JP3844310B2 - Metal scavenger - Google Patents

Metal scavenger Download PDF

Info

Publication number
JP3844310B2
JP3844310B2 JP04946796A JP4946796A JP3844310B2 JP 3844310 B2 JP3844310 B2 JP 3844310B2 JP 04946796 A JP04946796 A JP 04946796A JP 4946796 A JP4946796 A JP 4946796A JP 3844310 B2 JP3844310 B2 JP 3844310B2
Authority
JP
Japan
Prior art keywords
metal
group
scavenger
metal scavenger
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04946796A
Other languages
Japanese (ja)
Other versions
JPH09217053A (en
Inventor
和夫 細田
正喜 柄目
剛 清水
雅文 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Oil and Fat Co Ltd
Priority to JP04946796A priority Critical patent/JP3844310B2/en
Publication of JPH09217053A publication Critical patent/JPH09217053A/en
Application granted granted Critical
Publication of JP3844310B2 publication Critical patent/JP3844310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は廃水、ゴミ焼却場における廃ガス、或いはゴミ焼却等で得られる煤塵、鉱山で得られる鉱滓、廃水処理に用いた汚泥、汚染された土壌等の金属を含む固体状廃棄物等の処理に用いられる金属捕集剤に関する。
【0002】
【従来の技術】
廃水等に含まれる金属、特に人体に有害な水銀、カドミウム、亜鉛、鉛、銅、クロム等の重金属に対しては厳しい規制が設けられており、これまで廃水等に含まれる金属を除去するために種々の方法が検討されてきた。
【0003】
例えば廃水に消石灰、水酸化ナトリウム等のアルカリを投入して廃水中の金属を水酸化物とした後、高分子凝集剤によって凝集沈殿させる中和凝集沈殿法、或いはイオン交換法、電解浮上法、電気透析法、吸着法、逆浸透法等が知られている。
【0004】
しかしながら中和凝集沈殿法は大量の金属水酸化物のスラッジが発生し、このスラッジの脱水性が悪く、スラッジ容積が大きいためにスラッジ処理の際の作業性(例えば、運搬作業性等)が悪く、しかもスラッジの廃棄の仕方によっては、金属が河川、海水中に再溶出して二次公害を引き起こす等の問題もあった。また中和凝集沈殿法によって、廃水中の金属濃度を国の制定基準値以下まで除去することは容易ではなかった。
【0005】
一方、イオン交換法、電解浮上法、電気透析法、吸着法、逆浸透法等の方法も、金属の除去率や、操作性、ランニングコスト等に問題があり、一部の特種な廃水処理にしか利用されていなかった。このため、近年は上記の方法にかわって、金属捕集剤によって廃水中の金属を捕集除去する方法が広く利用されるようになっている。
【0006】
廃水処理に用いられる金属捕集剤としては、ジチオ酸基やジチオ酸塩基を官能基として有する化合物が知られている。本出願人は、金属を捕集して形成したフロックの沈降速度が速く、廃水処理を効率良く行うことができるものとして、先にエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のポリアルキレンポリアミンや、ポリエチレンイミン等のポリアミン類の窒素原子に、ジチオ酸基やジチオ酸塩基を結合せしめた構造の金属捕集剤や、この捕集剤を用いた廃水処理方法等を提案している(例えば、特開昭60−17128号、特開平2−81478号等)。
【0007】
【発明が解決しようとする課題】
金属捕集剤による廃水処理は、金属捕集剤を廃水に添加し、廃水中の金属を金属捕集剤が捕集して生成したフロックを沈殿させて除去することによって行われる。金属捕集剤は、一般に親水性に優れるもの程、金属捕集能に優れているが、金属捕集剤が金属を捕集して生成したフロックは親水性が低い程、沈殿し易い。このため金属捕集剤には、金属捕集前は親水性に優れ、金属捕集後には親水性が低下するような性状を有することが要求され、従来の金属捕集剤はこのような観点から開発されているのが現状である。
【0008】
金属捕集剤によって廃水処理する方法において、廃水中の金属を捕集して生成したフロックが微細であるとフロックの沈殿に長時間を要し、効率良い処理が行い得ない。このためフロックを凝集せしめて沈殿し易くする目的で凝集剤が併用されている。しかしながら凝集剤はフロックの親水性が高い程、フロック粒子と結合して凝集させる作用を発現するが、従来の金属捕集剤は金属を捕集して生成したフロックが低親水性となるような性状を有しているため、凝集剤を添加した効果が充分に発現されているとは言い難かった。また従来用いられている金属捕集剤は、合成原料を主体とするものであるため、安全性の上でも充分とは言い難かった。
【0009】
本発明は上記の点に鑑みなされたもので、従来の金属捕集剤とは概念を全く異にし、金属捕集前の親水性に優れるとともに、金属を捕集して生成したフロックの親水性が低下しないような性状を有し、しかも安全性に優れた金属捕集剤を提供することを目的とする。また本発明はこの金属捕集剤を用いて金属を含む廃水を処理する方法及び、金属を含む固体状廃棄物を処理する方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
即ち本発明の金属捕集剤は、糖類に結合した、(1)式又は(2)式で示す基の少なくとも一方を有することを特徴とする。
【0011】
【化3】

Figure 0003844310
(但し、Oは糖類の水酸基に由来の酸素原子、Mは水素又は炭素数1〜28のアルキル基、R1 は錯形成官能基、R3 は水素又は炭素数1〜18のアルキル基、nは1〜4の整数を示す。)
【0012】
【化4】
Figure 0003844310
(但し、Oは糖類の水酸基に由来の酸素原子、R 1 、R2は錯形成官能基を示し、R1、R2は同一であっても異なっていても良い。また、R3は水素又は炭素数1〜18のアルキル基、nは1〜4の整数を示す。)
【0013】
上記(1)式、(2)式においてR1 、R2 で示す錯形成官能基としては、カルボン酸基、リン酸基、アミノ酸基、イミノ酸基、酸ヒドラジド基、スルホン酸基、アミドキシム基、イミドキシム基、ジチオ酸基、チオ基等やこれらの基のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩が挙げられる。
【0014】
本発明の金属捕集剤としては、1分子中に上記(1)式で示す基のみを有するもの、(2)式で示す基のみを有するもの、(1)式で示す基と(2)式で示す基の両方を有するものが挙げられ、これらは単独又は任意に混合して用いることができる。
【0015】
本発明の金属捕集剤のベースとなる糖類としては、単糖類、二糖類、多糖類が挙げられる。単糖類としては、例えばブドウ糖、グルコン酸、ソルビトール、サッカリン酸、グルクロン酸、マンノース、ガラクトース、フラクトース、D−アロース、アルトース、グロース、イドース、タロース等が挙げられる。二糖類としては、例えば麦芽糖、乳糖、ショ糖等が挙げられる。また多糖類としては、例えばデンプン、セルロース、ペクチン、アルギン酸等が挙げられる。
【0016】
また上記糖類にアルキル基、β−ヒドロキシアルキル基、アシル基、アルキルフェニル基、アルキル置換ヒドロキシアルキル基等を置換基として導入したものも使用することができる。更に硝酸等で処理した糖酸類、部分還元してカルボニル基を導入したものも使用できる。更にまた上記糖類にエポキシ化合物を反応させたものも使用できる。エポキシ化合物としては、エチレンオキシドや、プロピレンオキシド、ブチレンオキシド、1,2-エポキシアルカン等の炭素数1〜60のアルキレンオキシド類、スチレンオキシド等の芳香族オキシド類等が挙げられる。
【0017】
本発明の金属捕集剤を製造するには種々の方法があるが、(1)式、(2)式における錯形成官能基(R1 やR2 )がジチオ酸基である金属捕集剤は、例えばデンプン等の糖類にアクリロニトリルを付加した後、シアノ基をアミノ基に還元したものに、二硫化炭素を反応させることにより得られる。上記二硫化炭素を反応させた後、アルカリ金属水酸化物、アルカリ土類金属水酸化物、水酸化アンモニウム等のアルカリで処理するか、これらアルカリの存在下で二硫化炭素を反応させることにより、ジチオ酸基のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩等を官能基とする金属捕集剤が得られる。上記アルカリ金属水酸化物としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等が、アルカリ土類金属水酸化物としては、水酸化カルシウム、水酸化マグネシウム等が一般に用いられる。
【0018】
上記糖類にアクリロニトリルを付加する反応において、アクリロニトリルの代わりにアリルアミン又はジアリルアミンを用いることもでき、この場合にはシアノ基をアミノ基に還元する工程を省略できる。本発明の金属捕集剤は、糖類の水酸基に由来する酸素原子部分に、上記(1)式又は(2)式で示す基が導入された構造のものであり、1分子中に(1)式で示す基、(2)式で示す基のどちらか一方のみを有していても、両方の基を有していても良い。本発明の金属捕集剤は、上記(1)式、(2)式で示す基の少なくとも一方を、1分子中に少なくとも1個有することを必須とするものであるが、1分子中に含有される(1)式及び/又は(2)式の基の、ベースとなる糖類の元の水酸基の数に対する割合が、5%以上、特に好ましくは10%以上となることが好ましい。
【0019】
本発明の金属捕集剤は、工場やゴミ処理場等から排出される金属を含む廃水や、ゴミ焼却場、火力発電所等から排出される廃ガス中の金属の捕集除去、ゴミ焼却場においてゴミ焼却の際に発生する飛灰(集塵方法の違いによって、MC灰、EP灰、サイクロン灰、スクラバー灰、バッグフィルター灰等がある。)や残灰等の焼却灰、鉱山から排出される鉱滓、廃水処理場等における汚泥、或いは工場跡地等の汚染された土壌の如き金属を含む固体状廃棄物中の金属の固定化等の処理に利用することができる。
【0020】
本発明の金属捕集剤によって廃水を処理する方法としては、廃水中に本発明捕集剤と、必要に応じて凝集剤を添加し、金属捕集剤が廃水中の金属を捕集して生成したフロックを沈殿濾過して廃水から分離する方法が採用される。フロックを分離除去後の廃水は河川等に排出することが可能である。本発明の捕集剤で廃水処理する場合、金属捕集効果を高めるために、廃水のpHを3〜13程度に調整しておくことが好ましい。廃水のpHを調整するには、例えば塩酸、硫酸、硝酸等の酸や、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等のアルカリが使用される。
【0021】
本発明捕集剤による廃水処理方法において、生成したフロックが沈殿し易くするために必要により凝集剤を併用することができる。凝集剤としては、無機凝集剤及び/又は有機凝集剤が用いられる。無機凝集剤としては、硫酸バンド、ポリ塩化アルミニウム、塩化鉄、硫酸鉄、消石灰等が用いられる。また有機凝集剤としては、通常ポリアクリルアミド系の高分子凝集剤が用いれる。ポリアクリルアミド系の高分子凝集剤としては、アクリルアミド重合体、アクリルアミド・アクリル酸(塩)・2−アクリルアミド−2−メチルプロパンスルホン酸(塩)共重合体、アクリルアミド・(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド共重合体、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド重合体等の、ノニオン性、アニオン性、弱カチオン性重合体が使用される。
【0022】
廃ガス処理の方法としては、捕集剤を水に希釈して廃ガスに噴霧したり、捕集剤を水酸化カルシウム、水酸化ナトリウム、水酸化マグネシウム等の酸性ガス吸着剤粉末と混合し、この混合粉末を廃ガスに噴霧する等の方法が採用される。
【0023】
また固体状廃棄物の処理方法としては、固体状廃棄物表面に本発明の金属捕集剤またはその水溶液を散布し、金属捕集剤を固体廃棄物中に浸透させるか、本発明の金属捕集剤と必要により少量の水とを固体廃棄物に添加して混練する方法等が採用される。固体廃棄物の処理に際しても、必要に応じて酸性物質やアルカリ性物質を併用することが好ましい。金属を含む固体廃棄物を本発明の捕集剤で処理すると、固体物質中の金属が本発明の金属捕集剤によって強固に固定化され、固体物質中から溶離し難くなるため、処理後の固体廃棄物は地中に埋設して安全に処理することができる。
【0024】
上記した本発明の金属捕集剤を用いた廃水や廃ガス、固体状廃棄物の処理において、廃水や廃ガス、固体状廃棄物に本発明の金属捕集剤を添加する際に、硫化ナトリウム類を併用することができる。硫化ナトリウム類としては、一硫化ナトリウム、二硫化ナトリウム、三硫化ナトリウム、四硫化ナトリウム、五硫化ナトリウム、硫化水素ナトリウム等が挙げられるが、なかでも一硫化ナトリウム、硫化水素ナトリウムが好ましい。これら硫化ナトリウム類は混合して用いることができる。金属捕集剤とともに硫化ナトリウム類を併用する場合、両者の混合比率は重量比で、金属捕集剤:硫化ナトリウム類=20:80〜95:5、特に40:60〜95:5が好ましい。金属捕集剤とともに硫化ナトリウム類を併用すると、更に金属捕集能、金属固定化能が高められる。
【0025】
また本発明の金属捕集剤により廃水や廃ガス、固体状廃棄物を処理する際に、本発明の金属捕集剤とともに、一般的に用いられている他の金属捕集剤と併用することもできる。
【0026】
本発明の金属捕集剤は、特に水銀、カドミウム、亜鉛、銅、クロム、砒素、金、銀、白金、バナジウム、セレン、アンチモン、タリウム等や、その化合物の捕集性能に優れ、本発明金属捕集剤は、これらを含む廃水、廃ガス、固体廃棄物の処理に特に好適である。
【0027】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。尚、以下の実施例、比較例で使用した処理剤は、以下の通りである。
【0028】
・金属捕集剤A:麦芽糖の水酸基の酸素原子部分に導入された、(1)式で示す基(R1 :ジチオ酸基のナトリウム塩)を有する化合物(麦芽糖の水酸基に対する(1)式で示す基の置換率17%)
・金属捕集剤B:デンプンの水酸基の酸素原子部分に導入された、(1)式で示す基(R1 :メチルリン酸基のカリウム塩)を有する化合物(デンプンの水酸基に対する(1)式で示す基の置換率30%)
【0029】
・金属捕集剤C:ブドウ糖の水酸基の酸素原子部分に導入された、(2)式で示す基(R1 、R2 :ジチオ酸基のリチウム塩)を有する化合物(ブドウ糖の水酸基に対する(2)式で示す基の置換率67%)
・金属捕集剤D:アルギン酸の水酸基の酸素原子部分に導入された、(2)式で示す基(R1 、R2 :カルボン酸基のナトリウム塩)を有する化合物(アルギン酸の水酸基に対する(2)式で示す基の置換率46%)
【0030】
・金属捕集剤E:ガラクトースの水酸基の酸素原子部分に導入された、(1)式で示す基(R1 :メチルリン酸基のカルシウム塩)と、(2)式で示す基(メチルリン酸基のカルシウム塩)とを有する化合物((1)式の基:(2)式の基=90:10、ガラクトースの水酸基に対する(1)式と(2)式の基の合計の置換率98%)
・金属捕集剤F:ショ糖の水酸基の酸素原子部分に導入された、(1)式で示す基(ジチオ酸基のアンモニウム塩))と、(2)式で示す基(ジチオ酸基のアンモニウム塩)とを有する化合物((1)式の基:(2)式の基=80:20、ショ糖の水酸基に対する(1)式と(2)式の基の合計の置換率83%)
【0031】
・金属捕集剤G:ジメチルアミンに二硫化炭素を反応させて得た、官能基としてジチオ酸基のナトリウム塩を1分子中に1個有する有する化合物
・金属捕集剤H:ジエチレントリアミンに二硫化炭素を反応させて得た、官能基としてジチオ酸基のナトリウム塩を1分子中に2個有する有する化合物
【0032】
実施例1〜6、比較例1〜2
水銀0.8mg/l、鉛6.9mg/l、ニッケル1.8mg/l、亜鉛10.4mg/lを含むpH=6.2の廃水1000mlに対し、表1に示す金属捕集剤の水溶液を、金属捕集剤が固型分として17mg添加されるように添加して10分間攪拌した。フロック除去後の廃水中に残存する金属イオン濃度を原子吸光分析法によって測定した結果を表1にあわせて示す。
【0033】
【表1】
Figure 0003844310
【0034】
また生成したフロックからの金属の溶出試験を行った。フロックからの金属の溶出試験は、環境庁告示13号の方法に基いて行った。結果を表1にあわせて示す。
【0035】
実施例7〜12、比較例3〜4
鉛5680mg/kg、水銀554mg/kgを含有する、ゴミ焼却場から得た飛灰(EP灰)200gに、表2に示す金属捕集剤の水溶液を、金属捕集剤が固型分として2.2g添加されるように添加し、20分間充分混練した。上記のようにして処理した処理後の飛灰50gを、pH=5に調整した純水500ml中で、常温にて100分間振とうして未捕集金属の溶出試験を行った。水中に溶出した金属濃度を原子吸光分析法によって測定した結果を表2にあわせて示す。また金属捕集剤による処理を施していない未処理飛灰について上記と同様の試験を行った(参考例1)。結果を表2に示す。
【0036】
【表2】
Figure 0003844310
【0037】
実施例13〜18、比較例5〜6
クロム3970mg/kg、ニッケル5840mg/kg、鉄13540mg/kgを含有する、150gの鉱滓の表面に、表3に示す金属捕集剤(水溶液)を固型分の添加量が1.7gとなるように吹き付け、100分間放置した。上記のようにして処理した処理後の鉱滓50gを、pH=7に調整した純水500ml中で、常温にて60分間振とうして未捕集金属の溶出試験を行った。水中に溶出した金属濃度を原子吸光分析法によって測定した結果を表3に示す。また金属捕集剤による処理を施していない未処理鉱滓について上記と同様の試験を行った(参考例2)。結果を表3にあわせて示す。
【0038】
【表3】
Figure 0003844310
【0039】
実施例19〜24、比較例7〜8
鉛356mg/kg、水銀73mg/kg、クロム565mg/kg、鉄7860mg/kgを含有する、500gの汚泥(含水率74%)の表面に、表4に示す金属捕集剤(水溶液)を、固型分の添加量が1.8gとなるように吹き付け、80分間放置した。上記のようにして処理した処理後の汚泥50gを、pH=6に調整した純水500ml中で、常温にて100分間振とうして未捕集金属の溶出試験を行った。水中に溶出した金属濃度を原子吸光分析法によって測定した結果を表4にあわせて示す。また金属捕集剤による処理を施していない未処理汚泥について上記と同様の試験を行った(参考例3)。結果を表4にあわせて示す。
【0040】
【表4】
Figure 0003844310
【0041】
実施例25〜30、比較例9〜10
水銀0.9mg/Nm3 、ダストを3g/Nm3 含有する170℃の廃ガス(10570Nm3 /時間)に、表5に示す金属捕集剤の水溶液を、金属捕集剤が固型分として1.4mg/Nm3 の割合で供給されるように煙路中に噴霧し、廃ガス中の水銀と金属捕集剤とを反応させた後、バックフィルターにて捕集した。金属捕集剤を噴霧後の廃ガス中の水銀濃度を測定した結果を表5に示す。
【0042】
【表5】
Figure 0003844310
【0043】
【発明の効果】
本発明の金属捕集剤は、糖類の水酸基に由来する酸素原子部分に(1)式、(2)式で示す官能基を有し、この官能基中にはエーテル結合を有しているため、本発明の金属捕集剤で廃水を処理した場合、金属捕集剤が金属を捕集して生成してフロックは、従来の金属捕集剤を用いた場合のように親水性が低下せず、この結果、凝集剤を併用した場合、凝集剤によるフロック凝集作用が充分に発揮される。また本発明の金属捕集剤は天然物である糖類を原料としているため、安全性に優れる。更に本発明の金属捕集剤を、金属を含む固体状廃棄物の処理に利用した場合、固体状廃棄物中の金属確実に固定化することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention treats solid waste containing metal such as waste water, waste gas in a garbage incineration plant, dust obtained from waste incineration, mine obtained in a mine, sludge used in waste water treatment, contaminated soil, etc. The present invention relates to a metal scavenger used in the process.
[0002]
[Prior art]
Strict regulations have been established for metals contained in wastewater, especially heavy metals such as mercury, cadmium, zinc, lead, copper, and chromium, which are harmful to the human body. Various methods have been studied.
[0003]
For example, after adding alkali such as slaked lime and sodium hydroxide to the wastewater to make the metal in the wastewater a hydroxide, the neutralization coagulation sedimentation method, or the ion exchange method, the electrolytic levitation method, An electrodialysis method, an adsorption method, a reverse osmosis method and the like are known.
[0004]
However, the neutralization coagulation sedimentation method generates a large amount of metal hydroxide sludge, and this sludge has poor dewaterability, and because the sludge volume is large, the workability during sludge treatment (for example, transportation workability, etc.) is poor. In addition, depending on how the sludge is discarded, there is a problem that the metal is re-eluted into rivers and seawater to cause secondary pollution. Moreover, it was not easy to remove the metal concentration in wastewater below the national standard by the neutralization coagulation method.
[0005]
On the other hand, methods such as ion exchange, electrolytic levitation, electrodialysis, adsorption, and reverse osmosis also have problems with metal removal rates, operability, running costs, etc. It was only used. For this reason, in recent years, instead of the above-described method, a method of collecting and removing metal in wastewater with a metal scavenger has been widely used.
[0006]
As a metal scavenger used for wastewater treatment, a compound having a dithioic acid group or a dithioic acid group as a functional group is known. The applicant of the present invention assumes that the floc formed by collecting metal has a high sedimentation rate and can efficiently perform wastewater treatment. Polyalkylenepolyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, and polyethyleneimine Have proposed a metal scavenger having a structure in which a dithioic acid group or a dithioic acid group is bonded to a nitrogen atom of a polyamine such as the above, and a wastewater treatment method using this scavenger (for example, JP-A 60-17128, JP-A-2-81478, etc.).
[0007]
[Problems to be solved by the invention]
Wastewater treatment with a metal scavenger is performed by adding a metal scavenger to the wastewater and precipitating and removing flocs produced by the metal scavenger collecting the metal in the wastewater. In general, the metal-collecting agent is superior in hydrophilicity and the metal-collecting ability, but the flocs generated by collecting the metal by the metal-collecting agent are more likely to precipitate as the hydrophilicity is lower. For this reason, the metal collector is required to have a property that is excellent in hydrophilicity before metal collection and has a property that the hydrophilicity is reduced after metal collection. It is currently being developed from.
[0008]
In the method of treating wastewater with a metal scavenger, if the floc produced by collecting the metal in the wastewater is fine, it takes a long time to settle the floc, and an efficient treatment cannot be performed. For this reason, a flocculant is used in combination for the purpose of aggregating flocs and facilitating precipitation. However, the higher the floc hydrophilicity, the more the flocculant has an action of binding and aggregating with floc particles. However, conventional metal scavengers have a low hydrophilicity for flocs produced by collecting metals. Since it has properties, it was difficult to say that the effect of adding the flocculant was fully expressed. In addition, conventionally used metal scavengers are mainly composed of synthetic raw materials, so it is difficult to say that they are sufficient in terms of safety.
[0009]
The present invention has been made in view of the above points, and has a completely different concept from conventional metal scavengers, is excellent in hydrophilicity prior to metal collection, and hydrophilicity of flocs produced by collecting metal. An object of the present invention is to provide a metal scavenger that has such properties that do not decrease, and that is excellent in safety. Another object of the present invention is to provide a method for treating waste water containing metal using the metal scavenger and a method for treating solid waste containing metal.
[0010]
[Means for Solving the Problems]
That is, the metal scavenger of the present invention is characterized by having at least one of the groups represented by the formula (1) or (2) bonded to a saccharide.
[0011]
[Chemical 3]
Figure 0003844310
(However, O is an oxygen atom derived from a hydroxyl group of a saccharide, M is hydrogen or an alkyl group having 1 to 28 carbon atoms, R 1 is a complex-forming functional group, R 3 is hydrogen or an alkyl group having 1 to 18 carbon atoms, n Represents an integer of 1 to 4.)
[0012]
[Formula 4]
Figure 0003844310
(However, O oxygen atom derived from a saccharide hydroxyl group, R 1, R 2 represents a complexing functional group, R 1, R 2 may be different even in the same. Also, R 3 is Hydrogen or an alkyl group having 1 to 18 carbon atoms, n represents an integer of 1 to 4)
[0013]
In the above formulas (1) and (2), the complex-forming functional groups represented by R 1 and R 2 include carboxylic acid groups, phosphoric acid groups, amino acid groups, imino acid groups, acid hydrazide groups, sulfonic acid groups, and amidoxime groups. , Imidoxime groups, dithioic acid groups, thio groups and the like, and alkali metal salts, alkaline earth metal salts, and ammonium salts of these groups.
[0014]
As the metal scavenger of the present invention, one having only the group represented by the above formula (1), one having only the group represented by the formula (2), one represented by the formula (1) and (2) Those having both groups represented by the formula can be mentioned, and these can be used alone or in any mixture.
[0015]
Examples of the saccharide serving as the base of the metal scavenger of the present invention include monosaccharides, disaccharides, and polysaccharides. Examples of monosaccharides include glucose, gluconic acid, sorbitol, saccharic acid, glucuronic acid, mannose, galactose, fructose, D-allose, altose, gulose, idose, talose and the like. Examples of the disaccharide include maltose, lactose, and sucrose. Examples of the polysaccharide include starch, cellulose, pectin, and alginic acid.
[0016]
Moreover, what introduce | transduced the alkyl group, (beta) -hydroxyalkyl group, the acyl group, the alkylphenyl group, the alkyl substituted hydroxyalkyl group etc. into the said saccharides as a substituent can also be used. Furthermore, sugar acids treated with nitric acid or the like, and those obtained by partially reducing and introducing a carbonyl group can also be used. Furthermore, what made the said saccharide react with an epoxy compound can also be used. Examples of the epoxy compound include alkylene oxides having 1 to 60 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, and 1,2-epoxyalkane, and aromatic oxides such as styrene oxide.
[0017]
There are various methods for producing the metal scavenger of the present invention. The metal scavenger in which the complex-forming functional groups (R 1 and R 2 ) in the formulas (1) and ( 2 ) are dithioic acid groups. Is obtained, for example, by adding acrylonitrile to a sugar such as starch and then reacting carbon disulfide with a product obtained by reducing a cyano group to an amino group. After reacting the carbon disulfide, by treating with alkali such as alkali metal hydroxide, alkaline earth metal hydroxide, ammonium hydroxide, or by reacting carbon disulfide in the presence of these alkalis, A metal scavenger having a functional group such as an alkali metal salt, alkaline earth metal salt or ammonium salt of a dithioic acid group can be obtained. As the alkali metal hydroxide, potassium hydroxide, sodium hydroxide, lithium hydroxide and the like are generally used, and as the alkaline earth metal hydroxide, calcium hydroxide, magnesium hydroxide and the like are generally used.
[0018]
In the reaction of adding acrylonitrile to the saccharide, allylamine or diallylamine can be used instead of acrylonitrile. In this case, the step of reducing the cyano group to an amino group can be omitted. The metal scavenger of the present invention has a structure in which a group represented by the above formula (1) or (2) is introduced into an oxygen atom portion derived from a hydroxyl group of a saccharide, and (1) in one molecule. Either one of the group represented by the formula and the group represented by the formula (2) may be included, or both groups may be included. The metal scavenger of the present invention is essential to have at least one group represented by the above formulas (1) and (2) in one molecule, but is contained in one molecule. The ratio of the group represented by the formula (1) and / or the formula (2) to the number of the original hydroxyl group of the saccharide as a base is preferably 5% or more, particularly preferably 10% or more.
[0019]
The metal scavenger of the present invention is used to collect and remove metal from waste water containing metals discharged from factories, waste disposal plants, etc., waste gas discharged from waste incineration plants, thermal power plants, etc., and waste incineration plants. Incinerated ash generated from the incineration of garbage (such as MC ash, EP ash, cyclone ash, scrubber ash, bag filter ash, etc.) It can be used for processing such as immobilization of metal in solid waste containing metal such as sludge in waste slag, wastewater treatment plant, or contaminated soil such as factory site.
[0020]
As a method of treating wastewater with the metal scavenger of the present invention, the present invention scavenger and, if necessary, a flocculant are added to the wastewater, and the metal scavenger collects the metal in the wastewater. A method of separating the generated floc from wastewater by precipitation filtration is employed. Waste water after separating and removing flocs can be discharged into rivers. When wastewater treatment is performed with the collection agent of the present invention, it is preferable to adjust the pH of the wastewater to about 3 to 13 in order to enhance the metal collection effect. In order to adjust the pH of the wastewater, for example, an acid such as hydrochloric acid, sulfuric acid or nitric acid, or an alkali such as sodium hydroxide, potassium hydroxide, calcium hydroxide or magnesium hydroxide is used.
[0021]
In the wastewater treatment method using the collection agent of the present invention, a flocculant can be used in combination as necessary in order to facilitate precipitation of the generated floc. As the flocculant, an inorganic flocculant and / or an organic flocculant is used. As the inorganic flocculant, sulfuric acid band, polyaluminum chloride, iron chloride, iron sulfate, slaked lime and the like are used. As the organic flocculant, a polyacrylamide polymer flocculant is usually used. Polyacrylamide polymer flocculants include acrylamide polymers, acrylamide / acrylic acid (salt) / 2-acrylamido-2-methylpropanesulfonic acid (salt) copolymer, acrylamide / (meth) acryloyloxyethyltrimethylammonium. Nonionic, anionic and weakly cationic polymers such as chloride copolymers and (meth) acryloyloxyethyltrimethylammonium chloride polymers are used.
[0022]
As a method of waste gas treatment, the collection agent is diluted with water and sprayed on waste gas, or the collection agent is mixed with an acid gas adsorbent powder such as calcium hydroxide, sodium hydroxide, magnesium hydroxide, A method such as spraying the mixed powder onto waste gas is employed.
[0023]
As a method for treating solid waste, the metal scavenger of the present invention or an aqueous solution thereof is sprayed on the surface of the solid waste, and the metal scavenger is infiltrated into the solid waste, or the metal trap of the present invention. A method of adding a kneading agent and, if necessary, a small amount of water to the solid waste and kneading is employed. In the treatment of solid waste, it is preferable to use an acidic substance or an alkaline substance as necessary. When the solid waste containing metal is treated with the collection agent of the present invention, the metal in the solid substance is firmly fixed by the metal collection agent of the present invention and is difficult to elute from the solid substance. Solid waste can be safely disposed of in the ground.
[0024]
In the treatment of waste water, waste gas, solid waste using the above-described metal scavenger of the present invention, sodium sulfide is added when adding the metal scavenger of the present invention to waste water, waste gas, solid waste. Can be used together. Examples of sodium sulfides include sodium monosulfide, sodium disulfide, sodium trisulfide, sodium tetrasulfide, sodium pentasulfide, sodium hydrogen sulfide, and the like, among which sodium monosulfide and sodium hydrogen sulfide are preferable. These sodium sulfides can be used as a mixture. When sodium sulfides are used in combination with a metal scavenger, the mixing ratio of the two is a weight ratio, preferably metal scavenger: sodium sulfide = 20: 80 to 95: 5, particularly 40:60 to 95: 5. When sodium sulfides are used in combination with a metal scavenger, the metal scavenging ability and metal immobilization ability are further enhanced.
[0025]
In addition, when treating waste water, waste gas, or solid waste with the metal scavenger of the present invention, the metal scavenger of the present invention is used in combination with other commonly used metal scavengers. You can also.
[0026]
The metal scavenger of the present invention is particularly excellent in the trapping performance of mercury, cadmium, zinc, copper, chromium, arsenic, gold, silver, platinum, vanadium, selenium, antimony, thallium, etc., and their compounds. The collection agent is particularly suitable for treatment of waste water, waste gas, and solid waste containing them.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The treating agents used in the following examples and comparative examples are as follows.
[0028]
-Metal scavenger A: a compound having a group represented by the formula (1) (R 1 : sodium salt of dithioic acid group) introduced into the oxygen atom portion of the hydroxyl group of malt sugar (in the formula (1) with respect to the hydroxyl group of maltose) The substitution rate of the group shown is 17%)
Metal scavenger B: a compound having a group (R 1 : potassium salt of methyl phosphate group) represented by the formula (1) introduced into the oxygen atom portion of the hydroxyl group of starch (in formula (1) for the hydroxyl group of starch) The substitution rate of the group shown is 30%)
[0029]
Metal scavenger C: Compound having a group represented by the formula (2) (R 1 , R 2 : lithium salt of dithioic acid group) introduced into the oxygen atom portion of the hydroxyl group of glucose ((2 ) Substitution rate of the group represented by the formula 67%)
Metal scavenger D: a compound having a group represented by the formula (2) (R 1 , R 2 : sodium salt of carboxylic acid group) introduced into the oxygen atom portion of the hydroxyl group of alginic acid ((2 ) Substitution rate of the group represented by the formula 46%)
[0030]
-Metal scavenger E: a group represented by the formula (1) (R 1 : calcium salt of methyl phosphate group) and a group represented by the formula (2) (methyl phosphate group) introduced into the oxygen atom portion of the hydroxyl group of galactose (Calcium salt of formula (1): group of formula (1): group of formula (2) = 90: 10, total substitution rate of formula (1) and group of formula (2) with respect to the hydroxyl group of galactose is 98%))
Metal scavenger F: a group represented by the formula (1) (ammonium salt of a dithioic acid group) introduced into the oxygen atom portion of the hydroxyl group of sucrose, and a group represented by the formula (2) (a dithioic acid group (Ammonium salt) (group of formula (1): group of formula (2) = 80: 20, total substitution rate of group of formulas (1) and (2) with respect to the hydroxyl group of sucrose is 83%)
[0031]
・ Metal collector G: Compound obtained by reacting carbon disulfide with dimethylamine and having one sodium salt of dithioic acid group as a functional group ・ Metal collector H: Disulfide into diethylenetriamine A compound obtained by reacting carbon and having two sodium salts of dithioic acid groups as a functional group in one molecule.
Examples 1-6, Comparative Examples 1-2
An aqueous solution of the metal scavenger shown in Table 1 for 1000 ml of pH = 6.2 wastewater containing 0.8 mg / l of mercury, 6.9 mg / l of lead, 1.8 mg / l of nickel and 10.4 mg / l of zinc. Was added so that 17 mg of the metal scavenger was added as a solid component and stirred for 10 minutes. Table 1 also shows the results of measuring the concentration of metal ions remaining in the waste water after floc removal by atomic absorption spectrometry.
[0033]
[Table 1]
Figure 0003844310
[0034]
Moreover, the elution test of the metal from the produced | generated floc was done. The metal elution test from floc was carried out based on the method of Notification 13 of the Environment Agency. The results are shown in Table 1.
[0035]
Examples 7-12, Comparative Examples 3-4
200 g of fly ash (EP ash) obtained from a garbage incineration plant containing 5680 mg / kg of lead and 554 mg / kg of mercury, an aqueous solution of the metal scavenger shown in Table 2 as a solid component. .2 g was added and kneaded for 20 minutes. The elution test for uncollected metal was performed by shaking 50 g of the treated fly ash treated as described above in 500 ml of pure water adjusted to pH = 5 at room temperature for 100 minutes. The results of measuring the metal concentration eluted in water by atomic absorption spectrometry are also shown in Table 2. Moreover, the test similar to the above was done about the un-processed fly ash which has not performed the process by a metal scavenger (reference example 1). The results are shown in Table 2.
[0036]
[Table 2]
Figure 0003844310
[0037]
Examples 13-18, Comparative Examples 5-6
On the surface of 150 g of iron slag containing 3970 mg / kg of chromium, 5840 mg / kg of nickel, and 13540 mg / kg of iron, the addition amount of the metal collector shown in Table 3 (aqueous solution) is 1.7 g. And left for 100 minutes. An uncollected metal elution test was conducted by shaking 50 g of the treated iron oxide treated as described above in 500 ml of pure water adjusted to pH = 7 at room temperature for 60 minutes. Table 3 shows the results of measuring the concentration of metal eluted in water by atomic absorption spectrometry. Moreover, the test similar to the above was done about the untreated slag which has not performed the process by a metal scavenger (reference example 2). The results are shown in Table 3.
[0038]
[Table 3]
Figure 0003844310
[0039]
Examples 19-24, Comparative Examples 7-8
On the surface of 500 g of sludge (water content 74%) containing 356 mg / kg of lead, 73 mg / kg of mercury, 565 mg / kg of chromium, and 7860 mg / kg of iron, a metal scavenger (aqueous solution) shown in Table 4 is solidified. It sprayed so that the addition amount of a type | mold part might be 1.8 g, and it was left to stand for 80 minutes. An elution test for uncollected metal was performed by shaking 50 g of the treated sludge treated as described above in 100 ml of pure water adjusted to pH = 6 at room temperature for 100 minutes. The results of measuring the metal concentration eluted in water by atomic absorption spectrometry are also shown in Table 4. Moreover, the test similar to the above was done about the untreated sludge which has not performed the process by a metal scavenger (reference example 3). The results are shown in Table 4.
[0040]
[Table 4]
Figure 0003844310
[0041]
Examples 25-30, Comparative Examples 9-10
To the waste gas (10570 Nm 3 / hour) of 170 ° C. containing 0.9 mg / Nm 3 of mercury and 3 g / Nm 3 of dust, an aqueous solution of the metal collector shown in Table 5 is used as a solid component. It sprayed in the smoke channel so that it might be supplied in the ratio of 1.4 mg / Nm < 3 >, and after making mercury in a waste gas react with a metal scavenger, it collected with the back filter. Table 5 shows the results of measuring the mercury concentration in the waste gas after spraying the metal scavenger.
[0042]
[Table 5]
Figure 0003844310
[0043]
【The invention's effect】
The metal scavenger of the present invention has functional groups represented by the formulas (1) and (2) in the oxygen atom portion derived from the hydroxyl group of the saccharide, and has an ether bond in the functional group. When the wastewater is treated with the metal scavenger of the present invention, the metal scavenger collects the metal and forms a floc, and the hydrophilicity decreases as in the case of using the conventional metal scavenger. As a result, when the flocculant is used in combination, the floc aggregation action by the flocculant is sufficiently exhibited. Moreover, since the metal scavenger of this invention uses the saccharide | sugar which is a natural product as a raw material, it is excellent in safety. Furthermore, when the metal scavenger of the present invention is used for the treatment of solid waste containing metal, the metal in the solid waste can be reliably fixed.

Claims (1)

糖類に結合した、(1)式又は(2)式で示す基の少なくとも一方を有することを特徴とする金属捕集剤。
Figure 0003844310
(但し、Oは糖類の水酸基に由来の酸素原子、Mは水素又は炭素数1〜28のアルキル基、R1は錯形成官能基、R3は水素又は炭素数1〜18のアルキル基、nは1〜4の整数を示す。)
Figure 0003844310
(但し、Oは糖類の水酸基に由来の酸素原子、R 1 、R2は錯形成官能基を示し、R1、R2は同一であっても異なっていても良い。また、R3は水素又は炭素数1〜18のアルキル基、nは1〜4の整数を示す。)
A metal scavenger having at least one of the groups represented by formula (1) or (2) bonded to a saccharide.
Figure 0003844310
(However, O is an oxygen atom derived from a hydroxyl group of a saccharide, M is hydrogen or an alkyl group having 1 to 28 carbon atoms, R 1 is a complex-forming functional group, R 3 is hydrogen or an alkyl group having 1 to 18 carbon atoms, n Represents an integer of 1 to 4.)
Figure 0003844310
(However, O oxygen atom derived from a saccharide hydroxyl group, R 1, R 2 represents a complexing functional group, R 1, R 2 may be different even in the same. Also, R 3 is Hydrogen or an alkyl group having 1 to 18 carbon atoms, n represents an integer of 1 to 4)
JP04946796A 1996-02-13 1996-02-13 Metal scavenger Expired - Fee Related JP3844310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04946796A JP3844310B2 (en) 1996-02-13 1996-02-13 Metal scavenger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04946796A JP3844310B2 (en) 1996-02-13 1996-02-13 Metal scavenger

Publications (2)

Publication Number Publication Date
JPH09217053A JPH09217053A (en) 1997-08-19
JP3844310B2 true JP3844310B2 (en) 2006-11-08

Family

ID=12831954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04946796A Expired - Fee Related JP3844310B2 (en) 1996-02-13 1996-02-13 Metal scavenger

Country Status (1)

Country Link
JP (1) JP3844310B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386113B2 (en) * 2008-06-05 2014-01-15 花王株式会社 Separation promoter composition for inorganic powder

Also Published As

Publication number Publication date
JPH09217053A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
JPH06504943A (en) Heavy metal binding filtration and immobilization method
CN116835734B (en) Desulfurization wastewater integrated efficient flocculation medicament and preparation method thereof
JPH0226557B2 (en)
US5347071A (en) Process for the removal of heavy metals from contaminants
JP2948879B2 (en) Metal collecting agent and metal collecting method
JPH10113677A (en) Trapping agent for heavy metal and trapping method of heavy metal
JP3844310B2 (en) Metal scavenger
US4519921A (en) Methods for removing pollutants from water and waste water and for reducing sludge resistance to dewatering
JP4445632B2 (en) Heavy metal collection agent and collection method
JP3243261B2 (en) Method of immobilizing metal in solid material
JPH0252558B2 (en)
JP4497385B2 (en) Metal collection method
JPH04267982A (en) Immobilization of metal in solid state substance
JP3334786B2 (en) Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JPH09227855A (en) Method for trapping metal
JP4565529B2 (en) Metal scavenger
JPH10113675A (en) Trapping agent for heavy metal and trapping method of heavy metal
JP4023928B2 (en) Metal scavenger
JP3243290B2 (en) Metal collecting agent and metal collecting method
JP3985923B2 (en) Metal scavenger
JPH0582871B2 (en)
JP3373023B2 (en) Metal scavenger
EP0433580B1 (en) Metal scavengers and wastewater treatment processes
JP3272216B2 (en) Treatment of chromium-containing wastewater
JP3201144B2 (en) Metal collecting agent and metal collecting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees