いて、排気量265ccのディーゼルエンジンにおける触媒担持フィルタの評価試験を行った。
エンジン回転数1500rpm、エンジン負荷75%の条件でフィルタの初期の圧力損失を測定した。又、排気ガス中の炭素微粒子の捕集率をBosch(Smoke meter)によって計測した。
【0031】
炭素系微粒子の捕集率はフィルタ前後のボッシュ反射率を黒煙濃度に換算し、下記(1)の算出式で求めた。
炭素系微粒子捕集率(%)=[入口炭素微粒子濃度(mg/Nm3 )−出口炭素微粒子濃度(mg/Nm3 )/入口炭素微粒子濃度(mg/Nm3 )]×100…(1)
以上の評価実験結果を表1に示す。
【0032】
【表1】

Figure 0003847887
【0033】
かかる表1に示された結果から推察できるように、本発明の噴霧(スプレー)担持法を用いて触媒を担持させることにより、従来の方法による触媒担持フィルタと比較して、フィルタの圧力損失が小さくできた上、フィルタの製造時間も大幅に短縮できる。又、触媒担持フィルタの炭素系微粒子の捕集率は従来法で作製したフィルタと略同等の性能を有している。
【0034】
更に、本発明者らはフィルタからの触媒の剥離性について試験した。
市販されている金網に上述した発明品1と同条件で触媒を担持し、このフィルタ(試料M)と発明品1のフィルタ(試料A)の夫々を電気炉内に保持し、300°Cと600°Cを10分間おきに繰り返す熱サイクル試験を行った。フィルタからの剥離率は最初に担持した量を基準に計算した。
【0035】
この試験を行う際、600°Cに加熱されたフィルタを300°Cに急速に降温する行程が生ずるが、これを炉内に設置された加圧空気噴射装置によってフィルタ表面に直接加圧空気を当てて行う。以上のような熱サイクル試験を10回繰り返した。
この結果を、表2に示す。
【0036】
【表2】
Figure 0003847887
【0037】
かかる結果から明らかなように、金属繊維フィルタは市販の金網と比較して、その表面積が大きいことや表面形状が複雑であることに加え、熱処理して繊維表面にアルミナ被膜を形成させたこと等の理由により、触媒が剥離し難いことが判る。
【0038】
【発明の効果】
以上説明したように、請求項1に係る発明の排気ガス浄化用触媒担持フィルタによると、通電により抵抗発熱性を有する高温耐熱性金属から成る金属繊維で成形された金属繊維フィルタの表面に触媒を担持させて排気ガス浄化用のフィルタを構成することができる。また、触媒を金属繊維フィルタの外表面から垂直方向に0〜 300 μmの厚さの範囲内にのみ担持させたことで、フィルタの圧力損失が小さく抑えられ、触媒の無駄を生じないようにできる。さらに、前記触媒を金属繊維フィルタ1g当たり 150mg 以下で担持させたことで、該触媒により金属繊維フィルタの孔を閉塞させることがない。これらのことから、通常の排気ガス処理条件下で圧力損失を小さくできる。例えば、ディーゼルエンジンにおいてパティキュレート捕集用のフィルタを設置する際、エンジン背圧を小さくでき、エンジン運転に支障がない。特に、本発明の対象とする金属繊維フィルタは、その表面積が大きく、表面形状が複雑なため、触媒を担持し易く、又、触媒が剥離し難いという利点がある。
【0039】
請求項2に係る発明の排気ガス浄化用触媒担持フィルタの製造方法によると、通電により抵抗発熱性を有する高温耐熱性金属から成る金属繊維をフィルタ状に成形した金属繊維フィルタの表面に向けて、 0.1 50wt %の触媒を含むスラリーを噴霧することで、前記金属繊維フィルタに噴霧するスラリーの量が多くなり過ぎず、触媒が付着し易くなり、また、粘性が大きくなり過ぎず、スプレーノズルの先端部分が詰まることがない。また、前記触媒を金属繊維フィルタの外表面から垂直方向に0〜 300 μmの厚さの範囲内にのみ担持させることで、フィルタの圧力損失が小さく抑えられ、触媒の無駄を生じないようにできる。さらに、前記触媒を金属繊維フィルタ1g当たり 150mg 以下で担持させることで、該触媒により金属繊維フィルタの孔を閉塞させることがない。これらのことから、従来の方法で問題となっていた触媒担持にかかる時間を大幅に低減でき、工業的に安価でかつ簡単にフィルタを製造することができる。又、触媒担持量を簡単に制御できる。
【図面の簡単な説明】
【図1】 触媒担持フィルタの拡大図
【図2】 本発明に係る触媒担持フィルタの製造方法を実施する製造装置の概略図
【図3】 本発明に係る触媒担持フィルタの断面図
【図4】 触媒担持フィルタの深さ方向の触媒担持量の分布図
【符号の説明】
1 排気ガス浄化用触媒担持フィルタ
2 金属繊維
3 スプレーノズル
4 触媒スラリー
5 容器
6 ポンプ
7 触媒スラリー供給通路
8 加圧空気供給通路
9 金属繊維フィルタ
10 触媒[0001]
BACKGROUND OF THE INVENTION
The present invention relates to treatment of carbon-based fine particles and unburned hydrocarbons in exhaust gas exhausted from combustion apparatuses such as internal combustion engines and boilers, or odor components in exhaust gas emitted from combustors such as fan heaters and stoves. The present invention relates to an exhaust gas purifying catalyst-carrying filter used for removal and a method for manufacturing the same.
[0002]
[Prior art]
In manufacturing this type of exhaust gas purifying catalyst-carrying filter, a wash coat method, a sol-gel method, and the like are known as a method for carrying a catalyst on a metal fiber filter (hereinafter simply referred to as a filter).
The washcoat method is a method of forming a carrier layer on a filter by immersing the filter in a catalyst slurry, drying and firing.
[0003]
Further, the sol-gel method hydrolyzes an organic salt (for example, alkoxide) of a metal forming a carrier layer ceramic, coats the obtained sol on a filter, and forms a film of colloidal particles by contact with water vapor or the like. Thereafter, drying and calcination are performed to form a catalyst carrier layer on the filter.
In addition, an impregnation method in which a filter is impregnated with a catalyst is also known.
[0004]
[Problems to be solved by the invention]
However, in the above-described washcoat method, sol-gel method, and impregnation method, the amount of catalyst supported on the filter cannot be finely controlled, and it is difficult to support the catalyst only on the surface of the filter.
Moreover, since each method includes an immersion step, an excess catalyst is supported in the pores of the filter.
[0005]
As a result, the pressure loss of the filter increases and the catalyst is wasted.
Furthermore, in the washcoat method, it has been necessary to go through several immersion steps to reach a predetermined catalyst loading amount, and the sol-gel method requires a minimum of several hours for the hydrolysis reaction. However, this catalyst loading method has a problem that it takes time to manufacture the catalyst loading filter and is inferior in productivity.
[0006]
The present invention has been made to solve the above-described conventional problems, and is a catalyst-carrying filter for purifying exhaust gas that has a small pressure loss and that carries a catalyst on a metal fiber filter. It is an object of the present invention to provide an exhaust gas purifying catalyst-carrying filter that does not cause the problem.
In addition, the present invention provides an exhaust gas purifying catalyst-carrying filter having advantages such that the amount of catalyst carried on a metal fiber filter can be easily controlled and the catalyst can be carried only on the surface of the filter in a short time and efficiently. An object is to provide a manufacturing method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is directed to a catalyst-carrying filter for purifying exhaust gas, in which a catalyst is carried on a metal fiber filter. The slurry containing the catalyst is sprayed toward the surface of the metal fiber filter formed into a shape, and the metal fiber filter is disposed only within a thickness range of 0 to 300 μm in the vertical direction from the outer surface of the metal fiber filter. It is supported at 150 mg or less per gram .
[0008]
The invention according to claim 2 sprays a slurry containing 0.1 to 50 wt % of catalyst toward the surface of a metal fiber filter formed by forming a metal fiber made of a high-temperature heat-resistant metal having resistance exothermicity when energized into a filter shape. And a drying and calcining step in which the metal fiber filter sprayed with the slurry is dried at a temperature of 100 to 200 ° C. and calcined at a temperature of 300 to 1000 ° C. , and the catalyst is used for the metal fiber filter. from the outer surface only within the range of the thickness of 0 to 300 [mu] m in the vertical direction, in which is supported by the following metal fiber filter 1g per 150 mg.
[0009]
The operation of the present invention will be described.
In the invention according to claim 1, the structure in which the catalyst is supported only within the thickness range of 0 to 300 μm in the vertical direction from the outer surface of the metal fiber filter can reduce the pressure loss of the filter, and waste the catalyst. Does not occur.
In the invention according to claim 2, a slurry containing 0.1 to 50 wt % of the catalyst is sprayed toward the surface of the metal fiber filter, and the metal fiber filter sprayed with the slurry is dried at a temperature of 100 to 200 ° C. In addition , since the firing is performed at a temperature of 300 to 1000 ° C., the amount of catalyst supported on the filter can be easily controlled and the catalyst can be shortened in a short time compared with the washcoat method, the sol-gel method, and the impregnation method. Can be carried only on the filter surface.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In order to solve the above-described conventional problems, the present inventors have intensively studied a method for supporting a catalyst on a metal fiber filter. As a result, a catalyst slurry in which a catalyst is uniformly mixed with a solvent is used as a filter using a nozzle or the like. If the catalyst can be supported by spraying and drying and firing after this spraying step, the catalyst can be supported only on the surface of the metal fiber filter, and an increase in pressure loss of the metal fiber filter can be prevented. As a result, the present invention has been proposed based on this finding.
[0011]
That is, the exhaust gas purifying catalyst-carrying filter 1 of the present invention is configured, for example, as shown in FIG. 1. For example, a slurry containing a constituent catalyst carrying a catalyst is made of, for example, a metal fiber filter composed of metal fibers 2 described later. It is characterized in that the catalyst is supported only on the surface of the metal fiber filter by spraying toward the surface.
The method for producing an exhaust gas purifying catalyst-carrying filter of the present invention uses a slurry containing a catalyst (mixed with a solvent and a catalyst) in a metal fiber filter 9, for example, using a spray nozzle 3 as shown in FIG. The catalyst is supported only on the surface of the metal fiber filter 9, including a step of spraying by the spraying device, and a drying and firing step of drying and firing the metal fiber filter 9 after spraying the slurry. It is characterized by.
[0012]
In the spraying device, as shown in FIG. 2, the catalyst slurry 4 is passed through a pump 6 from a container 5 storing the catalyst slurry 4 to a spray nozzle 3 disposed facing the metal fiber filter 9. In addition to supplying from the catalyst slurry supply passage 7 loaded, pressurized air guided from a pressurized air supply source such as a compressor (not shown) is supplied from the pressurized air supply passage 8 to the metal fiber filter 9 from the spray nozzle 3. The slurry is sprayed.
[0013]
Next, the configuration of the present invention will be specifically described.
First, the metal fibers constituting the metal fiber filter that becomes the base material of the exhaust gas purification material will be described. The raw material of the metal fibers is a high-temperature heat-resistant metal. As the high temperature heat resistant metal, it is desirable to use a material having resistance exothermicity when energized, for example, Fe-Cr-Al-REM stainless steel. Specifically, Cr is 15 to 23% by weight, Al is 2.5 to 6%, REM is one or more of La, Y, and Ce, and the addition amount is 0.02 ~ 1%. A nickel chromium material of Cr 15 to 21%, Ni 57 to 77%, and the remaining Fe can also be used. In addition, you may contain an unavoidable component as another composition.
[0014]
High-temperature heat-resistant metal fibers are manufactured by processing methods such as drawing, melt spinning, coil material cutting, wire cutting, chatter vibration cutting, coating, whisker, etc. However, it is not particularly limited to these production methods, and any production method may be used. The average diameter of the high temperature heat resistant metal fiber is 5 to 500 μm, more preferably 10 to 100 μm.
[0015]
The high temperature heat resistant metal fiber is formed into a filter shape. In order to maintain the shape, the molded filter is sintered, placed in a molded body such as metal, or mechanically entangled with fibers by needle punching or the like. Sintering is performed by heating in the range of 800 to 1300 ° C for 10 minutes to 10 hours in a vacuum or non-oxidizing atmosphere. It is also preferable to apply a load during the sintering.
[0016]
Then, it heat-processes on conditions of 600-1100 degreeC for 1 to 20 hours in oxidizing atmosphere, such as air, and obtains the metal fiber filter which formed the alumina film in the fiber surface.
The filter surface refers to a thickness range of 0 to 300 μm in the vertical direction from the filter outer surface, preferably 0 to 150 μm, more preferably 0 to 50 μm.
[0017]
Solvents necessary for preparing the slurry include all organic solvents such as water, methanol, ethanol, toluene, hexane, etc., but are not particularly limited, and any liquid can be used. good.
The catalyst carrier is not particularly limited, but zeolites such as alumina, silica, zirconia, titania, ZSM-5, USY, SAPO, Y-type zeolite, MOR, silica-alumina, alumina-zirconia, alumina- At least one selected from titania, silica-titania, silica-zirconia, and titania-zirconia is preferably used, and among these, titania, zirconia and the like are preferably used.
[0018]
The particle diameter of the carrier particles is preferably 0.01 μm to 20 μm, more preferably 0.1 μm to 10 μm.
The reason for this is that if the particle size of the catalyst carrier is less than 0.01 μm, the production is extremely difficult, and if it exceeds 20 μm, the pores of the filter are easily blocked or peeled off from the filter.
[0019]
The catalytically active component supported on the catalyst carrier is selected from Pt, Pd, Cu, K, Rb, Cs, Mo, Cr, Mn, Rh, Ag, Ba, Ba, Ca, Zr, Co, Fe, La, and Ce. At least one type is used, among which Pt, Pd, Rh, Cu, K, Mo, Mn, Fe, and Ce are preferably used, and Cu, K, and Mo are more preferably used.
[0020]
The amount of these metals or metal oxides supported on the catalyst carrier is preferably 0.01 g to 2 g per gram of the carrier in terms of the respective metal content, and more preferably 0.05 g to 1.0 g. preferable.
The reason for this is that most of the catalyst activity is not realized if it is less than 0.01 g, and if it exceeds 2 g, the catalyst particles are aggregated in the catalyst loading stage, which becomes larger and clogs the tip of the spray nozzle. This can be a cause.
[0021]
The amount of catalyst particles supported on the metal fiber filter is preferably 150 mg or less, more preferably 80 mg or less, per 1 g of the metal fiber filter.
The reason is that if it exceeds 150 mg, the pores of the filter are blocked.
The concentration of the catalyst in the catalyst slurry is preferably 0.1 wt% to 50 wt%, more preferably 1 wt% to 30 wt%, based on the entire slurry. If it is less than 0.1 wt%, the amount of slurry sprayed on the filter increases, the filter surface is covered with a solvent, and the catalyst is difficult to adhere. Moreover, when it exceeds 50 wt%, viscosity will become large and will clog the front-end | tip part of a nozzle.
[0022]
The catalyst slurry is prepared by bringing the catalyst into a concentration within the above range with respect to the solvent, putting it in a ball mill pot, and stirring and pulverizing, for example, for 24 to 48 hours.
The spray nozzle for spray-coating the catalyst on the metal fiber filter may be either a one-fluid nozzle or a two-fluid nozzle. Preferably, a two-fluid nozzle is used, and the nozzle diameter is preferably 2 mm or less, and 0.5 mm or less. More preferably.
[0023]
When the nozzle diameter exceeds 2 mm, the spray particle diameter becomes too large and the filter is blocked.
The injection pressure is preferably in the range of 1 kg / cm 2 to 30 kg / cm 2 . The reason is that if the particle size is less than 1 kg / cm 2 , the spray particle diameter becomes too large, and if it exceeds 30 kg / cm 2 , the kinetic energy of the sprayed particles is large and it is difficult to carry even if it collides with the filter. .
[0024]
Under the conditions as described above, after the catalyst is supported on the metal fiber filter, the catalyst is dried at a temperature between 100 ° C. and 200 ° C., and then at a temperature between 300 ° C. and 1000 ° C. A catalyst-carrying filter can be made by firing.
FIG. 3 is a schematic view of a cross section of the catalyst-carrying filter 1 constituted by carrying the catalyst 10 on the metal fiber filter composed of the above-described metal fiber 2 or the like, and the filter surface (0 to 0 in the vertical direction from the filter outer surface). The state where the catalyst 10 is supported is shown only in the thickness range of 300 μm, preferably in the range of 0 to 150 μm, more preferably in the range of 0 to 50 μm.
[0025]
FIG. 4 is a graph showing the relationship between the depth direction of the catalyst-carrying filter and the catalyst loading amount, that is, the distribution of the catalyst loading amount in the depth direction of the catalyst-carrying filter, that is, a large amount of catalyst on the filter surface. It is shown that the carrying amount is minimized as the filter is carried and becomes deeper.
According to the exhaust gas purifying catalyst-carrying filter described above, since the catalyst is supported only on the surface of the filter, the pressure loss of the filter can be kept small, and the catalyst is not wasted. is there.
[0026]
Further, according to the method for producing the exhaust gas purifying catalyst-carrying filter described above, the slurry containing the catalyst is sprayed on the metal fiber filter, and then the metal fiber filter is dried and fired. Compared with the sol-gel method and the impregnation method, the amount of catalyst supported on the filter can be easily controlled, and the catalyst can be supported only on the filter surface in a short time.
[0027]
As a result, the excess catalyst is not carried in the filter holes, the pressure loss of the filter can be reduced, and the waste of the catalyst can be eliminated.
Furthermore, the production time of the catalyst-carrying filter can be reduced, and the productivity can be improved.
In particular, metal fiber filters made by molding, sintering, and heat-treating metal fibers have a large surface area, can be diversified in shape, and an alumina coating is formed on the metal fiber surface. There is an advantage that it is difficult.
[0028]
Here, a specific example (invention product) of the catalyst-carrying filter of the present invention, a specific example of a conventional catalyst-carrying filter (comparative product), and an example of the comparison result between them will be described.
(Invention 1)
Cr: 20.02%, Al: 4.9%, La: 0.08%, a metal fiber having a cross section of 50 × 10μm made from stainless steel consisting of the remainder Fe and unavoidable impurities by a coil material cutting method is cut to a length of 70mm. A metal fiber filter was produced by accumulating in a filter shape so that the weight was 1200 g / m 2 .
[0029]
7 g of commercially available titania particles were successively impregnated and supported with an aqueous solution containing 3.8 g of copper nitrate trihydrate, an aqueous solution containing 2.6 g of potassium nitrate, and an aqueous solution containing 1.8 g of ammonium molybdate tetrahydrate. After drying for a period of time, the catalyst obtained by calcining at 500 ° C. for 2 hours, dried and calcined is mixed with 90 ml of a 99% purity ethanol solution. The mixed solution was pulverized and mixed with a ball mill for 24 hours to prepare a catalyst slurry. Using this slurry, a metal fiber filter prepared earlier from a distance of 15 cm at an air pressure of 3 kg / cm 2 was cut into 3 cm squares using a spray nozzle of a two-fluid nozzle with a nozzle diameter of 0.4 mm. The filter was sprayed for 20 seconds. Thereafter, this filter was dried at 110 ° C. for 1 hour and then calcined at 500 ° C. for 2 hours to produce an exhaust gas purifying catalyst-carrying filter (sample A).
(Comparative product 1)
7 g of commercially available titania particles were successively impregnated and supported with an aqueous solution containing 3.8 g of copper nitrate trihydrate, an aqueous solution containing 2.6 g of potassium nitrate, and an aqueous solution containing 1.8 g of ammonium molybdate tetrahydrate. After drying for a period of time, the catalyst obtained by calcining at 500 ° C. for 2 hours, dried and calcined is mixed with 90 ml of a 99% purity ethanol solution. The mixed solution was pulverized and mixed with a ball mill for 24 hours to prepare a catalyst slurry. This slurry was washed on a 5 cm square metal fiber filter similar to that used in Invention 1 from a distance of 15 cm at an air pressure of 3 kg / cm 2 using a spray nozzle of a two-fluid nozzle with a nozzle diameter of 0.4 mm. After coating, drying at 110 ° C. for 1 hour, and firing at 500 ° C. for 2 hours are repeated until 70 mg of catalyst particles are loaded per 1 g of metal fiber filter, and a catalyst-carrying filter for purifying exhaust gas (Sample B) Manufactured.
[0030]
Then, using the above-mentioned sample A of the catalyst-carrying filter of the present invention, sample B of the conventional catalyst-carrying filter, and sample C of the metal fiber filter that does not carry a catalyst, the catalyst-carrying in a diesel engine with a displacement of 265 cc A filter evaluation test was conducted.
The initial pressure loss of the filter was measured under the conditions of an engine speed of 1500 rpm and an engine load of 75%. Further, the collection rate of carbon fine particles in the exhaust gas was measured by Bosch (Smoke meter).
[0031]
The collection rate of the carbon-based fine particles was calculated by the following formula (1) by converting the Bosch reflectance before and after the filter into the black smoke concentration.
Carbon-based fine particle collection rate (%) = [inlet carbon fine particle concentration (mg / Nm 3 ) −outlet carbon fine particle concentration (mg / Nm 3 ) / inlet carbon fine particle concentration (mg / Nm 3 )] × 100 (1)
Table 1 shows the results of the above evaluation experiment.
[0032]
[Table 1]
Figure 0003847887
[0033]
As can be inferred from the results shown in Table 1, by supporting the catalyst using the spray supporting method of the present invention, the pressure loss of the filter is lower than that of the conventional catalyst supporting filter. In addition to being able to reduce the size, the manufacturing time of the filter can be greatly shortened. Further, the collection rate of the carbon-based fine particles of the catalyst-carrying filter has substantially the same performance as that of the filter produced by the conventional method.
[0034]
In addition, the inventors tested for the release of the catalyst from the filter.
A catalyst is supported on a commercially available wire mesh under the same conditions as invented product 1 described above, and each of the filter (sample M) and the filter (sample A) of invention product 1 is held in an electric furnace at 300 ° C. A thermal cycle test was repeated at 600 ° C. every 10 minutes. The peel rate from the filter was calculated based on the amount initially loaded.
[0035]
When this test is performed, a process of rapidly lowering the temperature of the filter heated to 600 ° C. to 300 ° C. occurs, and this is caused by applying pressurized air directly to the filter surface by a pressurized air injection device installed in the furnace. Do it. The above heat cycle test was repeated 10 times.
The results are shown in Table 2.
[0036]
[Table 2]
Figure 0003847887
[0037]
As is clear from these results, the metal fiber filter has a large surface area and a complicated surface shape as compared with a commercially available wire mesh, and heat treatment forms an alumina coating on the fiber surface. From this reason, it can be seen that the catalyst is difficult to peel off.
[0038]
【The invention's effect】
As described above, according to the exhaust gas purifying catalyst-carrying filter of the invention according to claim 1 , the catalyst is applied to the surface of the metal fiber filter formed of metal fibers made of a high-temperature heat-resistant metal having resistance to heat generation when energized. A filter for purifying exhaust gas can be formed by carrying the filter. In addition, since the catalyst is supported only within the thickness range of 0 to 300 μm in the vertical direction from the outer surface of the metal fiber filter , the pressure loss of the filter can be kept small and the waste of the catalyst can be prevented. . Furthermore, since the catalyst is supported at 150 mg or less per 1 g of the metal fiber filter, the catalyst does not block the pores of the metal fiber filter. From these, Ru can reduce pressure loss in the normal exhaust gas treatment conditions. For example, when a filter for collecting particulates is installed in a diesel engine, the engine back pressure can be reduced and there is no hindrance to engine operation. In particular, the metal fiber filter that is the subject of the present invention has an advantage that it has a large surface area and a complicated surface shape, and therefore it is easy to carry the catalyst and the catalyst is difficult to peel off.
[0039]
According to the method for producing a catalyst-carrying filter for purifying exhaust gas of the invention according to claim 2 , toward the surface of the metal fiber filter formed by filtering a metal fiber made of a high-temperature heat-resistant metal having resistance exothermicity when energized, By spraying the slurry containing 0.1 to 50 wt % of the catalyst, the amount of slurry sprayed on the metal fiber filter does not increase too much, the catalyst is easily attached, the viscosity does not increase too much, and the spray nozzle The tip is not clogged. In addition, by supporting the catalyst only within a thickness range of 0 to 300 μm in the vertical direction from the outer surface of the metal fiber filter , the pressure loss of the filter can be suppressed to be small and the waste of the catalyst can be prevented. . Further, by supporting the catalyst at 150 mg or less per 1 g of the metal fiber filter, the catalyst does not block the pores of the metal fiber filter. From these facts, it is possible to greatly reduce the time required for supporting the catalyst, which has been a problem in the conventional method, and it is possible to manufacture the filter industrially at low cost. In addition, the amount of catalyst supported can be easily controlled.
[Brief description of the drawings]
FIG. 1 is an enlarged view of a catalyst-carrying filter. FIG. 2 is a schematic view of a production apparatus for carrying out a method for producing a catalyst-carrying filter according to the invention. FIG. 3 is a cross-sectional view of a catalyst-carrying filter according to the invention. Distribution chart of catalyst loading in the depth direction of catalyst loading filter [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification catalyst carrying filter 2 Metal fiber 3 Spray nozzle 4 Catalyst slurry 5 Container 6 Pump 7 Catalyst slurry supply passage 8 Pressurized air supply passage 9 Metal fiber filter 10 Catalyst

Claims (2)

金属繊維フィルタに触媒を担持した排気ガス浄化用触媒担持フィルタにおいて、
通電により抵抗発熱性を有する高温耐熱性金属から成る金属繊維をフィルタ状に成形した金属繊維フィルタの表面に向けて、触媒を含むスラリーを噴霧し、前記触媒を金属繊維フィルタの外表面から垂直方向に0〜 300 μmの厚さの範囲内にのみ、金属繊維フィルタ1g当たり 150mg 以下で担持させたことを特徴とする排気ガス浄化用触媒担持フィルタ。
In an exhaust gas purifying catalyst-carrying filter carrying a catalyst on a metal fiber filter,
Toward the surface of the metal fiber filter obtained by forming a metal fiber made of high-temperature resistant metal having a resistance exothermic filter shape by energization, spray a slurry containing the catalyst, the vertical direction the catalyst from the outer surface of the metal fiber filter A catalyst-carrying filter for purifying exhaust gas, which is carried in an amount of 150 mg or less per 1 g of the metal fiber filter only within a thickness range of 0 to 300 μm .
通電により抵抗発熱性を有する高温耐熱性金属から成る金属繊維をフィルタ状に成形した金属繊維フィルタの表面に向けて、 0.1 50wt %の触媒を含むスラリーを噴霧する工程と、
前記スラリーが噴霧された金属繊維フィルタを100 200 ℃の温度下で乾燥させかつ300 1000 ℃の温度下で焼成する乾燥及び焼成工程と、を行い
前記触媒を金属繊維フィルタの外表面から垂直方向に0〜 300 μmの厚さの範囲内にのみ、金属繊維フィルタ1g当たり 150mg 以下で担持させることを特徴とする排気ガス浄化用触媒担持フィルタの製造方法。
Spraying a slurry containing 0.1 to 50 wt % of a catalyst onto a surface of a metal fiber filter formed by forming a metal fiber made of a high-temperature heat-resistant metal having resistance exothermicity when energized into a filter shape ;
Performed, and drying and firing step the slurry is calcined at a temperature of the metal fiber filter sprayed dried at a temperature of 100 ~ 200 ° C. and 300 ~ 1000 ° C.,
Produced from the outer surface only within the range of the thickness of 0 to 300 [mu] m in the vertical direction, the catalyst-carrying filter for purifying exhaust gases, characterized in that make-supported below metal fiber filter 1g per 150mg of the catalyst metal fiber filter Method.
JP08160897A 1997-03-25 1997-03-31 Exhaust gas purification catalyst-carrying filter and manufacturing method thereof Expired - Fee Related JP3847887B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08160897A JP3847887B2 (en) 1997-03-31 1997-03-31 Exhaust gas purification catalyst-carrying filter and manufacturing method thereof
EP98911006A EP0903476A1 (en) 1997-03-25 1998-03-25 Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus
PCT/JP1998/001334 WO1998042963A1 (en) 1997-03-25 1998-03-25 Exhaust emission control catalyst, exhaust emission control catalyst manufacturing method, exhaust emission control filter, exhaust emission control filter manufacturing method, and exhaust emission control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08160897A JP3847887B2 (en) 1997-03-31 1997-03-31 Exhaust gas purification catalyst-carrying filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10272339A JPH10272339A (en) 1998-10-13
JP3847887B2 true JP3847887B2 (en) 2006-11-22

Family

ID=13751044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08160897A Expired - Fee Related JP3847887B2 (en) 1997-03-25 1997-03-31 Exhaust gas purification catalyst-carrying filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3847887B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI981245A1 (en) * 1998-06-03 1999-12-03 Getters Spa PROCESS FOR THE PRODUCTION OF METALLIC FIBER PANELS FUNCTIONALIZED WITH CATALYSTS AND PANELS SO PRODUCED
JP2014008460A (en) * 2012-06-29 2014-01-20 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Catalyst carrying bag filter
DE102014015786A1 (en) * 2014-10-24 2016-04-28 Man Diesel & Turbo Se Device for removing solid fractions from the flue gas of internal combustion engines or industrial gas turbines

Also Published As

Publication number Publication date
JPH10272339A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
US3767453A (en) Method of depositing a high surface area alumina film on a relatively low surface area support
JP5085176B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
KR20050109533A (en) Catalyzing filters and methods of making
CN107570163B (en) A kind of support type VOCs catalyst for catalytic combustion and preparation method thereof
JP2009018287A (en) Oxidation catalyst for cleaning exhaust gas
JPH0368451A (en) Production of catalyst for purification of exhaust gas
WO2014067186A1 (en) Noble metal-integrated catalyst and preparation method therefor
JP3847887B2 (en) Exhaust gas purification catalyst-carrying filter and manufacturing method thereof
JP3770998B2 (en) Gas processing equipment
JP5495763B2 (en) Method for producing metal-supported crystalline silica aluminophosphate catalyst and metal-supported crystalline silica aluminophosphate catalyst
EP1094896A1 (en) Metallic fiber boards functionalized by catalysts and process for producing thereof
JPH11169668A (en) Exhaust gas cleaning device and its production
JPH10272338A (en) Catalyst supporting filter for purifying exhaust gas and its production
JPH10180113A (en) Catalyst for purifying exhaust gas and preparation thereof
JPH02261511A (en) Catalyst for removing fine grain in diesel exhaust and its filter
WO2019187604A1 (en) Diesel oxidation catalyst powder and method for manufacturing same, and integrated structure-type exhaust gas purification catalyst
JP2007515260A (en) Catalytic converter and method for producing the same
JP4682396B2 (en) Exhaust gas purification material, preparation method thereof, and exhaust gas purification apparatus using the same
JP4094083B2 (en) Self-heating filter and method for producing self-heating catalyst body
JPH01142208A (en) Filter for collecting diesel particulate
JP4094082B2 (en) Self-heating filter and method for producing self-heating catalyst body
US11801491B1 (en) Three-way catalyst with reduced palladium loading and method of making the three-way catalyst
JPH0768173A (en) Combustion catalyst and production thereof
JPH10274030A (en) Exhaust emission control device
JPH10266827A (en) Self-heating type exhaust gas purifying catalyst body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees