JP3844918B2 - 光位相制御器及び光スイッチ - Google Patents

光位相制御器及び光スイッチ Download PDF

Info

Publication number
JP3844918B2
JP3844918B2 JP24249299A JP24249299A JP3844918B2 JP 3844918 B2 JP3844918 B2 JP 3844918B2 JP 24249299 A JP24249299 A JP 24249299A JP 24249299 A JP24249299 A JP 24249299A JP 3844918 B2 JP3844918 B2 JP 3844918B2
Authority
JP
Japan
Prior art keywords
optical
light
path
switch
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24249299A
Other languages
English (en)
Other versions
JP2000187254A (ja
Inventor
正孝 白▲崎▼
カオ サイモン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2000187254A publication Critical patent/JP2000187254A/ja
Application granted granted Critical
Publication of JP3844918B2 publication Critical patent/JP3844918B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2252Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光スイッチに関し、特には、ヒータを使った光スイッチにおける、入力光を出力路に切り替える技術に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
光スイッチは、入力光を出力路へ切り替える装置である。例えば、入力光が入力ファイバから光スイッチに入力したとき、光は、2つの出力ファイバの内の1つを介して光スイッチを出ていく。これは、1入力2出力スイッチ、あるいは、1対2スイッチであり、最も基本的なスイッチである。2対2、1対N、N対Nスイッチのようにより複雑なスイッチもある。これらは、1対2スイッチを組み合わせて実現される。
【0003】
最も一般的な光路(光スイッチを介して入力光がたどる路)を切り替える方法は、機械的なものである。スイッチは、プリズム、ミラー、ファイバの一部などの動く部分を有しており、これは、光路を切り替えるために機械的に動かされる。機械的スイッチは、切り替え速度が遅く、切り替え動作の信頼性が薄いという欠点を持っている。このため、研究者は、機械的でないスイッチを開発しようとしてきた。ある実用的な非機械的スイッチは、磁気光学的スイッチであり、ファラデー回転を使用した光スイッチであり、FDKによって製品化されている。非機械的スイッチの他のタイプは、液晶を使っているが、液晶そのものの信頼性に問題がある。
【0004】
図1は、マッハツェンダ干渉計に基づいた、従来技術のバルクの切り替え装置10の例を示している。マッハツェンダ干渉計は周知である。バルクの切り替え装置10は、入力光Aを受光する。入力光Aは、入力光Aのパワーの半分をパスA1に通し、他の半分をパスA2に通すような、従来の50/50カプラ(あるいは、分波器)12を用いてパスA1とA2に分岐される。50/50カプラは、3dBカプラとも呼ばれる。
【0005】
パスA1を進む入力光Aの一部は、50/50カプラ(あるいは、分波器)22に向かって、ミラー14により反射される。パスA2を進む入力光Aの一部は、ガラスブロック16(その上にヒータ18が設けられている)を通って進み、50/50カプラ(あるいは、分波器)22に向かってミラー20により反射される。そして、50/50カプラ22は、パスA1から到着する光とパスA2から到着する光を再び合波して、出力光BとCとする。出力光Bと出力光Cに含まれるパワーは、パスA1から到着する光とパスA2から到着する光の間の相対位相によって決まる。すなわち、パスA1からの光は、パスA2からの光と、位相が一致している(A1とA2を進む光の位相が0ラジアンあるいは、2πの整数倍ラジアン異なっている)、位相がはずれている(A1とA2を進む光の位相がπ/2ラジアン、あるいは、π/2の奇数倍ラジアン異なっている)、あるいは、反対の位相となっている(A1とA2を進む光の位相がπラジアン、あるいは、πの奇数倍異なっている)などである。従って、入力光Aは、出力路Bと出力路Cの間で切り替えられる。
【0006】
バルクの切り替え装置10は、温度変化に基づいて、出力路を切り替える光スイッチである。特には、パスA1とA2から50/50カプラに到着する光の間の相対位相は、ガラスブロック16を熱するためのヒータ18を用いることによって、ガラスブロック16によって変えることが出来、ガラスブロック16の屈折率を変え、出力路BとC間で出力路を切り替える。しかし、ガラスブロック16は、5mm×5mmあるいは1cmのオーダで、比較的大きいので、温度変化は、非常にゆっくりとしている。従って、パスBとCの間で出力光を切り替えるためには、数分必要であり、光波システムにおいては、遅すぎて実用的でない。図2は、従来技術において、ヒータ18を有するガラスブロック16の断面図である。ガラスブロック16は、光ビーム24を含んでおり、パスA2に沿って進む光が通過する。
【0007】
速度が遅いので、バルク切り替え装置10は、光スイッチとしては実用的ではない。
現在、光導波路を用いた、非機械的スイッチが試作されている。しかし、光導波路スイッチは、大きな挿入損失とクロストークのため、使用されていない。
【0008】
従来の導波路スイッチの例が図3Aに示されており、これは、マッハツェンダ干渉計スイッチ26を示している。図3Aに示されるように、ファイバ27を進む入力光Aは、ガラス(あるいは他の結晶の)基板30の表面に形成された入力導波路28に入射し、入力光Aは、導波路28の2つの分岐A1とA2に分波される。分岐(あるいは、パス)A1とA2を進む光は、2つの出力導波路BあるいはCの1つに合波され、それぞれの出力導波路は、それぞれのファイバに結合する。ここで、出力光は、2つの分岐A1とA2を介して進む光間の光位相差に従って、2つの導波路B、あるいは、Cの1つを進むことができる。もし、2つの分岐の1つ、例えば、A2、がヒータ32により熱せられると、導波路A2の温度変化は、パスA2の屈折率を変化させ、A2を進む光の光位相を変化させる。従って、ヒータ32に電流を入力することによって、光路をBとCの間で切り替える。ヒータ32は、例えば、ガラス面30上の金属被覆であり、導波路A2に取り付けられる。
【0009】
ヒータ32を含む基板30の断面34が図3Bに示されている。図3Bに示されるように、ヒータ32は、基板30の表面Sであって、導波路A2の横に設けられており、導波路A2を含む領域36を熱する。領域36は、通常、直径が20〜30マイクロメータであり、導波路A2の直径は、通常、10マイクロメータであり、ヒータ32によって与えられる導波路A2の温度変化は非常に速く、従って、スイッチ26の切り替え速度が非常に速いということを意味している。しかし、導波路A2は、基板30の表面に形成されており、基板30に囲まれていないので、導波路A2は、非対称であり、導波路A2内を進む光の偏波に影響を与える。導波路A2内を進む光の偏波は、光の水平成分と光の垂直成分が異なる速度で進み、結果として、導波路A2の端に来たとき、異なる光位相を有するというように影響を受ける。従って、導波路A2を進む光の水平振動は、導波路A2を進む光の垂直振動と異なり、分岐A1を進む光と分岐A2を進む光の干渉が適切でなく、干渉計(あるいは、スイッチ)26からの出力がおかしくなってしまう。
【0010】
スイッチ26は、ガラス、あるいは、他の結晶基板上に掲載されるので、製造するのに非常に高価である。スイッチ26は、また、製造するのが難しい。更に、スイッチ26は、上述したように、偏波に依存し、ファイバを進む光の偏波状態を1/2〜1mあるいは、それ以上にわたって、ファイバに沿って維持することは出来ない。
【0011】
図3Aに示されるスイッチ26は、IEEE Photonics Tecnology Letters, Vol. 10, No. 5, pp. 681-683、May 1998. Q. Lai著 “Low-Power Compact 2x2 Thermooptic Silica-on-Silicon Waveguide Switch With Fast Response”に説明されている。
【0012】
更に、一般に、従来の光導波路装置は、入出力ファイバとの結合に関して問題を有している。
光ファイバと3dBカプラを使用するマッハツェンダ干渉計も従来知られている。光ファイバ内を進む光の偏波状態を維持することは、複屈折(偏波保存)ファイバではなく、通常の(従来の)ファイバを使用するファイバ干渉計の多くにおいて、最も重要な問題の一つである。通常、ファイバを進む光の偏波状態は、1/2mの距離で変化する。
【0013】
通常の光ファイバは、1/2〜1m等の長い距離にわたって、中を進む光の偏波状態を維持できないことが問題である。従って、光ファイバを使ったマッハツェンダ干渉計への入力光の偏波状態が(例えば)垂直であるなら、第1の3dBカプラを通り、ファイバを含む2分岐を長距離通り、第2の3dBカプラに進んで後、2つの分岐のいずれか、または、両方からの光は、垂直の偏波を維持していない。従って、2分岐からの光は、マッハツェンダ干渉計の出力で、互いに適当な干渉を起こさず、光は、適当な出力路に転送されず、ある光は、不適切な出力路に転送されてしまう。複屈折(偏波保存)ファイバは、従来知られており、製品として手に入れることが出来るが、それ自体欠点を持っている。
【0014】
従来の3dBカプラの構成は、図4Aと4Bに示されている。図4Aに示されている3dBカプラ36は、ファイバをねじった後2つのファイバを融着することによって作られている。図4Bに示される3dBカプラ38は、それぞれのファイバの面の一方が削り取られた後、2つのファイバを密着することによって作られている。
【0015】
マイケルソン干渉計も従来知られている。
従来よく知られている光サーキュレータは、非相反装置(通常、磁界を使って作られている)であり、いくつかの入力/出力ポートを持っており、光はあるポートに入射し、通常、時計回りに回転され、隣の隣接した出力ポートに回される。
【0016】
本発明の課題は、速く、信頼性があり、製造が安価な光スイッチを提供することである。
本発明の他の課題は、速く、信頼性があり、製造が安価な光制御装置を提供することである。
【0017】
本発明の更なる課題は、偏波に依存せず、切り替え速度の速い光スイッチを提供することである。
本発明の更なる課題は、ヒータによって熱せられた1つの光路が冷えるまで待つことなく、少なくとも2つのパス間で入力光を順次切り替える光スイッチを提供することである。
【0018】
【課題を解決するための手段】
光ファイバと3dBカプラを使用したマッハツェンダ干渉計は従来知られているが、本発明は、マッハツェンダ干渉計の1つの分岐である光ファイバの温度を制御する方法を提供する。更に、本発明は、本発明のヒータを使った光位相制御装置である。更に、本発明は、本発明のヒータを使用した光スイッチである。
【0019】
本発明の一側面は、光ファイバを被覆するヒータである。マッハツェンダ干渉計の1以上の分岐の温度を本発明のヒータで変えることにより、光ファイバの屈折率は変化し、従って、光ファイバを進む光の光位相を変化させ、出力路間で出力光を切り替える。この原理を使えば、本発明のヒータを含む光スイッチを構成することができる。
【0020】
本発明は、干渉計の分岐を形成する光ファイバと、分岐に入力光を分岐し、1つの分岐を熱するヒータを1つの分岐が含む分岐からの光を出力路に再合波する3dBカプラからなるマッハツェンダ干渉計である。
【0021】
本発明は、干渉計の分岐を形成する光ファイバと、分岐に入力光を分岐し、1つの分岐を熱するヒータを1つの分岐が含む分岐からの光を出力路に再合波する3dBカプラからなるマイケルソン干渉計である。
【0022】
更に、本発明は、光スイッチや、マッハツェンダ干渉計や、マイケルソン干渉計などの装置であり、光路の光を伝送する光ファイバと、光ファイバに結合し、入力光を光路に分岐し、出力光を出力路に再合波する3dBカプラと、光路を形成する光ファイバの1つの一部を被覆し、光路を進む光の光位相を変化させるために光ファイバを熱するヒータとを含む。第2のヒータは、他の光ファイバの一部を被覆し、光路を進む光の相対位相を変化させるために光ファイバを熱する。検出器は、光路の1つと結合し、光路の漏洩光のパワーを検出し、ヒータ制御装置は、検出器とヒータに接続され、漏洩光のパワーに基づいてヒータを制御する。
【0023】
【発明の実施の形態】
以下に、図面を参照して詳細に実施形態について説明する。なお、同様の参照符号は、同様の構成要素を示す。
【0024】
図5に、本発明のヒータ40を示す。図5に示されるように、通常の光ファイバ42は、抵抗金属44によって被覆あるいはメッキされている。ファイバ42は、完全に金属44によって覆われている。金属44は、好ましくは、金であるが、任意の材質でよい。金は、化学的に安定なので好ましい。金属44の厚さと長さは、金属44に望ましい電圧と電流を印加した場合に、本発明のヒータ40が、十分な熱を発生するように設計される。例えば、金属44の厚さは、好ましくは、0.1〜50μm(マイクロメータ)であり、長さは、好ましくは、1〜20mm(ミリメータ)である。本発明のヒータ40は、金属44の両側に位置する電極46を含み、光ファイバに沿った金属に電流が流れるようにする。
【0025】
マッハツェンダ干渉計が光路をある出力から他へ切り替えるためには、マッハツェンダ干渉計の2つの分岐間の光位相は、πだけ変えられなくてはならない。この位相変化は、本発明のヒータ40の長さが1cmである時には、〜10℃の温度変化によって得られる。
【0026】
図5に示されるように、本発明のヒータ40は、光ファイバ42を覆う、あるいは、被覆するが、従来では、ヒータ18は、ガラスブロック16に設けられているか、ヒータ32は、導波路を有する基板30の面(図3参照)に設けられている。従って、本発明のヒータ40は、ヒータ40のための領域が小さくてすみ、偏波依存がない他にも、従来のヒータ18や32に対して、いくつかの利点を有している。本発明のヒータ40のために必要な領域が小さいことにより、ヒータ40の、従って、ファイバ42の温度変化が速い。このように、ファイバ42の温度変化が速いことにより、ファイバ42(及び、ヒータ40)が光スイッチに使用されれば、切り替えを速くすることができる。ファイバ42(導波路として働く)が短く(通常、1mm〜50mmであり、好ましくは、2〜3cm)、形状が対称的であり、従って、ファイバ42を進む光は、水平方向と垂直方向で同じ環境にさらされることになるので、本発明のヒータ40によって、被覆されるファイバ42を進む光の偏波には依存しない。
【0027】
従って、図5に示されるように、ファイバ42を被覆する本発明のヒータ40を含む光位相制御装置及び光スイッチは、偏波に依存しないという図1に示されるバルクのマッハツェンダ干渉計の利点と、高速の切り替え速度を実現する迅速な温度変化が得られるという、図3に示されるマッハツェンダ干渉計スイッチ26(導波路28を含む)の利点とを有する。
【0028】
光ファイバを被覆する本発明のヒータ40の構成の変形例は、図6A、6B及び6Cに示されている。図6A、6B、及び6Cにおいて、従来の光ファイバは、コア50を取り囲むクラッド48から形成されている。図6Aは、クラッド48が本発明のヒータ40−1によって全体的に被覆され、あるいは、覆われている光ファイバ52を示している。図6Bは、クラッド48の半分が本発明のヒータ40−2によって被覆されている光ファイバ54を示している。図6Cは、本発明のヒータ40−3が光ファイバのクラッド48の一部に取り付けられている光ファイバ56を示している。
【0029】
ファイバの断面が小さければ、ファイバの温度変化も速い。というのも、ファイバは、温度が変化しなくてはいけない領域が小さくなるからである。図7Aに、本発明のヒータ40によって被覆された光ファイバ58を示す。図7Aに示される光ファイバ58において、コアの直径は、略10マイクロメータであり、クラッドの直径は、略125マイクロメータである。
【0030】
あるいは、本発明のヒータ40によって被覆される光ファイバ60は、図7Bに示されるよりもっと小さく作ることが出来る。図7Bに示される光ファイバ60は、まず光ファイバ58を形成し、化学的にファイバのクラッド48をエッチングするか、最初から細いファイバを作ることにより、図7Aに示される光ファイバ58よりも細く作ることができる。両方法は、周知である。図7Bにおいては、コアの大きさ50は、図7Aと同じままである。クラッド48を取り巻くヒータ40は、ファイバ58あるいは60を被覆あるいはメッキすることによって作ることができる。より細いファイバでは(エッチングによる、あるいは、最初から細いファイバを作ることによるもの)、本発明のヒータ40からの熱は、通常のサイズのファイバよりも速く、コア50の温度を上げ、細いファイバを進む光の光位相をより速く変化させ、従って、本発明のヒータ40を有する光スイッチを進む光に対して、より速くスイッチングを行うことができる。
【0031】
図8〜15は、本発明の光スイッチを示している。図8〜15の光スイッチを詳細に説明する前に、図8〜15に示される光スイッチのすべてに共通の概念を説明する。
【0032】
図8〜15に示される本発明の光スイッチは、光ファイバ42を用いて実施され、光ファイバの少なくとも1つを熱する本発明のヒータ40を含んでいる。図8〜15に示される、本発明の光スイッチに含まれるパスP1とP2を形成する光ファイバ42は、比較的短く(好ましくは、1mm〜50mmであり、さらには、2〜3cmであり、図8〜15に示される各光スイッチにおいて、この長さは変わらない)、従って、パスP1とP2の光ファイバを進む光の偏波状態を維持する。
【0033】
図8〜15において、パスP1とP2は、図8〜15にそれぞれ示される3dBカプラによって入力光が分岐され入力されるパスである。パスP1とP2は、図8と12に示される3dBカプラ64と66の両方の間にわたってのびており、図8と12に示される各光スイッチの出力路は、3dBカプラ66における、パスP1とP2を進む光の相対光位相によって決定される。パスP1とP2は、図11、14、及び15に示される3dBカプラ80と82の両方の間にわたってのびており、図11、14、及び15に示される各光スイッチの出力路は、3dBカプラ82における、パスP1とP2を進む光の相対光位相によって決定される。
【0034】
図9、10、及び13において、パスP1とP2は、3dBカプラ72から、反射器74へ、そして、3dBカプラ72に戻る経路にわたってのびており、図9、10、及び、13に示される各光スイッチの出力路は、反射器74によって光が3dBカプラに反射されて戻ったあとの、3dBカプラにおけるパスP1とP2を進む光の相対光位相によって決定される。
【0035】
図8〜15に示される本発明の光スイッチは、パスP1とP2を形成する光ファイバの温度がパスP1とP2の両方で同じ時、光路P1を進む光が、光路P2を進む光と位相が一致しているように、構成される。しかし、図8〜15に示される本発明の光スイッチは、パスP1とP2を形成する光ファイバの温度がパスP1とP2の両方で同じ時、光路P1を進む光が光路P2を進む光と反対の位相であるように、あるいは、光路P2を進む光に対して任意の位相であるように構成することもできる。
【0036】
1とP2を進む光の位相が0ラジアンあるいは、2πの整数倍ラジアン異なる時には、パスP1からの光とパスP2からの光とは位相が一致している。P1とP2を進む光の位相がπ/2ラジアンあるいは、π/2の奇数倍ラジアン異なる場合には、パスP1からの光とパスP2からの光とは、位相がはずれている。P1とP2を進む光の位相がπラジアンあるいはπの奇数倍ラジアン異なる場合には、パスP1からの光とパスP2からの光とは、位相が反対である。
【0037】
図8〜15に示される本発明の光スイッチを詳細に説明する。
図8は、本発明の基本的光スイッチ62を示す図である。光スイッチ62は、マッハツェンダ干渉計であり、上記したように、光ファイバ42を有している。本発明の上記ヒータ40は、図8に示されているように、3dBカプラ64と66の間の位置において、同じく上記したように、光ファイバ42の1つの一部を被覆しており、パスP1のファイバ42を熱することにより、スイッチ62のパスP1とP2を進む光の相対位相を変化させる。
【0038】
図8に示される光スイッチ62は、2つの入力ポート(あるいはファイバ)1と4、及び2つの出力ポート(あるいはファイバ)2と3を有する、2×2スイッチである。3dBカプラ64と3dBカプラ66の間のパスP1とP2を進む入力光1の相対光位相が0の(位相が一致している)場合には、入力光1は、スイッチ62を通って出力3に進む。同様に、3dBカプラ64と3dBカプラ66の間のパスP1とP2を進む入力光4の相対光位相が0の(位相が一致している)場合には、入力光4は、スイッチ62を通って出力2に進む。
【0039】
3dBカプラ64と66の間のパスP1とP2を進む入力光の相対光位相が、入力光1と入力光4の両方に対し、πラジアンの(位相が反対である)場合には、他方、光は、入力1から出力2へ、入力4から出力3へ進む。
【0040】
3dBカプラ64と66の間の入力光1と入力光4に対する相対光位相は、本発明のヒータ40を用いて変化させる。パスP1の、本発明のヒータ40によって被覆される光ファイバ42は、ヒータ40によって熱せられ、パスP1の光ファイバに含まれる物質の屈折率が変化し、従って、3dBカプラ64と66の間を進む光の光位相は、パスP1における光ファイバが熱せられていない時のものから変化される。従って、スイッチ62からの出力光は、出力2と3の間で切り替えられる。
【0041】
本発明の光スイッチ62は、従来の光スイッチに比べて有利である。特には、スイッチ62は、光ファイバ42を有しており、スイッチ62は、低い挿入損失で、伝送光ファイバに容易に接続できる。更に、3dBカプラ64と66の間の長さは、比較的短いので、3dBカプラ64と66の間を進む光の偏波状態は、3dBカプラ64から3dBカプラ66まで、維持される。
【0042】
図8に示されるスイッチ62によって達成される同様の機能が、図9に示される本発明の光スイッチ68によって得られる。図9の光スイッチ68は、1つの入力ファイバ1と2つの出力ファイバ4と5を有する1対2機能を有している。入力ファイバ1からの入力光は、光サーキュレータ70を介して、3dBカプラ72まで進む。これは、入力光1をそれぞれ、分岐2と3に沿って進むパスP1とP2に分岐する。2つのパスP1とP2(分岐2と3)内の光は、従来の光反射器74によって反射され、3dBカプラ72に戻される。それから、反射光は、3dBカプラ72の地点における2つの分岐2と3の反射光の相対光位相に従って、出力ファイバ5、あるいは、光サーキュレータ70へと進む。光サーキュレータ70に戻る光は、ファイバ4へと出ていく。
【0043】
図9に示されている本発明の光スイッチ68においては、入力ファイバ1からスイッチ68に入力する光は、それぞれ分岐2と3のパスP1とP2に反射される光間の相対光位相に従って、出力ファイバ5あるいは、出力ファイバ4へと出ていく。パスP1とP2(分岐2と3)を進む光間の相対位相が一致しているならば、光は、出力ポート4に出力される。もし、パスP1とP2(分岐2と3)を進む光間の相対位相が反対ならば、光は、出力ポート5に出力される。
【0044】
あるいは、光サーキュレータ70が取り除かれるならば、入力光1は、他のファイバ(出力ファイバ5)に進む、あるいは、反射されて、同じファイバ(入力ファイバ1)に戻される。
【0045】
パスP1とP2(分岐2と3)において反射される光間の相対位相は、本発明のヒータ40によって決定される。図9のスイッチ68においては、ヒータ40は、パスP1(分岐2)のファイバ42を被覆する。しかし、ヒータ40は、パスP2(分岐3)のファイバ42を被覆することも可能である。図9のスイッチ68において、本発明のヒータ40が、パスP1(分岐2)のファイバを熱する時、パスP1(分岐2)を進む光と、パスP2(分岐3)を進む光との間の相対位相が変化し、従って、出力は、出力ファイバ4と出力ファイバ5の間で切り替わる。
【0046】
入力ファイバからの入力光が、2つの分岐間の光位相に依存して、入力ファイバへと反射返送される、あるいは、他の出力ファイバに伝送されるような光スイッチの構成を、従来周知のマイケルソン干渉計という。しかし、図9に示される本発明の光スイッチ68は、光スイッチ68のパスP1とP2(分岐2と3)を進む光の相対位相を変化させる、本発明のヒータ40を有している。
【0047】
図8と9にそれぞれ示されるスイッチ62と68の機能は、入力ファイバからスイッチへの光が、スイッチから2つの出力ファイバの内1つへと切り替えられて出力され、2つの出力ファイバが入力ファイバと異なるという点において、互いに同様である。
【0048】
図10と11にそれぞれ示される、スイッチ76と78の機能は、見ての通り、1つの入力ファイバからスイッチへの光が、スイッチから2つの出力ファイバの1つに切り替え出力され、2つの出力ファイバの1つが入力光を入力する入力ファイバと同じであるという点で同様である。しかし、スイッチ76と78の性能は、スイッチ78は、スイッチ76よりもクロストークが小さいという点で互いに異なっている。
【0049】
図10は、本発明のヒータ40を含む、本発明の他の光スイッチ76を示す図である。光スイッチ76においては、光は、入力ファイバ1を介して入力され、従来の3dBカプラ72により分岐されて、パスP1とP2(分岐2と3)に進む。パスP1(分岐2)は、前述した、本発明のヒータ40を有している。ヒータ40は、パスP1(分岐2)のファイバ42を熱することによって、上記した原理の通りに、パスP1とP2(分岐2と3)を進む光の相対位相を変化させる。
【0050】
スイッチ76の両パスP1とP2(分岐2と3)は、それぞれの分岐を進む光を反射する従来の光反射器74を有している。パスP1とP2(分岐2と3)の反射光間の相対位相に依存して、出力光は、3dBカプラ72によって出力ポート4、あるいは、入力ポート1へ向けられる。特には、入力ポート1からの入力光は、3dBカプラ72によってパスP1とP2(分岐2と3)に伝送され、従来の反射器74によって反射され、3dBカプラ72に返送される。光が、反射器74によって、パスP1とP2(分岐2と3)において3dBカプラ72へと反射返送されるとき、反射光が位相が一致しているならば、光は、3dBカプラ72によって入力ポート1へと伝送される。他方、入力ポート1からの入力光が従来の反射器74によって反射され、3dBカプラ72に返送させるとき、相対位相がπラジアンであるならば、反射光は3dBカプラ72に伝送され、出力ポート(ファイバ)4に伝送される。
【0051】
同様に、入力光がファイバ4を介して入力されるならば、入力光4は、3dBカプラ72によって、パスP1とP2(分岐2と3)へと伝送され、従来の反射器74によって反射され、3dBカプラ72に返送される。光が反射器74によってパスP1とP2(分岐2と3)を通って、3dBカプラ72に反射返送されるとき、反射光が位相が一致しているならば、光は、3dBカプラ72によって、入力4へと伝送される。他方、入力光4が従来の反射器74によって3dBカプラ72に反射返送される時に、相対位相がπラジアン(反対の位相)であれば、反射光は、3dBカプラ72を通って、入力ポート(ファイバ)1へと伝送される。
【0052】
パスP1とP2を進む光間の相対位相は、パスP1のファイバ42が本発明のヒータ40によって熱せられるか否かによって決定される。パスP1のファイバ42がヒータ40によって熱せられるならば、パスP1とP2を進む光は、反対位相で、パスP1のファイバ42が熱せられないならば、あるいは、ヒータ40によって異なる温度に熱せられるならば、パスP1とP2を進む光は位相が一致する。
【0053】
図10に示されるスイッチ76の機能は、入力光1の出力を、入力ファイバ1と他の出力ファイバ4との間で切り替えることである。
光スイッチ76の応用としては、エコーキャンセラなど、多くのものがある。
【0054】
入力光を、入力ファイバに反射返送する、あるいは、他の出力ファイバに出力するという上記機能を使った応用においては、非常に低いクロストークを達成することが出来る。特には、理想的なスイッチでは、入力ファイバ1からの入力光が他の出力ファイバ4へと進むとき、光のわずかな反射が入力ファイバ1に戻ることは許されない。例えば、3dBカプラ72が理想的でないことにより、パスP1とP2(分岐2と3)間で分岐される光の割合は、50−50(2つのパスP1とP2(分岐2と3)間で均一に分布する入力光からのパワーの半分)とは異なり、49対51の割合などである。他の例では、パスP1とP2(分岐2と3)を進む光間の相対位相は、互いに正確には、一致あるいは反対にはならない。上記した両条件により、クロストークや漏洩光等の望ましくない光が生じ、位相条件が反対の場合には、入力ファイバに返送される。実際には、図10のスイッチ76におけるクロストークのために、光がポート1を介して入力され、パスP1とP2(分岐2と3)の光が位相が反対である場合に、反射光の略99%がポート4に出力され、反射光の略1%(10-2)が入力ポート1へと漏れ出る。
【0055】
図11に示されるような、本発明のヒータ40を有する本発明の光スイッチ78は、入力ファイバに返送されるクロストークの量を抑制する。図11に示されたスイッチ78は、入力ファイバ1と出力ファイバ1と2を有し、図8に示される、マッハツェンダ干渉計光スイッチ62の原理と同じ原理の1×2スイッチである。
【0056】
図11に示される本発明の光スイッチ78は、相反装置(非相反装置である、光サーキュレータを含む光スイッチとは異なり)であるので、もしパスP1とP2を進む光が位相が一致している場合には、入力ポート1からの入力光は、従来の3dBカプラ80と82を介して分岐3に進み、パスP1とP2を進む光が位相が反対である場合には、出力ポート2に進む。
【0057】
パスP1とP2を進む光が位相が一致していると、入力ポート1からの入力光は、分岐3に進み、入力ポート1に反射返送される。
他方、パスP1とP2を進む光が反対の位相であると、入力ポート1からの入力光は、出力ポート2に進み、スイッチ78によって出力される。
【0058】
本発明のヒータ40は、パスP1とP2を進む光が位相が一致している、あるいは、位相が反対であるかを、パスP1のファイバ42を特定の温度まで熱することによって(パスP1とP2の光を反対位相とする)、あるいは、パスP1のファイバ42を熱しない(パスP1とP2の光を一致位相とする)ことによって、決定する。
【0059】
上述したように、図11に示される光スイッチ78においては、入力ポート(ファイバ)1から入力する入力光が従来の3dBカプラ80と82を介して、分岐(あるいは、ファイバ)3に進み、パスP1とP2を進む光が一致位相の場合、光は、反射器84によって反射され、入力ポート(あるいは、ファイバ)へ返送される。この例において、光がファイバ1に返送されることは(パスP1とP2を進む光が一致位相の場合)、クロストークの例を示すものではない。特には、パスP1とP2を進む光が一致位相の場合、入力ポート1からの光は、同じ入力ポート1に反射返送されることが望ましい。
【0060】
入力光がスイッチ78の入力ポートに返送されないようにして、クロストークを抑制する問題は、パスP1とP2を進む光が反対位相の時の方が、一致位相の場合よりも重要である。特には、スイッチ78においては、入力ポート1からの光が他の出力ポート2(パスP1とP2を進む光が反対位相)に進むとき、入力ポート1への反射返送光がない必要がある。実際には、スイッチ78(主には、3dBカプラ80と82による)の有するクロストーク(あるいは漏洩光)により、入力ポート1からの光の略99%が出力ポート2に進み、入力光のわずかな分(略1%)が分岐3に進む。分岐3に進む光の1%は、反射返送され、パスP1とP2の光が反対位相であるので、反射光の大半(1%の99%)がポート4に進み、スイッチ78から出力される。反射器84によって反射された光の他の1%は、入力ポート1に返送される。従って、ポート1から入力される光の全体のクロストークは、入力光の1%の1%、すなわち、0.01%である。
【0061】
スイッチ78のクロストークが1%であるならば、ポート1への反射光は、分岐3からポート1への反射光がスイッチ78を2回通り、3dBカプラ80と82のそれぞれを2回(スイッチ78は2段装置であることを意味する)通らなくてはいけないので、0.01%となる。スイッチ78のクロストークは、1%の1%、すなわち、0.01%(あるいは、10-4)に等しい。
【0062】
図10のスイッチ76と図11のスイッチ78は、両方とも、互いに同様な機能を達成し、入力光をスイッチによって入力ポートあるいは、他の出力ポートに出力する。しかし、スイッチ76は、1段装置であるので、図10に示されているスイッチ76クロストークは、1%(あるいは、10-2)である。スイッチ78は、2段装置であるので、図11に示されるスイッチ78のクロストークは、0.01%(あるいは、10-4)である。
【0063】
図8に示される光スイッチ62、図9に示される光スイッチ68、図10に示される光スイッチ76、及び図11に示される光スイッチ78は、本発明のヒータ40を分岐の一方のみに有する2つの分岐を有している。上記スイッチの2つの分岐を進む光の相対位相は、本発明のヒータが光を運ぶ2つの分岐の内の1つのファイバを熱するので、従って、2つの分岐の光ファイバの相対温度を変化するので、変化させられる。本発明のヒータは、ヒータに与えられる初期パワーが高い場合には、光ファイバの温度を迅速に上げる。そして、光路は、相対位相が迅速に変えられるため、迅速に切り替えられる。しかし、光路が元の状態に切り戻しされる場合には、2つのファイバを進む光の相対光位相を元の(熱せられていない)値に戻すために他の(熱せられていない)光ファイバと同程度の温度まで、熱せられた光ファイバを冷やす時間が必要である。スイッチの2つの分岐を進む光の相対光位相は、熱せられた光ファイバを冷やすのではなく、2つの分岐の1つの光ファイバを熱することによってより速く変えることが出来るので、他の方向よりもある方向で、切り替え時間が短い(あるいは、速い)。従って、光スイッチは、出力光をあるポートから他のポートへ切り替える場合に速く動作する。
【0064】
ある方向が他の方向よりも、より長い切り替え時間を必要とするという問題をさけるため、本発明のヒータは、図12,13及び14の本発明の光スイッチに示されるように、光スイッチの両分岐に設けられる。
【0065】
スイッチの出力光路は、2つの分岐(あるいは、パスP1とP2)間の温度差によって決定される、2つの分岐(あるいは、パスP1とP2)間の光位相を変化させることによって切り替えるので、第1の(最初に熱せられた)光ファイバ(パスP1)の温度が下がるのを待つのではなくて、第2の分岐(パスP2)の温度を本発明のヒータで上げる。両分岐(パスP1とP2)のファイバの温度が上げられたとき、2つの分岐(パスP1とP2)の光ファイバの温度に差はなく、従って、2つの分岐(パスP1とP2)を進む光の相対位相が、両方とも熱せられていない場合の2つの分岐(パスP1とP2)を進む光の相対位相と同じである。
【0066】
もちろん、光路の切り替えが生じた後は、第2の光ファイバ(パスP2)の温度は、元の(第1の)ファイバ(パスP1)の温度を下げるに従って、下げられるべきである。
【0067】
図12は、図8に示される本発明の光スイッチ62に対応する本発明の光スイッチ86を示している。しかし、図12に示される本発明の光スイッチ86においては、パスP1とP2は、両方とも本発明のヒータ40(ヒータ401と402として示されている)を有している。スイッチ86の切り替え原理は、スイッチ62の切り替え原理と同じであり、ここでは、詳細には繰り返さない。端的に述べると、スイッチ86においては、スイッチ62と同様に、パスP1とP2を進む光位相が同じ時には、3dBカプラ64と66間を進む光は一致位相である。問題の光が一致位相ならば、ポート1を介してスイッチ86に入る光は、出力ポート3に切り替えられ、ポート4を介してスイッチ86に入る光は、出力ポート2に切り替えられる。パスP1とP2を進む光の光位相がπラジアンだけ異なると、3dBカプラ64と66を進む光は反対位相である。問題の光が反対位相なので、ポート1を介してスイッチ86に入る光は出力ポート2に切り替えられ、ポート4を介してスイッチ86に入る光は出力ポート3に切り替えられる。
【0068】
以下の記載においては、熱する前に、光位相にバイアスはないとする。これは、分岐が同じ温度である場合に、パスP1とP2を進む光の光位相が同じであることを意味している。しかし、実際の装置においては、光位相のバイアスがあり、すなわち、温度が同じであっても、パスP1とP2を進む光の光位相に差がある。この場合、切り替えのための加熱処理の前に、ヒータに電流バイアスをかけるようにする。このバイアス電流は、分岐間の特定の温度差を維持し、分岐を進む光の位相を一致させる。そして、このバイアス電流に加え、加熱のための電流を印加する。しかし、説明の便宜上、以下の説明においては、バイアス電流はないとする。
【0069】
パスP1とP2のファイバ間に温度差がない場合には、パスP1とP2を進む光の光位相は、一致しており、パスP1とP2のファイバ間に所定の温度差がある場合には、反対位相となっている。所定の温度差は上記した通りである。
【0070】
スイッチ62とスイッチ86の両方においては、パスP1とP2を進む光の相対位相は、パスP2のファイバの温度よりも所定の温度だけパスP1のファイバを熱することにより、一致位相から反対位相に切り替えられる。
【0071】
しかし、スイッチ62と異なり、スイッチ62(と、従って、パスP1の光ファイバ)に設けられたヒータ40がパスP2の光ファイバと同じ温度まで冷えるのを待つのではなく、ヒータ402をヒータ401と同じ温度まで熱し、パスP1とP2を進む光の位相を一致させる。従って、パスP1とP2を進む相対位相を一致位相から反対位相に切り替えるとき、スイッチ86の切り替え時間は、スイッチ62のものと同じであり、パスP1とP2を進む光の相対位相を反対位相から一致位相に切り替えるとき、スイッチ62の切り替え時間よりも速い。
【0072】
パスP1とP2間の温度差、あるいは、相対温度は、上述した。ヒータ40(あるいは、401あるいは402)が1cm(センチメータ)の長さであるとき、相対位相をπラジアンだけ変えるのに、略10℃の温度変化が必要である。
【0073】
図13のスイッチ88と図14のスイッチ90は、ともに、本発明のヒータ401と402の2つを含んでおり、図12を参照して説明したように、パスP1とP2の2つの間の相対温度を変化させる。
【0074】
図13のスイッチ88において、パスP1とP2のファイバの相対温度が0(ヒータ402の温度を上げてヒータ401と同じにするか、ヒータ401と402をともに同じ温度まで冷やすかによって)となる場合、パスP1とP2を進む光は位相が一致し、ポート1から3dBカプラ72を介してパスP1とP2に進む入力光は、ポート2と3にある反射器74によってそれぞれ反射され、3dBカプラ72に返送される。反射光は、光サーキュレータ70からポート4を介して出力される。光サーキュレータ70が(図10のスイッチ76のように)図13の光スイッチ88に含まれていなかったら、反射光はポート1に反射返送される。
【0075】
図13のスイッチ88においても、パスP1とP2を進む光が反対位相であるように、パスP1とP2のファイバの温度差(上記したように)がある(ヒータ402の温度を上げずに、ヒータ401の温度を上げるか、あるいは、その反対によって)場合、ポート1から入力される光は、3dBカプラ72を介してパスP1とP2に進み、ポート2と3の反射器74によってそれぞれ反射され、3dBカプラ72を介して返送され、ポート5から出力される。
【0076】
図14は、図11に示される本発明の光スイッチ78に対応する本発明の光スイッチ90を示す図である。しかし、図14に示される本発明の光スイッチ90においては、パスP1とP2は両方とも本発明のヒータ40を有している(ヒータ401と402として示されている)。スイッチ90の切り替え原理は、スイッチ78の切り替え原理と同じであり、詳細は繰り返さない。端的には、スイッチ90は、スイッチ78のように、パスP1とP2を進む光の光位相が同じであるとき、3dBカプラ80と82間を進む光の位相は一致している。問題の光が一致位相である場合には、ポート1を介してスイッチ90に入る光は、出力ポート(反射器84を含む)に切り替えられ、入力ポート1へ反射返送される。パスP1とP2を進む光の光位相がπラジアンだけ異なる場合には、3dBカプラ80と82間を進む光は反対位相にある。問題の光が反対位相にある場合には、ポート1を介してスイッチ90に入る光は、出力ポート2に切り替えられる。
【0077】
パスP1とP2を進む光の光位相は、(上記したように)パスP1とP2のファイバ間に温度差がない場合には、位相が一致し、パスP1とP2のファイバ間に所定の温度差がある場合には、反対位相となる。
【0078】
スイッチ78とスイッチ90の両スイッチにおいて、パスP1とP2を進む光の相対位相は、(上記したように)パスP2のファイバの温度以上にパスP1のファイバを熱することにより、一致位相から反対位相に切り替えられる。
【0079】
しかし、スイッチ78とは異なり、スイッチ78(そして、パスP1の光ファイバ)に設けられるヒータ40がパスP2の光ファイバと同じ温度に冷えるまで待つのではなく、ヒータ402は、ヒータ401と同じ温度まで熱せられ、パスP1とP2を進む光の位相が一致する。従って、スイッチ90の切り替え時間は、パスP1とP2を進む光の相対位相を一致位相から反対位相に切り替える場合、スイッチ78と同じであり、パスP1とP2を進む光の相対位相を反対位相から一致位相に切り替える場合には、スイッチ78の切り替え時間よりも速い。
【0080】
パスP1とP2間の温度差、あるいは、相対温度は、上記した通りであり、ヒータ40(あるいは401あるいは402)の長さが1cmである場合、相対位相をπラジアン変えるのに、略10℃の温度変化が必要である。
【0081】
本発明のヒータ40によって被覆あるいはメッキされたファイバ42を監視し、ファイバの温度を制御して、ファイバ内で光位相を正しく、一致位相あるいは反対位相として維持するための方法(光学的方法、及び、温度感知方法)は少なくとも2つある。両方法は、ファイバを熱するヒータのフィードバック制御を含み、前述の本発明のヒータ40を一つだけ用いて、図15を参照して説明する。しかし、2つの方法は、前述の2つのヒータ401と402へも応用可能である。図15に示されている本発明の干渉計(あるいは光スイッチ)92は、図11及び14に示される本発明の光スイッチと同様である。
【0082】
図15を参照して、光学的方法を説明する。図15に示されるように、ポート3まで進む信号光の一部、あるいは、ポート1あるいは4の光路から入射される異なる波長の他の光は、パス94に沿って伝送され、従来の検波器96によって、ミラー84−1の後検波される。もし、信号光に対するミラーの反射率が100%でないならば、ミラー84−1をわずかな光が透過し、検波器96は、わずかに透過した光を検波し、パス94に沿って伝送される光のパワーの大きさを測定する。通常、ミラー84−1に至る光の1〜2%は、ミラー84−1を透過する。異なる波長の他の光を使用する場合には、この光に対しては、ミラーの反射率は理想的には0%であり、信号光に対しては100%である。
【0083】
パス94に沿って進む光のパワーの大きさは、検波パワーとも呼ばれるが、パス98を介して、ヒータ制御器100に伝送される。ヒータ制御器100は、ヒータ40に伝送されるパワーの大きさを調整し、検波パワーに基づいて、ファイバ42に印加される熱の量を多くしたり、少なくする。
【0084】
光スイッチ92のパスP1とP2を進む光が一致位相であるべきときは、光が1あるいは4からくる場合、ヒータ制御器100は、それぞれ、パス94の検波パワーの大きさを最大化あるいは最小化するようにヒータ40を制御する。あるいは、光スイッチ92のパスP1とP2を進む光が反対位相であるべきときは、ヒータ制御器100は、光が1または4からくるときは、それぞれ、パス94の検波パワーの大きさを最小化あるいは最大化するように、ヒータ40を制御する。
【0085】
任意の瞬間の相対光位相は、直接には知ることが出来ないので、上記検波器96とヒータ制御器100は、パス94のパワーの大きさを検出することにより、光スイッチ92において、パスP1とP2を進む光が一致位相にあるか、反対位相にあるかを決定するのにも使用することが出来る。
【0086】
ファイバを監視する他の方法は、ファイバ42の温度を検知し、測定するものである。温度計102をファイバに隣接して設け、温度計の出力104を出力104に基づいてヒータ40へ送るパワーの大きさを制御するヒータ制御器100へ伝送する。あるいは、ヒータ40に含まれる抵抗金属44を温度計として使用することが可能である。金属の抵抗は、温度の関数であるので、ファイバ42の温度は、ヒータ40に含まれる金属の抵抗を測定し、ヒータ制御器100に信号106を伝送することによって監視することが出来る。同様に、ヒータ制御器100は、この信号106に基づいて、ヒータ40に送るパワーの大きさを調整する。
【0087】
<付記>
本発明は、以下のような形態で実現することも可能である。
第1に、第1と第2の光ファイバと、該第1及び第2の光ファイバに入力光を分岐に分波し、該第1及び第2の光ファイバからの光を出力路に再合波する3dBカプラとを備え、該第1の光ファイバのファイバ素線表面に、発熱するヒータを有するマッハツェンダ干渉計を前提とする。
【0088】
そして、該第2の光ファイバのファイバ素線表面に、発熱するヒータを含む形態。
該各3dBカプラは、光ファイバがねじられた後、これらが融着された光ファイバ、あるいは、光ファイバが削られた後、これらが密着された光ファイバからなる形態。
【0089】
該第1及び第2の光ファイバの長さが、それぞれ、1mmと50mmの間である形態。
前記ヒータは、前記第1のファイバの表面に抵抗金属を被覆あるいは、メッキしてなる形態。
【0090】
前記ヒータは、前記光ファイバに沿って、前記金属に電流を流すように、該金属の両端に配置された電極を備える形態。
前記金属は金である形態。
【0091】
前記ヒータの長さは、1mmと20mmの間である形態。
前記金属の厚さは、0.1μmと50μmの間である形態。
前記金属は、断面から見て、前記第1の光ファイバの表面の全体、表面の半分、あるいは、表面の一部に形成されている形態。
【0092】
前記ヒータが取り付けられる前記第1の光ファイバは、ファイバを細くし、ファイバの温度がより速く変化するようにエッチングされている形態。
前記マッハツェンダ干渉計内を進む光の光位相差は、信号光あるいは、光路から入射される異なる波長の他の光を使って監視される形態。
【0093】
前記ヒータは、金属からなり、分岐間の光位相差は、該ヒータの該金属の抵抗を測定することによって監視される形態。
第2に、第1と第2の光ファイバと、該第1と第2の光ファイバに入力光を分岐に分波し、該第1と第2の光ファイバからの光を出力路に再合波する3dBカプラとを備え、第1の光ファイバのファイバ素線表面に形成され、発熱するヒータを有するマイケルソン干渉計を前提とする。
【0094】
そして、該第2の光ファイバのファイバ素線の表面に形成され、発熱するヒータを備える形態。
該3dBカプラの各々は、光ファイバがねじられた後、融着された光ファイバ、あるいは、光ファイバが削られた後、密着された光ファイバからなる形態。
【0095】
前記第1及び第2のファイバの長さは、それぞれ、1mmと50mmとの間である形態。
前記ヒータは、前記第1の光ファイバの表面に抵抗金属を被覆あるいは、メッキしてなる形態。
【0096】
前記ヒータは、前記光ファイバに沿って、前記金属に電流を流すように、該金属の両端に配置された電極を備える形態。
前記金属は、金である形態。
【0097】
前記ヒータの長さは、1mmと20mmの間である形態。
前記金属の厚さは、0.1μmと50μmの間である形態。
前記金属は、断面から見て、前記第1の光ファイバの表面の全体、表面の半分、あるいは、表面の一部に形成されている形態。
【0098】
前記ヒータが取り付けられる前記第1の光ファイバは、ファイバを細くし、ファイバの温度がより速く変化するようにエッチングされている形態。
前記マイケルソン干渉計内を進む光の光位相差は、信号光あるいは、光路から入射される異なる波長の他の光を使って監視される形態。
【0099】
前記ヒータは、金属からなり、分岐の間の光位相差は、該ヒータの該金属の抵抗を測定することによって監視される形態。
第3に、光路に光を伝送する複数の光ファイバと、該複数の光ファイバに接続され、入力光を該光路に分岐し、該光路からの出力光を出力路に再合波する3dBカプラと、該光ファイバの一方の一部を被覆し、該光ファイバの一方を熱して、該光ファイバの一方を進む光の光位相を変化させるヒータとを備える装置を前提とする。
【0100】
そして、前記光ファイバの他方の一部を被覆し、該光ファイバの他方を熱し、該光ファイバの一方と該光ファイバの他方を進む光の相対光位相を変化させる第2のヒータを更に備える形態。
【0101】
前記光ファイバの一方と接続し、前記光路の漏洩光のパワーを検出する検波器と、該検波器と前記ヒータとに接続され、該漏洩光のパワーに基づいて該ヒータを制御するヒータ制御器とを更に備える形態。
【0102】
第4に、光路に光を伝送する複数の光ファイバと、該複数の光ファイバに接続され、入力光を該光路に分岐し、該光路からの出力光を出力路に再合波する3dBカプラと、該光ファイバの一方の一部を被覆し、該光ファイバの一方を熱して、該光ファイバの一方を進む光の光位相を変化させるヒータとを備える光スイッチを前提とする。
【0103】
そして、前記光ファイバの他方の一部を被覆し、該光ファイバの他方を熱し、該光ファイバの一方と該光ファイバの他方を進む光の相対光位相を変化させる代2のヒータを更に備える形態。
【0104】
前記光ファイバの一方と接続し、前記光路の漏洩光のパワーを検出する検波器と、該検波器と前記ヒータとに接続され、該漏洩光のパワーに基づいて該ヒータを制御するヒータ制御器とを更に備える形態。
【0105】
前記スイッチは、1×2スイッチである形態。
前記スイッチは、2×2スイッチである形態。
第5に、光ファイバの表面に抵抗金属を被覆、あるいは、メッキしたヒータを前提とする。
【0106】
そして、前記金属の両端に位置し、前記光ファイバに沿って、該金属に電流を流すための電極を更に備える形態。
前記金属は、金である形態。
【0107】
ヒータの長さは1mmと20mmの間である形態。
前記金属の厚さは、0.1μmと50μmとの間である形態。
前記金属は、断面から見て、前記光ファイバの表面の全体、表面の半分、あるいは、表面の一部に形成されている形態。
【0108】
前記ヒータが取り付けられる前記光ファイバは、ファイバを細くし、ファイバの温度がより速く変化するようにエッチングされている形態。
第6に、入力光を受光する入力ポートと、出力光を出力する出力ポートとを備える光スイッチであって、第1の光路を形成する第1の光ファイバと、第2の光路を形成する第2の光ファイバと、該入力ポート、該第1の光ファイバ、及び該第2の光ファイバに接続され、該入力光を該第1の光路と該第2の光路とに分岐する第1の3dBカプラと、該第1の光ファイバの一部を被覆し、該第1の光ファイバを熱することにより、該第2の光路を進む光に対し、該第1の光路を進む光の光位相を変化させるヒータと、該第1の光ファイバと該第2の光ファイバに接続し、該第1の光路を進む光と該第2の光路を進む光とを再合波し、該出力光とし、該第1の光路を進む光が該第2の光路を進む光と位相が一致している場合には、該出力光を該出力ポートの一方に出力し、該第1の光路を進む光が該第2の光路を進む光と位相が反対の場合には、該出力光を該出力ポートの他方に出力する第2の3dBカプラとを備える光スイッチを前提とする。
【0109】
そして、更に、前記第2の光ファイバを被覆し、該第2の光ファイバを熱することにより、前記第2の光路を進む光の光位相を変化させ、前記第1の光路を進む光の光位相と一致させるヒータを備える形態。
【0110】
各光路の長さは、1/2mよりも短い形態。
第7に、入力光を受光する入力ポートと、出力光を出力する出力ポートとを備える光スイッチであって、第1の光路を形成する第1の光ファイバと、第2の光路を形成する第2の光ファイバと、該入力ポート、該第1の光ファイバ、及び該第2の光ファイバに接続され、該入力光を該第1の光路と該第2の光路とに分岐する第1の3dBカプラと、該第1の光ファイバの一部を被覆し、該第1の光ファイバを熱することにより、該第2の光路を進む光に対し、該第1の光路を進む光の光位相を変化させるヒータと、該第1の光ファイバと該第2の光ファイバに接続し、該第1の光路を進む光と該第2の光路を進む光を再合波し、該出力光とし、該第1の光路を進む光が該第2の光路を進む光と位相が一致している場合には、該出力光を該出力ポートの一方に出力し、該第1の光路を進む光が該第2の光路を進む光と位相が反対の場合には、該出力光を該出力ポートの他方に出力する第2の3dBカプラと、該出力ポートの一方の終端部に設けられ、該第1の光路を進む光の位相が、該第2の光路を進む光の位相と反対の場合、該出力先を該スイッチを介して、該入力ポートの他方に反射返送する反射器とを備える光スイッチを前提とする。
【0111】
そして、更に、前記第2の光ファイバを被覆し、該第2の光ファイバを熱することにより、前記第2の光路を進む光の光位相を変化させ、前記第1の光路を進む光の光位相と一致させるヒータを備える形態。
【0112】
各光路の長さは、1/2mよりも短い形態。
【0113】
【発明の効果】
本発明によれば、速くて、信頼性があり、製造が安価に出来る光スイッチと光制御器を提供することが出来る。
【図面の簡単な説明】
【図1】マッハツェンダ干渉計に基づいた、従来のバルク切り替え装置10の例を示す図である。
【図2】従来のヒータ18を有するガラスブロックの断面図である。
【図3】同図Aは、従来のマッハツェンダ干渉計スイッチを示す図であり、同図Bは、図3Aに示されるマッハツェンダ干渉計の基板の断面図である。
【図4】従来の3dBカプラの構成を示す図である。
【図5】本発明のヒータを示す図である。
【図6】光ファイバを被覆する本発明のヒータの構成の変形例を示す図である。
【図7】同図Aは、本発明のヒータで被覆された通常の光ファイバを示す図であり、同図Bは、本発明の、ヒータで被覆された通常より小さい光ファイバを示す図である。
【図8】本発明の基本的な光スイッチ(マッハツェンダ干渉計)を示す図である。
【図9】本発明の他の光スイッチを示す図である。
【図10】本発明のマイケルソン干渉計を示す図である。
【図11】クロストークが改善された、本発明の光スイッチを示す図である。
【図12】本発明の2つのヒータを含む、本発明のマッハツェンダ干渉計を示す図である。
【図13】本発明の2つのヒータを含む、本発明のマイケルソン干渉計を示す図である。
【図14】本発明の2つのヒータを有し、クロストークが改善された、本発明の光スイッチを示す図である。
【図15】本発明のヒータのフィードバック制御を有する、本発明の光スイッチを示す図である。
【符号の説明】
4、5 出力ファイバ
32、40、40−1、40−2、40−3、401、402 ヒータ
42 通常の光ファイバ
44 抵抗金属
46 電極
48 クラッド
50 コア
52、54、56、58、60 光ファイバ
62、68、76、78、86、88、90 光スイッチ
64、66、72、80、82 3dBカプラ
70 光サーキュレータ
74、84 反射器
84−1 ミラー
92 干渉計(あるいは、光スイッチ)
96 検波器
100 ヒータ制御器

Claims (1)

  1. 入力光を受光する入力ポートと、出力光を出力する出力ポートとを備える光スイッチであって、
    第1の光路を形成する第1の光ファイバと、
    第2の光路を形成する第2の光ファイバと、
    該入力ポート、該第1の光ファイバ、及び該第2の光ファイバに接続され、該入力光を該第1の光路と該第2の光路とに分岐する第1の3dBカプラと、
    該第1の光ファイバの一部を被覆し、該第1の光ファイバを熱することにより、該第2の光路を進む光に対し、該第1の光路を進む光の光位相を変化させるヒータと、
    該第1の光ファイバと該第2の光ファイバに接続し、該第1の光路を進む光と該第2の光路を進む光とを再合波し、該出力光とし、該第1の光路を進む光が該第2の光路を進む光と位相が一致している場合には、該出力光を該出力ポートの一方に出力し、該第1の光路を進む光が該第2の光路を進む光と位相が反対の場合には、該出力光を該出力ポートの他方に出力する第2の3dBカプラと、
    該出力ポートの一方の終端部に設けられ、該第1の光路を進む光の位相が、該第2の光路を進む光の位相と反対の場合、該出力光を該スイッチを介して、該入力ポートの他方に反射返送する反射器と、
    を備えることを特徴とする光スイッチ。
JP24249299A 1998-12-21 1999-08-30 光位相制御器及び光スイッチ Expired - Fee Related JP3844918B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/216,984 US6317526B1 (en) 1998-12-21 1998-12-21 Optical phase controller and optical switch
US09/216984 1998-12-21

Publications (2)

Publication Number Publication Date
JP2000187254A JP2000187254A (ja) 2000-07-04
JP3844918B2 true JP3844918B2 (ja) 2006-11-15

Family

ID=22809210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24249299A Expired - Fee Related JP3844918B2 (ja) 1998-12-21 1999-08-30 光位相制御器及び光スイッチ

Country Status (2)

Country Link
US (1) US6317526B1 (ja)
JP (1) JP3844918B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778278B2 (en) * 2000-08-03 2004-08-17 Peleton Photonic Systems Inc. Temperature insensitive Mach-Zehnder interferometers and devices
US6778736B2 (en) * 2001-03-15 2004-08-17 Finisar Corporation Dynamic variable optical attenuator and variable optical tap
US20030075992A1 (en) * 2001-10-19 2003-04-24 Kouns Heath Elliot Utilizing feedback for control of switch actuators
JP2003156644A (ja) * 2001-11-21 2003-05-30 Seiko Epson Corp 方向性結合器および光通信用装置
JP4462806B2 (ja) * 2002-02-22 2010-05-12 日本電気株式会社 量子暗号鍵配布システム
US6738543B1 (en) 2002-05-30 2004-05-18 E. I. Du Pont De Nemours And Company Hitless tunable wavelength filters
US6728445B2 (en) * 2002-05-30 2004-04-27 E. I. Du Ponte De Nemours And Company Closed-loop control of tunable optical wavelength filters
US6924894B2 (en) * 2002-10-28 2005-08-02 The Boeing Company Temperature compensated interferometer
JP2005352202A (ja) * 2004-06-10 2005-12-22 Sumitomo Electric Ind Ltd 光回路、光合波器及び光分波器
KR100701101B1 (ko) * 2004-12-20 2007-03-28 한국전자통신연구원 광 간섭계 제어 장치 및 그 방법
CA2499651A1 (en) * 2005-03-04 2006-09-04 Itf Technologies Optiques Inc./Itf Optical Technologies Inc. All-fiber phase controlled delay interferometer and method of making the same
US20060280415A1 (en) * 2005-03-17 2006-12-14 Anthony Slotwinski Precision length standard for coherent laser radar
US8098968B2 (en) * 2007-09-04 2012-01-17 International Business Machines Corporation Silicide thermal heaters for silicon-on-insulator nanophotonic devices
US7693354B2 (en) * 2008-08-29 2010-04-06 Bae Systems Information And Electronic Systems Integration Inc. Salicide structures for heat-influenced semiconductor applications
WO2010148282A2 (en) * 2009-06-18 2010-12-23 Paul Prucnal An optical switch using a michelson interferometer
JP2014211538A (ja) * 2013-04-18 2014-11-13 日本電信電話株式会社 波長変換素子
US10142711B2 (en) * 2015-04-14 2018-11-27 International Business Machines Corporation Low-crosstalk electro-optical Mach-Zehnder switch
CN107870040B (zh) * 2016-09-27 2021-05-04 福州高意通讯有限公司 一种全光纤傅立叶变换光谱仪
EP3593206A4 (en) * 2017-03-06 2020-11-25 Shenzhen Genorivision Technology Co., Ltd. LIDAR LIGHT SOURCE
JP2019209344A (ja) * 2018-06-01 2019-12-12 パナソニックIpマネジメント株式会社 レーザ溶接装置
US11803011B1 (en) * 2022-04-12 2023-10-31 Eagle Technology, Llc Optical switch having latched switch states and associated methods
US11982883B2 (en) * 2022-04-12 2024-05-14 Eagle Technology, Llc Optical device having phase change material and associated methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008356A1 (en) * 1988-03-04 1989-09-08 Fujitsu Limited Method and apparatus for modulating a semiconductor laser
US5247594A (en) * 1991-03-22 1993-09-21 Nippon Telegraph And Telephone Corporation Waveguide-type optical matrix switch
KR0163738B1 (ko) * 1994-12-19 1999-04-15 양승택 히터 매립된 평면 도파로형 광스위치의 제조방법
GB2301445B (en) * 1995-05-22 1997-07-09 At & T Corp Silica optical circuit switch and method
US5657148A (en) * 1996-05-07 1997-08-12 Lucent Technologies Inc. Apparatus and method for a single-port modulator having amplification
US5881199A (en) * 1996-12-02 1999-03-09 Lucent Technologies Inc. Optical branching device integrated with tunable attenuators for system gain/loss equalization
JPH10333190A (ja) * 1997-05-28 1998-12-18 Nec Corp 光スイッチ
US6035080A (en) * 1997-06-20 2000-03-07 Henry; Charles Howard Reconfigurable add-drop multiplexer for optical communications systems

Also Published As

Publication number Publication date
JP2000187254A (ja) 2000-07-04
US6317526B1 (en) 2001-11-13

Similar Documents

Publication Publication Date Title
JP3844918B2 (ja) 光位相制御器及び光スイッチ
JP4768127B2 (ja) 熱光学ポリマーを含むフォトニックデバイス
US5745619A (en) Low-loss optical power splitter for high-definition waveguides
US20050058425A1 (en) Thermo-optic plasmon-polariton devices
JP2001507817A (ja) 安定した非線形マッハ・ツェンダーファイバスイッチ
US5623566A (en) Network with thermally induced waveguide
Okuno et al. Silica-based 8/spl times/8 optical matrix switch integrating new switching units with large fabrication tolerance
JPH11337642A (ja) 光波測距装置
US20040146247A1 (en) Heating optical devices
US20030118279A1 (en) High-tolerance broadband-optical switch in planar lightwave circuits
WO2001006212A1 (en) An optical circuit
US20020057866A1 (en) Apparatus for adding wavelength components in wavelength division mulitplexed optical signals using multiple wavelength sagnac interferometer switch
US6445845B1 (en) Optical switch
US20020051601A1 (en) Multiple wavelength optical interferometer
Tosi et al. Silicon nitride polarisation beam splitters: a review
JPH11295769A (ja) 光信号伝送システム
US6487331B2 (en) Multiple wavelength optical interferometer switch
JPS62119504A (ja) 光導波路デイバイス
US20020044737A1 (en) Multiple wavelength Sagnac interferometer
JPH05224044A (ja) モニタ付導波路型光デバイス
US20020044714A1 (en) Multiple wavelength Michelson interferometer switch
Haruna et al. Optical π-arc waveguide interferometer in proton-exchanged LiNbO 3 for temperature sensing
US20020044712A1 (en) Apparatus for adding wavelength components in wavelength division multiplexed optical signals using mach-zehnder interferometer
US20020044713A1 (en) Multiple wavelength michelson interferometer
US20020044318A1 (en) Add/drop apparatus using multiple wavelength michelson interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees