JP3845305B2 - Reagent container for automatic analyzer - Google Patents

Reagent container for automatic analyzer Download PDF

Info

Publication number
JP3845305B2
JP3845305B2 JP2001397276A JP2001397276A JP3845305B2 JP 3845305 B2 JP3845305 B2 JP 3845305B2 JP 2001397276 A JP2001397276 A JP 2001397276A JP 2001397276 A JP2001397276 A JP 2001397276A JP 3845305 B2 JP3845305 B2 JP 3845305B2
Authority
JP
Japan
Prior art keywords
reagent
wall portion
side wall
rotation center
reagent container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001397276A
Other languages
Japanese (ja)
Other versions
JP2003194828A (en
Inventor
宏隆 掛川
敦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2001397276A priority Critical patent/JP3845305B2/en
Publication of JP2003194828A publication Critical patent/JP2003194828A/en
Application granted granted Critical
Publication of JP3845305B2 publication Critical patent/JP3845305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、血液、尿や髄液などを分析する自動分析装置に用いられる試薬容器に関するものである。
【0002】
【従来の技術】
自動分析装置は、採取した血清や尿等の試料と、検査項目に従った試薬を反応容器にそれぞれ分注し、被検液の反応を測定するものであり、特開平5−256854号公報(文献1)、特開平5−297007号公報(文献2)、あるいは特開平9−127123号公報(文献3)に開示されている如く、既知である。
【0003】
このため、本願出願人は既に、こうした分析装置に用いられる試薬容器の一例として、特開2000−275251号公報(特願平11−83073号)の試薬容器を提案済みである。
【0004】
上記試薬容器は、例えば回転テーブルなどの移送手段によって所定の位置まで移送され、この所定の位置にて、プローブなどの吸入ノズルによって内容物である試薬が分取される自動分析装置用の容器であって、この容器の移送時に該容器内の試薬にかかる遠心力による液面の揺れを抑えるために遠心力が最も小さい遠心基部と、遠心力が最も大きい遠心端部との間に、液収容範囲に対応する高さ領域を含んで上下に亙り、遠心方向に流体抵抗を生じるように構成したものである。
【0005】
【発明が解決しようとする課題】
しかしながら、試薬容器を所定の位置に移送する場合、例えば、試薬容器をベルトコンベアなどの手段によって直線的に移送する場合には、液面の揺れは遠心力のみによって生じるわけではなく、移送方向への加減速動作によっても内容物に揺れが生じてしまう。
【0006】
しかも、移送方向に対向配置した試薬容器の内側壁面間の幅が試薬容器の形状や装置上での配置方法によって広くなると、移送時の加減速動作によって生じた力が液面の揺れに大きく影響を及ぼすことがある。このため、移送方向に生じる試薬の揺れを抑えないと、試薬分注の精度が悪化するなどして、信頼性の高い分析データが得られないという不都合が生じてしまう。
【0007】
また、移送時に生じる遠心力や加減速動作によって生じる力など、液面の揺れを発生させる力が試薬に対して複数の方向から作用する場合、試薬に生じる波は試薬容器の内側壁面で何回も反射することにより複雑な動きをするため、遠心方向のみに流体抵抗を増加させても、試薬の揺れを十分に抑えることができなかった。
【0008】
本発明は、上述のような事実に鑑みてなされたものであり、移送時に生じる内容物の揺れを抑えることにより、信頼性の高い分析データを測定することができる自動分析装置用の試薬容器を提供することを目的とする。
【0009】
【課題を解決するための手段】
第1発明である自動分析装置用の試薬容器は、回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、前記径方向外側壁部を基部として、この基部から移送方向に対して当該試薬容器内の試薬に流体抵抗を生じせしめる障害物を備えることを特徴とするものである。
【0010】
第2発明である自動分析装置用の試薬容器は、回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う一端部を繋ぎ、内容物が押し付けられて液面が最も上昇する第1の移送方向側壁部と、この第1の移送方向側壁部の内側壁面に対向する位置にあって前記回転中心側壁部と径方向外側壁部との互いに向かい合う他端部を繋ぎ、内容物が押し付けられて液面が最も下降する第2の移送方向側壁部とを有し、当該第1の移送方向側壁部の内側壁面と第2の移送方向側壁部の内側壁面との間に、液収容範囲に対応する高さ領域にあって、前記径方向外側壁部を基部として、この基部から回転中心側壁部に向かって延在し、この試薬容器の移送時に、移送方向への加減速動作によって内容物に生じる揺れに対して抵抗を生じさせる障害物を備えることを特徴とするものである。
【0011】
第3発明である自動分析装置用の試薬容器は、回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、その内部に、試薬容器内の天井面から底面までにわたる高さにおいて、前記径方向外側壁部を基部として、この基部から前記分取口を挟んで回転中心側壁部に向かって延在し、前記分取口の下部領域と、この下部領域を除いた残部領域とに仕切ると共に、当該下部領域と残部領域との間に試薬容器内の天井面から底面までにわたって開口する連通部を形成する2つの仕切部を備えることを特徴とするものである。
【0012】
第4発明である自動分析装置用の試薬容器は、第3発明において、上記仕切部を下部領域の容積が残部領域の容積よりも小さくなるように配置したものであることを特徴とするものである。
【0013】
第5発明である自動分析装置用の試薬容器は、回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、前記分取口を前記移送方向側壁部の内側壁面間の中心軸上の前記径方向外側壁部側に配置すると共に、前記2つの移送方向側壁部における、前記径方向外側壁部に隣接する一部それぞれ内向きにオフセットさせて、前記分取口の下部領域において内容物の揺れ方向に対向配置した2つの移送方向側壁部の前記オフセットさせた内側壁面間の幅を、分取口の下部領域を除いた残部領域において内容物の揺れ方向に対向配置した2つの移送方向側壁部の内側壁面間の幅よりも狭めたことを特徴とするものである。
【0014】
第6発明である自動分析装置用の試薬容器は、回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、試薬容器は、その試薬容器の内部であって、前記分取口の下部領域以外の当該分取口から離れた位置に、内容物の揺れによって生じる反射波の反射方向を制御する柱状の反射部を備えることを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明に係わる自動分析装置を例示する全体概念図である。
【0016】
装置本体1には、サンプラ2が配置されており、このサンプラ2は一定周期で間欠的に回動するようになっている。また、サンプラ2は、採取された血清や尿等の試料を収容する複数個のサンプルカップ3がホルダーチェーン4に保持されており、このホルダーチェーン4の移動によってサンプルカップ3が間欠的に移動する。
【0017】
また、装置本体1には、反応ディスク5が配置されており、サンプラ2と同様に一定周期で間欠的に回動するようになっている。この反応ディスク5には、円周上位置に複数個の反応容器6が保持されている。さらに装置本体1には、2個の試薬トレイ7a、7bが離間して配置されており、試薬トレイ7a、7bには、所望の分析項目に必要な所定の試薬を収容する本発明に係る試薬容器100が着脱自在に装着されているとともに、試薬トレイ近傍に試薬容器100を識別する検出器が設けられている。図2は、装置本体1の要部上面図であり、試薬トレイ7a、7bは複数の試薬容器100と共に、回転テーブル(試薬テーブル)8に着脱自在に装着されている。なお、図2の符号Pは、試料吸引位置を示す。
【0018】
また、装置本体1には、吸入ノズルとして、図示していない分注器に連結された種々プローブが設けられている。まず、サンプラ2の近傍にはサンプル用プローブ9が設けられ、さらに、一方の試薬トレイ7aの近傍には第1試薬用プローブ10が設けられ、他方の試薬トレイ7bの近傍には第2試薬用プローブ11が設けられている。各プローブには液面検知機能が設けられており、分注する液の液面の高さが変化しても、必要量のプローブ先端だけを液に入れるようにし、液の分注精度を保ち、プローブの汚れを防いでいる。
【0019】
上記第1試薬用プローブ10は、第1試薬を保持した試薬トレイ7aから所定位置の試薬容器100の中の試薬を吸引し、回転動することにより反応ディスク5に保持されている反応容器6に試薬を分注する。また、サンプル用プローブ9は、サンプラ2から所定位置のサンプルカップ3の中の試料を吸引し、回転動することにより反応ディスク5上の反応容器6に試料を分注する。また、第2試薬用プローブ11は、第2試薬を保持した試薬トレイ7bから所定位置の試薬容器100の中の試薬を吸引し、回転することにより反応ディスク5に保持されている反応容器6に試薬を分注する。
【0020】
また、装置本体1にはキーボード12が設けられている。これは各分析項目に応じて試料分注量、試薬分注量、測光波長、濃度換算計数等の分析条件をあらかじめCPUに記憶させるためのキーボードである。さらに、装置本体1にはモニタ用CRT13が設けられている。これはキーボード12による入力情報や分析データ等を表示させるためのものである。
【0021】
また、装置本体1には各分析項目に対する分析条件に応じて分析操作を制御する制御装置(図示していない)が設けられてあり、この制御装置は試薬トレイ7a、7bの試薬容器100に付着した後述する識別ラベルの識別信号に基づいて、前記CPUから識別された試薬に対応する分析項目と分析条件を読み出して所要の分析項目の分析操作を制御するようになっている。
【0022】
このように構成されている自動分析装置では、反応ディスク5の反応容器6内に試料、試薬を分注して被検液を作成した後、所定時間経過して搬送される位置で被検液を分析項目に応じた所定の波長で測定し、その測定値と分析項目に応じた濃度換算計数によって所要の分析データを出し、図示していないプリンターから分析データを取り出すようになっている。このため、分析に必要な目的の試薬の分注は、図2に示す如く、収納された複数の試薬容器100のうち該当する容器100が所定の位置(試薬吸引位置P)に至るように移動させることで行える。
【0023】
しかしながら、従来の試薬容器を大型化した場合、自動分析装置を高速化すると、試薬容器の大型化による試薬表面の揺れ(ゆれ)が問題となっていた。また従来の試薬容器が大容量で試薬トレイ7a,7bを高速に回転した場合やベルトコンベアなどで直進した場合、移送時の加減速動作により試薬が偏り、回転が終了した後も液表面の揺れが残っている。
【0024】
このため、上記の如く、液表面が安定しないまま試薬プローブ10,11で液を吸引しようとした場合、空気の混入により目的の量が分注できないことや、必要以上に試薬プローブが液に潜り込んでしまい試薬プローブの汚れや試薬のデットボリュームが増加することがある。
【0025】
(第1の実施形態)
そこで、本発明は、第1実施形態として、試薬容器100を、この試薬容器100の内側壁面の少なくとも1箇所を基部として、この基部から移送方向に対してほぼ直交する向きに延在して試薬に流体抵抗を生じせしめる障害物を備える容器110,120,130とすることによって、言い換えれば、試薬容器100を、内容物である試薬が押し付けられて試薬液面が最も上昇する第1の内側壁面と、この第1の内側壁面に対向する位置にあって試薬が押し付けられて試薬液面が最も下降する第2の内側壁面との間に、液収容範囲に対応する高さ領域にあって、この試薬容器100の移送時に、移送方向への加減速動作によって試薬に生じる揺れに対して抵抗を生じさせる障害物を備える容器110,120,130とすることによって、試薬液面の揺れを抑え、試薬表面を安定化し、測定データの信頼性を保つようにする。
【0026】
[第1実施例]
図3(a),(b)はそれぞれ、試薬容器110を示す斜視図およびその横断面図である。なお、本実施形態も含めて後述する実施形態において、図中の加減速方向a1は、試薬容器100を直線的に移送した場合の加減速方向を示し、加減速方向a2は、試薬容器100を回転など曲線的に移送した場合の加減速方向を示す。
【0027】
試薬容器110は、図3(a),(b)に示す如く、試薬トレイ7a、7bに収納するために、試薬トレイ7a,7bの回転中心側にある回転中心側壁部112と、この回転中心側壁部112よりも径方向外側にある径方向外側壁部113と、当該回転中心側壁部112と径方向外側壁部113との互いに向かい合う端部を繋ぐ2つの移送方向側壁部114,115とを有する横断面形状がほぼ扇形をしており、その上部には、図3(a)に示す如く、試薬プローブ10,11を導入して試薬を吸引するための分取口110aを有する。
【0028】
また試薬容器110の内部は、図3(b)に示す如く、その分取口110a側の径方向外側壁部113を基部として、この基部の内側壁面113fから移送時の加減速方向a1(a2)に対してほぼ直交する向きに沿って内向きに延在させた楔状の抵抗部111を2箇所に形成している。つまり、抵抗部111は、試薬が押し付けられて液面が最も上昇する第1の移送方向側壁部114の内側壁面114fと、この第1の内側壁面114fと対向する位置にあって試薬が押し付けられて液面が最も下降する第2の移送方向側壁部115の内側壁面115fとの間に配置されることになる。
【0029】
なお、第1の内側壁面114fと、第2の内側壁面115fとの関係は、例えば図3(b)にて試薬容器110が図面右側から左側(時計周り)に移動することにより移送された場合であって、図3(b)にて試薬容器110が図面左側から右側(反時計周り)に移動することにより移送された場合は、符号115fに示す壁面が試薬液面の最も上昇する第1の内側壁面となり、符号114fに示す壁面が試薬液面の最も下降する第2の内側壁面となる。
【0030】
このため、抵抗部111は、試薬容器110の移送時に、加減速方向a1(a2)、すなわち、移送方向への加減速動作によって試薬に生じる揺れに対して流体抵抗を生じさせる障害物となるから、試薬容器110の内部では、移送方向への試薬の移動に対する自由度が無くなるため、試薬容器110の容量を大きくしたり、高速で移送させても、試薬容器110の内部全体、特に、分取口110a近傍における試薬液面の揺れを抑制することができる。
【0031】
従って抵抗部111を備える試薬容器110によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、試薬プローブ10,11を試薬内に浸す範囲が小さくなることで試薬プローブ10,11に生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0032】
[第2実施例]
図4(a),(b)はそれぞれ、試薬容器120を示す斜視図およびその横断面図である。
【0033】
試薬容器120は、試薬トレイ7a,7bの回転中心側にある回転中心側壁部122と、この回転中心側壁部122よりも径方向外側にある径方向外側壁部123と、当該回転中心側壁部122と径方向外側壁部123との互いに向かい合う端部を繋ぐ2つの移送方向側壁部124,125とを有する横断面形状がほぼ長方形の矩形状をし、その上部には、図4(a)に示す如く、分取口120aを有するものであり、この分取口120a側の回転中心側壁部123を基部として、この基部の内側壁面123fから移送時の加減速方向a1(a2)に対してほぼ直交する向きに沿って内向きに延在させた矩形状の抵抗部121を2つ形成している。この場合も、試薬容器110と同様、矩形状の抵抗部121が、試薬が押し付けられて液面が最も上昇する第1の内側壁面124f(125f)と、第2の内側壁面125f(124f)との間に配置されることになり、試薬容器110と同様の作用効果を得ることができる。
【0034】
[第3実施例]
図5(a),(b)はそれぞれ、試薬容器130を示す斜視図およびその横断面図である。試薬容器130は、試薬トレイ7a,7bの回転中心側にある回転中心側壁部132と、この回転中心側壁部132よりも径方向外側にある径方向外側壁部133と、当該回転中心側壁部132と径方向外側壁部133との互いに向かい合う端部を繋ぐ2つの移送方向側壁部134,135とを有し、その径方向外側壁部133から延在する抵抗部111,121に代わる障害物として、分取口130a側の径方向外側壁部133の内側壁面133fを基部として、この基部から移送時の加減速方向a1(a2)に対してほぼ直交する向きに沿って整列した板状の抵抗部131を複数備える。この場合も、試薬容器110,120と同様、板状の抵抗部131が、試薬が押し付けられて液面が最も上昇する第1の内側壁面134f(135f)と、第2の内側壁面135f(134f)との間に配置されることになり、試薬容器110,120と同様の作用効果を得ることができる。
【0035】
なお、第1実施形態である試薬容器110,120,130にあっては、例えば、試薬容器の形状は、上述した例のようなほぼ扇形状のものに限らず、ほぼ矩形状、ほぼ楕円状、ほぼ台形状等でもよい。また、抵抗部111,121,131の形状、個数および配置位置は、液面の揺れを有意に防止する作用効果を奏する範囲内で適宜、種々の変更を行ってもよい。たとえば、抵抗部111,121を楔形状や矩形状に代わって、三角形状、多角形状その他に置き換えたり、抵抗部111,121に櫛形ないし網目状のスリットを設ける等の加工を行ったりして、これら種々の変更を適宜組合せてもよい。同様に、抵抗部131も板形状に代わって、三角形状や矩形状などの多角柱形状その他に置き換えてもよい。さらに、試薬容器110,120,130の容量に応じて、抵抗部111,121,131の個数、寸法も適宜最適なものに選択することもでき、例えば、抵抗部111,121,131の個数は、1つであってもよい。
【0036】
さらに、抵抗部111,121,131は、試薬容器内の天井面から底面までにわたって設けられているが、液収容範囲に対応する高さ領域、すなわち、試薬容器内の天井面から底面までにわたる高さ領域であれば、必要に応じてその長さも適宜最適な寸法に選択することができる。
【0037】
(第2の実施形態)
ところで本発明は、第2の実施形態として、試薬容器100を、試薬容器の内部に、試薬が分取される分取口の下部領域と、この下部領域を除いた残部領域とに連通可能に仕切る仕切部を備える容器150とすることによって、試薬液面の揺れを抑え、試薬表面を安定化し、測定データの信頼性を保つようにしてもよい。
【0038】
[参照技術]
図6(a),(b)はそれぞれ、試薬容器140を示す斜視図およびその横断面図である。試薬容器140は、図6(a),(b)に示す如く、試薬トレイ7a、7bに収納するために、試薬トレイ7a,7bの回転中心側にある回転中心側壁部143と、この回転中心側壁部143よりも径方向外側にある径方向外側壁部144と、当該回転中心側壁部143と径方向外側壁部144との互いに向かい合う端部を繋ぐ2つの移送方向側壁部145,146とを有する横断面形状がほぼ扇形をしており、その上部には、図6(a)に示す如く、分取口140aを有する。
【0039】
また試薬容器140の内部は、図6(b)に示す如く、移送方向側壁部145,146の分取口140aに極近い部分にそれぞれ、移送時の加減速方向a1(a2)に沿って各内側壁面145f,146fを内向きに突出させた楔状の仕切部141,142を1箇所づつ形成している。これらの仕切部141,142は、試薬が分取される分取口140aの下部領域V1と、この下部領域V1を除いた残部領域V2とを連通可能に仕切るものであって、下部領域V1の容積が残部領域V2の容積よりも小さくなるように配置されている。
【0040】
この場合、楔状の仕切部141,142は、下部領域V1の容積を残部領域V2の容積よりも小さくすることによって、分取口140の下部領域V1での慣性重量が小さくなり、移送方向への加減速動作によって試薬に生じる揺れが瞬時に軽減されるため、試薬容器140の容量を大きくしたり、高速で移送させても、分取口140a近傍における試薬液面の揺れを抑制することができる。
【0041】
従って仕切部141,142を備える試薬容器140によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、試薬プローブ10,11を試薬内に浸す範囲が小さくなることで試薬プローブ10,11に生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0042】
[第4実施例]
図7(a),(b)はそれぞれ、試薬容器150を示す斜視図およびその横断面図である。
【0043】
試薬容器150は、試薬トレイ7a,7bの回転中心側にある回転中心側壁部153と、この回転中心側壁部153よりも径方向外側にある径方向外側壁部154と、当該回転中心側壁部153と径方向外側壁部154との互いに向かい合う端部を繋ぐ2つの移送方向側壁部155,156とを有し、楔状の仕切部141,142に代わって、移送時の加減速方向a1(a2)に対してほぼ直交する向きに沿って延在する板形状の仕切部151,152を2つ備える。これらの仕切部151,152は、図7(b)に示す如く、試薬が分取される分取口150aの下部領域V1と、この下部領域を除いた残部領域V2とを連通可能に仕切るものであって、下部領域V1の容積が残部領域V2の容積よりも小さくなるように配置されている。この場合も、試薬容器140と同様、板状の仕切部151,152が、下部領域V1の容積を残部領域V2の容積よりも小さくすることによって、分取口150の下部領域V1での慣性重量が小さくなり、移送方向への加減速動作によって試薬に生じる揺れが瞬時に軽減されるため、試薬容器140と同様の作用効果を得ることができる。
【0044】
[参照技術]
図8(a),(b)はそれぞれ、試薬容器160を示す斜視図およびその横断面図である。試薬容器160は、試薬トレイ7a,7bの回転中心側にある回転中心側壁部164と、この回転中心側壁部164よりも径方向外側にある径方向外側壁部165と、当該回転中心側壁部164と径方向外側壁部165との互いに向かい合う端部を繋ぐ2つの移送方向側壁部166,167とを有し、移送時の加減速方向a1(a2)に対してほぼ直交する向きに沿って延在する板形状の仕切部161,162と、加減速方向a1(a2)に延在する板状の仕切部163とを3つ備える。この場合も、試薬容器140と同様、板状の仕切部161〜163が、下部領域V1の容積を残部領域V2の容積よりも小さくすることによって、分取口160の下部領域V1での慣性重量が小さくなり、移送方向への加減速動作によって試薬に生じる揺れが瞬時に軽減されるため、試薬容器140と同様の作用効果を得ることができる。
【0045】
なお、第2実施形態である試薬容器150にあっても、試薬容器の形状は、上述した例のようなほぼ扇形状のものに限らず、ほぼ矩形状、ほぼ楕円状、ほぼ台形状等でもよい。また、仕切り部151,152の形状、個数および配置位置は、液面の揺れを有意に防止する作用効果を奏する範囲内で適宜、種々の変更を行ってもよい。たとえば、仕切部141,142を楔形状に代わって矩形状、三角形状、多角形状その他に置き換えたり、仕切部141,142に櫛形ないし網目状のスリットを設ける等の加工を行ったりして、これら種々の変更を適宜組合せてもよい。同様に、仕切部151,152(161〜163)も板形状に代わって、三角形状や矩形状などの多角柱形状その他に置き換えてもよい。
【0046】
また、試薬容器150の容量に応じて、仕切部151,152の個数、寸法も適宜最適なものに選択することもでき、例えば、仕切部151,152は、下部領域V1の容積を残部領域V2の容積よりも小さくすることが好ましいが、勿論、下部領域V1の容積と残部領域V2の容積との大小関係に関わらずに配置してもよい。
【0047】
さらに、仕切部151,152は、試薬容器内の天井面から底面までにわたって設けられているが、液収容範囲に対応する高さ領域、すなわち、試薬容器内の天井面から底面までにわたる高さ領域であれば、必要に応じてその長さも適宜最適な寸法に選択することができる。
【0048】
(第3の実施形態)
また、本発明は、第3の実施形態として、試薬容器100を、試薬が分取される分取口の下部領域において試薬の揺れ方向に対向配置した2つの内側壁面の幅を、分取口の下部領域を除いた残部領域において試薬の揺れ方向に対向配置した2つの内側壁面の幅よりも狭めた容器170とすることによって、試薬液面の揺れを抑え、試薬表面を安定化し、測定データの信頼性を保つようにしてもよい。
【0049】
図9(a),(b)はそれぞれ、試薬容器170を示す斜視図およびその横断面図である。試薬容器170は、図9(a),(b)に示す如く、試薬トレイ7a、7bに収納するために、試薬トレイ7a,7bの回転中心側にある回転中心側壁部173と、この回転中心側壁部173よりも径方向外側にある径方向外側壁部174と、当該回転中心側壁部173と径方向外側壁部174との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有する横断面形状がほぼ扇形をしており、その上部には、図9(a)に示す如く、加減速方向a1(a2)に対してほぼ直交する向きに対向配置した回転中心側壁部173と径方向外側壁部174のうちの径方向外側壁部174側に近い位置に分取口170aを有する。
【0050】
また試薬容器170の内部は、図9(b)に示す如く、試薬が分取される分取口170aの下部領域V1において試薬の揺れ方向に対向配置した2つの移送方向側壁部171の内側壁面171fおよび移送方向側壁部172の内側壁面172f間の幅X1を、分取口170aの下部領域V1を除いた残部領域V2において試薬の揺れ方向に対向配置した2つの移送方向側壁部175の内側壁面175fおよび移送方向側壁部176の内側壁面176f間の幅X2よりも狭めている。なお、2つの内側壁面171fおよび172fは、内側壁面175fおよび176fに対して、内側壁面171fおよび172fで画成される下部領域V1の容積が、2つの内側壁面175fおよび176fで画成される残部領域V2の容積よりも小さくなるように設定されている。
【0051】
この場合、2つの内側壁面171fおよび172fは、その幅X1を内側壁面175fおよび176f間の幅X2よりも狭めたことにより、下部領域V1の容積が残部領域V2の容積よりも小さくなるから、移送方向への試薬の移動に対する自由度が無くなると共に、分取口170の下部領域V1での慣性重量が小さくなり、移送方向への加減速動作によって試薬に生じる揺れが瞬時に軽減されるため、試薬容器170の容量を大きくしたり、高速で移送させても、分取口170a近傍における試薬液面の揺れを抑制することができる。
【0052】
従って第3実施形態である試薬容器170によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、試薬プローブ10,11を試薬内に浸す範囲が小さくなることで試薬プローブ10,11に生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0053】
なお、第3実施形態にあっては、内側壁面171fおよび172fは、図9の如く、内側壁面175fおよび176fに対して内向きにオフセットして容器170の両側面角部を切り欠き状にしたものに限らず、内側壁面171f(172f)および内側壁面175f(176f)を同軸上に形成する一方、内側壁面172f(171f)および内側壁面176f(175f)のみを内向きにオフセットして片側面のみを切り欠き状にしたものであってもよい。また内側壁面175fおよび176fは、図9の如く、加減速方向a1(a2)に対してほぼ直交する向きに平行に配置された形状であるが、内側壁面175fおよび176fは、必ずしも、平行に配置する必要はない。
【0054】
さらに、第3実施形態にあっては、試薬容器170の形状は、上述した例のようなほぼ扇形状のものに限らず、ほぼ矩形状、ほぼ楕円状、ほぼ台形状等でもよい。
【0055】
(参考技術)
また本発明の参考技術として、試薬容器100を、試薬の揺れ方向に対向配置した2つの内側壁面間の中心軸上のいずれかの位置またはその付近に、試薬が分取される分取口を配置した容器210,220,230とすることによって、試薬液面の揺れを抑え、試薬表面を安定化し、測定データの信頼性を保つようにしてもよい。
【0056】
[参考技術1]
図10(a),(b)はそれぞれ、試薬容器210を示す斜視図およびその横断面図である。試薬容器210は、図10(a),(b)に示す如く、試薬トレイ7a、7bに収納するために、試薬トレイ7a,7bの回転中心側にある回転中心側壁部211と、この回転中心側壁部211よりも径方向外側にある径方向外側壁部212と、当該回転中心側壁部211と径方向外側壁部212との互いに向かい合う端部を繋ぐ2つの移送方向側壁部213,214とを有する横断面形状がほぼ扇形をしており、その上部には、図10(a)に示す如く、分取口210aを有する。
【0057】
本参考技術では、試薬容器210の移送によって加減速方向a1(a2)に沿った揺れが生じるため、図10(b)に示す如く、試薬の揺れ方向、即ち、加減速方向a1(a2)に対向配置した移送方向側壁213の内側壁面213fおよび移送方向側壁214の内側側面214f間の中心軸O1上のいずれかの位置またはその付近に、分取口210aを配置している。
【0058】
この場合、移送方向への加減速動作によって試薬に生じる揺れは分取口210aで小さくなるため、試薬容器210の容量を大きくしたり、高速で移送させても、分取口210a近傍における試薬液面の揺れを抑制することができる。
【0059】
従って試薬容器210によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、試薬プローブ10,11を試薬内に浸す範囲が小さくなることで試薬プローブ10,11に生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0060】
[参考技術2]
図11(a),(b)はそれぞれ、試薬容器220を示す斜視図およびその横断面図である。
【0061】
本参考技術では、試薬容器220は、試薬トレイ7a,7bの回転中心側にある回転中心側壁部221と、この回転中心側壁部221よりも径方向外側にある径方向外側壁部222と、当該回転中心側壁部221と径方向外側壁部222との互いに向かい合う端部を繋ぐ2つの移送方向側壁部223,224とを有し、その移送によって加減速方向a1(a2)とほぼ直交する加減速方向a3に沿った揺れが生じるため、図11(b)に示す如く、試薬の揺れ方向、即ち、加減速方向a3に対向配置した回転中心側壁部221の内側壁面221fおよび径方向外側壁部222の内側壁面222f間の中心軸O2上のいずれかの位置またはその付近に、分取口220aを配置している。この場合も、移送方向への加減速動作によって試薬に生じる揺れは分取口220aで小さくなるため、試薬容器210と同様の作用効果を得ることができる。
【0062】
[参考技術3]
図12(a),(b)はそれぞれ、試薬容器230を示す斜視図およびその横断面図である。
【0063】
試薬容器230は、試薬トレイ7a,7bの回転中心側にある回転中心側壁部231と、この回転中心側壁部231よりも径方向外側にある径方向外側壁部232と、当該回転中心側壁部231と径方向外側壁部232との互いに向かい合う端部を繋ぐ2つの移送方向側壁部233,234とを有し、試薬容器230の移送によって加減速方向a1(a2)に沿った揺れと、加減速方向a1(a2)とほぼ直交する加減速方向a3に沿った揺れとが複合して生じるため、図12(b)に示す如く、試薬の揺れ方向、即ち、加減速方向a1(a2)に対向配置した移送方向側壁部233の内側壁面233fおよび移送方向側壁部234の内側壁面234f間の中心軸O1と、加減速方向a3に対向配置した回転中心側壁部231の内側壁面231fおよび径方向外側壁部232の内側壁面232f間の中心軸O2との交点に、分取口230aを配置している。この場合も、移送方向への加減速動作によって試薬に生じる揺れは分取口230aで小さくなるため、試薬容器210と同様の作用効果を得ることができる。
【0064】
なお、試薬容器230の移送によって加減速方向a1(a2)に沿った揺れと、加減速方向a1(a2)とほぼ直交する加減速方向a3に沿った揺れとが複合して生じる場合でも、試薬容器210,220を用いることは可能である。
【0065】
また、上記参考技術にあっても、試薬容器210,220,230の形状は、上述した例のようなほぼ扇形状のものに限らず、ほぼ矩形状、ほぼ楕円状、ほぼ台形状等でもよい。
【0066】
(第4の実施形態)
さらに本発明は、第4の実施形態として、試薬容器100を、容器の内側壁面に、試薬の揺れによって生じる反射波を制御する反射部を備えた容器250とすることによって、試薬液面の揺れを抑え、試薬表面を安定化し、測定データの信頼性を保つようにしてもよい。
【0067】
[参考技術]
図13(a),(b)はそれぞれ、試薬容器240を示す斜視図およびその横断面図である。試薬容器240は、図13(a),(b)に示す如く、試薬トレイ7a、7bに収納するために横断面形状がほぼ扇形をしており、その上部には、図13(a)に示す如く、分取口240aを有する。
【0068】
従来の試薬容器は、例えば、図13の二点鎖線で示す如く、試薬トレイ7a,7bの回転中心側にある回転中心側壁部243と、この回転中心側壁部243よりも径方向外側にある径方向外側壁部244と、当該回転中心側壁部243と径方向外側壁部244との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有する単純なほぼ扇形をしているため、試薬容器を加減速方向a2に沿った向きに移送する場合、図13(b)に示す如く、容器内の試薬は遠心力および移送時の加減速による方向a2への力によって領域Aまたは領域Bの位置に押し付けられる。このため、遠心力や加減速による力が弱まると、例えば、図13(b)に示す如く、領域Aから一点鎖線で示す矢印doの方向に試薬が流れて移送方向側壁部245の内側側壁245fにて反射したのち、この反射波が分取口240a近傍に向かうという不都合があった。
【0069】
そこで、本参考技術では、試薬の揺れによって生じる反射波を制御する反射部として、その移送方向側壁部245の内側壁面245fおよび移送方向側壁部246の内側壁面246fと一体に、内側壁面245fおよび246fに対して内向きに突出させた移送方向側壁部241の内側壁面241fおよび移送方向側壁部242の内側壁面242fを形成している。
【0070】
この場合、遠心力や加減速による力が弱まって領域A(領域B)から流れた試薬は、内側側壁241f(242f)にて矢印dの方向に反射するから、この反射波は直接分取口240a近傍に向かうことなく済むため、試薬容器240の容量を大きくしたり、高速で移送させても、分取口240a近傍における試薬液面の揺れを抑制することができる。
【0071】
従って試薬容器240によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、試薬プローブ10,11を試薬内に浸す範囲が小さくなることで試薬プローブ10,11に生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0072】
[第6実施例]
図14(a),(b)はそれぞれ、試薬容器250を示す斜視図およびその横断面図である。
【0073】
本実施例は、試薬容器250が、試薬トレイ7a,7bの回転中心側にある回転中心側壁部252と、この回転中心側壁部252よりも径方向外側にある径方向外側壁部253と、当該回転中心側壁部252と径方向外側壁部253との互いに向かい合う端部を繋ぐ2つの移送方向側壁部254,255とを有し、試薬の揺れによって生じる反射波を制御する反射部として、分取口250a近傍にパイプ状の反射部251を備える。この場合も、図14(b)に示す如く、遠心力や加減速による力が弱まって領域A(領域B)から流れた試薬は、パイプ状の反射部251にて矢印dの方向に反射するから、この反射波は直接分取口250a近傍に向かうことなく済むため、試薬容器240と同様の作用効果を得ることができる。
【0074】
なお、第4実施形態にあっても、反射部251の形状、個数および配置位置は、液面の揺れを有意に防止する作用効果を奏する範囲内で適宜、種々の変更を行ってもよい。たとえば、反射部251としてパイプなどの円柱形状に代わって、三角形状や矩形状などの多角柱形状その他に置き換えてもよい。
【0075】
上記第4実施形態にあっては、試薬容器250の形状は、上述した例のようなほぼ扇形状のものに限らず、ほぼ矩形状、ほぼ楕円状、ほぼ台形状等でもよい。さらに、反射部251は、試薬容器内の天井面から底面までにわたって設けられているが、液収容範囲に対応する高さ領域、すなわち、試薬容器内の天井面から底面までにわたる高さ領域であれば、必要に応じてその長さも適宜最適な寸法に選択することができる。
【0076】
上述したところは、本発明の好適な実施例を示したに過ぎず、以上の実施例に限定されるものではない。たとえば、上述した第1〜第4実施形態の実施例として説明した内容は、それぞれ単独で実施してもよいし、組み合わせて実施することもできる。
【0077】
また本発明において、試薬としては、被検試料と反応するもの以外に、分析の目的に応じて標準試料、洗浄液、希釈液等を試薬容器内に収容するようにしてもよい。また、試薬として、反応等に寄与する多数の微粒子を懸濁させた粒子含有試薬を試薬容器に収容させた場合や、被検試料の収容容器や異なる試薬容器同士を一体にした複合型容器にも、本発明を有効に適用できる。
【0078】
また、試薬テーブル上に異なる半径毎に試薬容器を配置させて一体に回転駆動させるか半径毎に独立して回転駆動させる場合や、試薬容器に設けた試薬コードの読み取りや攪拌のために試薬テーブルの回転量ないし回転速度を増減させる場合にも、上述した凸部による揺れ防止が有効に寄与するものと期待できる。さらに、また、上述した例では、複数の試薬容器を、所定向きで並べて一体に回転移送するようにしたが、移送方向は回転や直進以外の移送(蛇行等)であったり、特定の試薬容器のみをロボットアーム等でピックアップして他の収容部へとXYZ方向に移送する構成であってもよい。また、試薬テーブルの回転方向は、一方向でも双方向自在でも構わない。
【0079】
【発明の効果】
第1発明である自動分析装置用の試薬容器は、回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、前記試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、前記径方向外側壁部を基部として、この基部から回転中心側壁部に向かって延在し、試薬容器の移送方向に対して当該試薬容器内の試薬に流体抵抗を生じせしめる障害物を備えるものであるから、試薬容器の内部では、移送方向への試薬の移動に対する自由度が無くなるため、試薬容器の容量を大きくしたり、高速で移送させても、試薬容器の内部全体または試薬容器の分取口近傍における試薬液面の揺れを抑制することができる。
【0080】
従って第1発明によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、吸入ノズルを試薬内に浸す範囲が小さくなることで該吸入ノズルに生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0081】
第2発明である自動分析装置用の試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う一端部を繋ぎ、内容物が押し付けられて液面が最も上昇する第1の移送方向側壁部と、この第1の移送方向側壁部の内側壁面に対向する位置にあって前記回転中心側壁部と径方向外側壁部との互いに向かい合う他端部を繋ぎ、内容物が押し付けられて液面が最も下降する第2の移送方向側壁部とを有し、当該第1の移送方向側壁部の内側壁面と第2の移送方向側壁部の内側壁面との間に、液収容範囲に対応する高さ領域にあって、前記径方向外側壁部を基部として、この基部から回転中心側壁部に向かって延在し、この試薬容器の移送時に、移送方向への加減速動作によって内容物に生じる揺れに対して抵抗を生じさせる障害物を備えるものであるから、第1発明と同様、試薬容器の内部では、移送方向への試薬の移動に対する自由度が無くなるため、試薬容器の容量を大きくしたり、高速で移送させても、試薬容器の内部全体または試薬容器の分取口近傍における試薬液面の揺れを抑制することができる。
【0082】
従って第2発明によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、吸入ノズルを試薬内に浸す範囲が小さくなることで該吸入ノズルに生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0083】
第3発明である自動分析装置用の試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、その内部に、試薬容器内の天井面から底面までにわたる高さにおいて、前記径方向外側壁部を基部として、この基部から前記分取口を挟んで回転中心側壁部に向かって延在し、内容物が分取される分取口の下部領域と、この下部領域を除いた残部領域とに仕切ると共に、当該下部領域と残部領域との間に試薬容器内の天井面から底面までにわたって開口する連通部を形成する2つの仕切部を備えることによって、分取口のある下部領域での慣性重量が小さくなり、移送方向への加減速動作によって試薬に生じる揺れが瞬時に軽減されるため、試薬容器の容量を大きくしたり、高速で移送させても、試薬容器の分取口近傍における試薬液面の揺れを抑制することができる。
【0084】
従って第3発明によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、吸入ノズルを試薬内に浸す範囲が小さくなることで該吸入ノズルに生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0085】
第4発明である自動分析装置用の試薬容器は、上記第3発明において、仕切部を下部領域の容積が残部領域の容積よりも小さくなるように配置することによって、分取口のある下部領域での慣性重量がさらに小さくなるため、第3発明の作用効果を一層顕著なものとすることができる。
【0086】
第5発明である自動分析装置用の試薬容器は、試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、内容物が分取される分取口を前記移送方向側壁部の内側壁面間の中心軸上の前記径方向外側壁部側に配置すると共に、前記移送方向側壁部の少なくとも一方を内向きにオフセットさせて、前記分取口の下部領域において内容物の揺れ方向に対向配置した2つの移送方向側壁部の内側壁面間の幅を、分取口の下部領域を除いた残部領域において内容物の揺れ方向に対向配置した2つの移送方向側壁部の内側壁面間の幅よりも狭めたものであるから、下部領域の容積を残部領域の容積よりも小さくすることによって、移送方向への試薬の移動に対する自由度が無くなると共に、分取口のある下部領域での慣性重量が小さくなり、移送方向への加減速動作によって試薬に生じる揺れが瞬時に軽減されるため、試薬容器の容量を大きくしたり、高速で移送させても、試薬容器の分取口近傍における試薬液面の揺れを抑制することができる。
【0087】
従って第5発明によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、吸入ノズルを試薬内に浸す範囲が小さくなることで該吸入ノズルに生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【0088】
第6発明である自動分析装置用の試薬容器は、その内部に、内容物の揺れによって生じる反射波の反射方向を制御する柱状の反射部を備えるものであるから、内容物の揺れによって生じる反射波は直接分取口近傍に向かうことなく済むため、試薬容器の容量を大きくしたり、高速で移送させても、試薬容器内の全体または試薬容器の吸引口近傍における試薬液面の揺れを抑制することができる。
【0089】
従って第6発明によれば、試薬液面の揺れを抑制した分だけ、試薬の分注精度が確保されると共に、吸入ノズルを試薬内に浸す範囲が小さくなることで該吸入ノズルに生じる汚れが最小限に抑えられるため、信頼性の高い分析データを測定できる試薬容器を提供することができる。
【図面の簡単な説明】
【図1】 本発明に係わる自動分析装置を例示する概略図である。
【図2】 図1に示す装置本体の要部上面図である。
【図3】 (a),(b)はそれぞれ、本発明の第1実施形態である試薬容器の第1実施例を示す斜視図およびその横断面図である。
【図4】 (a),(b)はそれぞれ、本発明の第1実施形態である試薬容器の第2実施例を示す斜視図およびその横断面図である。
【図5】 (a),(b)はそれぞれ、本発明の第1実施形態である試薬容器の第3実施例を示す斜視図およびその横断面図である。
【図6】 (a),(b)はそれぞれ、本発明の第2実施形態についての参考技術である試薬容器を示す斜視図およびその横断面図である。
【図7】 (a),(b)はそれぞれ、本発明の第2実施形態である試薬容器の一実施例を示す斜視図およびその横断面図である。
【図8】 (a),(b)はそれぞれ、本発明の第2実施形態の参考技術である他の試薬容器を示す斜視図およびその横断面図である。
【図9】 (a),(b)はそれぞれ、本発明の第3実施形態である試薬容器を示す斜視図およびその横断面図である。
【図10】 (a),(b)はそれぞれ、本発明の参考技術である試薬容器を示す斜視図およびその横断面図である。
【図11】 (a),(b)はそれぞれ、本発明の参考技術である他の試薬容器を示す斜視図およびその横断面図である。
【図12】 (a),(b)はそれぞれ、本発明の参考技術である更に他の試薬容器を示す斜視図およびその横断面図である。
【図13】 (a),(b)はそれぞれ、本発明の第4実施形態の参考技術である試薬容器を示す斜視図およびその横断面図である。
【図14】 (a),(b)はそれぞれ、本発明の第4実施形態である試薬容器の一実施例を示す斜視図およびその横断面図である。
【符号の説明】
1 自動分析装置本体
2 サンプラ
3 サンプルカップ
4 ホルダーチェーン
5 反応ディスク
6 反応容器
7,7a,7b 試薬トレイ
8 試薬テーブル(回転テーブル)
9 サンプルプローブ
10 第1試薬プローブ
11 第2試薬プローブ
12 キーボード
13 CRT
110 試薬容器
110a 分取口
111 楔状の抵抗部
112 回転中心側壁部
113 径方向外側壁部
113f 内側壁面
114 移送方向側壁部
114f 内側壁面
115 移送方向側壁部
115f 内側壁面
120 試薬容器
120a 分取口
121 矩形状の抵抗部
122 回転中心側壁部
123 径方向外側壁部
123f 内側壁面
124 移送方向側壁部
124f 内側壁面
125 移送方向側壁部
125f 内側壁面
130 試薬容器
130a 分取口
131 板状の抵抗部
132 回転中心側壁部
133 径方向外側壁部
133f 内側壁面
134 移送方向側壁部
134f 内側壁面
135 移送方向側壁部
135f 内側壁面
140 試薬容器
140a 分取口
141,142 楔状の仕切部
143 回転中心側壁部
144 径方向外側壁部
145 移送方向側壁部
145f 内側壁面
146 移送方向側壁部
146f 内側壁面
150 試薬容器
150a 分取口
151,152 板状の仕切部
153 回転中心側壁部
154 径方向外側壁部
154f 内側壁面
155 移送方向側壁部
155f 内側壁面
156 移送方向側壁部
156f 内側壁面
160 試薬容器
160a 分取口
161,162,163 板状の仕切部
164 回転中心側壁部
165 径方向外側壁部
166 移送方向側壁部
167 移送方向側壁部
170 試薬容器
170a 分取口
171 下部領域における移送方向側壁部
171f 下部領域における内側壁面
172 下部領域における移送方向側壁部
172f 下部領域における内側壁面
173 回転中心側壁部
174 径方向外側壁部
175 残部領域における移送方向側壁部
175f 残部領域における内側壁面
176 残部領域における移送方向側壁部
176f 残部領域における内側壁面
210 試薬容器
210a 分取口
211 回転中心側壁部
212 径方向外側壁部
213 移送方向側壁部
213f 内側壁面
214 移送方向側壁部
214f 内側壁面
220 試薬容器
220a 分取口
221 回転中心側壁部
222 径方向外側壁部
223 移送方向側壁部
223f 内側壁面
224 移送方向側壁部
224f 内側壁面
230 試薬容器
230a 分取口
231 回転中心側壁部
231f 内側壁面
232 径方向外側壁部
232f 内側壁面
233 移送方向側壁部
233f 内側壁面
234 移送方向側壁部
234f 内側壁面
240 試薬容器
240a 分取口
241 反射部
241f 内側壁面
242 反射部
242f 内側壁面
243 回転中心側壁部
244 径方向外側壁部
245 移送方向側壁部
245f 内側壁面
246 移送方向側壁部
256f 内側壁面
250 試薬容器
250a 分取口
251 反射部
252 回転中心側壁部
253 径方向外側壁部
254 移送方向側壁部
254f 内側壁面
255 移送方向側壁部
255f 内側壁面
V1 下部領域
V2 残部領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reagent container used in an automatic analyzer that analyzes blood, urine, spinal fluid, and the like.
[0002]
[Prior art]
An automatic analyzer dispenses a sample such as collected serum or urine and a reagent according to a test item into a reaction container, and measures the reaction of a test solution. It is known as disclosed in Document 1), Japanese Patent Application Laid-Open No. 5-297007 (Reference 2), or Japanese Patent Application Laid-Open No. 9-127123 (Document 3).
[0003]
For this reason, the applicant of the present application has already proposed a reagent container disclosed in Japanese Patent Application Laid-Open No. 2000-275251 (Japanese Patent Application No. 11-83073) as an example of a reagent container used in such an analyzer.
[0004]
The reagent container is a container for an automatic analyzer that is transferred to a predetermined position by a transfer means such as a rotary table, and at which the reagent as a content is separated by a suction nozzle such as a probe. In order to suppress the fluctuation of the liquid surface due to the centrifugal force applied to the reagent in the container during the transfer of the container, the liquid is accommodated between the centrifugal base portion having the smallest centrifugal force and the centrifugal end portion having the largest centrifugal force. It includes a height region corresponding to the range, and is arranged so as to generate fluid resistance in the centrifugal direction.
[0005]
[Problems to be solved by the invention]
However, when the reagent container is transferred to a predetermined position, for example, when the reagent container is linearly transferred by means such as a belt conveyor, the liquid level is not swayed only by the centrifugal force, but in the transfer direction. The contents are also shaken by the acceleration / deceleration operation.
[0006]
In addition, if the width between the inner wall surfaces of the reagent containers arranged opposite to each other in the transfer direction becomes wider depending on the shape of the reagent container and the arrangement method on the apparatus, the force generated by the acceleration / deceleration operation during transfer greatly affects the fluctuation of the liquid level. May affect. For this reason, unless the shaking of the reagent generated in the transfer direction is suppressed, the accuracy of reagent dispensing deteriorates, resulting in inconvenience that highly reliable analysis data cannot be obtained.
[0007]
In addition, when a force that generates liquid level fluctuations, such as centrifugal force generated during transfer or force generated by acceleration / deceleration operations, acts on the reagent from multiple directions, the wave generated in the reagent is generated several times on the inner wall of the reagent container. Therefore, even if the fluid resistance is increased only in the centrifugal direction, the shaking of the reagent cannot be sufficiently suppressed.
[0008]
The present invention has been made in view of the above-described facts, and provides a reagent container for an automatic analyzer that can measure highly reliable analysis data by suppressing the shaking of contents that occur during transfer. The purpose is to provide.
[0009]
[Means for Solving the Problems]
The reagent container for an automatic analyzer according to the first invention is detachably mounted along a circumferential direction on a circular reagent tray mounted on a rotary table, and is moved to a predetermined position transferred by rotation of the reagent tray. In the reagent container for an automatic analyzer having a sorting port for collecting contents, the reagent container has a rotation center side wall portion on the rotation center side of the reagent tray, and a radial direction from the rotation center side wall portion. A radially outer wall portion on the outside, and two transfer-direction sidewall portions that connect opposite ends of the rotation center sidewall portion and the radially outer wall portion, and the radially outer wall portion as a base, An obstacle that causes fluid resistance to the reagent in the reagent container with respect to the transfer direction from the base is provided.
[0010]
The reagent container for an automatic analyzer according to the second invention is detachably mounted along a circumferential direction on a circular reagent tray mounted on a rotary table, and is moved to a predetermined position transferred by rotation of the reagent tray. In the reagent container for an automatic analyzer having a sorting port for collecting contents, the reagent container has a rotation center side wall portion on the rotation center side of the reagent tray, and a radial direction from the rotation center side wall portion. A radially outer wall portion on the outside is connected to one end of the rotational center sidewall portion and the radially outer wall portion facing each other, and the first transfer direction sidewall portion where the liquid level rises most when the contents are pressed. The other end of the first rotation direction side wall portion and the radially outer wall portion facing each other at the position opposite to the inner wall surface of the first transfer direction side wall portion are connected to each other, and the content is pressed so that the liquid level is the highest. The second way to move down Between the inner wall surface of the first transfer direction side wall portion and the inner wall surface of the second transfer direction side wall portion, in a height region corresponding to the liquid containing range, and in the radial direction Obstacle that extends from this base toward the rotation center side wall with the outer side wall as the base, and resists the shaking generated in the contents by the acceleration / deceleration operation in the transfer direction when this reagent container is transferred It is characterized by providing.
[0011]
The reagent container for an automatic analyzer according to the third invention is detachably mounted along a circumferential direction on a circular reagent tray mounted on a rotary table, and is moved to a predetermined position transferred by rotation of the reagent tray. In the reagent container for an automatic analyzer having a sorting port for collecting contents, the reagent container has a rotation center side wall portion on the rotation center side of the reagent tray, and a radial direction from the rotation center side wall portion. A radially outer wall portion on the outside, and two transfer-direction sidewall portions that connect opposite ends of the rotation center sidewall portion and the radially outer wall portion, and the ceiling surface in the reagent container is provided therein. At a height from the bottom to the bottom, with the radially outer wall as a base, extending from the base toward the rotation center side wall across the fractionation port, a lower region of the fractionation port, and a lower portion thereof To the remaining area excluding the area With cutting, it is characterized in that it comprises two partition portion forming the communicating portion that opens across from the ceiling surface of the reagent container to the bottom surface between the lower region and the balance region.
[0012]
A reagent container for an automatic analyzer according to a fourth invention is characterized in that, in the third invention, the partition is arranged such that the volume of the lower region is smaller than the volume of the remaining region. is there.
[0013]
A reagent container for an automatic analyzer according to a fifth aspect of the present invention is detachably mounted along a circumferential direction on a circular reagent tray mounted on a rotary table, and is moved to a predetermined position transferred by rotation of the reagent tray. In the reagent container for an automatic analyzer having a sorting port for collecting contents, the reagent container has a rotation center side wall portion on the rotation center side of the reagent tray, and a radial direction from the rotation center side wall portion. A radially outer wall portion on the outside, and two transfer direction side wall portions that connect opposite ends of the rotation center side wall portion and the radially outer wall portion, and the sorting port as the transfer direction side wall portion. And arranged on the radially outer wall side on the central axis between the inner wall surfaces of the Two Side wall of transfer direction A portion adjacent to the radially outer wall The Respectively Two side walls in the transfer direction, which are offset inwardly and are opposed to each other in the direction of shaking of the contents in the lower region of the sorting port. The offset The width between the inner wall surfaces is narrower than the width between the inner wall surfaces of the two transfer direction side wall portions arranged opposite to each other in the shaking direction of the contents in the remaining region excluding the lower region of the sorting port. It is.
[0014]
A reagent container for an automatic analyzer according to a sixth aspect of the present invention is detachably mounted along a circumferential direction on a circular reagent tray mounted on a rotary table, and is moved to a predetermined position transferred by rotation of the reagent tray. In a reagent container for an automatic analyzer having a sorting port through which contents are sorted, the reagent container is Reagent container internal And a position apart from the sorting port other than the lower region of the sorting port. And a columnar reflecting portion for controlling the reflection direction of the reflected wave generated by the shaking of the contents.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall conceptual diagram illustrating an automatic analyzer according to the present invention.
[0016]
A sampler 2 is disposed in the apparatus main body 1, and the sampler 2 is rotated intermittently at a constant period. In the sampler 2, a plurality of sample cups 3 for storing collected samples such as serum and urine are held by a holder chain 4, and the sample cup 3 moves intermittently by the movement of the holder chain 4. .
[0017]
In addition, a reaction disk 5 is arranged in the apparatus main body 1 and is rotated intermittently at a constant period like the sampler 2. The reaction disk 5 holds a plurality of reaction vessels 6 at circumferential positions. Further, two reagent trays 7a and 7b are arranged in the apparatus main body 1 apart from each other, and the reagent trays 7a and 7b each contain a predetermined reagent necessary for a desired analysis item. The container 100 is detachably mounted, and a detector for identifying the reagent container 100 is provided in the vicinity of the reagent tray. FIG. 2 is a top view of the main part of the apparatus main body 1, and the reagent trays 7 a and 7 b are detachably mounted on a rotary table (reagent table) 8 together with a plurality of reagent containers 100. In addition, the code | symbol P of FIG. 2 shows a sample suction position.
[0018]
Further, the apparatus body 1 is provided with various probes connected to a dispenser (not shown) as an intake nozzle. First, a sample probe 9 is provided in the vicinity of the sampler 2, and further, a first reagent probe 10 is provided in the vicinity of one reagent tray 7a, and a second reagent container is provided in the vicinity of the other reagent tray 7b. A probe 11 is provided. Each probe is equipped with a liquid level detection function, so that even if the liquid level of the liquid to be dispensed changes, only the required amount of the probe tip is put into the liquid, maintaining the liquid dispensing accuracy. Prevents the probe from being dirty.
[0019]
The first reagent probe 10 sucks the reagent in the reagent container 100 at a predetermined position from the reagent tray 7a holding the first reagent, and rotates to move to the reaction container 6 held on the reaction disk 5. Dispense reagents. Further, the sample probe 9 sucks the sample in the sample cup 3 at a predetermined position from the sampler 2 and rotates the sample to dispense the sample into the reaction container 6 on the reaction disk 5. Further, the second reagent probe 11 sucks the reagent in the reagent container 100 at a predetermined position from the reagent tray 7b holding the second reagent, and rotates to the reaction container 6 held on the reaction disk 5. Dispense reagents.
[0020]
The apparatus body 1 is provided with a keyboard 12. This is a keyboard for storing in advance the analysis conditions such as sample dispensing amount, reagent dispensing amount, photometric wavelength, concentration conversion count, etc. in the CPU according to each analysis item. Further, the apparatus main body 1 is provided with a monitor CRT 13. This is for displaying input information, analysis data, and the like using the keyboard 12.
[0021]
Further, the apparatus main body 1 is provided with a control device (not shown) for controlling the analysis operation according to the analysis conditions for each analysis item, and this control device is attached to the reagent containers 100 of the reagent trays 7a and 7b. Based on the identification signal of the identification label described later, the analysis item and the analysis condition corresponding to the reagent identified from the CPU are read out, and the analysis operation of the required analysis item is controlled.
[0022]
In the automatic analyzer configured as described above, a sample solution is dispensed into the reaction container 6 of the reaction disk 5 to prepare a test solution, and then the test solution is transported after a predetermined time has passed. Is measured at a predetermined wavelength according to the analysis item, the required analysis data is output by the concentration conversion count according to the measured value and the analysis item, and the analysis data is extracted from a printer (not shown). Therefore, as shown in FIG. 2, the dispensing of the target reagent necessary for the analysis is performed so that the corresponding container 100 among the plurality of stored reagent containers 100 reaches a predetermined position (reagent suction position P). You can do that.
[0023]
However, when the conventional reagent container is increased in size, if the speed of the automatic analyzer is increased, there has been a problem of shaking of the reagent surface due to the increase in the size of the reagent container. In addition, when the conventional reagent container has a large capacity and the reagent trays 7a and 7b are rotated at high speed or straight on a belt conveyor, the reagent is biased by the acceleration / deceleration operation during transfer, and the liquid surface shakes even after the rotation is completed. Remains.
[0024]
For this reason, as described above, when the reagent probe 10 or 11 is used to suck the liquid while the liquid surface is not stable, the target amount cannot be dispensed due to air mixing, or the reagent probe sinks into the liquid more than necessary. As a result, the contamination of the reagent probe and the dead volume of the reagent may increase.
[0025]
(First embodiment)
Therefore, as a first embodiment of the present invention, the reagent container 100 is a reagent that extends from the base in a direction substantially perpendicular to the transfer direction with at least one location on the inner wall surface of the reagent container 100 as a base. In other words, the container 110, 120, 130 is provided with an obstacle that causes fluid resistance to the fluid. In other words, the reagent container 100 is pressed against the reagent as the contents, and the first inner wall surface where the reagent liquid level rises most. And a height region corresponding to the liquid storage range between the second inner wall surface where the reagent is pressed and the reagent liquid surface is lowered most at a position facing the first inner wall surface, When the reagent container 100 is transferred, the containers 110, 120, and 130 are provided with obstacles that cause resistance to shaking generated in the reagent by the acceleration / deceleration operation in the transfer direction. Suppressing the sway of chemical surface, the reagent surface to stabilize and to keep the reliability of the measurement data.
[0026]
[First embodiment]
FIGS. 3A and 3B are a perspective view and a cross-sectional view showing the reagent container 110, respectively. In the embodiments described later including this embodiment, the acceleration / deceleration direction a1 in the figure indicates the acceleration / deceleration direction when the reagent container 100 is linearly transferred, and the acceleration / deceleration direction a2 indicates the reagent container 100. Indicates the acceleration / deceleration direction when moving in a curved line such as rotation.
[0027]
As shown in FIGS. 3A and 3B, the reagent container 110 includes a rotation center side wall 112 on the rotation center side of the reagent trays 7a and 7b, A radially outer wall 113 that is radially outward from the sidewall 112, and two transfer-direction sidewalls 114 and 115 that connect opposite ends of the rotation center sidewall 112 and the radially outer wall 113. The cross-sectional shape it has is almost fan-shaped, and at the top, as shown in FIG. probe 10 and 11 are provided, and a sorting port 110a for aspirating the reagent is provided.
[0028]
As shown in FIG. 3B, the inside of the reagent container 110 has a radially outer wall 113 on the side of the sorting port 110a as a base, and an acceleration / deceleration direction a1 (a2) during transfer from the inner wall 113f of the base. ), The wedge-shaped resistance portions 111 extending inward along a direction substantially orthogonal to each other are formed at two locations. In other words, the resistance portion 111 is located at the position facing the inner wall surface 114f of the first transfer direction side wall portion 114 where the liquid level rises most when the reagent is pressed, and the first inner wall surface 114f. Therefore, the liquid level is disposed between the inner wall surface 115f of the second transfer direction side wall 115 where the liquid level is lowered most.
[0029]
The relationship between the first inner wall surface 114f and the second inner wall surface 115f is, for example, when the reagent container 110 is moved by moving from the right side to the left side (clockwise) in FIG. 3B. In FIG. 3B, when the reagent container 110 is moved by moving from the left side to the right side (counterclockwise) in the drawing, the wall surface indicated by reference numeral 115f is the first highest in the reagent liquid level. The wall surface indicated by reference numeral 114f is the second inner wall surface where the reagent liquid surface descends most.
[0030]
For this reason, the resistance portion 111 becomes an obstacle that causes fluid resistance against the shaking generated in the reagent by the acceleration / deceleration direction a1 (a2), that is, the acceleration / deceleration operation in the transfer direction, when the reagent container 110 is transferred. In the inside of the reagent container 110, since there is no degree of freedom in moving the reagent in the transfer direction, even if the capacity of the reagent container 110 is increased or the reagent container 110 is transferred at high speed, the entire inside of the reagent container 110, in particular, the sorting is performed. The fluctuation of the reagent liquid surface in the vicinity of the mouth 110a can be suppressed.
[0031]
Therefore, according to the reagent container 110 provided with the resistance unit 111, the reagent dispensing accuracy is ensured by the amount of suppressing the fluctuation of the reagent liquid surface, and the range in which the reagent probes 10 and 11 are immersed in the reagent is reduced. As a result, contamination on the reagent probes 10 and 11 can be minimized, so that a reagent container capable of measuring highly reliable analysis data can be provided.
[0032]
[Second Embodiment]
4A and 4B are a perspective view and a cross-sectional view showing the reagent container 120, respectively.
[0033]
The reagent container 120 includes a rotation center side wall 122 on the rotation center side of the reagent trays 7 a and 7 b, a radial outer wall 123 that is radially outside the rotation center side wall 122, and the rotation center side wall 122. 4 and the radially outer wall portion 123 have two cross-sectional shapes having two transfer-direction side wall portions 124 and 125 that connect the opposite end portions to each other, and an upper portion of FIG. As shown, it has a sorting port 120a, and the rotation center side wall 123 on the side of the sorting port 120a is used as a base, and it is almost in the acceleration / deceleration direction a1 (a2) during transfer from the inner wall surface 123f of this base. Two rectangular resistance portions 121 extending inward along the orthogonal direction are formed. Also in this case, like the reagent container 110, the rectangular resistance portion 121 includes the first inner wall surface 124f (125f) where the reagent is pressed and the liquid level rises most, and the second inner wall surface 125f (124f). The same effect as the reagent container 110 can be obtained.
[0034]
[Third embodiment]
5A and 5B are a perspective view and a cross-sectional view showing the reagent container 130, respectively. The reagent container 130 includes a rotation center side wall 132 on the rotation center side of the reagent trays 7 a and 7 b, a radial outer wall 133 that is radially outside the rotation center side wall 132, and the rotation center side wall 132. As an obstacle in place of the resistance portions 111 and 121 extending from the radially outer wall portion 133, the two transfer direction side wall portions 134 and 135 that connect the opposite ends of the outer wall portion 133 and the radially outer wall portion 133. The plate-like resistors aligned along the direction substantially perpendicular to the acceleration / deceleration direction a1 (a2) at the time of transfer from the base portion using the inner wall surface 133f of the radially outer wall portion 133 on the sorting port 130a side as a base portion. A plurality of units 131 are provided. Also in this case, like the reagent containers 110 and 120, the plate-like resistance portion 131 includes the first inner wall surface 134f (135f) where the reagent surface is pressed and the liquid level rises the most, and the second inner wall surface 135f (134f). ), The same effects as the reagent containers 110 and 120 can be obtained.
[0035]
In the reagent containers 110, 120, and 130 according to the first embodiment, for example, the shape of the reagent container is not limited to a substantially fan shape as in the above-described example, but is substantially rectangular or substantially elliptical. The trapezoidal shape may be used. In addition, the shape, the number, and the arrangement position of the resistance portions 111, 121, and 131 may be variously changed as appropriate within a range where the effect of significantly preventing the fluctuation of the liquid level is exhibited. For example, instead of the wedge shape or the rectangular shape, the resistor portions 111 and 121 may be replaced with a triangular shape, a polygonal shape, or the like, or the resistor portions 111 and 121 may be provided with comb-shaped or mesh-shaped slits. You may combine these various changes suitably. Similarly, the resistance portion 131 may be replaced with a polygonal column shape such as a triangular shape or a rectangular shape instead of the plate shape. Furthermore, according to the capacity of the reagent containers 110, 120, and 130, the number and size of the resistance portions 111, 121, and 131 can be appropriately selected as appropriate. For example, the number of the resistance portions 111, 121, and 131 is as follows. There may be one.
[0036]
Furthermore, although the resistance parts 111, 121, 131 are provided from the ceiling surface to the bottom surface in the reagent container, the height region corresponding to the liquid storage range, that is, the height from the ceiling surface to the bottom surface in the reagent container. In the case of a region, the length can be appropriately selected as appropriate as required.
[0037]
(Second Embodiment)
By the way, as a second embodiment of the present invention, the reagent container 100 can be communicated with the inside of the reagent container, the lower region of the sorting port from which the reagent is dispensed, and the remaining region excluding this lower region. By using the container 150 having a partitioning section for partitioning, fluctuation of the reagent liquid surface may be suppressed, the reagent surface may be stabilized, and the reliability of measurement data may be maintained.
[0038]
[Reference technology]
FIGS. 6A and 6B are a perspective view and a cross-sectional view showing the reagent container 140, respectively. As shown in FIGS. 6A and 6B, the reagent container 140 includes a rotation center side wall 143 on the rotation center side of the reagent trays 7a and 7b, A radially outer wall 144 that is radially outward from the sidewall 143, and two transfer-direction sidewalls 145 and 146 that connect the rotation center sidewall 143 and the radially outer wall 144 opposite to each other. The cross-sectional shape it has is substantially fan-shaped, and has a sorting port 140a at its upper portion as shown in FIG. 6 (a).
[0039]
Further, as shown in FIG. 6 (b), the inside of the reagent container 140 is arranged along the acceleration / deceleration direction a1 (a2) at the time of the transfer at the portions close to the sorting port 140a of the side walls 145 and 146 in the transfer direction. Wedge-shaped partition parts 141 and 142 are formed one by one with the inner wall surfaces 145f and 146f protruding inward. These partition portions 141 and 142 partition the lower region V1 of the sorting port 140a from which the reagent is separated and the remaining region V2 excluding the lower region V1 so as to communicate with each other. The volume is arranged so as to be smaller than the volume of the remaining area V2.
[0040]
In this case, the wedge-shaped partition portions 141 and 142 reduce the inertia weight in the lower region V1 of the sorting port 140 by making the volume of the lower region V1 smaller than the volume of the remaining region V2, so Since the shaking generated in the reagent by the acceleration / deceleration operation is instantly reduced, the shaking of the reagent liquid surface in the vicinity of the sorting port 140a can be suppressed even when the capacity of the reagent container 140 is increased or transferred at a high speed. .
[0041]
Therefore, according to the reagent container 140 including the partition portions 141 and 142, the reagent dispensing accuracy is ensured by the amount that suppresses the shaking of the reagent liquid surface, and the reagent probe Reagents can be reduced by reducing the range in which 10 and 11 are immersed in the reagent. probe Since the contamination that occurs on 10 and 11 is minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0042]
[Fourth embodiment]
FIGS. 7A and 7B are a perspective view and a cross-sectional view showing the reagent container 150, respectively.
[0043]
The reagent container 150 includes a rotation center side wall portion 153 on the rotation center side of the reagent trays 7a and 7b, a radial outer wall portion 154 radially outside the rotation center side wall portion 153, and the rotation center side wall portion 153. And the radially outer wall portion 154 have two transfer direction side wall portions 155 and 156 that connect the opposite ends, and instead of the wedge-shaped partition portions 141 and 142, the acceleration / deceleration direction a1 (a2) during transfer Two plate-shaped partitioning portions 151 and 152 extending along a direction substantially orthogonal to each other are provided. As shown in FIG. 7B, these partitioning portions 151 and 152 partition the lower region V1 of the sorting port 150a from which the reagent is separated and the remaining region V2 excluding the lower region so as to communicate with each other. In this case, the volume of the lower region V1 is arranged to be smaller than the volume of the remaining region V2. Also in this case, like the reagent container 140, the plate-like partitioning portions 151 and 152 make the volume of the lower region V1 smaller than the volume of the remaining region V2, so that the inertia weight in the lower region V1 of the sorting port 150 is obtained. Since the fluctuation of the reagent is instantaneously reduced by the acceleration / deceleration operation in the transfer direction, the same effect as that of the reagent container 140 can be obtained.
[0044]
[Reference technology]
FIGS. 8A and 8B are a perspective view and a cross-sectional view showing the reagent container 160, respectively. The reagent container 160 includes a rotation center side wall part 164 on the rotation center side of the reagent trays 7a and 7b, a radial outer side wall part 165 radially outside the rotation center side wall part 164, and the rotation center side wall part 164. And two outer side walls 166 and 167 connecting the opposite ends of the outer wall 165 in the radial direction and extending along a direction substantially orthogonal to the acceleration / deceleration direction a1 (a2) during the transfer. Three plate-shaped partition portions 161 and 162 and three plate-shaped partition portions 163 extending in the acceleration / deceleration direction a1 (a2) are provided. Also in this case, like the reagent container 140, the plate-shaped partitioning portions 161 to 163 make the volume of the lower region V1 smaller than the volume of the remaining region V2, so that the inertia weight in the lower region V1 of the sorting port 160 is obtained. Since the fluctuation of the reagent is instantaneously reduced by the acceleration / deceleration operation in the transfer direction, the same effect as that of the reagent container 140 can be obtained.
[0045]
Even in the reagent container 150 according to the second embodiment, the shape of the reagent container is not limited to a substantially fan shape as in the above-described example, but may be a substantially rectangular shape, a substantially elliptical shape, a substantially trapezoidal shape, or the like. Good. In addition, the shape, the number, and the arrangement position of the partition portions 151 and 152 may be variously changed as appropriate within a range that exhibits the effect of significantly preventing the liquid level from shaking. For example, the partition portions 141 and 142 may be replaced with a rectangular shape, a triangular shape, a polygonal shape, or the like instead of the wedge shape, or the partition portions 141 and 142 may be provided with comb-shaped or mesh-shaped slits. Various changes may be appropriately combined. Similarly, the partition portions 151 and 152 (161 to 163) may be replaced with a polygonal column shape such as a triangular shape or a rectangular shape instead of the plate shape.
[0046]
Further, the number and size of the partition portions 151 and 152 can be appropriately selected according to the capacity of the reagent container 150. For example, the partition portions 151 and 152 have the volume of the lower region V1 as the remaining region V2. Although it is preferable that the volume of the lower region V1 is smaller than the volume of the lower region V1, the volume of the lower region V1 and the volume of the remaining region V2 may of course be arranged.
[0047]
Furthermore, the partition portions 151 and 152 are provided from the ceiling surface to the bottom surface in the reagent container, but the height region corresponding to the liquid storage range, that is, the height region from the ceiling surface to the bottom surface in the reagent container. If so, the length can also be appropriately selected as necessary.
[0048]
(Third embodiment)
In addition, as a third embodiment of the present invention, the width of two inner wall surfaces in which the reagent container 100 is arranged to face the shaking direction of the reagent in the lower region of the sorting port where the reagent is sorted, By making the container 170 narrower than the width of the two inner wall surfaces opposed to each other in the reagent shaking direction in the remaining area excluding the lower area, the reagent liquid level is suppressed, the reagent surface is stabilized, and the measurement data The reliability may be maintained.
[0049]
9A and 9B are a perspective view and a cross-sectional view showing the reagent container 170, respectively. As shown in FIGS. 9A and 9B, the reagent container 170 includes a rotation center side wall 173 on the rotation center side of the reagent trays 7a and 7b, A cross section having a radially outer wall portion 174 that is radially outside of the sidewall portion 173, and two transfer-direction sidewall portions that connect opposite ends of the rotation center sidewall portion 173 and the radially outer wall portion 174. As shown in FIG. 9 (a), the rotation center side wall part 173 disposed opposite to the acceleration / deceleration direction a1 (a2) in a direction substantially perpendicular to the acceleration direction and a radially outer side are formed on the upper part. The sorting port at a position close to the radially outer wall 174 side of the wall 174 170a Have
[0050]
Further, as shown in FIG. 9B, the inside of the reagent container 170 is the inner wall surface of two side walls 171 in the transfer direction arranged opposite to each other in the reagent shaking direction in the lower region V1 of the sorting port 170a from which the reagent is sorted. The inner wall surface of two transfer direction side wall portions 175 in which the width X1 between 171f and the inner wall surface 172f of the transfer direction side wall portion 172 is opposed to the shaking direction of the reagent in the remaining region V2 excluding the lower region V1 of the sorting port 170a. It is narrower than the width X2 between 175f and the inner wall surface 176f of the transfer direction side wall 176f. The two inner wall surfaces 171f and 172f are the remaining portions in which the volume of the lower region V1 defined by the inner wall surfaces 171f and 172f is defined by the two inner wall surfaces 175f and 176f with respect to the inner wall surfaces 175f and 176f. The volume is set to be smaller than the volume of the region V2.
[0051]
In this case, since the two inner wall surfaces 171f and 172f have a width X1 narrower than a width X2 between the inner wall surfaces 175f and 176f, the volume of the lower region V1 becomes smaller than the volume of the remaining region V2. The freedom of movement of the reagent in the direction is lost, the inertia weight in the lower region V1 of the sorting port 170 is reduced, and the shaking generated in the reagent by the acceleration / deceleration operation in the transfer direction is instantly reduced. Even if the capacity of the container 170 is increased or transferred at a high speed, it is possible to suppress the shaking of the reagent liquid surface in the vicinity of the sorting port 170a.
[0052]
Therefore, according to the reagent container 170 of the third embodiment, the reagent dispensing accuracy is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the reagent probe Reagents can be reduced by reducing the range in which 10 and 11 are immersed in the reagent. probe Since the contamination that occurs on 10 and 11 is minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0053]
In the third embodiment, the inner wall surfaces 171f and 172f are offset inward with respect to the inner wall surfaces 175f and 176f as shown in FIG. The inner wall surface 171f (172f) and the inner wall surface 175f (176f) are formed on the same axis, while only the inner wall surface 172f (171f) and the inner wall surface 176f (175f) are offset inward and only on one side surface. May be cut out. Further, as shown in FIG. 9, the inner wall surfaces 175f and 176f are arranged in parallel in a direction substantially orthogonal to the acceleration / deceleration direction a1 (a2), but the inner wall surfaces 175f and 176f are not necessarily arranged in parallel. do not have to.
[0054]
Furthermore, in the third embodiment, the shape of the reagent container 170 is not limited to a substantially fan shape as in the above-described example, but may be a substantially rectangular shape, a substantially elliptical shape, a substantially trapezoidal shape, or the like.
[0055]
(Reference technology)
In addition, as a reference technique of the present invention, a dispensing port for dispensing a reagent is provided at or near one of the positions on the central axis between two inner wall surfaces facing each other in the reagent shaking direction. By using the arranged containers 210, 220, and 230, the fluctuation of the reagent liquid surface may be suppressed, the reagent surface may be stabilized, and the reliability of the measurement data may be maintained.
[0056]
[Reference Technology 1]
10A and 10B are a perspective view and a cross-sectional view showing the reagent container 210, respectively. As shown in FIGS. 10A and 10B, the reagent container 210 includes a rotation center side wall 211 on the rotation center side of the reagent trays 7a and 7b, A radially outer wall portion 212 that is radially outward from the sidewall portion 211, and two transfer-direction sidewall portions 213 and 214 that connect opposite ends of the rotation center sidewall portion 211 and the radially outer wall portion 212. The transverse cross-sectional shape has a substantially fan shape, and has a sorting port 210a at the top thereof as shown in FIG.
[0057]
In the present reference technique, the movement along the acceleration / deceleration direction a1 (a2) is caused by the transfer of the reagent container 210. Therefore, as shown in FIG. 10B, the reagent is shaken in the acceleration / deceleration direction a1 (a2). The sorting port 210a is arranged at any position on or near the central axis O1 between the inner wall surface 213f of the transfer direction side wall 213 and the inner side surface 214f of the transfer direction side wall 214, which are opposed to each other.
[0058]
In this case, the shaking generated in the reagent by the acceleration / deceleration operation in the transfer direction is reduced at the sorting port 210a. Therefore, even if the capacity of the reagent container 210 is increased or transferred at a high speed, the reagent solution in the vicinity of the sorting port 210a is used. Surface shaking can be suppressed.
[0059]
Therefore, according to the reagent container 210, the reagent dispensing accuracy is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the reagent probe Reagents can be reduced by reducing the range in which 10 and 11 are immersed in the reagent. probe Since the contamination that occurs on 10 and 11 is minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0060]
[Reference Technology 2]
FIGS. 11A and 11B are a perspective view and a cross-sectional view showing the reagent container 220, respectively.
[0061]
In the present reference technique, the reagent container 220 includes a rotation center side wall 221 on the rotation center side of the reagent trays 7a and 7b, a radial outer wall 222 on the radially outer side of the rotation center side wall 221, Acceleration / deceleration which has two transfer direction side wall portions 223 and 224 that connect opposite end portions of the rotation center side wall portion 221 and the radially outer side wall portion 222 and is substantially orthogonal to the acceleration / deceleration direction a1 (a2) by the transfer. Since the shaking occurs in the direction a3, as shown in FIG. 11B, the inner wall surface 221f and the radially outer wall 222 of the rotation center side wall portion 221 arranged to face the shaking direction of the reagent, that is, the acceleration / deceleration direction a3. The sorting port 220a is disposed at or near any position on the central axis O2 between the inner wall surfaces 222f. Also in this case, since the shaking generated in the reagent by the acceleration / deceleration operation in the transfer direction is reduced at the sorting port 220a, the same effect as the reagent container 210 can be obtained.
[0062]
[Reference technology 3]
12A and 12B are a perspective view and a cross-sectional view showing the reagent container 230, respectively.
[0063]
The reagent container 230 includes a rotation center side wall portion 231 on the rotation center side of the reagent trays 7a and 7b, a radial outer side wall portion 232 radially outside the rotation center side wall portion 231, and the rotation center side wall portion 231. And two outer side walls 233 and 234 that connect the opposite ends of the outer wall 232 in the radial direction and oscillating along the acceleration / deceleration direction a1 (a2) by the transfer of the reagent container 230, and acceleration / deceleration Since the vibration along the acceleration / deceleration direction a3 substantially orthogonal to the direction a1 (a2) occurs in combination, as shown in FIG. 12B, the reagent is opposed to the vibration direction, that is, the acceleration / deceleration direction a1 (a2). The central axis O1 between the inner wall surface 233f of the arranged transfer direction side wall portion 233 and the inner wall surface 234f of the transfer direction side wall portion 234, the inner wall surface 231f and the diameter of the rotation center side wall portion 231 arranged opposite to each other in the acceleration / deceleration direction a3. The intersection between the center axis O2 between the inner wall surface 232f of the direction outer wall portion 232, are arranged minute Tokuchi 230a. Also in this case, since the shaking generated in the reagent by the acceleration / deceleration operation in the transfer direction is reduced at the sorting port 230a, the same effect as the reagent container 210 can be obtained.
[0064]
Even if the shaking along the acceleration / deceleration direction a1 (a2) and the shaking along the acceleration / deceleration direction a3 substantially orthogonal to the acceleration / deceleration direction a1 (a2) are caused by the transfer of the reagent container 230, the reagent It is possible to use containers 210 and 220.
[0065]
Even in the above-described reference technique, the shape of the reagent containers 210, 220, and 230 is not limited to the substantially fan shape as in the above-described example, but may be a substantially rectangular shape, a substantially elliptical shape, a substantially trapezoidal shape, or the like. .
[0066]
(Fourth embodiment)
Furthermore, in the present invention, as a fourth embodiment, the reagent container 100 is a container 250 provided with a reflection part that controls a reflected wave generated by the shaking of the reagent on the inner wall surface of the container. May be suppressed, the reagent surface may be stabilized, and the reliability of measurement data may be maintained.
[0067]
[Reference technology]
13A and 13B are a perspective view and a cross-sectional view showing the reagent container 240, respectively. As shown in FIGS. 13 (a) and 13 (b), the reagent container 240 is substantially fan-shaped in cross section so as to be stored in the reagent trays 7a and 7b. As shown, it has a sorting port 240a.
[0068]
For example, as shown by a two-dot chain line in FIG. 13, the conventional reagent container has a rotation center side wall portion 243 on the rotation center side of the reagent trays 7a and 7b, and a diameter that is radially outward from the rotation center side wall portion 243. The reagent container is formed in a simple substantially fan shape having a direction outer side wall 244 and two transfer direction side walls connecting the opposite ends of the rotation center side wall 243 and the radial outer wall 244. When transporting in the direction along the acceleration / deceleration direction a2, as shown in FIG. 13B, the reagent in the container is moved to the position of the region A or the region B by the centrifugal force and the force in the direction a2 due to acceleration / deceleration at the time of transfer. Pressed. Therefore, when the centrifugal force or the force due to acceleration / deceleration is weakened, for example, as shown in FIG. 13B, the reagent flows from the region A in the direction of the arrow do indicated by the alternate long and short dash line, and the inner side wall 245f of the transfer direction side wall 245f. Then, the reflected wave travels to the vicinity of the sorting port 240a.
[0069]
Therefore, in the present reference technique, the inner wall surfaces 245f and 246f are integrated with the inner wall surface 245f of the transfer direction side wall portion 245 and the inner wall surface 246f of the transfer direction side wall portion 246 as a reflection portion for controlling the reflected wave generated by the shaking of the reagent. The inner wall surface 241f of the transfer direction side wall portion 241 and the inner wall surface 242f of the transfer direction side wall portion 242 are formed so as to protrude inward.
[0070]
In this case, the reagent flowing from the region A (region B) due to the weakening of the centrifugal force or acceleration / deceleration is reflected in the direction of the arrow d by the inner side wall 241f (242f). Since it is not necessary to go to the vicinity of 240a, even if the capacity of the reagent container 240 is increased or the reagent container 240 is moved at a high speed, the fluctuation of the reagent liquid surface in the vicinity of the sorting port 240a can be suppressed.
[0071]
Therefore, according to the reagent container 240, the reagent dispensing accuracy is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the reagent probe Reagents can be reduced by reducing the range in which 10 and 11 are immersed in the reagent. probe Since the contamination that occurs on 10 and 11 is minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0072]
[Sixth embodiment]
FIGS. 14A and 14B are a perspective view and a cross-sectional view showing the reagent container 250, respectively.
[0073]
In this embodiment, the reagent container 250 includes a rotation center side wall portion 252 on the rotation center side of the reagent trays 7a and 7b, a radial outer side wall portion 253 that is radially outside the rotation center side wall portion 252, As a reflection part that has two transfer direction side wall parts 254 and 255 that connect opposite ends of the rotation center side wall part 252 and the radially outer wall part 253, and controls reflected waves generated by the shaking of the reagent. A pipe-like reflecting portion 251 is provided in the vicinity of the mouth 250a. Also in this case, as shown in FIG. 14B, the reagent flowing from the region A (region B) due to the weakening of the centrifugal force or acceleration / deceleration is reflected in the direction of the arrow d by the pipe-like reflecting portion 251. Therefore, since the reflected wave does not have to go directly to the vicinity of the sorting port 250a, the same effect as the reagent container 240 can be obtained.
[0074]
Even in the fourth embodiment, the shape, the number, and the arrangement position of the reflecting portions 251 may be variously changed as appropriate as long as the effect of preventing the fluctuation of the liquid level is significantly prevented. For example, the reflecting portion 251 may be replaced with a polygonal column shape such as a triangular shape or a rectangular shape instead of a cylindrical shape such as a pipe.
[0075]
In the fourth embodiment, the shape of the reagent container 250 is not limited to a substantially fan shape as in the above-described example, but may be a substantially rectangular shape, a substantially elliptical shape, a substantially trapezoidal shape, or the like. Furthermore, although the reflecting portion 251 is provided from the ceiling surface to the bottom surface in the reagent container, it may be a height region corresponding to the liquid storage range, that is, a height region from the ceiling surface to the bottom surface in the reagent container. If necessary, the length can be appropriately selected as appropriate.
[0076]
What has been described above is merely a preferred embodiment of the present invention, and the present invention is not limited to the above embodiment. For example, the contents described as examples of the above-described first to fourth embodiments may be implemented independently or in combination.
[0077]
In the present invention, as the reagent, in addition to the reagent that reacts with the test sample, a standard sample, a cleaning solution, a diluted solution, and the like may be accommodated in the reagent container according to the purpose of analysis. In addition, a reagent containing a particle-containing reagent in which a large number of fine particles contributing to a reaction or the like are suspended as a reagent is housed in a reagent container, or a composite container in which different reagent containers are integrated with each other. Also, the present invention can be applied effectively.
[0078]
In addition, when reagent containers are arranged on the reagent table for different radii and are rotated together or rotated independently for each radius, the reagent table is used for reading and stirring the reagent code provided on the reagent container. In the case where the rotation amount or the rotation speed is increased or decreased, it can be expected that the above-described prevention of shaking by the convex portion contributes effectively. Furthermore, in the above-described example, a plurality of reagent containers are arranged in a predetermined direction and are integrally rotated and transferred. However, the transfer direction may be transfer other than rotation or straight movement (meandering etc.) or a specific reagent container. A configuration may be used in which only the robot arm is picked up by a robot arm or the like and transferred to other storage units in the XYZ directions. Moreover, the rotation direction of the reagent table may be unidirectional or bidirectional.
[0079]
【The invention's effect】
The reagent container for an automatic analyzer according to the first invention is detachably mounted along a circumferential direction on a circular reagent tray mounted on a rotary table, and is moved to a predetermined position transferred by rotation of the reagent tray. In the reagent container for an automatic analyzer having a sorting port for collecting contents, the reagent container has a rotation center side wall portion on the rotation center side of the reagent tray and a diameter larger than that of the rotation center side wall portion. A radially outer wall portion on the outer side in the direction, and two transfer direction side wall portions that connect opposite ends of the rotation center side wall portion and the radially outer wall portion, with the radially outer wall portion as a base portion. In addition, since it is provided with an obstacle that extends from the base portion toward the rotation center side wall portion and causes fluid resistance to the reagent in the reagent container in the transfer direction of the reagent container, Test in the transfer direction Since there is no degree of freedom for movement of the reagent container, even if the capacity of the reagent container is increased or the reagent container is moved at a high speed, it is possible to suppress fluctuations in the reagent liquid surface in the entire interior of the reagent container or in the vicinity of the reagent container dispensing port. .
[0080]
Therefore, according to the first aspect of the present invention, the reagent dispensing accuracy is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the range in which the suction nozzle is immersed in the reagent is reduced, so that dirt generated on the suction nozzle is reduced. Since it can be minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0081]
The reagent container for an automatic analyzer according to the second aspect of the present invention includes a rotation center side wall portion on the rotation center side of the reagent tray, a radially outer wall portion radially outside the rotation center side wall portion, and the rotation center. The end portions of the side wall portion and the radially outer wall portion facing each other are connected to each other on the first transfer direction side wall portion where the content is pressed and the liquid level rises the most, and the inner wall surface of the first transfer direction side wall portion A second transfer direction side wall portion that connects the other end portions of the rotation center side wall portion and the radially outer wall portion facing each other at opposite positions, and the liquid level is lowered most when the contents are pressed. In the height region corresponding to the liquid containing range between the inner wall surface of the first transfer direction side wall portion and the inner wall surface of the second transfer direction side wall portion, the radial outer wall portion is used as a base portion. , Extending from this base toward the rotation center side wall, Since the medicine container is provided with an obstacle that causes resistance to the shaking generated in the contents by the acceleration / deceleration operation in the transfer direction during the transfer of the medicine container, in the same manner as the first invention, in the reagent container, in the transfer direction. This eliminates the freedom of movement of the reagent, so even if the capacity of the reagent container is increased or the reagent container is moved at a high speed, the fluctuation of the reagent liquid level in the entire interior of the reagent container or in the vicinity of the dispensing opening of the reagent container is suppressed. Can do.
[0082]
Therefore, according to the second aspect, the reagent dispensing accuracy is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the range in which the suction nozzle is immersed in the reagent is reduced, so that the dirt generated in the suction nozzle is reduced. Since it can be minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0083]
A reagent container for an automatic analyzer according to a third aspect of the present invention includes a rotation center side wall located on the rotation center side of the reagent tray, a radially outer wall located radially outside the rotation center side wall, and the rotation center. Two side walls in the transfer direction that connect the opposite ends of the side wall and the radially outer wall, and at the height extending from the ceiling surface to the bottom in the reagent container, the radially outer wall A base portion, extending from the base portion toward the rotation center side wall across the sorting port, and a lower region of the sorting port from which contents are sorted, and a remaining region excluding the lower region, In addition, the inertia in the lower region having the sorting port is provided by forming two partition portions that form a communication portion that opens from the ceiling surface to the bottom surface in the reagent container between the lower region and the remaining region. Weight is reduced, in the direction of transfer Because fluctuations in the reagent caused by the acceleration / deceleration operation are instantly reduced, even if the capacity of the reagent container is increased or the reagent container is moved at a high speed, the fluctuation of the reagent liquid level in the vicinity of the dispensing port of the reagent container can be suppressed. it can.
[0084]
Therefore, according to the third aspect of the invention, the dispensing accuracy of the reagent is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the range in which the suction nozzle is immersed in the reagent is reduced, so that the dirt generated in the suction nozzle is reduced. Since it can be minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0085]
A reagent container for an automatic analyzer according to a fourth aspect of the present invention is the above-described third aspect, wherein the partition portion is arranged so that the volume of the lower region is smaller than the volume of the remaining region, thereby providing a lower region having a sorting port. In this case, the inertia weight of the third invention is further reduced, so that the effect of the third invention can be made more remarkable.
[0086]
According to a fifth aspect of the present invention, there is provided a reagent container for an automatic analyzer, wherein the reagent container includes a rotation center side wall portion on the rotation center side of the reagent tray, and a radially outer wall portion radially outside the rotation center side wall portion. And the two transfer direction side wall portions connecting the opposite ends of the rotation center side wall portion and the radial outer wall portion, and a sorting port through which the contents are separated is defined as an inner wall surface of the transfer direction side wall portion. Arranged on the outer side wall portion side in the radial direction on the central axis between, and at least one of the side wall portions in the transfer direction is offset inwardly, and opposed to the shaking direction of the contents in the lower region of the sorting port The width between the inner wall surfaces of the two transfer direction side wall portions is larger than the width between the inner wall surfaces of the two transfer direction side wall portions arranged opposite to each other in the shaking direction of the contents in the remaining region excluding the lower region of the sorting port. Because it is narrowed, the volume of the lower region By making it smaller than the volume of the remaining area, the freedom of movement of the reagent in the transfer direction is eliminated, and the inertia weight in the lower area with the sorting port is reduced. Since fluctuations that occur are instantly reduced, fluctuations in the reagent liquid level in the vicinity of the dispensing opening of the reagent container can be suppressed even when the capacity of the reagent container is increased or transferred at high speed.
[0087]
Therefore, according to the fifth aspect of the invention, the dispensing accuracy of the reagent is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the range in which the suction nozzle is immersed in the reagent is reduced, so that the dirt generated in the suction nozzle is reduced. Since it can be minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[0088]
Since the reagent container for an automatic analyzer according to the sixth aspect of the present invention is provided with a columnar reflecting portion for controlling the reflection direction of the reflected wave generated by the shaking of the contents, the reflection caused by the shaking of the contents. Since waves do not need to go directly to the vicinity of the dispensing port, even if the capacity of the reagent container is increased or transferred at a high speed, fluctuations in the reagent liquid surface in the entire reagent container or near the suction port of the reagent container are suppressed. can do.
[0089]
Therefore, according to the sixth aspect of the invention, the reagent dispensing accuracy is ensured as much as the fluctuation of the reagent liquid surface is suppressed, and the range in which the suction nozzle is immersed in the reagent is reduced, so that dirt generated on the suction nozzle is reduced. Since it can be minimized, a reagent container capable of measuring highly reliable analysis data can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating an automatic analyzer according to the present invention.
FIG. 2 is a top view of the main part of the apparatus main body shown in FIG.
FIGS. 3A and 3B are a perspective view and a cross-sectional view, respectively, showing a first example of the reagent container according to the first embodiment of the present invention.
4A and 4B are a perspective view and a cross-sectional view, respectively, showing a second example of the reagent container according to the first embodiment of the present invention.
FIGS. 5A and 5B are a perspective view and a cross-sectional view showing a third example of the reagent container according to the first embodiment of the present invention, respectively.
FIGS. 6A and 6B are a perspective view and a cross-sectional view showing a reagent container as a reference technique for the second embodiment of the present invention, respectively.
FIGS. 7A and 7B are a perspective view and a cross-sectional view showing an example of a reagent container according to a second embodiment of the present invention, respectively.
FIGS. 8A and 8B are a perspective view and a cross-sectional view showing another reagent container which is a reference technique of the second embodiment of the present invention, respectively.
FIGS. 9A and 9B are a perspective view and a transverse cross-sectional view showing a reagent container according to a third embodiment of the present invention, respectively.
FIGS. 10A and 10B are a perspective view and a cross-sectional view showing a reagent container which is a reference technique of the present invention, respectively.
FIGS. 11A and 11B are a perspective view and a cross-sectional view showing another reagent container which is a reference technique of the present invention, respectively.
FIGS. 12A and 12B are a perspective view and a cross-sectional view showing still another reagent container which is a reference technique of the present invention, respectively.
FIGS. 13A and 13B are a perspective view and a transverse sectional view showing a reagent container which is a reference technique of the fourth embodiment of the present invention, respectively.
FIGS. 14A and 14B are a perspective view and a cross-sectional view showing an example of a reagent container according to a fourth embodiment of the present invention, respectively.
[Explanation of symbols]
1 Automatic analyzer body
2 Sampler
3 sample cups
4 Holder chain
5 reaction disk
6 reaction vessels
7, 7a, 7b Reagent tray
8 Reagent table (rotary table)
9 Sample probe
10 First reagent probe
11 Second reagent probe
12 Keyboard
13 CRT
110 Reagent container
110a sorting port
111 Wedge-shaped resistor
112 Rotation center side wall
113 radially outer wall
113f Inner wall surface
114 Side wall in the transfer direction
114f inner wall surface
115 Side wall in the transfer direction
115f inner wall surface
120 Reagent container
120a collection port
121 Rectangular resistor
122 Rotation center side wall
123 Radial outer wall
123f Inner wall surface
124 Side wall in the transfer direction
124f inner wall surface
125 Side wall in the transfer direction
125f inner wall surface
130 Reagent container
130a sorting port
131 Plate resistor
132 Rotation center side wall
133 radially outer wall
133f Inner wall surface
134 Side wall in the transfer direction
134f Inner wall surface
135 Side wall in the transfer direction
135f inner wall surface
140 Reagent container
140a sorting port
141,142 wedge-shaped partition
143 Rotation center side wall
144 radially outer wall
145 Side wall in the transfer direction
145f Inner wall surface
146 Side wall in the transfer direction
146f Inner wall surface
150 Reagent container
150a sorting port
151,152 Plate-shaped partition
153 Rotation center side wall
154 Radial outer wall
154f Inner wall surface
155 Side wall in the transfer direction
155f Inner wall surface
156 Side wall in the transfer direction
156f Inner wall surface
160 Reagent container
160a sorting port
161, 162, 163 Plate-shaped partition
164 Rotation center side wall
165 radially outer wall
166 Side wall in the transfer direction
167 Side wall in the transfer direction
170 Reagent container
170a sorting port
171 Side wall in the transfer direction in the lower region
171f Inner wall surface in the lower region
172 Side wall in the transfer direction in the lower region
172f Inner wall surface in the lower region
173 Side wall of rotation center
174 Radial outer wall
175 Side wall in the transfer direction in the remaining area
175f Inner wall surface in the remaining region
176 Side wall in the transfer direction in the remaining area
176f Inner wall surface in the remaining region
210 Reagent container
210a Preparatory entrance
211 Rotation center side wall
212 radially outer wall
213 Side wall in the transfer direction
213f Inner wall surface
214 Side wall in the transfer direction
214f Inside wall
220 Reagent container
220a Collection port
221 Rotation center side wall
222 radially outer wall
223 Side wall in the transfer direction
223f Inner wall surface
224 Side wall in the transfer direction
224f Inner wall surface
230 Reagent container
230a Collection port
231 Rotation center side wall
231f Inner wall surface
232 Radial outer wall
232f Inner wall surface
233 Side wall in the transfer direction
233f Inner wall surface
234 Side wall in the transfer direction
234f Inner wall surface
240 Reagent container
240a sorting port
241 Reflection part
241f Inner wall surface
242 Reflector
242f Inner wall surface
243 Rotation center side wall
244 Radial outer wall
245 Side wall in the transfer direction
245f Inner wall surface
246 Side wall in the transfer direction
256f inner wall surface
250 reagent containers
250a collection port
251 Reflector
252 Rotation center side wall
253 Radial outer wall
254 Side wall in the transfer direction
254f Inner wall surface
255 Side wall in the transfer direction
255f Inner wall surface
V1 lower area
V2 remaining area

Claims (6)

回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、
前記試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、
前記径方向外側壁部を基部として、この基部から回転中心側壁部に向かって延在し、試薬容器の移送方向に対して当該試薬容器内の試薬に流体抵抗を生じせしめる障害物を備えるものであることを特徴とする自動分析装置用の試薬容器。
A circular reagent tray mounted on the rotary table is detachably mounted along the circumferential direction thereof, and has a sorting port through which contents are sorted at a predetermined position transferred by rotation of the reagent tray. In reagent containers for automatic analyzers,
The reagent container includes a rotation center side wall portion on the rotation center side of the reagent tray, a radial outer wall portion radially outside the rotation center side wall portion, the rotation center side wall portion and the radial outer wall portion. Two transfer direction side walls connecting the opposite ends of each other,
With the radially outer wall portion as a base portion, an obstacle that extends from the base portion toward the rotation center side wall portion and causes fluid resistance to the reagent in the reagent container in the transfer direction of the reagent container is provided. A reagent container for an automatic analyzer, characterized in that it exists.
回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、
前記試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う一端部を繋ぎ、内容物が押し付けられて液面が最も上昇する第1の移送方向側壁部と、この第1の移送方向側壁部の内側壁面に対向する位置にあって前記回転中心側壁部と径方向外側壁部との互いに向かい合う他端部を繋ぎ、内容物が押し付けられて液面が最も下降する第2の移送方向側壁部とを有し、
当該第1の移送方向側壁部の内側壁面と第2の移送方向側壁部の内側壁面との間に、液収容範囲に対応する高さ領域にあって、前記径方向外側壁部を基部として、この基部から回転中心側壁部に向かって延在し、この試薬容器の移送時に、移送方向への加減速動作によって内容物に生じる揺れに対して抵抗を生じさせる障害物を備えるものであることを特徴とする自動分析装置用の試薬容器。
A circular reagent tray mounted on the rotary table is detachably mounted along the circumferential direction thereof, and has a sorting port through which contents are sorted at a predetermined position transferred by rotation of the reagent tray. In reagent containers for automatic analyzers,
The reagent container includes a rotation center side wall portion on the rotation center side of the reagent tray, a radial outer wall portion radially outside the rotation center side wall portion, the rotation center side wall portion and the radial outer wall portion. Of the first transfer direction side wall portion where the contents are pressed and the liquid level rises most, and the rotation center is located at a position facing the inner wall surface of the first transfer direction side wall portion. Connecting the other end portions of the side wall portion and the radially outer wall portion facing each other, and having a second transfer direction side wall portion where the content is pressed and the liquid level descends most,
Between the inner wall surface of the first transfer direction side wall portion and the inner wall surface of the second transfer direction side wall portion, in the height region corresponding to the liquid containing range, with the radially outer wall portion as a base, It extends from this base part toward the rotation center side wall part, and is provided with an obstacle that causes resistance to shaking generated in the contents by the acceleration / deceleration operation in the transfer direction when the reagent container is transferred. A reagent container for an automatic analyzer.
回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、
前記試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、
その内部に、試薬容器内の天井面から底面までにわたる高さにおいて、前記径方向外側壁部を基部として、この基部から前記分取口を挟んで回転中心側壁部に向かって延在し、前記分取口の下部領域と、この下部領域を除いた残部領域とに仕切ると共に、当該下部領域と残部領域との間に試薬容器内の天井面から底面までにわたって開口する連通部を形成する2つの仕切部を備えることを特徴とする自動分析装置用の試薬容器。
A circular reagent tray mounted on the rotary table is detachably mounted along the circumferential direction thereof, and has a sorting port through which contents are sorted at a predetermined position transferred by rotation of the reagent tray. In reagent containers for automatic analyzers,
The reagent container includes a rotation center side wall portion on the rotation center side of the reagent tray, a radial outer wall portion radially outside the rotation center side wall portion, the rotation center side wall portion and the radial outer wall portion. Two transfer direction side walls connecting the opposite ends of each other,
Inside, at the height from the ceiling surface to the bottom surface in the reagent container, with the radially outer wall portion as a base portion, the base portion extends from the base portion toward the rotation center side wall portion, Two parts are formed which are divided into a lower region of the sorting port and a remaining region excluding the lower region, and a communication portion is formed between the lower region and the remaining region so as to open from the ceiling surface to the bottom surface in the reagent container. A reagent container for an automatic analyzer, comprising a partition.
前記仕切部を下部領域の容積が残部領域の容積よりも小さくなるように配置したものであることを特徴とする請求項3に記載の自動分析装置用の試薬容器。  The reagent container for an automatic analyzer according to claim 3, wherein the partition portion is arranged so that the volume of the lower region is smaller than the volume of the remaining region. 回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、
前記試薬容器は、試薬トレイの回転中心側にある回転中心側壁部と、この回転中心側壁部よりも径方向外側にある径方向外側壁部と、当該回転中心側壁部と径方向外側壁部との互いに向かい合う端部を繋ぐ2つの移送方向側壁部とを有し、
前記分取口を前記移送方向側壁部の内側壁面間の中心軸上の前記径方向外側壁部側に配置すると共に、前記2つの移送方向側壁部における、前記径方向外側壁部に隣接する一部それぞれ内向きにオフセットさせて、前記分取口の下部領域において内容物の揺れ方向に対向配置した2つの移送方向側壁部の前記オフセットさせた内側壁面間の幅を、前記分取口の下部領域を除いた残部領域において内容物の揺れ方向に対向配置した2つの移送方向側壁部の内側壁面間の幅よりも狭めたものであることを特徴とする自動分析装置用の試薬容器。
A circular reagent tray mounted on the rotary table is detachably mounted along the circumferential direction thereof, and has a sorting port through which contents are sorted at a predetermined position transferred by rotation of the reagent tray. In reagent containers for automatic analyzers,
The reagent container includes a rotation center side wall portion on the rotation center side of the reagent tray, a radial outer wall portion radially outside the rotation center side wall portion, the rotation center side wall portion and the radial outer wall portion. Two transfer direction side walls connecting the opposite ends of each other,
The sorting port is disposed on the radially outer wall side on the central axis between the inner wall surfaces of the transfer direction side wall portion, and is adjacent to the radially outer wall portion in the two transfer direction side wall portions . part is offset to each inward, the width between the offset allowed inner wall surface of the divided two transfer side walls portion that is disposed opposite to the swing direction of the contents in the lower region of Tokuchi, the amount Tokuchi A reagent container for an automatic analyzer, characterized in that it is narrower than the width between the inner wall surfaces of two side walls in the transfer direction arranged opposite to each other in the shaking direction of the contents in the remaining area excluding the lower area.
回転テーブルに装着された円形の試薬トレイにその周方向に沿って着脱自在に装着され、当該試薬トレイの回転によって移送された所定の位置にて、内容物が分取される分取口を有する自動分析装置用の試薬容器において、
前記試薬容器は、その試薬容器の内部であって、前記分取口の下部領域以外の当該分取口から離れた位置に、内容物の揺れによって生じる反射波の反射方向を制御する柱状の反射部を備えるものであることを特徴とする自動分析装置用の試薬容器。
A circular reagent tray mounted on the rotary table is detachably mounted along the circumferential direction thereof, and has a sorting port through which contents are sorted at a predetermined position transferred by rotation of the reagent tray. In reagent containers for automatic analyzers,
The reagent container is a columnar reflection that controls the reflection direction of the reflected wave caused by the shaking of the contents at a position inside the reagent container and away from the sorting port other than the lower region of the sorting port. A reagent container for an automatic analyzer characterized by comprising a part.
JP2001397276A 2001-12-27 2001-12-27 Reagent container for automatic analyzer Expired - Fee Related JP3845305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397276A JP3845305B2 (en) 2001-12-27 2001-12-27 Reagent container for automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001397276A JP3845305B2 (en) 2001-12-27 2001-12-27 Reagent container for automatic analyzer

Publications (2)

Publication Number Publication Date
JP2003194828A JP2003194828A (en) 2003-07-09
JP3845305B2 true JP3845305B2 (en) 2006-11-15

Family

ID=27603124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397276A Expired - Fee Related JP3845305B2 (en) 2001-12-27 2001-12-27 Reagent container for automatic analyzer

Country Status (1)

Country Link
JP (1) JP3845305B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911685B2 (en) 2009-02-20 2014-12-16 Hitachi High-Technologies Corporation Automated analyzer
EP3981507A1 (en) * 2013-03-13 2022-04-13 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container
US11712671B2 (en) 2013-03-13 2023-08-01 Abbott Laboratories Methods and apparatus to agitate a liquid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006017454U1 (en) * 2006-11-14 2007-05-16 Diasys Technologies S.A.R.L. Liquid reagent container for laboratory automated diagnostic units is precision located in a carousel compartment by having grooves which engage with ridges on the compartment walls
USD962471S1 (en) 2013-03-13 2022-08-30 Abbott Laboratories Reagent container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911685B2 (en) 2009-02-20 2014-12-16 Hitachi High-Technologies Corporation Automated analyzer
EP3981507A1 (en) * 2013-03-13 2022-04-13 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid
USD978375S1 (en) 2013-03-13 2023-02-14 Abbott Laboratories Reagent container
US11712671B2 (en) 2013-03-13 2023-08-01 Abbott Laboratories Methods and apparatus to agitate a liquid
US11738346B2 (en) 2013-03-13 2023-08-29 Abbott Laboratories Methods and apparatus to mitigate bubble formation in a liquid

Also Published As

Publication number Publication date
JP2003194828A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US11291965B2 (en) Evaporation-controlling container inserts
JP4119845B2 (en) Stackable aliquot container array
US5215714A (en) Immunoagglutination measurement apparatus
JP3193443B2 (en) Automatic analyzer
CN101726608B (en) Specimen analyzing apparatus and specimen analyzing method
JP6178333B2 (en) Reagent container and automatic analyzer
ES2719124T3 (en) Bulk liquids and / or solids management system
US20050013746A1 (en) Reaction cuvette having anti-wicking features for use in an automatic clinical analyzer
EP2703819B1 (en) Sample processing apparatus and sample processing method
US5501838A (en) Automated immunochemical analyzer
JP2005502034A (en) Reagent cartridge
JPH0588427B2 (en)
JP2005534893A (en) Serum transfer cup
JP3845305B2 (en) Reagent container for automatic analyzer
EP0336013A2 (en) Immunoagglutination measurement apparatus
JP2010054232A (en) Reaction card and automatic analyzing apparatus
JP2000275251A (en) Automatic analysing device and reagent vessel
JP4829624B2 (en) Reagent container lid, reagent container equipped with the same, and reagent kit
EP4343337A1 (en) Container disposal unit, automatic analysis device comprising same, and method for disposing of used reaction container of automatic analysis device
JP2007047001A (en) Automatic analyzer
JP4558903B2 (en) Automatic analyzer
JP2001514732A (en) Means and method for cleaning a reaction vessel
JP4969061B2 (en) Automatic analyzer
JPH0116387B2 (en)
JP5137274B2 (en) Pipette tip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees