JP3847871B2 - Vapor deposition equipment - Google Patents

Vapor deposition equipment Download PDF

Info

Publication number
JP3847871B2
JP3847871B2 JP35352396A JP35352396A JP3847871B2 JP 3847871 B2 JP3847871 B2 JP 3847871B2 JP 35352396 A JP35352396 A JP 35352396A JP 35352396 A JP35352396 A JP 35352396A JP 3847871 B2 JP3847871 B2 JP 3847871B2
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
deposition material
particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35352396A
Other languages
Japanese (ja)
Other versions
JPH10176262A (en
Inventor
宗人 箱守
幸信 日比野
松崎  封徳
倉内  利春
正道 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP35352396A priority Critical patent/JP3847871B2/en
Publication of JPH10176262A publication Critical patent/JPH10176262A/en
Application granted granted Critical
Publication of JP3847871B2 publication Critical patent/JP3847871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板を搬送しながら薄膜を形成する通過型の蒸着装置に関し、特にPDP(プラズマディスプレイパネル)の誘電体保護膜を形成するための蒸着装置に関する。
【0002】
【従来の技術】
従来、大面積の基板へ薄膜を形成する蒸着装置としては、一般に基板通過方式を採用した蒸着装置が用いられている。
【0003】
図9(a)(b)に、従来の基板通過方式の蒸着装置の概略構成を示す。
図9(a)(b)に示すように、この蒸着装置101は、概略、蒸着室102と、その両側に搬送室103、104が設けられ、これらは図示しない真空排気系に連結されている。そして、蒸着すべき例えばガラスからなる基板105が搬送室103から蒸着室102に連続的にx方向に搬送され、この蒸着室102を通過して搬送室104に向って搬送される。
【0004】
一方、蒸着室102の下方には、水冷銅ハース107に4つの蒸発源108a、108b、108c、108dが設けられる。そして、2つの電子銃106a、106bから各蒸発源108a、108b、108c、108dに対して電子ビームを照射することによりそれぞれの蒸着材料を蒸発させ、基板105上に蒸着を行う。
【0005】
かかる蒸着装置101を用いれば、蒸着すべき基板105の幅が1m以上ある場合であっても、基板105の搬送方向と直交する方向(y方向)に4つの蒸発源108a、108b、108c、108dが設けられていることから、基板105の幅方向の膜厚分布を均一にすることができる。
【0006】
【発明が解決しようとする課題】
ところで、従来の蒸着装置101の場合、各蒸発源108a、108b、108c、108dから蒸発した蒸着材料の粒子110は、基板105に対して垂直に入射した粒子と、基板105に対して大きな入射角で入射した粒子が混入した状態で蒸着膜が形成される。例えば、図10(a)(b)に示すように、従来の蒸着装置101の場合、各蒸発源108a、108b、108c、108dかから飛び出す蒸着材料の粒子110の角度は、θ1=7°、θ2=65°、θ3=55°、θ4=35°、θ5=42°で、最大入射角は65°にもなる。
【0007】
このような大きな入射角を持つ蒸着材料の粒子110が膜中に入射した場合、特にMgO膜の場合には、膜の結晶性の低下や膜密度の低下が生じる。MgO膜は、交流型プラズマディスプレイパネル用の誘電体保護膜として用いられる場合があるが、その場合には、プラズマディスプレイパネルの放電電圧が上昇するとともに、パネルとしての寿命が低下するという欠点があった。
【0008】
本発明は、このような従来の技術の課題を解決するためになされたもので、基板に堆積する蒸着材料の粒子の入射角を制限することによって高品位の膜質を有する薄膜を形成しうる蒸着装置を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、真空下で複数個連続して搬送される平板状の基体の一の面に蒸着材料を蒸着して薄膜を形成するための蒸着装置であって、前記基体の一の面側に前記基体の搬送方向に対して交差方向に配置され、同一の材料を蒸発する複数の蒸発源と、前記各蒸発源の間において前記基体の搬送方向に設けられた第一蒸着材遮蔽部材と、前記蒸発源に対し、前記基体の搬送方向の上流側及び下流側に設けられた第二蒸着材遮蔽部材と、を備え、前記基体に付着する蒸着材料の粒子の垂直入射角が所定の角度より大きくならないように前記第一及び第二蒸着材遮蔽部材によって前記粒子の垂直入射角を規制することを特徴とする。
請求項2記載の発明は、請求項1記載の発明において、蒸着材料がMgOであり、基体に対するMgOの粒子の垂直入射角が35度より大きくならないように前記粒子の垂直入射角を規制することを特徴とする。
【0010】
発明の場合、基体の搬送方向及びこれと交差する方向について、基体に付着する蒸着材料の粒子の垂直入射角が所定の角度(例えば35度)より大きくならないように当該粒子の垂直入射角が規制されるため、基体が大きい場合であっても、従来技術のような蒸着膜の結晶性の低下や膜密度の低下といった問題を回避することができ、均一な膜厚分布の膜を形成することができる。
本発明において、蒸着材料としてMgOを用い、基体に対するMgOの粒子の垂直入射角が35度より大きくならないように当該粒子の垂直入射角を規制すれば、例えば、プラズマディスプレイパネルの保護膜を形成した場合において、放電電圧の上昇を防止することができるとともに、パネルの寿命を延ばすことができる。
【0011】
【発明の実施の形態】
以下、本発明に係る蒸着装置の好ましい実施の形態を図1〜図8を参照して詳細に説明する。
【0012】
図1(a)(b)は、本実施の形態の蒸着装置の概略構成を示すものである。
図1(a)(b)に示すように、この蒸着装置1は、概略、蒸着室2と、その両側に搬送室3、4が設けられ、これらは図示しない真空排気系に連結されている。そして、蒸着すべき例えばガラスからなる基板5が搬送室3から蒸着室2にx方向に搬送され、この蒸着室2で蒸着された後に搬送室4に向って搬送されるように構成される。
この場合、図1(b)に示すように、多数の基板5が連続して蒸着室2を通過するように構成されている。
【0013】
一方、蒸着室2の下方には、水冷銅ハース7によって加熱される4つの蒸発源8(8a、8b、8c、8d)が設けられる。なお、本実施の形態の場合、各蒸発源8a、8b、8c、8dの蒸着材料としては、例えばMgOが用いられる。 そして、蒸着室2の下方に2つの電子銃6a、6bが設けられ、これらの電子銃6a、6bから各蒸発源8a、8b、8c、8dに対して電子ビームEBを照射することにより各蒸着材料を蒸発させ、基板上に蒸着を行うようになっている。
【0014】
ここで、電子銃6a、6bとしては、例えば2点ジャンピング式のピアス式電子銃が用いられ、一方の電子銃6aによって蒸発源8a、8bに電子ビームEBを照射するとともに、他方の電子銃6bによって蒸発源8c、8dに電子ビームEBを照射するように構成される。
【0015】
一方、本実施の形態においては、基板5に付着する蒸着材料の粒子10の垂直入射角(基板5の法線に対する粒子10の入射角度。以下、単に「入射角」という。)が所定の角度より大きくならないように、以下のような手段が設けられている。
【0016】
まず、図1(a)及び図2(a)に示すように、蒸着室2内の各蒸発源8a、8b、8c、8dの間に衝立状の蒸着材遮蔽板(第一蒸着材遮蔽部材)9a、9b、9cが設けられる。これらの蒸着材遮蔽板9a、9b、9cは、それぞれ基板5の搬送方向と平行にに配置され、その上端部が各蒸発源8a、8b、8c、8dより上方に位置するように構成される。そして、これらの蒸着材遮蔽板9a、9b、9cによって、各蒸発源8a、8b、8c、8dから蒸発した蒸着材料の粒子10a、10b、10c、10dが遮蔽され、これらの基板5の搬送方向と直交する方向(図1(a)のy方向)についての出射角θ2、即ち基板5に対する入射角θ2が所定の角度より大きい蒸着材料の粒子10が基板5に到達しないようになっている。ここで、本実施の形態の場合は、θ2は35°である。
【0017】
一方、両側の蒸発源8a、8dから蒸発した蒸着材料の粒子10a、10dの基板5の端部に対する入射角θ1 は、従来例と同様に7°となるようになっている。
【0018】
また、図1(b)及び図2(b)に示すように、各蒸発源8a、8b、8c、8dの基板5の搬送方向上流側及び下流側であって、基板5の近傍には、水平方向にそれぞれ蒸着材遮蔽板(第二蒸着材遮蔽部材)11a、11bが設けられている。そして、これらの蒸着材遮蔽板11a、11bによって、各蒸発源8a、8b、8c、8dから蒸発した蒸着材料の粒子10a、10b、10c、10dが遮蔽され、これらの基板5の搬送方向の上流側及び下流側の出射角θ3、即ち基板5に対する入射角θ3が所定の角度より大きい蒸着材料の粒子10が基板5に到達しないようになっている。ここで、本実施の形態の場合は、θ2と同様、θ3は35°である。
【0019】
このような構成を有する本実施の形態において、x方向に基板5を搬送しつつ各電子銃6a、6bから電子ビームEBを各蒸発源8a、8b、8c、8dに照射すると、各蒸発源8a、8b、8c、8dから蒸発した蒸着材料の粒子10a、10b、10c、10dは、蒸着材遮蔽板9a、9b、9cによって規制されるとともに、蒸着材遮蔽板11a、11bによって規制され、それぞれの基板5に対する入射角θ2、θ3が35°より大きくなることはない。
【0020】
その結果、本実施の形態によれば、従来技術のような蒸着膜の結晶性の低下や膜密度の低下といった問題は回避することができ、高品位の蒸着膜を形成することができる。よって、本実施の形態によるMgO膜をプラズマディスプレイパネルの保護膜として用いた場合には、放電電圧の上昇を防止し、パネルの寿命を延ばすことができる。
【0021】
なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
例えば、上述の実施の形態の場合は、各蒸発源8a、8b、8c、8dの間に衝立状の蒸着材遮蔽板9a、9b、9cを設け、また、基板5の近傍でその搬送方向上流側及び下流側に板状の蒸着材遮蔽板11a、11bを設けるようにしたが、本発明はこれに限られず、基板5に対する入射角θ2及びθ3が35°より大きくならない限り、種々の形状、配置のものを設けることができる。
【0022】
また、上述の実施の形態においては、2点ジャンピング方式の2台のピアス式電子銃6a、6bを配置するようにしたが、各蒸発源8a、8b、8c、8dに対応してトランスバース式の電子銃を4台配置するようにしてもよい。
【0023】
さらに、蒸発源の数も4つに限られず、これより増加又は減少させることも可能であるが、その場合には、それに応じて蒸着材遮蔽板の数を増減させることが必要である。
【0024】
さらにまた、本発明は基板5上にMgO膜を形成する場合のみならず、SiO2、TiO2、Al23、ZrO2、ZnO等の酸化物皮膜やMgF等の沸化物皮膜を形成する際にも同様の効果が得られるものである。
【0025】
【実施例】
以下、本発明の実施例を比較例とともに詳細に説明する。
【0026】
図1に示す構成を有する蒸着装置1を用い、表1に示す条件で形成したMgO膜のX線回折パターンを測定した。その結果を図3及び図4に示す。
また、膜密度を求めるための一つの指針となる膜屈折率の結果も図3及び図4中に示す。
【0027】
なお、膜評価の測定位置は、図2(a)(b)に示すように、基板5の中央部(1)及び基板5の端部(2)の2箇所を評価した。
【0028】
【表1】

Figure 0003847871
【0029】
本発明に係る蒸着装置1の場合は、基板5の搬送方向(x方向)及びこれと直交する方向(y方向)の両方において蒸着材料の粒子10の入射角θ3、θ2を35°までの範囲内に制限することにより、図3及び図4に示すように、基板5の中央部、基板5の端部の両方において蒸着膜の回折強度は大きく、しかも、(111)面に優先配向していることから、結晶性の改善がなされていることが推察される。
【0030】
さらに、本実施例の場合、屈折率は、1.68以上とバルクの場合の1.70とほぼ同等の値が得られ、膜密度は低下していないものと推察される。
【0031】
一方、比較例として、図に示す構成を有する蒸着装置101を用い、上記実施例と同様の条件で形成したMgO膜のX線回折パターンと膜屈折率を測定した。その結果を図5及び図6に示す。
【0032】
図5及び図6から理解されるように、従来の蒸着装置101を用いて形成したMgO膜の中央部では、(111)面及び(100)面の反射からなる回折線ピークが得られた。それらは、比較的回折線ピーク強度が小さく、結晶性の低い膜であることが推察される。さらに、基板105の端部においては、その中央部よりも回折線強度の小さい膜となることが判明した。
【0033】
一方、膜屈折率についても、バルクの場合の1.70に比べ1.59と小さい値を示しており、膜密度が低下していることが推察される。
【0034】
さらに、実施例及び比較例の蒸着装置によってMgO膜を形成し、その放電電圧を測定した。その結果を図7及び図8に示す。なお、図7及び図8中、曲線A、Cはそれぞれ点火電圧を示し、曲線B、Dはそれぞれ消灯電圧を示す。
【0035】
図7から明らかなように、本発明の蒸着装置によって形成した場合は、点火放電電圧が低く、寿命についても1000時間以上安定して放電電圧に異常のないMgO膜を得ることができた。
【0036】
一方、図8から明らかなように、従来技術の蒸着装置によって形成したMgO膜は、点火放電電圧が上記実施例よりも約10V高く、かつ、長時間の放電寿命テストで膜の劣化に起因すると思われる放電電圧の緩やかな上昇が見られた。
【0037】
このように、基板5に対するMgO粒子の入射角を35°以内に制限した本実施例の蒸着装置によれば、点火放電電圧が低く、かつ、1000時間以上の寿命を有するAC型PDP用の誘電体保護膜を容易に形成することができる。
【0038】
【発明の効果】
以上述べたように本発明によれば、基板に付着する蒸着材料の粒子の入射角が所定の角度より大きくならないように当該粒子の入射角を規制することにより、従来技術のような蒸着膜の結晶性の低下や膜密度の低下といった問題を回避することができ、高品位の蒸着膜を形成することができる。
【0039】
したがって、本発明によって形成したMgO膜をプラズマディスプレイパネルの保護膜として用いた場合には、放電電圧の上昇を防止し、パネルの寿命を延ばすことができる。
【図面の簡単な説明】
【図1】(a):本発明に係る蒸着装置の一実施の形態の概略構成平面図
(b):同実施の形態の概略構成を示す側面図
【図2】(a):本発明の作用を示すための正面説明図
(b):本発明の作用を示すための要部側面説明図
【図3】本発明によって形成したMgO膜の中央部のX線回折スペクトルの例
【図4】本発明によって形成したMgO膜の端部のX線回折スペクトルの例
【図5】従来技術によって形成したMgO膜の中央部のX線回折スペクトルの例
【図6】従来技術によって形成したMgO膜の端部のX線回折スペクトルの例
【図7】本発明によって形成したMgO膜の放電電圧の一例を示すグラフ
【図8】従来技術によって形成したMgO膜の放電電圧の一例を示すグラフ
【図9】(a):従来例に係る蒸着装置の概略構成を示す平面図
(b):同従来例の概略構成を示す側面図
【図10】(a):従来技術の作用を示すための正面説明図
(b):従来技術の作用を示すための要部側面説明図
【符号の説明】
1……蒸着装置 2……蒸着室 3、4……搬送室 5……基板 6(6a、6b)……電子銃 8(8a、8b、8c、8d)……蒸発源 9a、9b、9c……蒸着材遮蔽板(第一蒸着材遮蔽部材) 10(10a、10b、10c、10d)……蒸着材料の粒子 11a、11b……蒸着材遮蔽板(第二蒸着材遮蔽部材) EB……電子ビーム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pass-through vapor deposition apparatus that forms a thin film while transporting a substrate, and more particularly to a vapor deposition apparatus for forming a dielectric protective film of a plasma display panel (PDP).
[0002]
[Prior art]
Conventionally, as a deposition apparatus for forming a thin film on a large-area substrate, a deposition apparatus employing a substrate passing method is generally used.
[0003]
9A and 9B show a schematic configuration of a conventional substrate passing type vapor deposition apparatus.
As shown in FIGS. 9A and 9B, this vapor deposition apparatus 101 is generally provided with a vapor deposition chamber 102 and transfer chambers 103 and 104 on both sides thereof, which are connected to a vacuum exhaust system (not shown). . A substrate 105 made of, for example, glass to be vapor-deposited is continuously conveyed in the x direction from the conveyance chamber 103 to the vapor deposition chamber 102, passes through the vapor deposition chamber 102, and is conveyed toward the conveyance chamber 104.
[0004]
On the other hand, four evaporation sources 108 a, 108 b, 108 c and 108 d are provided in the water-cooled copper hearth 107 below the vapor deposition chamber 102. Then, by irradiating each evaporation source 108a, 108b, 108c, 108d with an electron beam from the two electron guns 106a, 106b, the respective vapor deposition materials are evaporated, and vapor deposition is performed on the substrate 105.
[0005]
If such a vapor deposition apparatus 101 is used, even if the width of the substrate 105 to be vapor-deposited is 1 m or more, the four evaporation sources 108a, 108b, 108c, and 108d in the direction (y direction) orthogonal to the transport direction of the substrate 105. Therefore, the film thickness distribution in the width direction of the substrate 105 can be made uniform.
[0006]
[Problems to be solved by the invention]
By the way, in the case of the conventional vapor deposition apparatus 101, the vapor deposition material particles 110 evaporated from the respective evaporation sources 108 a, 108 b, 108 c, and 108 d have a particle incident perpendicular to the substrate 105 and a large incident angle with respect to the substrate 105. A vapor deposition film is formed in a state in which the particles incident on are mixed. For example, as shown in FIGS. 10 (a) and 10 (b), in the case of the conventional vapor deposition apparatus 101, the angle of the vapor deposition material particles 110 protruding from the respective evaporation sources 108a, 108b, 108c, 108d is θ 1 = 7 °. , Θ 2 = 65 °, θ 3 = 55 °, θ 4 = 35 °, θ 5 = 42 °, and the maximum incident angle is 65 °.
[0007]
When the deposition material particles 110 having such a large incident angle are incident on the film, particularly in the case of an MgO film, the crystallinity of the film and the film density decrease. The MgO film is sometimes used as a dielectric protective film for an AC type plasma display panel. However, in this case, there is a disadvantage that the discharge voltage of the plasma display panel increases and the lifetime of the panel decreases. It was.
[0008]
The present invention has been made to solve the above-described problems of the prior art, and is a vapor deposition capable of forming a thin film having a high quality film quality by limiting the incident angle of particles of the vapor deposition material deposited on the substrate. The object is to provide an apparatus.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 is a vapor deposition apparatus for depositing a vapor deposition material on one surface of a flat substrate that is continuously conveyed under vacuum to form a thin film. A plurality of evaporation sources disposed on one surface side of the substrate in a direction intersecting the substrate transport direction and evaporating the same material, and between the evaporation sources in the substrate transport direction. A first vapor deposition material shielding member provided; and a second vapor deposition material shielding member provided on the upstream side and the downstream side in the transport direction of the base with respect to the evaporation source, and the vapor deposition material attached to the base normal incidence of the particles, wherein the benzalkonium to regulate normal incidence of the particles by the first and second deposition material shielding member so as not larger than the predetermined angle.
The invention according to claim 2 is the invention according to claim 1, wherein the vapor deposition material is MgO, and the vertical incident angle of the particles of MgO with respect to the substrate is regulated so as not to be larger than 35 degrees. It is characterized by.
[0010]
For the present invention, the direction intersecting the conveying direction and with which the base, the vertical angle of incidence of the particles as normal incidence of the particles of the deposition material is not greater than a predetermined angle (e.g. 35 degrees) to adhere to the substrate Because of restrictions, even when the substrate is large, problems such as a decrease in crystallinity and a decrease in film density of the deposited film as in the prior art can be avoided, and a film having a uniform film thickness distribution is formed. be able to.
In the present invention, using a MgO as a vapor deposition material, when regulating the normal incidence of the particles as normal incidence of the particles of MgO with respect to the substrate is not greater than 35 degrees, for example, to form a protective film of a plasma display panel In some cases, the discharge voltage can be prevented from rising and the life of the panel can be extended.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of a vapor deposition apparatus according to the present invention will be described in detail with reference to FIGS.
[0012]
FIGS. 1A and 1B show a schematic configuration of the vapor deposition apparatus of the present embodiment.
As shown in FIGS. 1 (a) and 1 (b), this vapor deposition apparatus 1 is generally provided with a vapor deposition chamber 2 and transfer chambers 3 and 4 on both sides thereof, which are connected to a vacuum exhaust system (not shown). . A substrate 5 made of, for example, glass to be vapor-deposited is conveyed from the conveyance chamber 3 to the vapor deposition chamber 2 in the x direction, and after being deposited in the vapor deposition chamber 2, the substrate 5 is conveyed toward the conveyance chamber 4.
In this case, as shown in FIG.1 (b), it is comprised so that many board | substrates 5 may pass the vapor deposition chamber 2 continuously.
[0013]
On the other hand, below the vapor deposition chamber 2, four evaporation sources 8 (8a, 8b, 8c, 8d) heated by the water-cooled copper hearth 7 are provided. In the case of the present embodiment, for example, MgO is used as the evaporation material of each of the evaporation sources 8a, 8b, 8c, and 8d. Two electron guns 6a and 6b are provided below the vapor deposition chamber 2, and each vapor deposition source 8a, 8b, 8c and 8d is irradiated with an electron beam EB from the electron guns 6a and 6b. The material is evaporated and vapor deposition is performed on the substrate 5 .
[0014]
Here, as the electron guns 6a and 6b, for example, a two-point jumping type piercing electron gun is used. The electron gun 6a irradiates the evaporation sources 8a and 8b with the electron beam EB and the other electron gun 6b. Is configured to irradiate the electron sources EB to the evaporation sources 8c and 8d.
[0015]
On the other hand, in the present embodiment, the vertical incident angle of the particles 10 of the vapor deposition material adhering to the substrate 5 ( incident angle of the particles 10 with respect to the normal of the substrate 5; hereinafter simply referred to as “incident angle”) is a predetermined angle. The following means are provided so as not to become larger.
[0016]
First, as shown in FIG. 1A and FIG. 2A, a screen-shaped vapor deposition material shielding plate (first vapor deposition material shielding member) is provided between the respective evaporation sources 8a, 8b, 8c, and 8d in the vapor deposition chamber 2. ) 9a, 9b, 9c are provided. These vapor deposition material shielding plates 9a, 9b, and 9c are arranged in parallel with the transport direction of the substrate 5, and are configured so that their upper ends are located above the respective evaporation sources 8a, 8b, 8c, and 8d. . The vapor deposition material particles 10a, 10b, 10c, and 10d evaporated from the respective evaporation sources 8a, 8b, 8c, and 8d are shielded by the vapor deposition material shielding plates 9a, 9b, and 9c, and the transport direction of the substrates 5 is determined. The particle 10 of the vapor deposition material in which the emission angle θ 2 in the direction orthogonal to the direction (y direction in FIG. 1A), that is, the incident angle θ 2 with respect to the substrate 5 is larger than a predetermined angle, does not reach the substrate 5. Yes. Here, in the present embodiment, θ 2 is 35 °.
[0017]
On the other hand, the incident angle θ 1 with respect to the edge of the substrate 5 of the vapor deposition material particles 10a and 10d evaporated from the evaporation sources 8a and 8d on both sides is set to 7 ° as in the conventional example.
[0018]
Further, as shown in FIGS. 1B and 2B, the evaporation sources 8a, 8b, 8c, and 8d are upstream and downstream in the transport direction of the substrate 5, and in the vicinity of the substrate 5, In the horizontal direction, vapor deposition material shielding plates (second vapor deposition material shielding members) 11a and 11b are provided, respectively. The vapor deposition material particles 10 a, 10 b, 10 c, and 10 d evaporated from the respective evaporation sources 8 a, 8 b, 8 c, and 8 d are shielded by these vapor deposition material shielding plates 11 a and 11 b, and upstream of the substrate 5 in the transport direction. The particles 10 of the vapor deposition material whose outgoing angle θ 3 on the side and downstream side, that is, the incident angle θ 3 with respect to the substrate 5 are larger than a predetermined angle, do not reach the substrate 5. Here, in the case of the present embodiment, θ 3 is 35 ° as is θ 2 .
[0019]
In the present embodiment having such a configuration, when each of the electron guns 6a, 6b is irradiated with the electron beam EB to each evaporation source 8a, 8b, 8c, 8d while transporting the substrate 5 in the x direction, each evaporation source 8a. , 8b, 8c, 8d, the vapor deposition material particles 10a, 10b, 10c, 10d are regulated by the vapor deposition material shielding plates 9a, 9b, 9c, and regulated by the vapor deposition material shielding plates 11a, 11b, respectively. Incident angles θ 2 and θ 3 with respect to the substrate 5 do not become larger than 35 °.
[0020]
As a result, according to the present embodiment, problems such as a decrease in crystallinity and a decrease in film density of the deposited film as in the prior art can be avoided, and a high-quality deposited film can be formed. Therefore, when the MgO film according to the present embodiment is used as a protective film of a plasma display panel, the discharge voltage can be prevented from increasing and the life of the panel can be extended.
[0021]
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the case of the above-described embodiment, the screen-shaped vapor deposition material shielding plates 9a, 9b, 9c are provided between the respective evaporation sources 8a, 8b, 8c, 8d, and upstream in the transport direction in the vicinity of the substrate 5. Although the plate-like vapor deposition material shielding plates 11a and 11b are provided on the side and the downstream side, the present invention is not limited to this, and various types of incident light are possible as long as the incident angles θ 2 and θ 3 with respect to the substrate 5 are not larger than 35 °. The thing of a shape and arrangement | positioning can be provided.
[0022]
In the above-described embodiment, the two piercing electron guns 6a and 6b of the two-point jumping system are arranged. However, a transverse type corresponding to each of the evaporation sources 8a, 8b, 8c and 8d is provided. Four electron guns may be arranged.
[0023]
Furthermore, the number of evaporation sources is not limited to four, and can be increased or decreased. In this case, it is necessary to increase or decrease the number of vapor deposition shielding plates accordingly.
[0024]
Furthermore, the present invention forms not only an MgO film on the substrate 5 but also an oxide film such as SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , ZnO, or a fluoride film such as MgF. In some cases, similar effects can be obtained.
[0025]
【Example】
Examples of the present invention will be described below in detail together with comparative examples.
[0026]
Using the vapor deposition apparatus 1 having the configuration shown in FIG. 1, the X-ray diffraction pattern of the MgO film formed under the conditions shown in Table 1 was measured. The results are shown in FIGS.
In addition, the results of the film refractive index as one guideline for obtaining the film density are also shown in FIGS.
[0027]
In addition, the measurement position of film | membrane evaluation evaluated two places, the center part (1) of the board | substrate 5, and the edge part (2) of the board | substrate 5, as shown to Fig.2 (a) (b).
[0028]
[Table 1]
Figure 0003847871
[0029]
In the case of the vapor deposition apparatus 1 according to the present invention, the incident angles θ 3 and θ 2 of the vapor deposition material particles 10 are up to 35 ° in both the transport direction (x direction) of the substrate 5 and the direction (y direction) perpendicular thereto. 3 and 4, the diffraction intensity of the deposited film is large both at the center portion of the substrate 5 and at the end portion of the substrate 5, and the preferred orientation is in the (111) plane. Therefore, it is inferred that the crystallinity has been improved.
[0030]
Further, in the case of this example, the refractive index is 1.68 or more, which is almost the same value as 1.70 in the case of the bulk, and it is presumed that the film density is not lowered.
[0031]
On the other hand, as a comparative example, the vapor deposition apparatus 101 having the configuration shown in FIG. 9 was used, and the X-ray diffraction pattern and the film refractive index of an MgO film formed under the same conditions as in the above example were measured. The results are shown in FIGS.
[0032]
As understood from FIGS. 5 and 6, a diffraction line peak composed of reflection of the (111) plane and the (100) plane was obtained in the central portion of the MgO film formed using the conventional vapor deposition apparatus 101. It is presumed that they are films having relatively low diffraction line peak intensity and low crystallinity. Further, it has been found that the end portion of the substrate 105 is a film having a diffraction line intensity smaller than that of the central portion.
[0033]
On the other hand, the film refractive index also shows a value as small as 1.59 compared with 1.70 in the case of bulk, and it is assumed that the film density is lowered.
[0034]
Furthermore, the MgO film was formed with the vapor deposition apparatus of an Example and a comparative example, and the discharge voltage was measured. The results are shown in FIGS. In FIGS. 7 and 8, curves A and C indicate ignition voltages, and curves B and D indicate extinguishing voltages, respectively.
[0035]
As is apparent from FIG. 7, when formed by the vapor deposition apparatus of the present invention, an MgO film having a low ignition discharge voltage and a stable life of 1000 hours or more with no abnormality in the discharge voltage could be obtained.
[0036]
On the other hand, as is apparent from FIG. 8, the MgO film formed by the vapor deposition apparatus of the prior art has an ignition discharge voltage that is about 10 V higher than that of the above embodiment, and is caused by deterioration of the film in a long discharge life test. A moderate increase in the discharge voltage was observed.
[0037]
Thus, according to the vapor deposition apparatus of the present example in which the incident angle of MgO particles with respect to the substrate 5 is limited to 35 ° or less, the dielectric for AC type PDP having a low ignition discharge voltage and a lifetime of 1000 hours or more. The body protective film can be easily formed.
[0038]
【The invention's effect】
As described above, according to the present invention, the incident angle of the particles of the vapor deposition material adhering to the substrate is regulated so that the incident angle of the particles does not become larger than a predetermined angle. Problems such as a decrease in crystallinity and a decrease in film density can be avoided, and a high-quality deposited film can be formed.
[0039]
Therefore, when the MgO film formed according to the present invention is used as a protective film of a plasma display panel, the discharge voltage can be prevented from increasing and the life of the panel can be extended.
[Brief description of the drawings]
FIG. 1A is a schematic configuration plan view of an embodiment of a vapor deposition apparatus according to the present invention.
(B): Side view showing a schematic configuration of the same embodiment [FIG. 2] (a): Front explanatory diagram for illustrating the operation of the present invention.
(B): Explanatory side view for explaining the operation of the present invention. FIG. 3 shows an example of an X-ray diffraction spectrum in the center of the MgO film formed according to the present invention. FIG. 4 shows the MgO film formed according to the present invention. Example of X-ray diffraction spectrum at the end portion [FIG. 5] Example of X-ray diffraction spectrum at the center portion of the MgO film formed by the conventional technique [FIG. 6] X-ray diffraction spectrum of the end portion of the MgO film formed by the conventional technique Example FIG. 7 is a graph showing an example of the discharge voltage of the MgO film formed according to the present invention. FIG. 8 is a graph showing an example of the discharge voltage of the MgO film formed by the conventional technique. The top view which shows schematic structure of the vapor deposition apparatus which concerns
(B): Side view showing a schematic configuration of the conventional example. FIG. 10 (a): Front explanatory diagram for illustrating the operation of the prior art.
(B): Side view of the main part for illustrating the operation of the prior art [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Deposition apparatus 2 ... Deposition chamber 3, 4 ... Transfer chamber 5 ... Substrate 6 (6a, 6b) ... Electron gun 8 (8a, 8b, 8c, 8d) ... Evaporation source 9a, 9b, 9 c ... Vapor deposition material shielding plate (first vapor deposition material shielding member) 10 (10a, 10b, 10c, 10d) ... Vapor deposition material particles 11a, 11b ... Vapor deposition material shielding plate (second vapor deposition material shielding member) EB ... ... Electron beam

Claims (2)

真空下で複数個連続して搬送される平板状の基体の一の面に蒸着材料を蒸着して薄膜を形成するための蒸着装置であって、
前記基体の一の面側に前記基体の搬送方向に対して交差方向に配置され、同一の材料を蒸発する複数の蒸発源と、
前記各蒸発源の間において前記基体の搬送方向に設けられた第一蒸着材遮蔽部材と、
前記蒸発源に対し、前記基体の搬送方向の上流側及び下流側に設けられた第二蒸着材遮蔽部材と、を備え、
前記基体に付着する蒸着材料の粒子の垂直入射角が所定の角度より大きくならないように前記第一及び第二蒸着材遮蔽部材によって前記粒子の垂直入射角を規制することを特徴とする蒸着装置。
A deposition apparatus for forming a thin film by depositing a deposition material on one surface of a flat substrate that is continuously conveyed under vacuum,
A plurality of evaporation sources disposed on one surface side of the substrate in a direction intersecting the conveyance direction of the substrate and evaporating the same material;
A first vapor deposition material shielding member provided in the transport direction of the substrate between the evaporation sources;
A second vapor deposition material shielding member provided on the upstream side and the downstream side in the transport direction of the substrate with respect to the evaporation source,
Deposition normal incidence of the particles of the deposition material adhering to the substrate and wherein the Turkey to regulate normal incidence of the particles by the first and second deposition material shielding member so as not larger than a predetermined angle apparatus.
蒸着材料がMgOであり、基体に対するMgOの粒子の垂直入射角が35度より大きくならないように前記粒子の垂直入射角を規制することを特徴とする請求項1記載の蒸着装置。Deposition material is that MgO, claim 1 Symbol placement evaporation apparatus characterized by regulating the vertical angle of incidence of the particles as normal incidence of the particles of MgO with respect to the substrate is not greater than 35 degrees.
JP35352396A 1996-12-17 1996-12-17 Vapor deposition equipment Expired - Fee Related JP3847871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35352396A JP3847871B2 (en) 1996-12-17 1996-12-17 Vapor deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35352396A JP3847871B2 (en) 1996-12-17 1996-12-17 Vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPH10176262A JPH10176262A (en) 1998-06-30
JP3847871B2 true JP3847871B2 (en) 2006-11-22

Family

ID=18431419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35352396A Expired - Fee Related JP3847871B2 (en) 1996-12-17 1996-12-17 Vapor deposition equipment

Country Status (1)

Country Link
JP (1) JP3847871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140071109A (en) * 2012-12-03 2014-06-11 삼성디스플레이 주식회사 Deposition source, deposition apparatus and deposition method using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626035B2 (en) * 2000-09-08 2011-02-02 パナソニック株式会社 Method for manufacturing plasma display device
JP4570232B2 (en) * 2000-10-20 2010-10-27 株式会社アルバック Plasma display protective film forming apparatus and protective film forming method
US20030010288A1 (en) * 2001-02-08 2003-01-16 Shunpei Yamazaki Film formation apparatus and film formation method
JP5064810B2 (en) * 2006-01-27 2012-10-31 キヤノン株式会社 Vapor deposition apparatus and vapor deposition method
JP5046882B2 (en) 2007-11-21 2012-10-10 三菱重工業株式会社 In-line deposition system
JP5557700B2 (en) * 2010-11-04 2014-07-23 株式会社カネカ Vapor deposition apparatus and organic EL device manufacturing method
JP5734079B2 (en) * 2011-04-28 2015-06-10 株式会社アルバック Electron beam evaporation system
KR101191750B1 (en) 2011-06-20 2012-10-16 주식회사 선익시스템 Apparatus for depositing thin film using at least two vaporization sources
US9150954B2 (en) * 2011-10-28 2015-10-06 Lg Display Co., Ltd. Light-emitting diode and deposition apparatus for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140071109A (en) * 2012-12-03 2014-06-11 삼성디스플레이 주식회사 Deposition source, deposition apparatus and deposition method using the same
KR102084707B1 (en) 2012-12-03 2020-04-16 삼성디스플레이 주식회사 Deposition source, deposition apparatus and deposition method using the same

Also Published As

Publication number Publication date
JPH10176262A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
JP3847871B2 (en) Vapor deposition equipment
EP0245688B1 (en) Method of forming diamond film
US20080210546A1 (en) Sputtering apparatus, method for producing a transparent electroconductive film
GB2110870A (en) Apparatus for producing a microwave plasma for the treatment of substrates
US7525107B2 (en) Apparatus and method for forming an alignment layer
US20080011602A1 (en) Deposition apparatus and deposition method
KR101168180B1 (en) Plasma display panel manufacturing method and manufacturing device
EP0712942A1 (en) Filmed substrate, and method and apparatus for producing the same
TW439121B (en) Apparatus and method for sputter depositing dielectric films on a substrate
JP6847049B2 (en) Multi-layer deposition processing equipment
US6451176B1 (en) Electrostatic particle trap for ion beam sputter deposition
JP3624234B2 (en) Plasma display panel manufacturing apparatus and plasma display panel manufacturing method
CN112159965B (en) Large-size planar substrate coating method and device based on linear magnetron sputtering target gun
US5178738A (en) Ion-beam sputtering apparatus and method for operating the same
JP2003027225A (en) Sputtering target and sputtering system
CN113667949B (en) Magnetron sputtering equipment
JP2008007837A (en) Sputtering film deposition system and sputtering film deposition method
JP3808148B2 (en) Composite sputtering cathode and sputtering apparatus using the cathode
US5236510A (en) Method and apparatus for forming a deposited layer on a skirted substrate
JP4381649B2 (en) Plasma display panel manufacturing method and dielectric protective film manufacturing apparatus
JP2002220662A (en) Sputtering apparatus
JPH04173966A (en) Target cell unit and vacuum film forming device
Miller et al. Electrostatic reduction of particulates for laser resistant hafnia coatings
JP4128794B2 (en) Film forming apparatus and film forming method
KR960000403Y1 (en) Apparatus of forming a thin film by sputtering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060731

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees