JP3844977B2 - Method for producing squalamine - Google Patents

Method for producing squalamine Download PDF

Info

Publication number
JP3844977B2
JP3844977B2 JP2001139056A JP2001139056A JP3844977B2 JP 3844977 B2 JP3844977 B2 JP 3844977B2 JP 2001139056 A JP2001139056 A JP 2001139056A JP 2001139056 A JP2001139056 A JP 2001139056A JP 3844977 B2 JP3844977 B2 JP 3844977B2
Authority
JP
Japan
Prior art keywords
structural formula
compound
compound represented
synthesizing
following structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001139056A
Other languages
Japanese (ja)
Other versions
JP2002332274A (en
Inventor
信夫 池川
征司 武内
豊 中村
一雄 奥村
Original Assignee
日誠マリン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日誠マリン工業株式会社 filed Critical 日誠マリン工業株式会社
Priority to JP2001139056A priority Critical patent/JP3844977B2/en
Publication of JP2002332274A publication Critical patent/JP2002332274A/en
Application granted granted Critical
Publication of JP3844977B2 publication Critical patent/JP3844977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Steroid Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スクアラミンの製造方法に関し、詳しくは羊毛脂の一成分であるデスモステロールを用いてスクアラミンを合成する方法に関する。
【0002】
【従来の技術】
抗生物質スクアラミン(squalamine)は、従来の抗癌剤と異なり、血管新生を抑制する抗癌剤であり、副作用がほとんどないことから、近年、非常に興味が持たれている化学物質である。
【0003】
例えば、これまでにサメの肝臓からスクアラミンを回収する方法が開示されている(ムーアら、USP5,192,756号公報、Proc. Natl. Acad. Sci., U.S.A., 90, 1354(1993))。このスクアラミンの血管新生阻害作用はシルスによって発表されている(Cancer Research, 58, 2784(1998))。しかしながらサメから得られる量は微量である。
【0004】
そこでスクアラミンを化学的に合成する方法の開発が望まれた。一つの方法として、大豆から得られるスチグマステロール(stigmasterol)を出発原料としてスクアラミンを合成する例が開示されている(R. S. Jones, B. S. Selinsky, M. N. Rao, X. Zhang, W. A. Kinney, F. S. Tham, J. Org. Chem., 63, 3786(1998))。
【0005】
【発明が解決しようとする課題】
本発明の目的は、天然に存在するデスモステロールを出発原料にして3β−アセチル体、さらには3−ケト−7,24(R)−ジオール体を得て、最終製品であるスクアラミンを合成する方法を提供することにある。
【0006】
【課題を解決するための手段】
従って、本発明は、
(1)無水酢酸を用いてデスモステロールをアセチル化しデスモステロールのアセチル体(化合物1)を合成する工程、
(2)AD−mix−βを用いて前記アセチル体を酸化しデスモステロールの24(R),25−ジオール体(化合物2)を合成する工程、
(3)塩化ベンゾイルを用いて前記24(R),25−ジオール体からデスモステロールのモノベンゾイル体(化合物3)を合成する工程、
(4)オキシ塩化リンを用いて前記モノベンゾイル体からデスモステロールの25−エキソメチレン体(化合物4)を合成する工程および、
(5)前記25−エキソメチレン体を水素で還元して3β−アセチル体(化合物5)を合成する工程からなることとする。
【0007】
さらに本発明は、
(6)N−ヒドロキシフタルイミドと過酸化ベンゾイルを用いて前記3β−アセチル体を酸化して7−ケト体(化合物6)を合成する工程、
(7)酸化白金触媒を用いて前記7−ケト体を水素で還元して5α−ヒドロ−7β−ヒドロキシ体(化合物7)と5α−ヒドロ−7−ケト体(化合物8)を合成する工程、
(8)ピリジニウムクロロメートとセライトを用いて前記5α−ヒドロ−7β−ヒドロキシ体を5α−ヒドロ−7−ケト体に変換する工程、
(9)炭酸カリウムを用いて前記工程7または8の前記5α−ヒドロ−7−ケト体から3β−ヒドロキシ体(化合物9)を合成する工程、
(10)K−Selectride触媒を用いて前記3β−ヒドロキシ体から3β,7α−ジオール体(化合物10)を合成する工程、
(11)炭酸銀−セライト触媒を用いて前記3β,7α−ジオール体から3−ケト−7α−ヒドロキシ体(化合物11)を合成する工程、および
(12)水酸化カリウムの存在下、前記3−ケト−7α−ヒドロキシ体から3−ケト−7,24(R)−ジオール体(化合物12)を合成する工程からなることとする。
【0008】
【発明の実施の形態】
デスモステロールからスクアラミン前駆体を合成するまでのルートの概略を以下に示す。
【0009】
【化1】

Figure 0003844977
【0010】
【化2】
Figure 0003844977
【0011】
羊毛を洗浄した際に羊毛脂が得られる。本発明のデスモステロールは、その羊毛脂の中に存在するステロール成分の一部である。即ち、そのステロール成分のうち、大部分はコレステロールであるが、残りの15%前後はデスモステロールである。このデスモステロールが本発明の出発原料となる。
【0012】
(1)無水酢酸を用いてデスモステロールをアセチル化しデスモステロールのアセチル体(化合物1)を合成する工程
先ず、ピリジン溶媒中で無水酢酸を用いて羊毛脂の一成分であるデスモステロールをアセチル化し、デスモステロールの3位の水酸基がアセチル基で保護されたアセチル体を合成する。アセチル化反応の温度は25〜30℃である。使用される無水酢酸とデスモステロールのモル比は40:1〜50:1である。
【0013】
(2)AD−mix−βを用いて前記アセチル体を酸化しデスモステロールの24(R),25−ジオール体(化合物2)を合成する工程
t−BuOH−H2O混合溶媒中で、前記アセチル体をAD−mix−β触媒(米国、アルドリッチ社製)で酸化すると、前記アセチル体の側鎖の二重結合が開いてジオール体となる。この酸化反応はシャープレス(Sharpless)の触媒的不斉ジオール化であり、これにより24(R),25−ジオール体が得られる。酸化反応の温度は0〜30℃である。AD−mix−βの添加量は、前記アセチル体1モルに対して、5721gである。
【0014】
(3)塩化ベンゾイルを用いて前記24(R),25−ジオール体からデスモステロールのモノベンゾイル体(化合物3)を合成する工程
ピリジン溶媒中で塩化ベンゾイルを用いて前記ジオール体の24(R)位の水酸基のみをベンゾイル化する。このようにしてモノベンゾイル体が得られる。このベンゾイル化反応の温度は0〜25℃である。使用される塩化ベンゾイルと前記ジオール体のモル比は3.2:1である。
【0015】
(4)オキシ塩化リンを用いて前記モノベンゾイル体からデスモステロールの25−エキソメチレン体(化合物4)を合成する工程
ピリジン溶媒中でオキシ塩化リンを用いて前記モノベンゾイル体に環外二重結合の一種、即ち、エキソメチレン結合を形成して、25−エキソメチレン体とする。このエキソメチレン結合を形成する反応の温度は0〜25℃である。オキシ塩化リンの添加量は、前記モノベンゾイル体1モルに対して、644gである。
【0016】
(5)前記25−エキソメチレン体を水素で還元して3β−アセチル体(化合物5)を合成する工程
酢酸エチル溶媒中で、10%パラジウム触媒の存在下、前記25−エキソメチレン体を水素で還元して3β−アセチル体を合成する。前記3β−アセチル体を合成する反応温度は、20〜25℃である。10%パラジウム触媒として担体が炭素である10%Pd−Cが挙げられる。この触媒の代わりに白金系の触媒を用いてもよい。反応圧力は常圧(101kPa)である。
【0017】
この3β−アセチル体(化合物5)を用いて目的とするスクアラミンを合成する反応をさらに述べる。
【0018】
酢酸エチルとアセトンの混合溶媒中、N−ヒドロキシフタルイミドと過酸化ベンゾイルの存在下、前記3β−アセチル体(化合物5)を50〜55℃で空気により酸化すると、収率64モル%で7−ケト体(化合物6)が得られる。N−ヒドロキシフタルイミドと過酸化ベンゾイルの使用量は、前記3β−アセチル体1モルに対して、それぞれ163.13g及び0.24gである。この反応液を減圧濃縮して黄色シラップ残渣を得る。得られた残渣は無水酢酸を含むピリジン溶媒に溶解させてシリカゲルカラムで精製する。
【0019】
酢酸エチル溶媒中、白金触媒(PtO2)の存在下、20〜25℃でこの7−ケト体を水素により還元すると、5α−ヒドロ−7β−ヒドロキシ体(化合物7)と5α−ヒドロ−7−ケト体(化合物8)がそれぞれ23モル%と66モル%の収率で得られる。白金触媒の使用量は、前記7−ケト体1モルに対して、5489gである。
【0020】
この5α―ヒドロ−7β−ヒドロキシ体は、塩化メチレン溶媒中、PCC試薬(東京化成社製)により定量的に5α−ヒドロ−7−ケト体に変換される。変換のための温度は20〜25℃である。PCC試薬の使用量は、前記5α―ヒドロ−7β−ヒドロキシ体1モルに対して、323.33gである。
【0021】
メタノールとクロロホルムの混合溶媒中、この5α−ヒドロ−7−ケト体を炭酸カリウムK2CO3で加水分解して3β―ヒドロキシ体(化合物9)が収率94モル%で得られる。加水分解温度は20〜25℃である。炭酸カリウムの使用量は、前記5α−ヒドロ−7−ケト体1モルに対して、552.92gである。
【0022】
テトラヒドロフラン中、触媒(K-Selectride、アルドリッチ社製)を用いてこの3β―ヒドロキシ体(化合物9)を還元すると、3β,7α−ジオール体(化合物10)が収率77モル%で得られる。還元温度は−20℃である。前記テトラヒドロフランの使用量は、前記3β−ヒドロキシ体(化合物9)1モルに対して、2200mlである。
【0023】
つぎにトルエン溶媒中、この3β,7α−ジオール体(化合物10)をセライトに担持した炭酸銀Ag2CO3触媒で酸化すると、3位の水酸基が酸化された3−ケト−7α−ヒドロキシ体(化合物11)が得られる。酸化反応温度は120〜130℃である。炭酸銀触媒の使用量は、3β,7α−ジオール体1モルに対して、510.887gである。
【0024】
この化合物7をエチレングリコール溶媒中、KOHの存在下、加熱して加水分解すると、24位に水酸基を持つ3−ケト−7,24(R)−ジオール体(化合物12)が収率80モル%で得られる。加水分解温度は140〜150℃である。エチレングリコール溶媒中のKOHの濃度は0.15〜0.20モル/lである。
【0025】
この3−ケト−7,24(R)−ジオール体(化合物12)は、公知の方法に従って、ピリジン溶媒中、三酸化イオン・ピリジン錯体により硫酸エステル(化合物13)となる(キィニィらの方法、W. A. Kinney, X. Zhang, J. I. Williams, S. Johnston, R. S. Michalak, M. Deshpande, L. Dostal, and J. P. N. Rosazza, Org. Lett., 2, 2921(2000))。
【0026】
一方、アジドスペルミジン(Azido Spermidine)の公知の合成反応により、ジアミン化合物からスペルミジンのアジド体を合成する。合成反応を以下に記載する。この方法はA. L. Weis, T. Bakos, L. Alferiev, X. Zhang, B. Shao, W. A. Kinney, Tetrahedron Lett., 40, 4863(1999)に開示されている。
【0027】
前記硫酸エステル(化合物13)をスペルミジンのアジド体と反応させ、イミンとし、つぎに低温下シアノボロヒドリドで還元する。さらにこの反応液を白金触媒またはラネー−ニッケルで水素化することによりスクアラミンが得られる。
【0028】
【化3】
Figure 0003844977
【0029】
【実施例】
先ず無水酢酸を用いてピリジン溶媒中でデスモステロールを25℃、12時間の条件でアセチル化してデスモステロールのアセチル体(化合物1)を得た。
【0030】
【化4】
Figure 0003844977
【0031】
アセチル体(化合物1)(10.2g、23.46mmol)を室温でt−BuOH(100ml)と水(20ml)の混合溶媒中に溶解させ、この液にAD−mix−β触媒(35.5g)、メタンスルホンアミド(10g、105.1mmol)を加え攪拌した。6日間放置してから、反応系内を0℃にして亜硫酸ナトリウム(400g、3.174mol)を加え、1時間攪拌した。つづいてこの反応液をエーテル(1,000ml×4回)で抽出した。得られたエーテル溶液を1M水酸化カリウム水溶液(1,000ml×2回)、飽和食塩水(1,000ml)で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残渣をメタノール中で再結晶させ、その結晶を含むスラリーをろ過して、白色粉末結晶(24(R),25−ジオール体、24(R),25−ジヒドロキシコレステリル−3β−アセテート)(化合物2)(101.29g、92%)を得た。
【0032】
この24(R),25−ジオール体(化合物2)の分析値は以下のとおりであった。
[α]D 26 −36°(c 0.01 in CHCl3
m.p 158−159℃(文献値 mp 164−165℃)
1H NMR 5.31(d, J=4.8Hz, 1H), 4.54(m, 1H), 3.27(dd, J=6.2, 6.0Hz, 1H), 2.25(m, 2H), 1.97(s, 3H), 1.93−0.89(m, 25H), 1.15(s, 3H), 1.09(s, 3H), 0.95(s, 3H), 0.87(d, J=6.5Hz, 3H), 0.62(s, 3H);
13C NMR 170.6, 139.7, 122.6, 78.8, 77.2, 74.0, 73.2, 56.6, 56.0, 50.0, 42.3, 39.7, 38.1, 37.0, 36.6, 35.6, 32.8, 31.9, 28.3, 28.1, 27.8, 26.6, 24.3, 23.2, 21.5, 21.0, 19.3, 18.6, 11.9;
Figure 0003844977
【0033】
【化5】
Figure 0003844977
【0034】
前記ジオール体(化合物2)(11.600g、25.340mmol)をピリジン(35ml)に溶解させ氷冷した。次に、塩化ベンゾイル(9.343ml、81.086mmol)を加え攪拌した。次に一晩放置してから、酢酸エチル(50ml)を加えしばらく攪拌した。1M塩酸水溶液(15ml×2回)、飽和重曹水(15ml×2回)、飽和食塩水(15ml×2回)でこの反応液を洗浄し、無水硫酸マグネシウムで乾燥して、減圧濃縮し、黄色シラップ残渣を得た。ヘキサンと酢酸エチルの混合溶媒(3:1 v/v)を展開溶媒とするシリカゲルカラムで前記黄色シラップ残渣を精製し、無色シラップ(モノベンゾイル体)(化合物3)(14.300g、93%)を得た。
【0035】
このモノベンゾイル体(化合物3)の分析値は以下のとおりであった。
[α]D 26 −22.2°(c 1.08 in CHCl3
syrup
IR 3475, 2941, 1718, 1451 cm-1
1H NMR(CDCl3) δ=0.66(s, 3H), 0.93(d, 3H J=6.8Hz),1.00(s, 3H), 1.27(s, 6H), 2.02(s, 3H, Ac´s CH3), 0.89−2.16(m, 24H), 2.30−2.32(m, 2H), 4.58−4.60(m, 1H, C−3H), 5.04−5.07(m, 1H, C−24H), 5.36(d, 1H, olefin−H J=5.1Hz), 7.43−7.59(m, 3H, Bz´s 3H), 8.05−8.07(m, 2H, Bz´s 2H)
【0036】
【化6】
Figure 0003844977
【0037】
モノベンゾイル体(化合物3)(7.800g、13.808mmol)をピリジン(130ml)に溶解させ氷冷した。その後オキシ塩化リン(5.200ml、55.232mmol)を加え攪拌した。次に一晩放置してから、酢酸エチル(50ml)と水(20ml)を加えしばらく攪拌した。1M塩酸水溶液(15ml×2回)、飽和重曹水(15ml×2回)、飽和食塩水(15ml×2回)でこの反応液を洗浄し、無水硫酸マグネシウムで乾燥して、減圧濃縮した。得られた白色粗結晶をヘキサンと酢酸エチルの混合溶媒中で再結晶させ、その結晶を含むスラリーをろ過して白色粉末結晶(25−エキソメチレン体)(化合物4)(6.500g、86%)を得た。
【0038】
この25−エキソメチレン体(化合物4)の分析値は以下のとおりであった。
[α]D 26 −53.0°(c 1.00 in CHCl3
m.p 137−143℃
IR 3434, 2936, 2871, 1733, 1708, 1654, 1602, 1453 cm-1
1H NMR(CDCl3) δ=0.66(s, 3H), 0.95(d, 3H J=6.3Hz), 1.00(s, 3H), 1.79(s, 3H), 2.01(s, 3H, Ac´s CH3), 0.90−2.02(m, 24H), 2.30−2.33(m, 2H), 4.58−4.60(m, 1H, C−3H), 4.90 and 5.02(sx2, 1Hx2, vinyl−Hx2), 5.35−5.39(m, 2H, olefin−H and C−24H), 7.42(t、 2H, Bz´s J=7.8Hz), 7.53(t, 1H, Bz´s J=6.8Hz), 8.05(d, 2H, Bz´s J=8.3Hz)
【0039】
【化7】
Figure 0003844977
【0040】
25−エキソメチレン体(化合物4)(3.700g、6.766mmol)を酢酸エチル(100ml)に溶解させ、室温で触媒として10%Pd−C(370mg)を加え、水素ガス雰囲気下で攪拌した。3時間の攪拌を行い、触媒をろ別し、ろ液を減圧濃縮し、無色シラップを得た。ヘキサンと酢酸エチル(8:1 v/v)の混合溶媒を展開溶媒とするシリカゲルカラムで前記無色シラップを精製し、白色粉末結晶3β−アセチル体(化合物5)(2.400g、64%)を得た。
【0041】
この3β−アセチル体(化合物5)の分析値は以下のとおりであった。
[α]D 26 −30.0°(c 1.02 in CHCl3
m.p 114−121℃
IR 3444, 3068, 2934, 2872, 1735, 1708, 1601, 1584, 1467, 1452 cm-1
1H NMR(CDCl3) δ=0.66(s, 3H), 0.92(d, 3H J=6.8Hz), 0.96(d, 3H J=6.8Hz), 0.98(d, 3H J=6.8Hz), 1.01(s, 3H), 2.02(s, 3H,Ac´s CH3), 0.93−2.04(m, 24H),2.30−2.32(m, 2H), 4.58−4.61(m, 1H, C−3H), 4.95−4.99(m, 1H, C−24H), 7.44(t, 2H, Bz´s J=7.8Hz), 7.55(t, 1H, Bz´s J=7.3Hz), 8.05(d, 2H, Bz´s J=8.3Hz)
【0042】
【化8】
Figure 0003844977
【0043】
3β−アセチル体(化合物5)(3.000g、5.466mmol)を酢酸エチルとアセトンの混合溶媒(1:1 v/v)(300ml)に溶解させ、N−ヒドロキシフタルイミド(893mg、5.575mmol)を加え、50〜60℃に温度を調節した。この溶液に過酸化ベンゾイル(300mg)を加えて、空気を48時間吹き込みつづけた。つづいてこの反応液を濃縮し、得られた黄色シラップ残渣に四塩化炭素(200ml)を加えて懸濁状態で攪拌した。10分間攪拌してからその懸濁液をろ過し、得られたろ液を減圧濃縮した。得られた濃縮液をピリジン(50ml)に溶かして氷冷した。氷冷下、さらに無水酢酸(5ml)を加え、攪拌した。次に一晩放置してから、この反応液を減圧濃縮し、赤褐色シラップを得た。ヘキサンと酢酸エチルの混合溶媒(4:1 v/v)を展開溶媒とするシリカゲルカラムで前記赤褐色シラップを精製し、得られた精製品をヘキサンと酢酸エチルの混合溶媒で再結晶し、白色粉末結晶として7−ケト体(化合物6)(1.963g、64%)を得た。
【0044】
この7−ケト体(化合物6)の分析値は以下のとおりであった。
[α]D 26 −86.2°(c 1.04 in CHCl3
m.p 137−140℃
IR 3456, 2960, 2866, 1736, 1709, 1665, 1632, 1605, 1587, 1454 cm-1
1H NMR(CDCl3) δ=0.66(s, 3H), 0.93(d, 3H J=6.3Hz), 0.97(d, 3H J=6.3Hz), 0.97(d, 3H J=6.3Hz), 1.20(s, 3H), 2.05(s, 3H,Ac´s CH3), 0.93−2.56(m, 24H),4.68−4.74(m, 1H, C−3H), 4.95−4.99(m, 1H, C−24H), 7.44(t, 2H, Bz´s J=7.3Hz), 7.55(t, 1H, Bz´s J=7.3Hz), 8.05(d, 2H, Bz´s J=7.3Hz)
【0045】
【化9】
Figure 0003844977
【0046】
7−ケト体(化合物6)(2.522g、4.594mmol)を酢酸エチル(200ml)に溶解させ、室温で触媒として酸化白金(126mg)を加え、水素ガス雰囲気下で攪拌した。3時間の攪拌後、触媒をろ別し、得られたろ液を減圧濃縮し、無色シラップを得た。ヘキサンと酢酸エチルの混合溶媒(3:1 v/v)を展開溶媒とするシリカゲルカラムで前記無色シラップを精製し、無色シラップ(化合物7)(5α−ヒドロ−7β−ヒドロキシ体、585mg、23%)と無色シラップ(化合物8)(5α−ヒドロ−7−ケト体、1.6593g、66%)を得た。
【0047】
無色シラップ(化合物7)の分析値は以下のとおりであった。
[α]D 26 +29.6°(c 1.04 in CHCl3
syrup
IR 3452, 2947, 2869, 1718, 1603, 1470, 1452 cm-1
1H NMR(CDCl3) δ=0.66(s, 3H), 0.84(s, 3H), 0.92(d, 3H J=6.4Hz), 0.96(d, 3HJ=6.3Hz), 0.97(d, 3H J=6.8Hz), 2.02(s, 3H,Ac´s CH3), 0.91−2.35(m, 28H),3.35(m, 1H, C−7H), 4.67(m, 1H, C−3H), 4.96(m, 1H, C−24H), 7.44(t, 2H, Bz´s J=7.8Hz), 7.55(t, 1H, Bz´s J=6.8Hz), 8.05(d, 2H, Bz´s J=7.3Hz)
無色シラップ(化合物7)(5α−ヒドロ−7β−ヒドロキシ体、150mg、0.271mmol)を塩化メチレン(30ml)に溶かし、ピリジニウムクロロメート(PCC reagent)(87.713mg、0.407mmol)とセライト(150mg)を加え、室温で攪拌した。次に一晩放置してから、ろ過し、さらに減圧濃縮し褐色シラップ残渣を得た。ヘキサンと酢酸エチルの混合溶媒(3:1 v/v)を展開溶媒とするシリカゲルカラムで前記褐色シラップ残渣を精製し、無色シラップ(化合物8)(5α−ヒドロ−7−ケト体、137mg、92%)を得た。
【0048】
無色シラップ(化合物8)の分析値は以下のとおりであった。
[α]D 26 −28.5°(c 0.96 in CHCl3
syrup
IR 3417, 2950, 2873, 1737, 1713, 1603, 1451 cm-1
1H NMR(CDCl3) δ=0.63(s, 3H), 0.91(d, 3H J=6.8Hz), 0.96(d, 3H J=6.4Hz), 0.97(d, 3H J=6.4Hz), 1.08(s, 3H), 2.02(s, 3H,Ac´s CH3), 0.87−2.35(m, 24H),4.67(m, 1H, C−3H), 4.96(m, 1H, C−24H), 7.44(t, 2H, Bz´s J=7.8Hz), 7.55(t, 1H, Bz´s J=7.3Hz), 8.05(d, 2H, Bz´s J=7.3Hz)
【0049】
【化10】
Figure 0003844977
【0050】
無色シラップ体(化合物8)(5α−ヒドロ−7−ケト体、424mg、0.770mmol)をクロロホルムとメタノールの混合溶媒(1:1 v/v)(100ml)に溶解させ、室温で炭酸カリウム(424mg)を加え攪拌した。次に一晩放置してから、水(50ml)を加え、10分間攪拌した。得られたクロロホルム層を無水硫酸マグネシウムで乾燥して、減圧濃縮し、無色シラップを得た。ヘキサンと酢酸エチルの混合溶媒(1:1 v/v)を展開溶媒とするシリカゲルカラムで前記無色シラップ残渣を精製し、無色シラップとしてアルコール体(化合物9)(3β−ヒドロキシ体、367mg、94%)を得た。
【0051】
この3β−ヒドロキシ体(化合物9)の分析値は以下のとおりであった。
[α]D 26 −28.4°(c 1.03 in CHCl3
syrup
IR 3416, 2942, 2871, 1713, 1602, 1451 cm-1
1H NMR(CDCl3) δ=0.63(s, 3H), 0.91(d, 3H J=6.8Hz), 0.96(d, 3H J=6.8Hz), 0.97(d, 3H J=6.3Hz), 1.07(s, 3H), 0.90−2.17(m, 24H), 2.30−2.37(m, 2H), 3.60(m, 1H, C−3H), 4.96(m, 1H, C−24H), 7.44(t, 2H, Bz´s J=7.3Hz), 7.55(t, 1H, Bz´s J=7.3Hz), 8.05(d, 2H, Bz´s J=6.8Hz)
【0052】
【化11】
Figure 0003844977
【0053】
アルコール体(化合物9)(3β−ヒドロキシ体、1.249g、2.454mmol)を無水テトラヒドロフラン(120ml)に溶かし、アルゴン雰囲気下、−20℃においてK−Selectride(5.400ml、5.400mmol)を滴下した。滴下3時間後、この反応液を氷冷した。氷冷下、30%過酸化水素水を反応液の発泡がなくなるまで加えた。つぎにこの反応液をトルエン(30ml×3回)で抽出した。得られた抽質を1M HCl水溶液(20ml×2回)、飽和重曹水(20ml×2回)、飽和食塩水(20ml×2回)で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮して黄色シラップを得た。ヘキサンと酢酸エチルの混合溶媒(2:3 v/v)を展開溶媒とするシリカゲルカラムで前記黄色シラップを精製し、精製品をヘキサンと酢酸エチルの混合溶媒中で再結晶し、白色粉末結晶であるジオール体(化合物10)(3β,7α−ジオール体、690mg、77%)を得た。
【0054】
この3β,7α−ジオール体(化合物10)の分析値は以下のとおりであった。
[α]D 26 +5.3°(c 0.99 in CHCl3
m.p 97−101℃
IR 3396, 2932, 2869, 2361, 1718, 1603, 1586, 1451 cm-1
1H NMR(CDCl3) δ=0.62(s, 3H), 0.64(s, 3H), 0.91(d, 3H J=6.3Hz), 0.96(d, 3HJ=6.8Hz), 0.97(d, 3H J=6.3Hz), 0.91−1.98(m, 28H), 3.62(m, 1H, C−3H), 3.81(br s, 1H, C−7H), 4.94−4.98(m, 1H,C−24H), 7.44(t, 2H, Bz´s J=7.8Hz), 7.55(t, 1H, Bz´s J=7.3Hz), 8.05(d, 2H, Bz´s J=7.3Hz)
【0055】
【化12】
Figure 0003844977
【0056】
ジオール体(化合物10)(3β,7α−ジオール体、495mg、0.969mmol)をトルエン(100ml)に溶かし、この溶液に炭酸銀−セライト(495mg)を加え、加熱還流した。8時間の加熱還流後、ろ過し、さらに減圧濃縮し赤褐色シラップ残渣を得た。ヘキサンと酢酸エチルの混合溶媒(2:1v/v)を展開溶媒とするシリカゲルカラムで前記赤褐色シラップ残渣を精製し、ヘキサンと酢酸エチルの混合溶媒中で再結晶し、白色粉末結晶である3−ケト体(化合物11)(3−ケト−7α−ヒドロキシ体、490mg、quant.)を得た。
【0057】
この3−ケト−7α−ヒドロキシ体(化合物11)の分析値は以下のとおりであった。
[α]D 26 +20.6°(c 1.03 in CHCl3
m.p 152−154℃
IR 3433, 2938, 2860, 2361, 1716, 1601, 1451 cm-1
1H NMR(CDCl3) δ=0.67(s, 3H), 0.92(d, 3H J=6.3Hz), 0.96(d, 3H J=6.8Hz), 0.97(d, 3H J=6.8Hz), 0.99(s, 3H), 2.37(m, 27H), 3.84(br s, 1H, C−7H), 4.94−4.99(m, 1H, C−24H), 7.44(t, 2H, Bz´s J=7.8Hz), 7.55(t, 1H, Bz´s J=7.8Hz), 8.05(d, 2H, Bz´s J=7.3Hz)
【0058】
【化13】
Figure 0003844977
【0059】
3−ケト体(化合物11)(3−ケト−7α−ヒドロキシ体、400mg、0.786mmol)をエチレングリコール(100ml)に溶かし、水酸化カリウム(265mg、4.716mmol)を加え、120℃で加熱攪拌した。3時間の加熱攪拌後、水(50ml)を加え、クロロホルム(30ml×3回)で抽出し、無水硫酸マグネシウムで乾燥後、減圧濃縮し、淡黄色シラップ残渣を得た。ヘキサンと酢酸エチル(1:1 v/v)の混合溶媒を展開溶媒とするシリカゲルカラムで前記淡黄色シラップ残渣を精製し、ヘキサンと酢酸エチルの混合溶媒中で再結晶し、白色粉末結晶であるジオール体(化合物12)(3−ケト−7,24(R)−ジオール体、254mg、80%)を得た。
【0060】
この3−ケト−7,24(R)−ジオール体(化合物12)の分析値は以下のとおりであった。
m.p 151−153℃
1H NMR(CDCl3) δ=0.71(s, 3H), 0.94(m, 9H), 1.02(s, 3H), 1.1−2.5(m, 29H), 3.33(br s, 1H), 3.88(br s, 1H)
【0061】
【化14】
Figure 0003844977
【0062】
さらにピリジン溶媒中で三酸化イオウ・ピリジン錯体を用いて25℃、4時間の条件下でジオール体(化合物12)(3−ケト−7,24(R)−ジオール体)を硫酸エステル(化合物13)に変えた。
【0063】
この硫酸エステル(化合物13)の分析値は以下のとおりであった。
m.p 153−158℃
1H NMR(DMSO) δ=0.63(s, 3H), 0.79(d, 3H J=7Hz), 0.81(d, 3H J=7Hz), 0.86(d, 3H J=7Hz), 0.94(s, 3H), 1.0−2.5(m,27H), 3.61(m, 1H), 3.78(br q, 1H J=5Hz), 4.16(m, 1H)
【0064】
【化15】
Figure 0003844977
【0065】
一方、1,3−ジアミノプロパン(5g、67.450mmol)を水(50ml)に溶かした後、これに4−クロロブタノール(2.49ml、24.956mmol)を加え、140〜150℃で24時間加熱還流を行った。つづいてこの反応液を減圧蒸留(27Pa(0.2mmHg)、bp:87〜90℃)してアミノ体(化合物14)(1.609g、48%)を得た。
【0066】
【化16】
Figure 0003844977
【0067】
アミノ体(化合物14)(1.609g、11.006mmol)をエタノールに溶かした後、室温で二炭酸ジ−t−ブチル(5.28g、24.213mmol)を加え攪拌した。次に48時間放置してから、反応液を減圧濃縮し、淡黄色シラップを得た。ヘキサンと酢酸エチルの混合溶媒(1:1 v/v)を展開溶媒とするシリカゲルカラムで前記淡黄色シラップを精製し、無色シラップ(Boc体)(化合物15)(3.812g、quant.)を得た。
【0068】
このBoc体(化合物15)の分析値は以下のとおりであった。
1H NMR(CDCl3) δ=1.43−1.67(m, 7H), 1.44 and 1.46(sx2、 9Hx2, Boc´s Butx2), 3.09−3.25(m, 6H), 3.6(t, 2H, J=5.9Hz),
4.68(br s, 1H)
【0069】
【化17】
Figure 0003844977
【0070】
Boc体(化合物15)(1.671g、4.825mmol)をピリジン(30ml)に溶かした。この溶液を氷冷し、氷冷下、メタンスルホニルクロライド(0.411ml、5.307mmol)を加え、攪拌した。次に一晩放置してから、この反応液に酢酸エチル(30ml)を加え、5分間攪拌した。さらに1M塩酸水溶液(10ml×2回)、飽和重曹水(10ml×2回)、飽和食塩水(10ml×2回)でこの反応液を洗浄し、無水硫酸マグネシウムで乾燥し、次に減圧濃縮し黄色シラップ残渣を得た。ヘキサンと酢酸エチルの混合溶媒(2:1 v/v)を展開溶媒とするシリカゲルカラムで前記黄色シラップ残渣を精製し、無色シラップ(メシル体)(化合物16)(1.686g、82%)を得た。
【0071】
このメシル体の分析値は以下のとおりであった。
1H NMR(CDCl3) δ=1.44−1.77(m, 6H), 1.44 and 1.46(sx2、 9Hx2, Boc´s Butx2), 3.01(s,3H, Ms´s CH3), 2.98−3.21(m, 6H), 4.25(t, 2H, J=4.0Hz), 4.70(br s, 1H)
【0072】
【化18】
Figure 0003844977
【0073】
メシル体(化合物16)(1.686g、3.973mmol)をジメチルホルムアミド(30ml)に溶かした後、室温でアジ化ナトリウム(1.291g、19.864mmol)を加え攪拌した。次に一晩放置してから、この反応液をろ過した。得られたろ液に水(20ml)を加えた。酢酸エチル(20ml×3回)でこのろ液を抽出し、つぎに得られた抽出液を飽和食塩水(10ml×2回)で洗浄し、無水硫酸マグネシウムで乾燥し、さらに減圧濃縮し黄色シラップ残渣を得た。ヘキサンと酢酸エチルの混合溶媒(3:1 v/v)を展開溶媒とするシリカゲルカラムで前記黄色シラップ残渣を精製し、無色シラップ(アジド体)(化合物17)(1.204g、92%)を得た。
【0074】
このアジド体の分析値は以下のとおりであった。
1H NMR(CDCl3) δ=1.41−1.66(m, 6H), 1.44 and 1.47(sx2、 9Hx2, Boc´s Butx2), 3.10−3.31(m, 6H), 3.30(t, 2H, J=6.3Hz), 4.69(br s, 1H)
【0075】
【化19】
Figure 0003844977
【0076】
アジド体(化合物17)(149mg、0.401mmol)に室温で4M HCl/ジオキサン(5ml)を加え攪拌した。16時間放置してから、この反応液を減圧濃縮し、得られた塩酸塩をメタノール(10ml)に溶かして、室温でナトリウムメチラート(44mg、0.802mmol)を加え、しばらく攪拌した。さらに硫酸エステル(化合物13)(24−O−硫酸エステル、108mg、0.201mmol)を加え攪拌した。次に24時間放置してから、反応液を−78℃に冷却し、ナトリウムボロハイドライド(23mg、0.602mmol)を加え攪拌した。3.5時間の攪拌後、反応液を室温に戻してろ過し、得られたろ液を減圧濃縮した。得られた残渣をエタノール(10ml)に溶かした後、トリフルオロ酢酸でpHを1〜2に調整した。つぎに酸化白金(50mg)を加え、水素雰囲気下でこの反応液を攪拌した。薄層クロマトグラフィーで反応終了を確認してから、この反応液をろ過し、得られたろ液を減圧濃縮した。得られた残渣を逆相−HPLCで精製し、スクアラミン(125mg、69%)を得た。
【0077】
前記塩酸塩の分析値は以下のとおりであった。
1H NHM(CD3OD) δ=3.38(m, 2H), 3.10(m, 2H), 3.04(m, 4H), 2.07(m, 2H), 1.77(m, 2H), 1.65(m, 2H);
13C NMR(CD3OD) δ=52.0, 48.8, 46.0, 38.1, 27.1, 25.5, 24.8
また、スクアラミンの分析値は以下のとおりであった。
1H NHM(CD3OD) δ=0.67(s, 3H), 0.84(s, 3H), 0.90−0.94(m, 9H), 1.0−2.1(m, 33H), 2.9−3.2(m, 9H), 3.76(br s, 1H), 4.12(br q, 1H);
13C NMR(CD3OD) δ=11.7, 12.6 18.3, 18.6 19.6, 22.3, 24.3, 24.6, 24.7, 25.7, 26.1, 28.3, 29.5, 32.1, 32.2, 32.7, 37.0, 37.5, 37.8, 38.0, 38.7, 40.1, 41.2, 43.0, 43.9, 46.0, 46.8, 51.8, 57.7, 59.2, 68.4, 86.7
【0078】
【化20】
Figure 0003844977
【0079】
【発明の効果】
本発明によれば、天然に存在するデスモステロール、具体的には羊毛脂の中に含まれるデスモステロールからスクアラミンが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing squalamine, and more particularly to a method for synthesizing squalamine using desmosterol which is a component of wool fat.
[0002]
[Prior art]
Antibiotic squalamine is an anticancer agent that suppresses angiogenesis, unlike a conventional anticancer agent, and has few side effects, and thus is a chemical substance that has become very interesting in recent years.
[0003]
For example, a method for recovering squalamine from shark liver has been disclosed (Moore et al., USP 5,192,756, Proc. Natl. Acad. Sci., U.S.A., 90, 1354 (1993)). This anti-angiogenic action of squalamine has been published by Sils (Cancer Research, 58, 2784 (1998)). However, the amount obtained from sharks is very small.
[0004]
Therefore, development of a method for chemically synthesizing squalamine was desired. As one method, an example of synthesizing squalamine using stigmasterol obtained from soybean as a starting material is disclosed (RS Jones, BS Selinsky, MN Rao, X. Zhang, WA Kinney, FS Tham, J Org. Chem., 63, 3786 (1998)).
[0005]
[Problems to be solved by the invention]
An object of the present invention is to obtain a 3β-acetyl form, further a 3-keto-7,24 (R) -diol form from naturally occurring desmosterol as a starting material, and synthesize squalamine as a final product. Is to provide.
[0006]
[Means for Solving the Problems]
Therefore, the present invention
(1) A step of acetylating desmosterol using acetic anhydride to synthesize an acetylated form of desmosterol (compound 1),
(2) a step of oxidizing the acetyl form using AD-mix-β to synthesize a 24 (R), 25-diol form of desmosterol (compound 2);
(3) a step of synthesizing a monobenzoyl form of desmosterol (compound 3) from the 24 (R), 25-diol form using benzoyl chloride;
(4) a step of synthesizing a 25-exomethylene form of desmosterol (compound 4) from the monobenzoyl form using phosphorus oxychloride; and
(5) The method comprises a step of synthesizing a 3β-acetyl compound (compound 5) by reducing the 25-exomethylene compound with hydrogen.
[0007]
Furthermore, the present invention provides
(6) A step of synthesizing a 7-keto body (compound 6) by oxidizing the 3β-acetyl body using N-hydroxyphthalimide and benzoyl peroxide,
(7) A step of synthesizing a 5α-hydro-7β-hydroxy body (compound 7) and a 5α-hydro-7-keto body (compound 8) by reducing the 7-keto body with hydrogen using a platinum oxide catalyst.
(8) a step of converting the 5α-hydro-7β-hydroxy form into a 5α-hydro-7-keto form using pyridinium chloroformate and celite;
(9) A step of synthesizing a 3β-hydroxy form (compound 9) from the 5α-hydro-7-keto form of Step 7 or 8 using potassium carbonate,
(10) A step of synthesizing a 3β, 7α-diol body (compound 10) from the 3β-hydroxy body using a K-Selectride catalyst.
(11) a step of synthesizing a 3-keto-7α-hydroxy form (compound 11) from the 3β, 7α-diol form using a silver carbonate-celite catalyst, and
(12) The method comprises a step of synthesizing a 3-keto-7,24 (R) -diol form (compound 12) from the 3-keto-7α-hydroxy form in the presence of potassium hydroxide.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The outline of the route from desmosterol to squalamine precursor synthesis is shown below.
[0009]
[Chemical 1]
Figure 0003844977
[0010]
[Chemical 2]
Figure 0003844977
[0011]
Wool oil is obtained when washing wool. The desmosterol of the present invention is a part of the sterol component present in the wool fat. That is, most of the sterol component is cholesterol, but the remaining 15% is desmosterol. This desmosterol is the starting material of the present invention.
[0012]
(1) A step of acetylating desmosterol using acetic anhydride to synthesize an acetylated form of desmosterol (compound 1)
First, desmosterol, which is a component of wool fat, is acetylated using acetic anhydride in a pyridine solvent to synthesize an acetyl compound in which the hydroxyl group at the 3-position of desmosterol is protected with an acetyl group. The temperature of the acetylation reaction is 25-30 ° C. The molar ratio of acetic anhydride to desmosterol used is 40: 1 to 50: 1.
[0013]
(2) A step of synthesizing the 24 (R), 25-diol form (compound 2) of desmosterol by oxidizing the acetyl form using AD-mix-β.
t-BuOH-H2When the acetyl form is oxidized with an AD-mix-β catalyst (manufactured by Aldrich, USA) in an O mixed solvent, the double bond of the side chain of the acetyl form is opened to form a diol form. This oxidation reaction is sharpless catalytic asymmetric diol formation, whereby a 24 (R), 25-diol form is obtained. The temperature of the oxidation reaction is 0 to 30 ° C. The addition amount of AD-mix-β is 5721 g with respect to 1 mol of the acetyl compound.
[0014]
(3) A step of synthesizing a monobenzoyl form of desmosterol (compound 3) from the 24 (R), 25-diol form using benzoyl chloride.
Only the hydroxyl group at the 24 (R) position of the diol is benzoylated using benzoyl chloride in a pyridine solvent. In this way, a monobenzoyl body is obtained. The temperature of this benzoylation reaction is 0-25 ° C. The molar ratio of benzoyl chloride used and the diol form is 3.2: 1.
[0015]
(4) A step of synthesizing a 25-exomethylene form of desmosterol (compound 4) from the monobenzoyl form using phosphorus oxychloride.
One type of exocyclic double bond, that is, an exomethylene bond is formed on the monobenzoyl compound using phosphorus oxychloride in a pyridine solvent to obtain a 25-exomethylene compound. The temperature of the reaction for forming this exomethylene bond is 0 to 25 ° C. The addition amount of phosphorus oxychloride is 644 g with respect to 1 mol of the monobenzoyl compound.
[0016]
(5) A step of synthesizing a 3β-acetyl compound (compound 5) by reducing the 25-exomethylene compound with hydrogen.
In the presence of 10% palladium catalyst in an ethyl acetate solvent, the 25-exomethylene compound is reduced with hydrogen to synthesize a 3β-acetyl compound. The reaction temperature for synthesizing the 3β-acetyl compound is 20 to 25 ° C. An example of the 10% palladium catalyst is 10% Pd—C in which the carrier is carbon. Instead of this catalyst, a platinum-based catalyst may be used. The reaction pressure is normal pressure (101 kPa).
[0017]
The reaction for synthesizing the target squalamine using this 3β-acetyl compound (Compound 5) will be further described.
[0018]
When the 3β-acetyl compound (compound 5) is oxidized with air at 50 to 55 ° C. in the presence of N-hydroxyphthalimide and benzoyl peroxide in a mixed solvent of ethyl acetate and acetone, 7-keto is obtained at a yield of 64 mol%. The body (compound 6) is obtained. The amount of N-hydroxyphthalimide and benzoyl peroxide used is 163.13 g and 0.24 g, respectively, with respect to 1 mol of the 3β-acetyl compound. The reaction solution is concentrated under reduced pressure to obtain a yellow syrup residue. The obtained residue is dissolved in a pyridine solvent containing acetic anhydride and purified with a silica gel column.
[0019]
In ethyl acetate solvent, platinum catalyst (PtO2When the 7-keto form is reduced with hydrogen in the presence of 20 to 25 ° C., 5α-hydro-7β-hydroxy form (compound 7) and 5α-hydro-7-keto form (compound 8) each have 23 moles. % And 66 mol% yields. The usage-amount of a platinum catalyst is 5489g with respect to 1 mol of said 7-keto bodies.
[0020]
This 5α-hydro-7β-hydroxy form is quantitatively converted to a 5α-hydro-7-keto form by a PCC reagent (manufactured by Tokyo Chemical Industry Co., Ltd.) in a methylene chloride solvent. The temperature for the conversion is 20-25 ° C. The amount of the PCC reagent used is 323.33 g with respect to 1 mol of the 5α-hydro-7β-hydroxy compound.
[0021]
This 5α-hydro-7-keto compound is mixed with potassium carbonate K in a mixed solvent of methanol and chloroform.2COThreeTo obtain a 3β-hydroxy compound (compound 9) at a yield of 94 mol%. The hydrolysis temperature is 20-25 ° C. The amount of potassium carbonate used is 552.92 g with respect to 1 mol of the 5α-hydro-7-keto.
[0022]
When this 3β-hydroxy compound (Compound 9) is reduced in tetrahydrofuran using a catalyst (K-Selectride, manufactured by Aldrich), a 3β, 7α-diol compound (Compound 10) is obtained in a yield of 77 mol%. The reduction temperature is −20 ° C. The amount of the tetrahydrofuran used is 2200 ml with respect to 1 mol of the 3β-hydroxy compound (Compound 9).
[0023]
Next, silver carbonate Ag in which this 3β, 7α-diol (compound 10) is supported on celite in a toluene solvent.2COThreeWhen oxidized with a catalyst, a 3-keto-7α-hydroxy compound (compound 11) in which the hydroxyl group at the 3-position is oxidized is obtained. The oxidation reaction temperature is 120-130 ° C. The usage-amount of a silver carbonate catalyst is 510.87g with respect to 1 mol of 3 (beta), 7 (alpha) -diol bodies.
[0024]
When this compound 7 is hydrolyzed by heating in the presence of KOH in an ethylene glycol solvent, a 3-keto-7,24 (R) -diol compound (compound 12) having a hydroxyl group at the 24-position is obtained in a yield of 80 mol%. It is obtained with. The hydrolysis temperature is 140-150 ° C. The concentration of KOH in the ethylene glycol solvent is 0.15 to 0.20 mol / l.
[0025]
This 3-keto-7,24 (R) -diol (compound 12) is converted into a sulfate ester (compound 13) by a trioxide ion / pyridine complex in a pyridine solvent in accordance with a known method (the method of Kinney et al., WA Kinney, X. Zhang, JI Williams, S. Johnston, RS Michalak, M. Deshpande, L. Dostal, and JPN Rosazza, Org. Lett., 2, 2921 (2000)).
[0026]
On the other hand, an azide form of spermidine is synthesized from a diamine compound by a known synthesis reaction of azido spermidine. The synthesis reaction is described below. This method is disclosed in A. L. Weis, T. Bakos, L. Alferiev, X. Zhang, B. Shao, W. A. Kinney, Tetrahedron Lett., 40, 4863 (1999).
[0027]
The sulfate ester (compound 13) is reacted with an azide of spermidine to give an imine, and then reduced with cyanoborohydride at low temperature. Furthermore, this reaction liquid is hydrogenated with a platinum catalyst or Raney-nickel to obtain squalamine.
[0028]
[Chemical Formula 3]
Figure 0003844977
[0029]
【Example】
First, desmosterol was acetylated using acetic anhydride in a pyridine solvent under the conditions of 25 ° C. and 12 hours to obtain an acetylated form of desmosterol (compound 1).
[0030]
[Formula 4]
Figure 0003844977
[0031]
The acetyl compound (Compound 1) (10.2 g, 23.46 mmol) was dissolved in a mixed solvent of t-BuOH (100 ml) and water (20 ml) at room temperature, and AD-mix-β catalyst (35.5 g) was dissolved in this solution. ), Methanesulfonamide (10 g, 105.1 mmol) was added and stirred. After standing for 6 days, the reaction system was brought to 0 ° C., sodium sulfite (400 g, 3.174 mol) was added, and the mixture was stirred for 1 hour. Subsequently, this reaction solution was extracted with ether (1,000 ml × 4 times). The obtained ether solution was washed with 1M aqueous potassium hydroxide solution (1,000 ml × twice) and saturated brine (1,000 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was recrystallized in methanol, and the slurry containing the crystals was filtered to obtain white powder crystals (24 (R), 25-diol, 24 (R), 25-dihydroxycholesteryl-3β-acetate). (Compound 2) (101.29 g, 92%) was obtained.
[0032]
The analytical values of the 24 (R), 25-diol (Compound 2) were as follows.
[Α]D 26    −36 ° (c 0.01 in CHClThree)
m. p 158-159 ° C (literature value mp 164-165 ° C)
1H NMR 5.31 (d, J = 4.8 Hz, 1H), 4.54 (m, 1H), 3.27 (dd, J = 6.2, 6.0 Hz, 1H), 2.25 (m , 2H), 1.97 (s, 3H), 1.93-0.89 (m, 25H), 1.15 (s, 3H), 1.09 (s, 3H), 0.95 (s, 3H), 0.87 (d, J = 6.5 Hz, 3H), 0.62 (s, 3H);
13C NMR 170.6, 139.7, 122.6, 78.8, 77.2, 74.0, 73.2, 56.6, 56.0, 50.0, 42.3, 39.7, 38.1, 37.0, 36.6, 35.6, 32.8, 31.9, 28.3, 28.1, 27.8, 26.6, 24.3, 23.2, 21. 5, 21.0, 19.3, 18.6, 11.9;
Figure 0003844977
[0033]
[Chemical formula 5]
Figure 0003844977
[0034]
The diol (compound 2) (11.600 g, 25.340 mmol) was dissolved in pyridine (35 ml) and cooled with ice. Next, benzoyl chloride (9.343 ml, 81.086 mmol) was added and stirred. Next, after leaving overnight, ethyl acetate (50 ml) was added and stirred for a while. The reaction solution was washed with 1M aqueous hydrochloric acid solution (15 ml × 2 times), saturated aqueous sodium bicarbonate (15 ml × 2 times), and saturated brine (15 ml × 2 times), dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and yellow A syrup residue was obtained. The yellow syrup residue was purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (3: 1 v / v) as a developing solvent, and colorless syrup (monobenzoyl compound) (compound 3) (14.300 g, 93%) Got.
[0035]
The analytical value of this monobenzoyl compound (compound 3) was as follows.
[Α]D 26    -22.2 ° (c 1.08 in CHClThree)
syrup
IR 3475, 2941, 1718, 1451 cm-1
11 H NMR (CDClThree) = 0.66 (s, 3H), 0.93 (d, 3H J = 6.8 Hz), 1.00 (s, 3H), 1.27 (s, 6H), 2.02 (s, 3H, Ac's CHThree), 0.89-2.16 (m, 24H), 2.30-2.32 (m, 2H), 4.58-4.60 (m, 1H, C-3H), 5.04-5 .07 (m, 1H, C-24H), 5.36 (d, 1H, olefin-H J = 5.1 Hz), 7.43-7.59 (m, 3H, Bz's 3H), 8. 05-8.07 (m, 2H, Bz's 2H)
[0036]
[Chemical 6]
Figure 0003844977
[0037]
A monobenzoyl compound (compound 3) (7.800 g, 13.808 mmol) was dissolved in pyridine (130 ml) and cooled on ice. Thereafter, phosphorus oxychloride (5.200 ml, 55.232 mmol) was added and stirred. Next, after standing overnight, ethyl acetate (50 ml) and water (20 ml) were added and stirred for a while. The reaction mixture was washed with 1M aqueous hydrochloric acid solution (15 ml × 2 times), saturated aqueous sodium bicarbonate (15 ml × 2 times), and saturated brine (15 ml × 2 times), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained white crude crystals were recrystallized in a mixed solvent of hexane and ethyl acetate, and the slurry containing the crystals was filtered to obtain white powder crystals (25-exomethylene) (compound 4) (6.500 g, 86%). )
[0038]
The analytical values of this 25-exomethylene (compound 4) were as follows.
[Α]D 26    -53.0 ° (c 1.00 in CHClThree)
m. p 137-143 ° C
IR 3434, 2936, 2871, 1733, 1708, 1654, 1602, 1453 cm-1
11 H NMR (CDClThree) = 0.66 (s, 3H), 0.95 (d, 3H J = 6.3 Hz), 1.00 (s, 3H), 1.79 (s, 3H), 2.01 (s, 3H, Ac's CHThree), 0.90-2.02 (m, 24H), 2.30-2.33 (m, 2H), 4.58-4.60 (m, 1H, C-3H), 4.90 and 5 .02 (sx2, 1Hx2, vinyl-Hx2), 5.35-5.39 (m, 2H, olefin-H and C-24H), 7.42 (t, 2H, Bz's J = 7.8 Hz) 7.53 (t, 1H, Bz's J = 6.8 Hz), 8.05 (d, 2H, Bz's J = 8.3 Hz)
[0039]
[Chemical 7]
Figure 0003844977
[0040]
25-Exomethylene (Compound 4) (3.700 g, 6.766 mmol) was dissolved in ethyl acetate (100 ml), 10% Pd-C (370 mg) was added as a catalyst at room temperature, and the mixture was stirred under a hydrogen gas atmosphere. . The mixture was stirred for 3 hours, the catalyst was filtered off, and the filtrate was concentrated under reduced pressure to obtain colorless syrup. The colorless syrup was purified by a silica gel column using a mixed solvent of hexane and ethyl acetate (8: 1 v / v) as a developing solvent, and white powder crystal 3β-acetyl compound (compound 5) (2.400 g, 64%) was obtained. Obtained.
[0041]
The analytical value of this 3β-acetyl compound (Compound 5) was as follows.
[Α]D 26    -30.0 ° (c 1.02 in CHClThree)
m. p 114-121 ° C
IR 3444, 3068, 2934, 2872, 1735, 1708, 1601, 1584, 1467, 1452 cm-1
11 H NMR (CDClThree) = 0.66 (s, 3H), 0.92 (d, 3H J = 6.8 Hz), 0.96 (d, 3H J = 6.8 Hz), 0.98 (d, 3H J = 6) .8 Hz), 1.01 (s, 3H), 2.02 (s, 3H, Ac's CHThree), 0.93-2.04 (m, 24H), 2.30-2.32 (m, 2H), 4.58-4.61 (m, 1H, C-3H), 4.95-4 .99 (m, 1H, C-24H), 7.44 (t, 2H, Bz's J = 7.8 Hz), 7.55 (t, 1H, Bz's J = 7.3 Hz), 8. 05 (d, 2H, Bz's J = 8.3Hz)
[0042]
[Chemical 8]
Figure 0003844977
[0043]
3β-acetyl compound (compound 5) (3.000 g, 5.466 mmol) was dissolved in a mixed solvent of ethyl acetate and acetone (1: 1 v / v) (300 ml), and N-hydroxyphthalimide (893 mg, 5.575 mmol) was dissolved. ) And the temperature was adjusted to 50-60 ° C. To this solution was added benzoyl peroxide (300 mg) and air was blown in for 48 hours. Subsequently, the reaction solution was concentrated, carbon tetrachloride (200 ml) was added to the obtained yellow syrup residue, and the mixture was stirred in a suspended state. After stirring for 10 minutes, the suspension was filtered, and the resulting filtrate was concentrated under reduced pressure. The obtained concentrated solution was dissolved in pyridine (50 ml) and cooled on ice. Under ice-cooling, acetic anhydride (5 ml) was further added and stirred. Next, after standing overnight, the reaction solution was concentrated under reduced pressure to obtain reddish brown syrup. The reddish brown syrup is purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (4: 1 v / v) as a developing solvent, and the resulting purified product is recrystallized with a mixed solvent of hexane and ethyl acetate to obtain a white powder. A 7-keto compound (Compound 6) (1.963 g, 64%) was obtained as crystals.
[0044]
The analytical values of this 7-keto form (Compound 6) were as follows.
[Α]D 26    -86.2 ° (c 1.04 in CHClThree)
m. p 137-140 ° C
IR 3456, 2960, 2866, 1736, 1709, 1665, 1632, 1605, 1587, 1454 cm-1
11 H NMR (CDClThree) = 0.66 (s, 3H), 0.93 (d, 3H J = 6.3 Hz), 0.97 (d, 3H J = 6.3 Hz), 0.97 (d, 3H J = 6) .3 Hz), 1.20 (s, 3H), 2.05 (s, 3H, Ac's CHThree), 0.93-2.56 (m, 24H), 4.68-4.74 (m, 1H, C-3H), 4.95-4.99 (m, 1H, C-24H), 7 .44 (t, 2H, Bz's J = 7.3 Hz), 7.55 (t, 1H, Bz's J = 7.3 Hz), 8.05 (d, 2H, Bz's J = 7. 3Hz)
[0045]
[Chemical 9]
Figure 0003844977
[0046]
The 7-keto compound (Compound 6) (2.522 g, 4.594 mmol) was dissolved in ethyl acetate (200 ml), platinum oxide (126 mg) was added as a catalyst at room temperature, and the mixture was stirred under a hydrogen gas atmosphere. After stirring for 3 hours, the catalyst was filtered off, and the obtained filtrate was concentrated under reduced pressure to obtain colorless syrup. The colorless syrup was purified by a silica gel column using a mixed solvent of hexane and ethyl acetate (3: 1 v / v) as a developing solvent, and colorless syrup (compound 7) (5α-hydro-7β-hydroxy compound, 585 mg, 23% ) And colorless syrup (Compound 8) (5α-hydro-7-keto, 1.6593 g, 66%).
[0047]
The analytical value of colorless syrup (compound 7) was as follows.
[Α]D 26    + 29.6 ° (c 1.04 in CHClThree)
syrup
IR 3452, 2947, 2869, 1718, 1603, 1470, 1452 cm-1
11 H NMR (CDClThree) = 0.66 (s, 3H), 0.84 (s, 3H), 0.92 (d, 3H J = 6.4 Hz), 0.96 (d, 3HJ = 6.3 Hz), 0. 97 (d, 3H J = 6.8 Hz), 2.02 (s, 3H, Ac's CHThree), 0.91-2.35 (m, 28H), 3.35 (m, 1H, C-7H), 4.67 (m, 1H, C-3H), 4.96 (m, 1H, C −24H), 7.44 (t, 2H, Bz ′s J = 7.8 Hz), 7.55 (t, 1H, Bz ′s J = 6.8 Hz), 8.05 (d, 2H, Bz ′) s J = 7.3 Hz)
A colorless syrup (compound 7) (5α-hydro-7β-hydroxy compound, 150 mg, 0.271 mmol) was dissolved in methylene chloride (30 ml), and pyridinium chloroformate (PCC reagent) (87.713 mg, 0.407 mmol) and celite ( 150 mg) was added and stirred at room temperature. Next, after standing overnight, the mixture was filtered and concentrated under reduced pressure to obtain a brown syrup residue. The brown syrup residue was purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (3: 1 v / v) as a developing solvent, and colorless syrup (compound 8) (5α-hydro-7-keto form, 137 mg, 92 %).
[0048]
The analytical value of colorless syrup (compound 8) was as follows.
[Α]D 26    -28.5 ° (c 0.96 in CHClThree)
syrup
IR 3417, 2950, 2873, 1737, 1713, 1603, 1451 cm-1
11 H NMR (CDClThree) Δ = 0.63 (s, 3H), 0.91 (d, 3H J = 6.8 Hz), 0.96 (d, 3H J = 6.4 Hz), 0.97 (d, 3H J = 6) .4Hz), 1.08 (s, 3H), 2.02 (s, 3H, Ac's CHThree), 0.87-2.35 (m, 24H), 4.67 (m, 1H, C-3H), 4.96 (m, 1H, C-24H), 7.44 (t, 2H, Bz) 'S J = 7.8Hz), 7.55 (t, 1H, Bz's J = 7.3Hz), 8.05 (d, 2H, Bz's J = 7.3Hz)
[0049]
[Chemical Formula 10]
Figure 0003844977
[0050]
A colorless syrup body (compound 8) (5α-hydro-7-keto body, 424 mg, 0.770 mmol) was dissolved in a mixed solvent of chloroform and methanol (1: 1 v / v) (100 ml), and potassium carbonate ( 424 mg) was added and stirred. Next, after leaving overnight, water (50 ml) was added and stirred for 10 minutes. The obtained chloroform layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain colorless syrup. The colorless syrup residue was purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (1: 1 v / v) as a developing solvent, and an alcohol form (compound 9) (3β-hydroxy form, 367 mg, 94%) was obtained as a colorless syrup. )
[0051]
The analytical value of this 3β-hydroxy compound (Compound 9) was as follows.
[Α]D 26    -28.4 ° (c 1.03 in CHClThree)
syrup
IR 3416, 2942, 2871, 1713, 1602, 1451 cm-1
11 H NMR (CDClThree) = 0.63 (s, 3H), 0.91 (d, 3H J = 6.8 Hz), 0.96 (d, 3H J = 6.8 Hz), 0.97 (d, 3H J = 6) .3 Hz), 1.07 (s, 3H), 0.90-2.17 (m, 24H), 2.30-2.37 (m, 2H), 3.60 (m, 1H, C-3H) ), 4.96 (m, 1H, C-24H), 7.44 (t, 2H, Bz's J = 7.3 Hz), 7.55 (t, 1H, Bz's J = 7.3 Hz) , 8.05 (d, 2H, Bz's J = 6.8 Hz)
[0052]
Embedded image
Figure 0003844977
[0053]
An alcohol form (compound 9) (3β-hydroxy form, 1.249 g, 2.454 mmol) was dissolved in anhydrous tetrahydrofuran (120 ml), and K-Selectride (5.400 ml, 5.400 mmol) was added at −20 ° C. under an argon atmosphere. It was dripped. Three hours after the dropping, this reaction solution was ice-cooled. Under ice-cooling, 30% aqueous hydrogen peroxide was added until the reaction solution disappeared. Next, this reaction solution was extracted with toluene (30 ml × 3 times). The extract was washed with 1M HCl aqueous solution (20 ml × 2 times), saturated aqueous sodium bicarbonate (20 ml × 2 times), saturated brine (20 ml × 2 times), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. A yellow syrup was obtained. The yellow syrup is purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (2: 3 v / v) as a developing solvent, and the purified product is recrystallized in a mixed solvent of hexane and ethyl acetate to obtain white powder crystals. A certain diol (Compound 10) (3β, 7α-diol, 690 mg, 77%) was obtained.
[0054]
The analytical values of this 3β, 7α-diol (Compound 10) were as follows.
[Α]D 26    + 5.3 ° (c 0.99 in CHClThree)
m. p 97-101 ° C
IR 3396, 2932, 2869, 2361, 1718, 1603, 1586, 1451 cm-1
11 H NMR (CDClThree) Δ = 0.62 (s, 3H), 0.64 (s, 3H), 0.91 (d, 3H J = 6.3 Hz), 0.96 (d, 3HJ = 6.8 Hz), 0. 97 (d, 3H J = 6.3 Hz), 0.91-1.98 (m, 28H), 3.62 (m, 1H, C-3H), 3.81 (br s, 1H, C-7H ), 4.94-4.98 (m, 1H, C-24H), 7.44 (t, 2H, Bz's J = 7.8 Hz), 7.55 (t, 1H, Bz's J = 7.3 Hz), 8.05 (d, 2H, Bz's J = 7.3 Hz)
[0055]
Embedded image
Figure 0003844977
[0056]
The diol (Compound 10) (3β, 7α-diol, 495 mg, 0.969 mmol) was dissolved in toluene (100 ml), and silver carbonate-celite (495 mg) was added to the solution, followed by heating under reflux. After heating and refluxing for 8 hours, the mixture was filtered and concentrated under reduced pressure to obtain a reddish brown syrup residue. The reddish brown syrup residue is purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (2: 1 v / v) as a developing solvent, and recrystallized in a mixed solvent of hexane and ethyl acetate to give white powder crystals 3- A keto compound (compound 11) (3-keto-7α-hydroxy compound, 490 mg, quant.) Was obtained.
[0057]
The analytical value of this 3-keto-7α-hydroxy compound (Compound 11) was as follows.
[Α]D 26    + 20.6 ° (c 1.03 in CHClThree)
m. p 152-154 ° C
IR 3433, 2938, 2860, 2361, 1716, 1601, 1451 cm-1
11 H NMR (CDClThree) = 0.67 (s, 3H), 0.92 (d, 3H J = 6.3 Hz), 0.96 (d, 3H J = 6.8 Hz), 0.97 (d, 3H J = 6) .8 Hz), 0.99 (s, 3H), 2.37 (m, 27H), 3.84 (br s, 1H, C-7H), 4.94-4.99 (m, 1H, C- 24H), 7.44 (t, 2H, Bz's J = 7.8 Hz), 7.55 (t, 1H, Bz's J = 7.8 Hz), 8.05 (d, 2H, Bz's J = 7.3Hz)
[0058]
Embedded image
Figure 0003844977
[0059]
3-keto compound (compound 11) (3-keto-7α-hydroxy compound, 400 mg, 0.786 mmol) was dissolved in ethylene glycol (100 ml), potassium hydroxide (265 mg, 4.716 mmol) was added, and the mixture was heated at 120 ° C. Stir. After heating and stirring for 3 hours, water (50 ml) was added, extracted with chloroform (30 ml × 3 times), dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain a pale yellow syrup residue. The pale yellow syrup residue is purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (1: 1 v / v) as a developing solvent, and recrystallized in a mixed solvent of hexane and ethyl acetate to obtain white powder crystals. A diol form (compound 12) (3-keto-7,24 (R) -diol form, 254 mg, 80%) was obtained.
[0060]
The analytical values of this 3-keto-7,24 (R) -diol (compound 12) were as follows.
m. p 151-153 ° C
11 H NMR (CDClThree) = 0.71 (s, 3H), 0.94 (m, 9H), 1.02 (s, 3H), 1.1-2.5 (m, 29H), 3.33 (br s, 1H), 3.88 (br s, 1H)
[0061]
Embedded image
Figure 0003844977
[0062]
Furthermore, a diol compound (compound 12) (3-keto-7,24 (R) -diol compound) was converted to a sulfate ester (compound 13) using a sulfur trioxide / pyridine complex in a pyridine solvent at 25 ° C. for 4 hours. )
[0063]
Analytical values of this sulfate ester (Compound 13) were as follows.
m. p 153-158 ° C
1H NMR (DMSO) δ = 0.63 (s, 3H), 0.79 (d, 3H J = 7 Hz), 0.81 (d, 3H J = 7 Hz), 0.86 (d, 3H J = 7 Hz) ), 0.94 (s, 3H), 1.0-2.5 (m, 27H), 3.61 (m, 1H), 3.78 (brq, 1H J = 5 Hz), 4.16 ( m, 1H)
[0064]
Embedded image
Figure 0003844977
[0065]
On the other hand, 1,3-diaminopropane (5 g, 67.450 mmol) was dissolved in water (50 ml), 4-chlorobutanol (2.49 ml, 24.956 mmol) was added thereto, and the mixture was stirred at 140 to 150 ° C. for 24 hours. Heating to reflux was performed. Subsequently, this reaction solution was distilled under reduced pressure (27 Pa (0.2 mmHg), bp: 87 to 90 ° C.) to obtain an amino compound (compound 14) (1.609 g, 48%).
[0066]
Embedded image
Figure 0003844977
[0067]
The amino compound (compound 14) (1.609 g, 11.006 mmol) was dissolved in ethanol, and di-t-butyl dicarbonate (5.28 g, 24.213 mmol) was added and stirred at room temperature. Next, after standing for 48 hours, the reaction solution was concentrated under reduced pressure to obtain pale yellow syrup. The pale yellow syrup was purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (1: 1 v / v) as a developing solvent, and colorless syrup (Boc form) (compound 15) (3.812 g, quant.) Was obtained. Obtained.
[0068]
The analytical value of this Boc body (compound 15) was as follows.
11 H NMR (CDClThree) = 1.43-1.67 (m, 7H), 1.44 and 1.46 (sx2, 9Hx2, Boc's Butx2), 3.09-3.25 (m, 6H), 3.6 (t, 2H, J = 5.9 Hz),
4.68 (br s, 1H)
[0069]
Embedded image
Figure 0003844977
[0070]
The Boc form (Compound 15) (1.671 g, 4.825 mmol) was dissolved in pyridine (30 ml). This solution was ice-cooled, and methanesulfonyl chloride (0.411 ml, 5.307 mmol) was added and stirred under ice-cooling. Next, after leaving overnight, ethyl acetate (30 ml) was added to the reaction solution, and the mixture was stirred for 5 minutes. The reaction mixture was further washed with 1M aqueous hydrochloric acid solution (10 ml × 2 times), saturated aqueous sodium bicarbonate (10 ml × 2 times), and saturated brine (10 ml × 2 times), dried over anhydrous magnesium sulfate, and then concentrated under reduced pressure. A yellow syrup residue was obtained. The yellow syrup residue was purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (2: 1 v / v) as a developing solvent, and colorless syrup (mesyl) (compound 16) (1.686 g, 82%) was obtained. Obtained.
[0071]
The analysis value of this mesyl body was as follows.
11 H NMR (CDClThree) = 1.4-1.1.77 (m, 6H), 1.44 and 1.46 (sx2, 9Hx2, Boc's Butx2), 3.01 (s, 3H, Ms's CHThree), 2.98-3.21 (m, 6H), 4.25 (t, 2H, J = 4.0 Hz), 4.70 (br s, 1H)
[0072]
Embedded image
Figure 0003844977
[0073]
The mesyl compound (Compound 16) (1.686 g, 3.973 mmol) was dissolved in dimethylformamide (30 ml), and then sodium azide (1.291 g, 19.864 mmol) was added and stirred at room temperature. Next, after standing overnight, the reaction solution was filtered. Water (20 ml) was added to the obtained filtrate. The filtrate was extracted with ethyl acetate (20 ml × 3 times), and the resulting extract was washed with saturated brine (10 ml × 2 times), dried over anhydrous magnesium sulfate, and further concentrated under reduced pressure to give yellow syrup. A residue was obtained. The yellow syrup residue was purified with a silica gel column using a mixed solvent of hexane and ethyl acetate (3: 1 v / v) as a developing solvent, and colorless syrup (azide) (compound 17) (1.204 g, 92%) was obtained. Obtained.
[0074]
The analytical value of this azide body was as follows.
11 H NMR (CDClThree) = 1.41-1.66 (m, 6H), 1.44 and 1.47 (sx2, 9Hx2, Boc's Butx2), 3.10-3.31 (m, 6H), 3.30 (t, 2H, J = 6.3 Hz), 4.69 (br s, 1H)
[0075]
Embedded image
Figure 0003844977
[0076]
4M HCl / dioxane (5 ml) was added to the azide compound (compound 17) (149 mg, 0.401 mmol) at room temperature and stirred. After standing for 16 hours, the reaction solution was concentrated under reduced pressure, and the resulting hydrochloride salt was dissolved in methanol (10 ml), sodium methylate (44 mg, 0.802 mmol) was added at room temperature, and the mixture was stirred for a while. Further, sulfate (Compound 13) (24-O-sulfate, 108 mg, 0.201 mmol) was added and stirred. Next, after standing for 24 hours, the reaction solution was cooled to −78 ° C., sodium borohydride (23 mg, 0.602 mmol) was added, and the mixture was stirred. After stirring for 3.5 hours, the reaction solution was returned to room temperature and filtered, and the obtained filtrate was concentrated under reduced pressure. The obtained residue was dissolved in ethanol (10 ml), and the pH was adjusted to 1-2 with trifluoroacetic acid. Next, platinum oxide (50 mg) was added, and the reaction solution was stirred under a hydrogen atmosphere. After confirming the completion of the reaction by thin layer chromatography, the reaction solution was filtered, and the obtained filtrate was concentrated under reduced pressure. The resulting residue was purified by reverse phase-HPLC to give squalamine (125 mg, 69%).
[0077]
The analysis values of the hydrochloride were as follows.
1H NHM (CDThreeOD) δ = 3.38 (m, 2H), 3.10 (m, 2H), 3.04 (m, 4H), 2.07 (m, 2H), 1.77 (m, 2H), 1 .65 (m, 2H);
13C NMR (CDThreeOD) δ = 52.0, 48.8, 46.0, 38.1, 27.1, 25.5, 24.8
The analytical values of squalamine were as follows.
1H NHM (CDThreeOD) δ = 0.67 (s, 3H), 0.84 (s, 3H), 0.90-0.94 (m, 9H), 1.0-2.1 (m, 33H), 2. 9-3.2 (m, 9H), 3.76 (br s, 1H), 4.12 (br q, 1H);
13C NMR (CDThreeOD) δ = 11.7, 12.6 18.3, 18.6 19.6, 22.3, 24.3, 24.6, 24.7, 25.7, 26.1, 28.3, 28.3 29.5, 32.1, 32.2, 32.7, 37.0, 37.5, 37.8, 38.0, 38.7, 40.1, 41.2, 43.0, 43. 9, 46.0, 46.8, 51.8, 57.7, 59.2, 68.4, 86.7
[0078]
Embedded image
Figure 0003844977
[0079]
【The invention's effect】
According to the present invention, squalamine can be obtained from naturally occurring desmosterol, specifically desmosterol contained in wool fat.

Claims (15)

(1)無水酢酸を用いて下記構造式
Figure 0003844977
に示すデスモステロールをアセチル化し下記構造式(1)
Figure 0003844977
に示す化合物を合成する工程、
(2)不斉ジオール化に用いる酸化反応触媒を用いて前記構造式(1)の化合物を酸化し下記構造式(2)
Figure 0003844977
に示す化合物を合成する工程、
(3)塩化ベンゾイルを用いて前記構造式(2)に示す化合物から下記構造式(3)
Figure 0003844977
に示す化合物を合成する工程、
(4)オキシ塩化リンを用いて前記構造式(3)に示す化合物から下記構造式(4)
Figure 0003844977
に示す化合物を合成する工程、
(5)前記構造式(4)に示す化合物を水素で還元して下記構造式(5)
Figure 0003844977
に示す化合物を合成する工程
(6)N−ヒドロキシフタルイミドと過酸化ベンゾイルを用いて前記構造式(5)に示す化合物を酸化して下記構造式(6)
Figure 0003844977
に示す化合物を合成する工程、
(7)酸化白金触媒を用いて前記構造式(6)に示す化合物を水素で還元して下記構造式(7)
Figure 0003844977
に示す化合物と下記構造式(8)
Figure 0003844977
に示す化合物を合成する工程、
(8)ピリジニウムクロロメートとセライトを用いて前記構造式(7)に示す化合物を前記構造式(8)に示す化合物に変換する工程、
(9)炭酸カリウムを用いて前記構造式(8)に示す化合物から下記構造式(9)
Figure 0003844977
に示す化合物を合成する工程、
(10)K−Selectride触媒を用いて前記構造式(9)に示す化合物から下記構造式(10)
Figure 0003844977
に示す化合物を合成する工程、
(11)炭酸銀−セライト触媒を用いて前記構造式(10)に示す化合物から下記構造式(11)
Figure 0003844977
に示す化合物を合成する工程、及び
(12)水酸化カリウムの存在下、前記構造式(11)に示す化合物から下記構造式(12)
Figure 0003844977
に示す化合物を合成する工程
からなることを特徴とするスクアラミンの製造方法。
(1) The following structural formula using acetic anhydride
Figure 0003844977
Acetylating the desmosterol shown in the following structural formula (1)
Figure 0003844977
A step of synthesizing the compound shown in
(2) Oxidizing the compound of the structural formula (1) using an oxidation reaction catalyst used for asymmetric diol formation, the following structural formula (2)
Figure 0003844977
A step of synthesizing the compound shown in
(3) From the compound represented by the structural formula (2) using benzoyl chloride, the following structural formula (3)
Figure 0003844977
A step of synthesizing the compound shown in
(4) From the compound represented by the structural formula (3) using phosphorus oxychloride, the following structural formula (4)
Figure 0003844977
As engineering to synthesize the compounds shown in,
(5) The compound represented by the structural formula (4) is reduced with hydrogen to form the following structural formula (5):
Figure 0003844977
A step of synthesizing the compound shown in
(6) The compound represented by the structural formula (5) is oxidized using N-hydroxyphthalimide and benzoyl peroxide to obtain the following structural formula (6).
Figure 0003844977
A step of synthesizing the compound shown in
(7) The compound represented by the structural formula (6) is reduced with hydrogen using a platinum oxide catalyst, and the following structural formula (7)
Figure 0003844977
And the following structural formula (8)
Figure 0003844977
A step of synthesizing the compound shown in
(8) converting the compound represented by the structural formula (7) into a compound represented by the structural formula (8) using pyridinium chloroformate and celite;
(9) From the compound represented by the structural formula (8) using potassium carbonate, the following structural formula (9)
Figure 0003844977
A step of synthesizing the compound shown in
(10) From the compound represented by the structural formula (9) using a K-Selectride catalyst, the following structural formula (10)
Figure 0003844977
A step of synthesizing the compound shown in
(11) From the compound represented by the structural formula (10) using a silver carbonate-celite catalyst, the following structural formula (11)
Figure 0003844977
A step of synthesizing the compound shown in
(12) From the compound represented by the structural formula (11) in the presence of potassium hydroxide, the following structural formula (12)
Figure 0003844977
A method for producing squalamine, comprising the step of synthesizing the compound shown in 1 .
前記デスモステロールが羊毛脂の一成分である請求項1に記載のスクアラミンの製造方法。  The method for producing squalamine according to claim 1, wherein the desmosterol is a component of wool oil. 前記アセチル化がピリジン溶媒中で行われる請求項1又は2に記載のスクアラミンの製造方法。The method for producing squalamine according to claim 1 or 2 , wherein the acetylation is carried out in a pyridine solvent. 前記酸化がt−BuOHと水の混合溶媒中で行われる請求項1乃至3のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 1 to 3, wherein the oxidation is performed in a mixed solvent of t-BuOH and water. 前記構造式(3)に示す化合物の合成がピリジン溶媒中で行われる請求項1乃至4のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 1 to 4, wherein the synthesis of the compound represented by the structural formula (3) is performed in a pyridine solvent. 前記構造式(4)に示す化合物の合成がピリジン溶媒中で行われる請求項1乃至5のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 1 to 5, wherein the compound represented by the structural formula (4) is synthesized in a pyridine solvent. 前記の工程(5)における還元が酢酸エチル溶媒中で行われる請求項1乃至6のいずれか一項に記載のスクアラミンの製造方法。 The method for producing squalamine according to any one of claims 1 to 6, wherein the reduction in the step (5) is performed in an ethyl acetate solvent. (6)N−ヒドロキシフタルイミドと過酸化ベンゾイルを用いて下記構造式(5)
Figure 0003844977
に示す化合物を酸化して下記構造式(6)
Figure 0003844977
に示す化合物を合成する工程、
(7)酸化白金触媒を用いて前記構造式(6)に示す化合物を水素で還元して下記構造式(7)
Figure 0003844977
に示す化合物と下記構造式(8)
Figure 0003844977
に示す化合物を合成する工程、
(8)ピリジニウムクロロメートとセライトを用いて前記構造式(7)に示す化合物前記構造式(8)に示す化合物に変換する工程、
(9)炭酸カリウムを用いて前記構造式(8)に示す化合物から下記構造式(9)
Figure 0003844977
に示す化合物を合成する工程、
(10)K−Selectride触媒を用いて前記構造式(9)に示す化合物から下記構造式(10)
Figure 0003844977
に示す化合物を合成する工程、
(11)炭酸銀−セライト触媒を用いて前記構造式(10)に示す化合物から下記構造式(11)
Figure 0003844977
に示す化合物を合成する工程、及び
(12)水酸化カリウムの存在下、前記構造式(11)に示す化合物から下記構造式(12)
Figure 0003844977
に示す化合物を合成する工程
からなることを特徴とするスクアラミンの製造方法。
(6) Using N-hydroxyphthalimide and benzoyl peroxide, the following structural formula (5)
Figure 0003844977
Oxidizing the compound shown in the following structural formula (6)
Figure 0003844977
A step of synthesizing the compound shown in
(7) The compound represented by the structural formula (6) is reduced with hydrogen using a platinum oxide catalyst, and the following structural formula (7)
Figure 0003844977
And the following structural formula (8)
Figure 0003844977
A step of synthesizing the compound shown in
(8) converting the compound represented by the structural formula (7) into a compound represented by the structural formula (8) using pyridinium chloroformate and celite;
(9) From the compound represented by the structural formula (8) using potassium carbonate, the following structural formula (9)
Figure 0003844977
A step of synthesizing the compound shown in
(10) From the compound represented by the structural formula (9) using a K-Selectride catalyst, the following structural formula (10)
Figure 0003844977
A step of synthesizing the compound shown in
(11) From the compound represented by the structural formula (10) using a silver carbonate-celite catalyst, the following structural formula (11)
Figure 0003844977
Step to synthesize the compounds shown in, and (12) in the presence of potassium hydroxide, the following structural formula from the compound shown in the structural formula (11) (12)
Figure 0003844977
Step of synthesizing the compound shown in
A process for producing squalamine, comprising:
前記構造式(6)に示す化合物の合成が酢酸エチルとアセトンの混合溶媒中で行われる請求項8に記載のスクアラミンの製造方法。The method for producing squalamine according to claim 8, wherein the compound represented by the structural formula (6) is synthesized in a mixed solvent of ethyl acetate and acetone. 前記構造式(6)に示す化合物の水素による還元が酢酸エチル中で行われる請求項8又は9に記載のスクアラミンの製造方法。The method for producing squalamine according to claim 8 or 9 , wherein the reduction of the compound represented by the structural formula (6) with hydrogen is performed in ethyl acetate. 前記構造式(7)に示す化合物前記構造式(8)に示す化合物への変換が塩化メチレン溶媒中で行われる請求項8乃至10のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 8 to 10, wherein the conversion of the compound represented by the structural formula (7) into the compound represented by the structural formula (8) is performed in a methylene chloride solvent. 前記構造式(9)に示す化合物の合成がメタノールとクロロホルムの混合溶媒中で行われる請求項8乃至11のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 8 to 11, wherein the compound represented by the structural formula (9) is synthesized in a mixed solvent of methanol and chloroform. 前記構造式(10)に示す化合物の合成がテトラヒドロフラン中で行われる請求項8乃至12のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 8 to 12, wherein the compound represented by the structural formula (10) is synthesized in tetrahydrofuran. 前記構造式(11)に示す化合物の合成がトルエン溶媒中で行われる請求項8乃至13のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 8 to 13, wherein the compound represented by the structural formula (11) is synthesized in a toluene solvent. 前記構造式(12)の合成がエチレングリコール溶媒中で行われる請求項8乃至14のいずれか一項に記載のスクアラミンの製造方法。The method for producing squalamine according to any one of claims 8 to 14, wherein the synthesis of the structural formula (12) is performed in an ethylene glycol solvent.
JP2001139056A 2001-05-09 2001-05-09 Method for producing squalamine Expired - Fee Related JP3844977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001139056A JP3844977B2 (en) 2001-05-09 2001-05-09 Method for producing squalamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001139056A JP3844977B2 (en) 2001-05-09 2001-05-09 Method for producing squalamine

Publications (2)

Publication Number Publication Date
JP2002332274A JP2002332274A (en) 2002-11-22
JP3844977B2 true JP3844977B2 (en) 2006-11-15

Family

ID=18985898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001139056A Expired - Fee Related JP3844977B2 (en) 2001-05-09 2001-05-09 Method for producing squalamine

Country Status (1)

Country Link
JP (1) JP3844977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950204B1 (en) * 2006-09-26 2010-03-29 경북대학교 산학협력단 7?-aminosteroid derivatives or pharmaceutically acceptable salts thereof, preparation method thereof and composition for anticancer or antibiotics containing the same as an active ingredient

Also Published As

Publication number Publication date
JP2002332274A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
EP1274718B1 (en) A process for the preparation of 7.alpha.-hydroxy 3-aminosubstituted sterols using intermediates with an unprotected 7.alpha.-hydroxy group
WO2020177240A1 (en) Chenodeoxycholic acid and preparation method therefor
WO2008038965A1 (en) 7alpha-aminosteroid derivatives or pharmaceutically acceptable salts thereof, preparation method thereof and composition for anticancer or antibiotics containing the same as an active ingredient
EP1301526B1 (en) Oxidation process for preparing the intermediate 6.alpha.,9.alpha.-difluoro-11.beta.,17.alpha.-dihydroxy-16.alpha.-methyl-androst-1,4-dien-3-one 17.beta.-carboxylic acid
EP3877395B1 (en) Industrial process for the preparation of high purity estetrol
JPH09328498A (en) Production of 24,25-dihydroxycholesterol and its synthetic intermediate
JP3844977B2 (en) Method for producing squalamine
JP4438308B2 (en) Method for producing steroid compound
JPH05507271A (en) Production method of 10β-H-steroid
KR101016608B1 (en) Method For Preparing Rocuronium Bromide
JP3535588B2 (en) Method for producing ginsenoside Rh2
CN109134576B (en) Method for synthesizing lithocholic acid by taking hyodeoxycholic acid as raw material
JPH023797B2 (en)
JPH10507451A (en) Synthesis of 6-azaandrostenone
CN110172078B (en) Preparation method of 19 hydroxylated truotuopine derivative and 19-hydroxyandrostenedione
JPH07116221B2 (en) Method for producing ursodeoxycholic acid
CN115057906B (en) Method for synthesizing cholesterol by using dehydroepiandrosterone
KR100255031B1 (en) Process for producing squalamine
JPH023798B2 (en)
JPS6111959B2 (en)
JPH08113592A (en) Synthesis and separation of hydroxysteroid with side chain
AU764034B2 (en) Method for producing 4,4-dimethyl-3beta-hydroxypregna-8,14-diene-21-carboxylic acid esters and intermediate products obtained by said method
JPH09249691A (en) Production of 25-hydroxycholesterols and synthetic intermediate therefor
JP3876079B2 (en) Process for producing 1,24-dihydroxycholesterols
CN116490512A (en) Preparation method of 21- (acetoxyl) -17- (1-propionyloxy) -pregn-4-ene-3, 20-dione

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3844977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140825

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees