JP3846789B2 - Capacitor cooling structure - Google Patents

Capacitor cooling structure Download PDF

Info

Publication number
JP3846789B2
JP3846789B2 JP2002187123A JP2002187123A JP3846789B2 JP 3846789 B2 JP3846789 B2 JP 3846789B2 JP 2002187123 A JP2002187123 A JP 2002187123A JP 2002187123 A JP2002187123 A JP 2002187123A JP 3846789 B2 JP3846789 B2 JP 3846789B2
Authority
JP
Japan
Prior art keywords
refrigerant
battery
housing
flow path
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002187123A
Other languages
Japanese (ja)
Other versions
JP2004031716A (en
Inventor
真也 久保田
俊之 松岡
義訓 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002187123A priority Critical patent/JP3846789B2/en
Publication of JP2004031716A publication Critical patent/JP2004031716A/en
Application granted granted Critical
Publication of JP3846789B2 publication Critical patent/JP3846789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池電気自動車などに搭載される電気二重層コンデンサや、二次電池などの蓄電素子を複数組み合わせた蓄電器の冷却構造に関する。
【0002】
【従来の技術】
燃料電池電気自動車や、ハイブリッド車には、燃料電池や内燃機関の補助電源として電気二重層コンデンサや、二次電池などの蓄電素子を複数組み合わせた蓄電器が搭載されている。
【0003】
この蓄電器の冷却構造は、蓄電器を平板で形成された箱形状の筐体に収納した構造となっている。また、蓄電器の冷却構造は、筐体の一端に冷媒導入口を、他端に冷媒排出口を持ち、冷媒の通過流路は1流路であった。
【0004】
図3は、従来の蓄電器の冷却構造を示す縦断面図である。図3に示すように、蓄電装置200に備えられた蓄電器21は、蓄電素子22を複数に接続したものを筐体24に収納した構造となっている。筐体24の一端には冷媒導入口25が、他端には冷媒排出口26が配置されている。冷媒導入口25には、冷媒導入用ダクト27が密着接合されており、冷媒排出口26には、冷媒排出用ダクト28が密着接合されている。冷媒排出用ダクト28にはファン29が接続されており、このファン29によって冷媒を吸引し蓄電器21の冷却を行う。
【0005】
【発明が解決しようとする課題】
しかしながら、筐体24の内壁面24a、24bは平面状であるので、筐体24の内壁面24a、24bと蓄電器21との間の流路抵抗を、蓄電素子22を密接に配置した蓄電器21の内部の流路抵抗に合わせることは容易ではなく、流路抵抗が少ない筐体24の内壁面24a、24bに沿って冷媒が多く流れ、入り組んだ形状をした蓄電器21の内部(蓄電素子の隙間)には冷媒が少なく流れ、流量の調整が難しいという問題があった。
【0006】
また、蓄電素子22の数が多く、また冷媒流路が長くなった場合は、冷媒流路の入口部と出口部で冷媒温度差が発生し、蓄電素子22毎の温度にばらつきが発生して蓄電器21の容量や出力が低下するといった問題があった。
【0007】
さらに、蓄電器21を形成する蓄電素子22の数が多くなった場合、蓄電器21を収納する筐体24の箱形状を形成する面の大きさが大きくなり、筐体24の強度が確保し難いという問題があった。
【0008】
本発明は、上記課題を解決するためになされたものであり、蓄電器を冷却する冷媒の流量を均一にし、蓄電器の容量や出力の低下を防止することができ、さらに蓄電器を収納する筐体の強度を確保することができる蓄電器の冷却構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決した本発明のうちの請求項1に記載の発明は、所定個数の蓄電素子が接続された蓄電器を収納する筐体と、前記筐体の一端に設けられた冷媒導入口と、他端に設けられた冷媒排出口とを連通し、前記蓄電器を冷却する冷媒流路とを備えた蓄電器の冷却構造において、前記筐体を支え、内部に冷媒が流通可能な支柱と、少なくとも前記蓄電器を冷却する冷媒の一部を通し、前記冷媒流路の途中に冷媒の噴出口を有し、前記支柱の内部に設けた支柱内側の冷媒バイパスとを備え、前記支柱の外壁面を前記蓄電素子の外周に合わせた波形状に設けることを特徴とする。
【0010】
請求項1に記載の発明によれば、支柱の外壁面を蓄電素子の外周に合わせた波形状としたことによって、蓄電器の内部及び周辺の冷媒の流れを一様化させ、蓄電器の温度のばらつきを抑え、蓄電器を均一に冷却することができる。これにより蓄電器の容量や出力の低下を防止することができる。
【0011】
さらに、支柱内側の冷媒バイパスを経てきた冷媒を、蓄電器の冷媒流路の途中から噴出することにより、蓄電器内の冷媒流路中の冷媒温度差を抑え、蓄電器の温度のばらつきをさらに抑えることができ、冷媒流路の下流に位置する蓄電器を効果的に冷却することができる。
【0012】
特に、支柱の外壁面を波形状にしたことによって、蓄電素子と外壁面との間を流通する冷媒の流量を制限することができ、冷媒バイパスを流通する冷媒の流量を多く確保することができる。
【0013】
また、蓄電器を収納する筐体に支柱を設けたため筐体の強度を向上させることができると共に、支柱内側の冷媒バイパス流路として構成することができるので、蓄電器をコンパクト化することができる。
【0018】
【発明の実施の形態】
本発明に係る蓄電器の冷却構造の一実施形態について図面を参照して説明する。図1は、本発明を適用した蓄電器の冷却構造を示す縦断面図である。図1に示すように、蓄電装置100に備えられた蓄電器1は、蓄電素子2を複数に接続したものを筐体4の中に収納した構造となっている。筐体4の一端には冷媒導入口5が、他端には冷媒排出口6が設置され、その間に冷媒が流れる冷媒流路18を形成している。冷媒導入口5には、冷媒導入用ダクト7が密着接合されており、冷媒排出口6には冷媒排出用ダクト8が密着接合されている。さらに冷媒排出用ダクト8には、ファン9が接続されており、このファン9によって冷媒を吸引し蓄電器1の冷却を行う。また、筐体4の内壁面4a、4bは蓄電器1の外周に合わせた形状になっている。このため、内壁面4a、4bの形状は、蓄電器1が、円柱形の蓄電素子2、2…を束ねて構成されているため、半円形状が連続したほぼ波形状になっている。これにより筐体4の強度を向上させることができる。
【0019】
また、内壁面4a、4bの形状が、蓄電器1の内部で隣接する蓄電素子2とほぼ同一形状をなし、さらに内壁面4a、4bと、蓄電器1との間隔が、蓄電器1の内部で隣接する蓄電素子2、2間の間隔の半分程度に形成されている。
【0020】
図2は、本発明を適用した蓄電器の冷却構造を示す平面図である。図2に示すように、筐体4の内部には、内側に貫通孔を有した角柱形状の支柱10が、冷媒流路と同一方向に垂直に設置されており筐体4の強度を向上している。支柱10の外壁面形状は、蓄電素子2、2…に沿った形状となっている。このように、筐体4の内壁面4a、4bと同様に支柱10の外壁面10a、10bの形状は、蓄電器1が、円柱形の蓄電素子2、2…を束ねて構成されているため、半円形状が連続したほぼ波形状になっている。これにより支柱10の強度を向上させることができる。
【0021】
また、支柱10の外壁面10a、10bの形状が、蓄電器1の内部で隣接する蓄電素子2、2…とほぼ同一形状をなし、さらに外壁面10a、10bと、蓄電器1との間隔が、蓄電器1の内部で隣接する蓄電素子2、2…間の間隔の半分程度に形成されている。
【0022】
また、支柱10の内側に支柱内側の冷媒バイパス13を形成し、この支柱内側の冷媒バイパス13の冷媒導入口11を、筐体4の冷媒導入口5と、同じ冷媒を導入できるほぼ同じ位置に設け、冷媒噴出口12、12を蓄電器1の冷媒流路18の途中に設けている。この冷媒噴出口12、12から冷媒を噴出する。
【0023】
さらに、筐体4の左右外側に筐体外側の冷媒バイパス16、16を形成し、この筐体外側の冷媒バイパス16、16の冷媒導入口14、14を、筐体4の冷媒導入口5と同じ冷媒を導入できるほぼ同じ位置に設け、冷媒噴出口15、15を蓄電器1の冷媒流路18の途中に設けている。この冷媒噴出口15、15から冷媒を噴出する。
【0024】
この支柱内側の冷媒バイパス13及び筐体外側の冷媒バイパス16によって、冷媒を蓄電器1の冷媒流路18の途中から蓄電器1の内部に噴出する。
【0025】
次に、以上の構成を備えた蓄電器1の冷却構造の動作について説明する。図1に示すように、冷媒排出用ダクト8に接続されている冷媒流通手段であるファン9を稼働させることによって、蓄電器1内の冷媒がファン9に向かって流動するため、冷媒排出用ダクト8とは反対の端部にある冷媒導入用ダクト7の吸気口7aから、空気などの冷媒が、蓄電器1の内部へ取り込まれる。冷媒導入用ダクト7に取り込まれた冷媒は、冷媒導入口5を経て、蓄電器1の内部及び周辺に取り込まれ、蓄電器1の内部の蓄電素子2、2…間及び蓄電器1の周辺に冷媒流路18を形成しながら冷媒排出口6を経て冷媒排出用ダクト8へ排出される。
【0026】
このとき支柱10の冷媒導入口11からも冷媒が取り込まれ、この冷媒は、支柱10の内側に形成された支柱内側の冷媒バイパス13に取り込まれる。このように支柱内側の冷媒バイパス13に取り込まれた冷媒は、蓄電器1の冷媒流路18の途中に設けられた冷媒噴出口12、12によって、蓄電器1の内部へ噴出されて蓄電器1を冷却する。
【0027】
また、筐体4の外壁面に設けられた冷媒導入口14、14からも冷媒が取り込まれ、この冷媒は、筐体4の外壁面に設けられた筐体外側の冷媒バイパス16、16に流動する。このように冷媒導入口14、14から取り込まれた冷媒は、冷媒流路18の途中に設けられた冷媒噴出口15、15によって、蓄電器1の内部へ噴出されて蓄電器1を冷却する。
【0028】
特に、支柱10の外壁面10a、10b及び筐体4の内壁面4a、4bを蓄電素子2に合わせた波形状にしたことによって、蓄電素子2と外壁面10a、10bとの間および蓄電素子2と内壁面4a、4bとの間を流通する冷媒の流量を制限することができ、それぞれの冷媒バイパス13、16を流通する冷媒の流量を多く確保することができる。
【0029】
また、冷媒流路18の途中に設けられた冷媒噴出口12、12、15、15から、蓄電素子2、2…の隙間の間隔が広くなっている通路へ向かって冷媒が噴出されるため、冷媒流路18の途中までバイパスする冷媒の流量を多く確保することができる。
【0030】
このとき、筐体4の内壁面4a、4b及び支柱10の外壁面10a、10bは、蓄電器1の形状の外周に合わせた半円形が連続したほぼ波形状となっており、筐体4の強度を向上させることができる。
【0031】
このとき、発熱体である蓄電素子2、2…との間を通過する冷媒18aに対して、蓄電素子2と非発熱体である筐体4の内壁面4a、4bとの間を通過する冷媒18b、18cはほぼ半分の吸熱であるから、蓄電素子2と、筐体4の内壁面4a、4bとの隙間は、蓄電素子2、2間の間隔の半分程度とし、冷媒の冷却面積を半分程度にすることが望ましい。
【0032】
同じ考えから、蓄電素子2と支柱10の非発熱体の外壁面10a、10bとの隙間も蓄電素子2、2間の間隔の半分程度とし、冷媒の冷却面積を半分程度にすることが望ましい。
【0033】
このように、支柱10の内側に、支柱内側の冷媒バイパス13を形成し、この支柱内側の冷媒バイパス13の冷媒導入口11を、筐体4の冷媒導入口5と同じ冷媒を導入できるほぼ同じ位置に設け、冷媒噴出口12を蓄電器1の冷媒流路18の途中に設けた。また、筐体4の外側に、筐体外側の冷媒バイパス16、16を形成し、この筐体外側の冷媒バイパス16、16の冷媒導入口14、14を筐体4の冷媒導入口5と同じ冷媒を導入できるほぼ同じ位置に設け、冷媒噴出口15を蓄電器1の冷媒流路18の途中に設けている。
【0034】
このため、この支柱内側の冷媒バイパス13及び筐体外側の冷媒バイパス16により蓄電器1の冷媒流路18の途中から蓄電器1の内部及び周辺に冷媒を導入することによって、冷媒流路18の途中まで蓄電器1を冷却して、温度が上昇した冷媒の温度を再び低下させ、蓄電器1の全体を効果的に冷却すると共に蓄電器1の内部の温度差の発生を抑制することができる。
【0035】
さらに、蓄電素子2、2…間の温度のばらつきが減少するので、蓄電素子のうち温度が冷えない蓄電素子に合わせて冷媒の流量を増加させる必要がないので、冷却装置全体としての冷却効果を向上させることができる。
【0036】
以上述べた実施の形態は本発明を説明するための一例であり、本発明は、上記の実施の形態に限定されるものではなく、発明の要旨の範囲内で種々の変更が可能である。たとえば、本実施の形態においては、冷媒排出用ダクト8にファン9を設けているが、冷媒導入用ダクト7の吸気口7aにファンを設け、ファンによって空気などの冷媒を冷媒導入用ダクト7に導入するようにしても構わない。
【0037】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、支柱の外壁面を蓄電素子の外周に合わせた波形状としたことによって、蓄電器内部及び周辺の冷媒の流れを一様化させ、蓄電器の温度のばらつきを抑え、蓄電器を均一に冷却することができる。これにより蓄電器の容量や出力の低下を防止することができる。
【0038】
さらに、支柱内側の冷媒バイパスを経てきた冷媒を、蓄電器の冷媒流路の途中から噴出することにより、蓄電器内の冷媒流路中の冷媒温度差を抑え、蓄電器の温度のばらつきをさらに抑えることができ、冷媒流路の下流に位置する蓄電器を効果的に冷却することができる。
【0039】
また、蓄電器を収納する筐体に支柱を設けたため筐体の強度を向上させることができると共に、支柱内側の冷媒バイパス流路として構成することができるので、蓄電器をコンパクト化することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る蓄電器の冷却構造の概略を示す縦断面図である。
【図2】本発明の実施形態に係る蓄電器の冷却構造の概略を示す平面図である。
【図3】従来の蓄電器の冷却構造の概略を示す縦断面図である。
【符号の説明】
1 蓄電器
2 蓄電素子
4 筐体
4a、4b 内壁面
5、11、14 冷媒導入口
6 冷媒排出口
7 冷媒導入用ダクト
7a 吸気口
8 冷媒排出用ダクト
9 ファン
10 支柱
10a、10b 外壁面
12、15 冷媒噴出口
13 支柱内側の冷媒バイパス
16 筐体外側の冷媒バイパス
18 冷媒流路
100 蓄電装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling structure for an electric storage device in which a plurality of electric storage elements such as an electric double layer capacitor and a secondary battery mounted on a fuel cell electric vehicle or the like are combined.
[0002]
[Prior art]
A fuel cell electric vehicle or a hybrid vehicle is equipped with an electric double layer capacitor as an auxiliary power source for a fuel cell or an internal combustion engine, and a capacitor in which a plurality of power storage elements such as a secondary battery are combined.
[0003]
This condenser cooling structure is a structure in which the condenser is housed in a box-shaped casing formed of a flat plate. In addition, the cooling structure of the battery has a refrigerant inlet at one end of the housing and a refrigerant outlet at the other end, and the refrigerant passage is one.
[0004]
FIG. 3 is a longitudinal sectional view showing a conventional cooling structure for a battery. As shown in FIG. 3, the battery 21 provided in the power storage device 200 has a structure in which a plurality of power storage elements 22 connected to each other is housed in a housing 24. A refrigerant inlet 25 is disposed at one end of the housing 24, and a refrigerant outlet 26 is disposed at the other end. A refrigerant introduction duct 27 is tightly joined to the refrigerant introduction port 25, and a refrigerant discharge duct 28 is tightly joined to the refrigerant discharge port 26. A fan 29 is connected to the refrigerant discharge duct 28, and the refrigerant is sucked by the fan 29 to cool the battery 21.
[0005]
[Problems to be solved by the invention]
However, since the inner wall surfaces 24a and 24b of the casing 24 are planar, the flow path resistance between the inner wall surfaces 24a and 24b of the casing 24 and the capacitor 21 is the same as that of the capacitor 21 in which the storage element 22 is closely arranged. It is not easy to match the internal flow resistance, and a large amount of refrigerant flows along the inner wall surfaces 24a and 24b of the housing 24 with low flow resistance, and the inside of the accumulator 21 having a complicated shape (gap between the storage elements) Had a problem that the refrigerant flowed little and it was difficult to adjust the flow rate.
[0006]
In addition, when the number of power storage elements 22 is large and the refrigerant flow path becomes long, a refrigerant temperature difference occurs between the inlet portion and the outlet portion of the refrigerant flow path, and the temperature of each power storage element 22 varies. There existed a problem that the capacity | capacitance and output of the electrical storage device 21 fell.
[0007]
Furthermore, when the number of power storage elements 22 forming the battery 21 is increased, the size of the surface forming the box shape of the housing 24 that stores the battery 21 is increased, and it is difficult to ensure the strength of the housing 24. There was a problem.
[0008]
The present invention has been made in order to solve the above-described problem, and it is possible to make the flow rate of the refrigerant that cools the condenser uniform, to prevent the capacity and output of the condenser from being reduced, and to further reduce the capacity of the casing that houses the condenser. It is an object of the present invention to provide a cooling structure for a capacitor that can ensure strength.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention that has solved the above problems, a housing for storing a capacitor to which a predetermined number of power storage elements are connected, a refrigerant inlet provided at one end of the housing, In a cooling structure for a battery that includes a refrigerant flow path that communicates with a refrigerant discharge port provided at the other end and cools the battery, a column that supports the housing and allows a refrigerant to flow therein, and at least the A part of the refrigerant that cools the condenser is passed, a refrigerant outlet is provided in the middle of the refrigerant flow path, and a refrigerant bypass inside the support provided inside the support, and the outer wall surface of the support is stored in the power storage It is characterized by being provided in a wave shape that matches the outer periphery of the element.
[0010]
According to the first aspect of the present invention, the outer wall surface of the support column has a corrugated shape that matches the outer periphery of the energy storage device, so that the flow of refrigerant inside and around the capacitor is made uniform, and the temperature variation of the capacitor Can be suppressed, and the battery can be cooled uniformly. Thereby, the capacity | capacitance of a capacitor | condenser and the fall of an output can be prevented.
[0011]
Furthermore, by ejecting the refrigerant that has passed through the refrigerant bypass inside the column from the middle of the refrigerant flow path of the battery, it is possible to suppress the refrigerant temperature difference in the refrigerant flow path in the battery and further suppress the temperature variation of the battery. And the condenser located downstream of the refrigerant flow path can be effectively cooled.
[0012]
In particular, the corrugated outer wall surface of the column can restrict the flow rate of the refrigerant flowing between the power storage element and the outer wall surface, and can ensure a large flow rate of the refrigerant flowing through the refrigerant bypass. .
[0013]
Moreover, since the support | pillar was provided in the housing | casing which stores an electrical storage device, while being able to improve the intensity | strength of a housing | casing and being comprised as a refrigerant | coolant bypass flow path inside a support | pillar, a electrical storage device can be made compact.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a cooling structure for a battery according to the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a cooling structure of a battery to which the present invention is applied. As shown in FIG. 1, a battery 1 provided in a power storage device 100 has a structure in which a plurality of power storage elements 2 connected to each other are housed in a housing 4. A refrigerant inlet 5 is installed at one end of the housing 4 and a refrigerant outlet 6 is installed at the other end. A refrigerant flow path 18 through which the refrigerant flows is formed therebetween. A refrigerant introduction duct 7 is tightly joined to the refrigerant introduction port 5, and a refrigerant discharge duct 8 is tightly joined to the refrigerant discharge port 6. Further, a fan 9 is connected to the refrigerant discharge duct 8, and the refrigerant is sucked by the fan 9 to cool the battery 1. In addition, the inner wall surfaces 4 a and 4 b of the housing 4 are shaped to match the outer periphery of the battery 1. For this reason, the shape of the inner wall surfaces 4a and 4b is a substantially wave shape in which the semicircular shape is continuous because the battery 1 is configured by bundling cylindrical power storage elements 2. Thereby, the intensity | strength of the housing | casing 4 can be improved.
[0019]
Further, the shape of the inner wall surfaces 4 a and 4 b is substantially the same as that of the electricity storage element 2 adjacent inside the capacitor 1, and the distance between the inner wall surfaces 4 a and 4 b and the capacitor 1 is adjacent inside the capacitor 1. It is formed at about half the distance between the power storage elements 2 and 2.
[0020]
FIG. 2 is a plan view showing a cooling structure of a battery to which the present invention is applied. As shown in FIG. 2, a prismatic column 10 having a through hole on the inner side is vertically installed in the same direction as the refrigerant flow path inside the casing 4 to improve the strength of the casing 4. ing. The outer wall surface shape of the support column 10 is a shape along the power storage elements 2, 2. As described above, the shape of the outer wall surfaces 10a and 10b of the support column 10 is similar to the inner wall surfaces 4a and 4b of the housing 4 because the capacitor 1 is configured by bundling cylindrical energy storage elements 2, 2,. The semicircular shape is a continuous, almost wave shape. Thereby, the intensity | strength of the support | pillar 10 can be improved.
[0021]
Further, the shape of the outer wall surfaces 10a, 10b of the support column 10 is substantially the same as the shape of the power storage elements 2, 2,... Adjacent in the capacitor 1, and the distance between the outer wall surfaces 10a, 10b and the capacitor 1 is 1 is formed to be about half of the interval between adjacent power storage elements 2.
[0022]
Further, a refrigerant bypass 13 inside the column is formed inside the column 10, and the refrigerant introduction port 11 of the refrigerant bypass 13 inside the column is placed at substantially the same position as the refrigerant introduction port 5 of the housing 4 where the same refrigerant can be introduced. The refrigerant outlets 12 and 12 are provided in the middle of the refrigerant flow path 18 of the battery 1. The refrigerant is jetted from the refrigerant jets 12 and 12.
[0023]
Further, refrigerant bypasses 16 and 16 outside the casing are formed on the left and right outer sides of the casing 4, and the refrigerant inlets 14 and 14 of the refrigerant bypasses 16 and 16 outside the casing are connected to the refrigerant inlet 5 of the casing 4. The refrigerant outlets 15 and 15 are provided in the middle of the refrigerant flow path 18 of the battery 1 at substantially the same position where the same refrigerant can be introduced. The refrigerant is ejected from the refrigerant jets 15 and 15.
[0024]
By the refrigerant bypass 13 inside the support column and the refrigerant bypass 16 outside the casing, the refrigerant is jetted into the battery 1 from the middle of the refrigerant flow path 18 of the battery 1.
[0025]
Next, operation | movement of the cooling structure of the electrical storage device 1 provided with the above structure is demonstrated. As shown in FIG. 1, the refrigerant in the battery 1 flows toward the fan 9 by operating the fan 9 which is a refrigerant circulation means connected to the refrigerant discharge duct 8. A refrigerant such as air is taken into the battery 1 from the air inlet 7a of the refrigerant introduction duct 7 at the opposite end. The refrigerant taken into the refrigerant introduction duct 7 is taken into the inside and the periphery of the battery 1 through the refrigerant introduction port 5, and between the electricity storage elements 2, 2... Inside the battery 1 and around the battery 1. 18 is formed and discharged to the refrigerant discharge duct 8 through the refrigerant discharge port 6.
[0026]
At this time, the refrigerant is also taken in from the refrigerant introduction port 11 of the column 10, and this refrigerant is taken in the refrigerant bypass 13 inside the column formed inside the column 10. Thus, the refrigerant taken into the refrigerant bypass 13 inside the support column is ejected into the electric condenser 1 by the refrigerant outlets 12 and 12 provided in the middle of the refrigerant flow path 18 of the electric condenser 1 to cool the electric condenser 1. .
[0027]
The refrigerant is also taken in from the refrigerant inlets 14 and 14 provided on the outer wall surface of the housing 4, and the refrigerant flows to the refrigerant bypasses 16 and 16 outside the housing provided on the outer wall surface of the housing 4. To do. Thus, the refrigerant taken in from the refrigerant inlets 14 and 14 is jetted into the inside of the battery 1 by the refrigerant jets 15 and 15 provided in the middle of the refrigerant flow path 18 to cool the battery 1.
[0028]
In particular, the outer wall surfaces 10a and 10b of the support column 10 and the inner wall surfaces 4a and 4b of the housing 4 are formed in a corrugated shape matching the power storage element 2, so that the power storage element 2 and the power storage element 2 are connected to each other. It is possible to restrict the flow rate of the refrigerant flowing between the inner wall surfaces 4a and 4b and to secure a large flow rate of the refrigerant flowing through the respective refrigerant bypasses 13 and 16.
[0029]
Further, since the refrigerant is jetted from the refrigerant jets 12, 12, 15, 15 provided in the middle of the refrigerant flow path 18 toward the passage where the gap between the power storage elements 2, 2,. A large amount of refrigerant can be ensured to be bypassed to the middle of the refrigerant flow path 18.
[0030]
At this time, the inner wall surfaces 4a and 4b of the housing 4 and the outer wall surfaces 10a and 10b of the support column 10 have a substantially wave shape in which a semicircle matching the outer periphery of the shape of the capacitor 1 is continuous. Can be improved.
[0031]
At this time, the refrigerant that passes between the power storage elements 2 and the inner wall surfaces 4a and 4b of the casing 4 that is a non-heat generating element with respect to the refrigerant 18a that passes between the power storage elements 2 and 2. Since 18b and 18c absorb almost half of the heat, the gap between the electricity storage element 2 and the inner wall surfaces 4a and 4b of the housing 4 is about half of the interval between the electricity storage elements 2 and 2, and the cooling area of the refrigerant is reduced by half. It is desirable to make it about.
[0032]
From the same idea, it is desirable that the gap between the electricity storage element 2 and the outer wall surfaces 10a, 10b of the non-heating element of the support column 10 is also about half of the interval between the electricity storage elements 2 and 2, and the cooling area of the refrigerant is about half.
[0033]
Thus, the refrigerant bypass 13 inside the column is formed inside the column 10, and the refrigerant introduction port 11 of the refrigerant bypass 13 inside the column can be introduced almost the same as the refrigerant introduction port 5 of the housing 4. The refrigerant outlet 12 is provided in the middle of the refrigerant flow path 18 of the battery 1. In addition, refrigerant bypasses 16 and 16 outside the casing are formed outside the casing 4, and the refrigerant inlets 14 and 14 of the refrigerant bypasses 16 and 16 outside the casing are the same as the refrigerant inlet 5 of the casing 4. The refrigerant outlet 15 is provided in the middle of the refrigerant flow path 18 of the battery 1 at substantially the same position where the refrigerant can be introduced.
[0034]
For this reason, by introducing the refrigerant from the middle of the refrigerant flow path 18 of the battery 1 to the inside and the periphery of the battery 1 by the refrigerant bypass 13 inside the support column and the refrigerant bypass 16 outside the housing, the middle of the refrigerant flow path 18 is reached. The capacitor 1 can be cooled to lower the temperature of the refrigerant whose temperature has risen again, effectively cooling the entire capacitor 1 and suppressing the occurrence of a temperature difference inside the capacitor 1.
[0035]
Further, since the temperature variation between the power storage elements 2, 2... Is reduced, it is not necessary to increase the flow rate of the refrigerant in accordance with the power storage elements of the power storage elements that do not cool down. Can be improved.
[0036]
The embodiment described above is an example for explaining the present invention, and the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the invention. For example, in the present embodiment, the fan 9 is provided in the refrigerant discharge duct 8, but a fan is provided in the air inlet 7 a of the refrigerant introduction duct 7, and a refrigerant such as air is supplied to the refrigerant introduction duct 7 by the fan. You may make it introduce.
[0037]
【The invention's effect】
As described above, according to the invention described in claim 1, by making the outer wall surface of the column a corrugated shape that matches the outer periphery of the electricity storage element, the flow of the refrigerant inside and around the electricity storage device is made uniform, The variation in the temperature of the capacitor can be suppressed, and the capacitor can be cooled uniformly. Thereby, the capacity | capacitance of a capacitor | condenser and the fall of an output can be prevented.
[0038]
Furthermore, by ejecting the refrigerant that has passed through the refrigerant bypass inside the column from the middle of the refrigerant flow path of the battery, it is possible to suppress the refrigerant temperature difference in the refrigerant flow path in the battery and further suppress the temperature variation of the battery. And the condenser located downstream of the refrigerant flow path can be effectively cooled.
[0039]
Moreover, since the support | pillar was provided in the housing | casing which stores an electrical storage device, while being able to improve the intensity | strength of a housing | casing and being comprised as a refrigerant | coolant bypass flow path inside a support | pillar, a electrical storage device can be made compact.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an outline of a cooling structure for a battery according to an embodiment of the present invention.
FIG. 2 is a plan view showing an outline of a cooling structure for a battery according to an embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing an outline of a conventional cooling structure for a capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Capacitor 2 Power storage element 4 Housing | casing 4a, 4b Inner wall surface 5, 11, 14 Refrigerant inlet 6 Refrigerant outlet 7 Refrigerant introduction duct 7a Inlet 8 Refrigerant discharge duct 9 Fan 10 Support | pillar 10a, 10b Outer wall surface 12, 15 Refrigerant outlet 13 Refrigerant bypass 16 on the inner side of the support 16 Refrigerant bypass on the outer side of the casing 18 Refrigerant flow path 100 Power storage device

Claims (1)

所定個数の蓄電素子が接続された蓄電器を収納する筐体と、
前記筐体の一端に設けられた冷媒導入口と、他端に設けられた冷媒排出口とを連通し、前記蓄電器を冷却する冷媒流路と、
を備えた蓄電器の冷却構造において、
前記筐体を支え、内部に冷媒が流通可能な支柱と、
少なくとも前記蓄電器を冷却する冷媒の一部を通し、前記冷媒流路の途中に冷媒の噴出口を有し、前記支柱の内部に設けた支柱内側の冷媒バイパスと、
を備え、
前記支柱の外壁面を前記蓄電素子の外周に合わせた波形状に設けることを特徴とする蓄電器の冷却構造。
A housing for storing a battery to which a predetermined number of power storage elements are connected;
A refrigerant flow path configured to communicate with a refrigerant introduction port provided at one end of the housing and a refrigerant discharge port provided at the other end to cool the capacitor;
In the cooling structure of the condenser with
Supports that support the casing, and a refrigerant that can circulate the refrigerant therein,
Passing at least a part of the refrigerant that cools the battery, having a refrigerant outlet in the middle of the refrigerant flow path, and a refrigerant bypass inside the column provided inside the column,
With
A cooling structure for a battery, wherein an outer wall surface of the support column is provided in a wave shape that matches the outer periphery of the power storage element.
JP2002187123A 2002-06-27 2002-06-27 Capacitor cooling structure Expired - Fee Related JP3846789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187123A JP3846789B2 (en) 2002-06-27 2002-06-27 Capacitor cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187123A JP3846789B2 (en) 2002-06-27 2002-06-27 Capacitor cooling structure

Publications (2)

Publication Number Publication Date
JP2004031716A JP2004031716A (en) 2004-01-29
JP3846789B2 true JP3846789B2 (en) 2006-11-15

Family

ID=31182258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187123A Expired - Fee Related JP3846789B2 (en) 2002-06-27 2002-06-27 Capacitor cooling structure

Country Status (1)

Country Link
JP (1) JP3846789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10748965B2 (en) 2018-09-18 2020-08-18 Toshiba Memory Corporation Semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102853A (en) 2005-03-25 2006-09-28 삼성에스디아이 주식회사 Secondary battery module
KR20060102852A (en) * 2005-03-25 2006-09-28 삼성에스디아이 주식회사 Secondary battery module
JP4791076B2 (en) * 2005-05-13 2011-10-12 本田技研工業株式会社 Battery box cooling structure
KR100950045B1 (en) 2005-11-17 2010-03-29 주식회사 엘지화학 Meddle or Large-sized Battery System of Excellent Stability
JP5198003B2 (en) * 2007-06-25 2013-05-15 トヨタ自動車株式会社 Battery pack structure
JP2011194954A (en) * 2010-03-18 2011-10-06 Toyota Motor Corp Fuel-cell-powered vehicle
FR2982425A1 (en) * 2011-11-08 2013-05-10 Peugeot Citroen Automobiles Sa Control device for controlling temperature of cylindrical cells of lithium-ion battery in vehicle, has longitudinal wall with corrugation having portions to increase speed of fluid between portions of cells to promote heat exchange
US9577296B2 (en) * 2011-12-07 2017-02-21 Ford Global Technologies, Llc Electric vehicle battery with series and parallel fluid flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10748965B2 (en) 2018-09-18 2020-08-18 Toshiba Memory Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2004031716A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP7261998B2 (en) Battery packs and integrated battery packs
US8586228B2 (en) Battery module
JP5198003B2 (en) Battery pack structure
JP4921629B2 (en) Fluid-cooled battery pack system
JP4046463B2 (en) Power supply
JP5221913B2 (en) Battery storage unit
JP5768994B2 (en) Battery cooling system for vehicles
KR100684768B1 (en) Secondary battery module
JP4979545B2 (en) Cooling structure for high piezoelectric parts
US20160344073A1 (en) Battery pack for vehicle
JP5774241B2 (en) New air-cooled battery pack
JP6405912B2 (en) Battery pack
JP2005349955A (en) Cooling structure for power storage mechanism
US10074880B2 (en) Cooling structure of electricity storage device
KR20160030724A (en) Water-cooled battery cooling apparatus using water-cooled battery module
JP6497585B2 (en) Power supply
JP3846789B2 (en) Capacitor cooling structure
US20140355966A1 (en) Electrical Heating Device For A Motor Vehicle And Vehicle And Associated Air-Conditioning And/Or Heating Unit
JP2007276583A (en) Power source device for vehicle
KR20180081996A (en) Battery Pack having indirect cooling system
JP2008192381A (en) Temperature control mechanism
KR20150081319A (en) Temperature regulating structure for electrical storage element
KR100684760B1 (en) Secondary battery module
JP4742514B2 (en) Battery pack and its casing
TWM568503U (en) Battery module and power battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140901

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees