JP3843946B2 - Waveguide converter - Google Patents

Waveguide converter Download PDF

Info

Publication number
JP3843946B2
JP3843946B2 JP2003004022A JP2003004022A JP3843946B2 JP 3843946 B2 JP3843946 B2 JP 3843946B2 JP 2003004022 A JP2003004022 A JP 2003004022A JP 2003004022 A JP2003004022 A JP 2003004022A JP 3843946 B2 JP3843946 B2 JP 3843946B2
Authority
JP
Japan
Prior art keywords
waveguide
metal plate
groove
frequency signal
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003004022A
Other languages
Japanese (ja)
Other versions
JP2004221718A (en
Inventor
正義 秋口
益 濱多
広 甲斐
拓也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003004022A priority Critical patent/JP3843946B2/en
Publication of JP2004221718A publication Critical patent/JP2004221718A/en
Application granted granted Critical
Publication of JP3843946B2 publication Critical patent/JP3843946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、二枚の金属板を結合して結合面に複数の導波管路を形成し、高周波信号の伝送を行う導波管変換器に関し、特に、導波管路を伝搬する高周波信号の各導波管路間の相互干渉低減に関するものである。
【0002】
【従来の技術】
高周波の伝送路が設けられた隣接する空間同士の信号の漏れ込みによる高周波信号の相互干渉を低減する手段としては、筐体及びカバーにより形成される空間を仕切板で分離し、仕切板と筐体の間には導電性ゴム材を設け、カバーを筐体及び仕切板にネジ止めすることにより、導電性ゴム材の反発力によってカバーと仕切板を密着させるという従来技術がある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平8−186401号公報(第2−4頁、第1図)
【0004】
【発明が解決しようとする課題】
上記従来技術においては、カバーと仕切板の間は、導電性ゴム材の反発力によって密着されるとはいっても、金属面同士が接触するだけであり、金属面の加工精度によりわずかな間隙が発生することを解消できない。特に、マイクロ波もしくはミリ波といった高周波信号が伝送される場合は、この間隙が低インピーダンスの平行平板導波路となり、各空間の高周波信号がこの間隙を通って相互に漏れ込んで干渉し、十分なアイソレーションを確保できないことから、高周波信号の伝搬特性の劣化を招くという懸念がある。
【0005】
又、上記従来技術は、各空間内に実装された誘電体基板上の伝送路を高周波が伝搬するものであり、空間自体の形状は厳しい精度が要求されない。しかし、上記従来技術を二枚の金属板を結合して結合面に複数の導波管路を形成し、高周波信号の伝送を行う導波管変換器に適用した場合、空間自体が、高周波信号が伝搬する導波管路として機能することから厳しい精度が要求され、複数の導波管路を寸法上の制約から密に配置しなければならない場合は、仕切板を別部品として、導電性ゴム材を介して組み込むのは、現実的ではない。仕切板に相当する隔壁を二枚の金属板の一方に一体で設け、導波管路を形成するのが現実的であるが、この場合でも、二枚の金属板の接合部に加工精度による間隙ができ、隣接する各導波管路間で高周波信号が相互干渉し、伝搬特性の劣化を招くという懸念があることは、先に述べたとおりである。
【0006】
この発明は、上記の問題点を解消するためになされたものであり、隣接する各導波管路間の相互干渉を低減させ、良好な伝搬特性を有する導波管変換器を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係わる導波管変換器は、第一の金属板と第二の金属板との結合面に複数の導波管路を形成し、位置の異なる複数の導波管開口部を有し、高周波信号の送受信を行う高周波デバイスもしくはアンテナ等の機器間の高周波信号の伝送を行う導波管変換器において、
前記第一の金属板には、前記機器の一方の導波管開口部と対向する位置に
複数の導波管開口部を設け、前記第二の金属板には、前記機器のもう一方の導波管開口部と対向する位置に複数の導波管開口部を設け、前記第一の金属板と前記第二の金属板夫々の導波管開口部の間を連結する導波管路となる第一の溝を設け、この第一の溝が隣接する箇所において、隣接する前記第一の溝の間の隔壁の前記第一の金属板との接合面に、深さが前記導波管路を伝搬する高周波信号の自由空間伝搬波長の1/4未満で、前記第一の金属板と前記第二の金属板との接合面の間隙の少なくとも10倍以上の第二の溝を設けたものである。
【0008】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1における導波管変換器を示す斜視図であり、図2は、図1のA−A’断面図であり、図3は、図1のB−B’断面図であり、図4は、この発明の実施の形態1における第二の金属板3を示す平面図である。図において、第一の金属板1には複数の導波管開口部2が設けられ、第二の金属板3には、導波管開口部2とは異なる位置に、導波管開口部2と同数の導波管開口部4が設けられている。両者の導波管開口部2、4を連結する第一の溝5が第二の金属板3に設けられ、第一の金属板1と第二の金属板3をねじ6で連結することにより、高周波信号が伝搬する導波管路7が形成された導波管変換器となる。この導波管変換器の両面には、それぞれ導波管開口部2、4と対向する位置に導波管開口部を有する、図示していない高周波信号の送受信を行う高周波デバイスもしくはアンテナ等の機器が接続され、導波管開口部の位置が異なる機器間の高周波信号の伝送を可能とする。第一の金属板1と第二の金属板3をねじ6で連結する際には、加工精度により接合面に間隙8が生じる。隣接する第一の溝5の間の隔壁9には、深さが高周波信号の自由空間伝搬波長λの概略1/4の奇数倍の第二の溝10が設けられている。
【0009】
上記のように構成された導波管変換器においては、高周波信号が導波管路を伝搬する際、間隙8を通り、隣接する導波管路7の一方から他方に向かって、高周波信号の漏れ込みが起こる。この高周波信号の漏れ込みは、間隙8が低インピーダンスの平行平板導波路となり、間隙8の上下面に逆位相の電流が流れることによって生ずる。ここで、間隙8の上下面の一方にのみ、深さが高周波信号の自由空間伝搬波長λの概略1/4の奇数倍の第二の溝10を設けることにより、第二の溝10が設けられた側を流れる電流は、第二の溝10の深さの2倍、すなわち、高周波信号の自由空間伝搬波長λの概略1/2の奇数倍長い距離を流れ、位相が反転する。従って、第二の溝10までは、間隙8の上下面を流れる電流が逆位相であったものが、第二の溝10を通過後は、一方のみ位相が反転し、間隙8の上下面を流れる電流は同位相となり、間隙8より先には高周波信号の漏れ込みがなくなり、隣接する導波管路7間の相互干渉を抑制できる。
【0010】
実施の形態2.
この実施の形態2は、実施の形態1を示す図1〜図4と構成は全く同じであり、第二の溝10の深さを、高周波信号の自由空間伝搬波長λの1/4未満で、間隙8の距離の少なくとも10倍以上としたものである。
【0011】
間隙8の上下面間に形成される並行平板導波路の特性インピーダンスは、第二の溝10がある部分と第二の溝10が無い部分とで異なる。特性インピーダンスは並行平板導波路の上下面の距離に比例するため、第二の溝10の深さを間隙8の距離の少なくとも10倍以上とすると、この倍率と同程度に、第二の溝10がある部分と第二の溝10が無い部分とで、特性インピーダンスの不整合が生ずる。そして、この特性インピーダンスの不整合により、第二の溝10がある部分と第二の溝10が無い部分との境界部において、間隙8に漏れ込んできた高周波信号は、特性インピーダンスの不整合に応じた量が反射され、通過する高周波信号を低減できる。例えば、第二の溝10の深さを間隙8の距離の40倍程度とすると、通過する高周波信号は、第二の溝10がある部分と第二の溝10が無い部分との境界部において、−10dB程度、すなわち、1/10程度に低減される。この境界部は第二の溝10の両側面二箇所に形成されるため、隣接する導波管路7の一方から他方に漏れ込む高周波信号は、−20dB程度、すなわち、1/100程度に低減できる。このように、加工上の制約から、第二の溝10の深さを、実施の形態1で示した高周波信号の自由空間伝搬波長λの概略1/4まで深く形成できない場合においても、間隙8の距離の少なくとも10倍以上、好ましくは40倍程度以上とすることにより、隣接する導波管路7の一方から他方に漏れ込む高周波信号を大幅に低減でき、隣接する導波管路7間の相互干渉を抑制できる。
【0012】
実施の形態3.
図5は、この発明の実施の形態3における導波管変換器を示す斜視図であり、図6は、図5のC−C’断面図である。図において、第二の溝10は第一の金属板1に設けられている。上記実施の形態1又は2においては、第二の溝10を第二の金属板3の隔壁9に設けたが、第二の溝10を第一の金属板1に設けても、同様に、隣接する導波管路7間の相互干渉を抑制できるという効果がある上に、隔壁9の幅が十分にとれなく、隔壁9に第二の溝10を設けた場合に、第一の溝5と第二の溝10の間の厚さが薄く、加工が困難、又は、強度が不足するという問題も解決することができる。
【0013】
実施の形態4.
この実施の形態4は、実施の形態1〜3のいずれかにおいて、第二の溝10の長さLを高周波信号の自由空間伝搬波長λの概略1/2の整数倍からオフセットさせた寸法としたものである。
【0014】
第二の溝10の長さLが高周波信号の自由空間伝搬波長λの概略1/2の整数倍となった場合には、一方の導波管路7から第二の溝10に漏れ込んできた高周波信号が第二の溝10の空間内で、長手方向に共振し、高周波信号が増幅されて、間隙8を逆流し戻ってくるため、この逆流してきた高周波信号が導波管路7内を伝搬する高周波信号と干渉し、伝搬特性を劣化させるが、上記の導波管変換器においては、第二の溝10の長さLを高周波信号の自由空間伝搬波長λの概略1/2の整数倍からオフセットさせた寸法とすることにより、第二の溝10の空間内での長手方向の高周波信号の共振が起こらず、伝搬特性の劣化を招く恐れが無い。
【0015】
実施の形態5.
図7は、この発明の実施の形態5における導波管変換器を示す斜視図であり、図8は、図7のD−D’断面図であり、図9は、この発明の実施の形態5における第二の金属板3を示す平面図である。第二の溝10以外は実施の形態1又は2と同じである。本実施の形態においては、第二の溝10の長さLを高周波信号の自由空間伝搬波長λの1/2未満とし、この第二の溝10を二列の千鳥配置としている。
【0016】
上記の導波管変換器においては、第二の溝10の長さLを高周波信号の自由空間伝搬波長λの1/2未満とすることにより、実施の形態4と同様に、第二の溝10の空間内での長手方向の高周波信号の共振が起こらず、伝搬特性の劣化を招く恐れが無いと共に、第二の溝10を二列の千鳥配置とすることにより、一列目の第二の溝10の間隙を通過した高周波信号も、二列目の第二の溝10で高周波信号の漏れ込みが止まり、隣接する導波管路7間の相互干渉を抑制できる。
【0017】
実施の形態6.
図10は、この発明の実施の形態6における導波管変換器を示す斜視図であり、図11は、図10のE−E’断面図である。図において、二列に千鳥配置された第二の溝10の内、片側一列を、第一の金属板1に設けている。上記実施の形態5においては、二列に千鳥配置された第二の溝10を第二の金属板3の隔壁9に設けたが、二列に千鳥配置された第二の溝10の内の少なくともいずれか一列を第一の金属板1に設けても、同様に、共振による伝搬特性の劣化を招く恐れが無く、かつ、隣接する導波管路7間の相互干渉を抑制できるという効果がある上に、隔壁9の幅が十分にとれなく、隔壁9に第二の溝10を設けた場合に、第一の溝5と第二の溝10の間の厚さ、及び、二列に千鳥配置された第二の溝10の間の厚さが薄く、加工が困難、又は、強度が不足するという問題も解決することができる。特に、二列に千鳥配置された第二の溝10の内のいずれか一列のみを第一の金属板1に設けると、第二の溝10の間の隔壁は無くなり、加工上、強度上はより有利となる。
【0018】
【発明の効果】
以上のように、この発明によれば、各導波管路間に形成される隔壁の第一の金属板との接合面に溝を設け、第二の溝の深さを、高周波信号の自由空間伝搬波長λの概略1/4まで深く形成できない場合においても、間隙8の距離の少なくとも10倍以上とすることにより、隣接する各導波管路間の相互干渉を低減させ、良好な伝搬特性を有する導波管変換器を得ることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による導波管変換器の構成を示す斜視図である。
【図2】 この発明の実施の形態1による導波管変換器の図1におけるA−A’断面図である。
【図3】 この発明の実施の形態1による導波管変換器の図1におけるB−B’断面図である。
【図4】 この発明の実施の形態1による導波管変換器の第一の金属板を示す平面図である。
【図5】 この発明の実施の形態3による導波管変換器の構成を示す斜視図である。
【図6】 この発明の実施の形態3による導波管変換器の図5におけるC−C’断面図である。
【図7】 この発明の実施の形態5による導波管変換器の構成を示す斜視図である。
【図8】 この発明の実施の形態5による導波管変換器の図7におけるD−D’断面図である。
【図9】 この発明の実施の形態5による導波管変換器の第一の金属板を示す平面図である。
【図10】 この発明の実施の形態6による導波管変換器の構成を示す斜視図である。
【図11】 この発明の実施の形態6による導波管変換器の図10におけるE−E’断面図である。
【符号の説明】
1 第一の金属板、2 導波管開口部、3 第二の金属板、4 導波管開口部、5 第一の溝、6 ねじ、7 導波管路、8 間隙、9隔壁、10第二の溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waveguide converter that couples two metal plates to form a plurality of waveguide paths on a coupling surface and transmits a high-frequency signal, and more particularly to a high-frequency signal that propagates through a waveguide path. This relates to the reduction of mutual interference between the waveguide paths.
[0002]
[Prior art]
As a means for reducing mutual interference of high frequency signals due to leakage of signals between adjacent spaces provided with a high frequency transmission path, the space formed by the housing and the cover is separated by a partition plate, and the partition plate and the housing are separated. There is a conventional technique in which a conductive rubber material is provided between the bodies, and the cover is screwed to the housing and the partition plate so that the cover and the partition plate are brought into close contact by the repulsive force of the conductive rubber material (for example, patents) Reference 1).
[0003]
[Patent Document 1]
JP-A-8-186401 (page 2-4, FIG. 1)
[0004]
[Problems to be solved by the invention]
In the above prior art, the metal surface is only in contact between the cover and the partition plate due to the repulsive force of the conductive rubber material, and a slight gap is generated due to the processing accuracy of the metal surface. I can't solve that. In particular, when high-frequency signals such as microwaves or millimeter waves are transmitted, this gap becomes a low-impedance parallel plate waveguide, and the high-frequency signals in each space leak through each other and interfere with each other. Since isolation cannot be ensured, there is a concern that the propagation characteristics of high-frequency signals are deteriorated.
[0005]
In addition, the above-described prior art is such that a high frequency propagates through a transmission line on a dielectric substrate mounted in each space, and the shape of the space itself does not require strict accuracy. However, when the above prior art is applied to a waveguide converter that couples two metal plates to form a plurality of waveguide paths on the coupling surface and transmits a high-frequency signal, the space itself becomes a high-frequency signal. When it is required to have high precision because it functions as a waveguide that propagates, and when multiple waveguides must be densely placed due to dimensional constraints, the partition plate is a separate part and conductive rubber is used. Incorporating via material is not practical. It is realistic to provide a partition wall corresponding to the partition plate integrally on one of the two metal plates to form a waveguide path, but even in this case, depending on the processing accuracy at the joint of the two metal plates As described above, there is a concern that a gap is formed and high-frequency signals interfere with each other between adjacent waveguide paths, leading to deterioration of propagation characteristics.
[0006]
The present invention has been made to solve the above-mentioned problems, and has an object to reduce a mutual interference between adjacent waveguide paths and to obtain a waveguide converter having a good propagation characteristic. And
[0007]
[Means for Solving the Problems]
The waveguide converter according to the present invention has a plurality of waveguide paths formed on the coupling surface of the first metal plate and the second metal plate, and having a plurality of waveguide openings at different positions. In a waveguide converter that transmits high-frequency signals between devices such as high-frequency devices or antennas that transmit and receive high-frequency signals,
The first metal plate has a position facing one waveguide opening of the device.
A plurality of waveguide openings are provided, and the second metal plate is provided with a plurality of waveguide openings at a position facing the other waveguide opening of the device, and the first metal A first groove serving as a waveguide path connecting between the waveguide openings of the plate and the second metal plate is provided, and the first groove adjacent to the first groove is adjacent to the first groove. The depth of the partition wall between the grooves and the first metal plate is less than ¼ of the free space propagation wavelength of the high-frequency signal propagating through the waveguide, A second groove is provided at least 10 times the gap at the joint surface with the second metal plate .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a perspective view showing a waveguide converter according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB of FIG. 4 is a cross-sectional view, and FIG. 4 is a plan view showing the second metal plate 3 according to the first embodiment of the present invention. In the figure, the first metal plate 1 is provided with a plurality of waveguide openings 2, and the second metal plate 3 has a waveguide opening 2 at a position different from the waveguide openings 2. The same number of waveguide openings 4 are provided. A first groove 5 that connects both the waveguide openings 2 and 4 is provided in the second metal plate 3, and the first metal plate 1 and the second metal plate 3 are connected by screws 6. A waveguide converter having a waveguide 7 through which a high-frequency signal propagates is formed. Equipment such as a high-frequency device or an antenna (not shown) that transmits and receives a high-frequency signal (not shown) having waveguide openings at positions facing the waveguide openings 2 and 4 on both surfaces of the waveguide converter. Are connected, and high-frequency signals can be transmitted between devices having different waveguide opening positions. When connecting the first metal plate 1 and the second metal plate 3 with the screws 6, a gap 8 is formed on the joint surface due to processing accuracy. The partition wall 9 between the adjacent first grooves 5 is provided with a second groove 10 whose depth is an odd multiple of approximately 1/4 of the free space propagation wavelength λ of the high-frequency signal.
[0009]
In the waveguide converter configured as described above, when a high-frequency signal propagates through the waveguide, the high-frequency signal passes through the gap 8 from one of the adjacent waveguides 7 to the other. Leakage occurs. The leakage of the high-frequency signal occurs when the gap 8 becomes a low impedance parallel plate waveguide and currents in opposite phases flow on the upper and lower surfaces of the gap 8. Here, the second groove 10 is provided only on one of the upper and lower surfaces of the gap 8 by providing the second groove 10 whose depth is an odd multiple of approximately 1/4 of the free space propagation wavelength λ of the high-frequency signal. The current flowing on the selected side flows through a distance twice as long as the depth of the second groove 10, that is, an odd number times longer than about half of the free space propagation wavelength λ of the high-frequency signal, and the phase is inverted. Therefore, up to the second groove 10, the current flowing through the upper and lower surfaces of the gap 8 has an opposite phase, but after passing through the second groove 10, only one of the phases is reversed, and the upper and lower surfaces of the gap 8 are The flowing currents have the same phase, the high-frequency signal does not leak before the gap 8, and mutual interference between the adjacent waveguides 7 can be suppressed.
[0010]
Embodiment 2. FIG.
The second embodiment has the same configuration as that of FIGS. 1 to 4 showing the first embodiment, and the depth of the second groove 10 is less than ¼ of the free space propagation wavelength λ of the high-frequency signal. , At least 10 times the distance of the gap 8.
[0011]
The characteristic impedance of the parallel plate waveguide formed between the upper and lower surfaces of the gap 8 is different between a portion where the second groove 10 is provided and a portion where the second groove 10 is not provided. Since the characteristic impedance is proportional to the distance between the upper and lower surfaces of the parallel plate waveguide, if the depth of the second groove 10 is at least 10 times the distance of the gap 8, the second groove 10 is approximately equal to this magnification. There is a mismatch in characteristic impedance between the portion where there is and the portion where the second groove 10 is not provided. Due to this characteristic impedance mismatch, the high-frequency signal leaking into the gap 8 at the boundary between the portion with the second groove 10 and the portion without the second groove 10 causes a mismatch in the characteristic impedance. The corresponding amount is reflected and the high-frequency signal passing therethrough can be reduced. For example, if the depth of the second groove 10 is about 40 times the distance of the gap 8, the high-frequency signal that passes through the boundary portion between the portion where the second groove 10 is present and the portion where the second groove 10 is absent. , About -10 dB, that is, about 1/10. Since this boundary portion is formed at two locations on both sides of the second groove 10, the high-frequency signal leaking from one of the adjacent waveguides 7 to the other is reduced to about -20 dB, that is, about 1/100. it can. As described above, even when the depth of the second groove 10 cannot be deeply formed to about 1/4 of the free space propagation wavelength λ of the high-frequency signal shown in the first embodiment due to processing restrictions, the gap 8 The high-frequency signal leaking from one of the adjacent waveguide paths 7 to the other can be greatly reduced by setting the distance to at least 10 times or more, preferably about 40 times or more of the distance between the adjacent waveguide paths 7. Mutual interference can be suppressed.
[0012]
Embodiment 3 FIG.
5 is a perspective view showing a waveguide converter according to Embodiment 3 of the present invention, and FIG. 6 is a cross-sectional view taken along the line CC ′ of FIG. In the figure, the second groove 10 is provided in the first metal plate 1. In the first or second embodiment, the second groove 10 is provided in the partition wall 9 of the second metal plate 3, but even if the second groove 10 is provided in the first metal plate 1, In addition to the effect that the mutual interference between the adjacent waveguides 7 can be suppressed, the width of the partition wall 9 is not sufficient, and the second groove 10 is provided in the partition wall 9. The problem that the thickness between the first and second grooves 10 is thin and the processing is difficult or the strength is insufficient can be solved.
[0013]
Embodiment 4 FIG.
This Embodiment 4 has a dimension obtained by offsetting the length L of the second groove 10 from an integer multiple of approximately ½ of the free space propagation wavelength λ of the high-frequency signal in any of Embodiments 1 to 3. It is what.
[0014]
When the length L of the second groove 10 is an integral multiple of approximately half the free space propagation wavelength λ of the high-frequency signal, the second groove 10 leaks into the second groove 10 from one waveguide 7. Since the high frequency signal resonates in the longitudinal direction in the space of the second groove 10 and the high frequency signal is amplified and flows back through the gap 8, the high frequency signal that has flowed back in the waveguide path 7. However, in the above-mentioned waveguide converter, the length L of the second groove 10 is set to approximately half the free space propagation wavelength λ of the high-frequency signal. By making the dimensions offset from an integral multiple, resonance of the high-frequency signal in the longitudinal direction in the space of the second groove 10 does not occur, and there is no possibility of causing deterioration of propagation characteristics.
[0015]
Embodiment 5 FIG.
7 is a perspective view showing a waveguide converter according to Embodiment 5 of the present invention, FIG. 8 is a sectional view taken along the line DD ′ of FIG. 7, and FIG. 9 is an embodiment of the present invention. 5 is a plan view showing a second metal plate 3 in FIG. The second embodiment is the same as the first or second embodiment except for the second groove 10. In the present embodiment, the length L of the second groove 10 is less than ½ of the free space propagation wavelength λ of the high-frequency signal, and the second groove 10 is arranged in two rows in a staggered manner.
[0016]
In the above-described waveguide converter, the length L of the second groove 10 is set to be less than ½ of the free space propagation wavelength λ of the high-frequency signal, so that the second groove 10 is the same as in the fourth embodiment. The resonance of the high frequency signal in the longitudinal direction in the space of 10 does not occur and there is no possibility of causing the deterioration of the propagation characteristics, and the second groove 10 is arranged in two rows in a staggered manner, so that the second in the first row The high-frequency signal that has passed through the gap between the grooves 10 also stops leaking in the second groove 10 in the second row, and the mutual interference between the adjacent waveguides 7 can be suppressed.
[0017]
Embodiment 6 FIG.
10 is a perspective view showing a waveguide converter according to Embodiment 6 of the present invention, and FIG. 11 is a cross-sectional view taken along line EE ′ of FIG. In the drawing, one row on one side of the second grooves 10 arranged in a staggered manner in two rows is provided on the first metal plate 1. In the fifth embodiment, the second grooves 10 arranged in a staggered manner in two rows are provided in the partition walls 9 of the second metal plate 3, but the second grooves 10 arranged in a staggered manner in two rows are included in the second grooves 10. Even if at least one of the rows is provided on the first metal plate 1, similarly, there is no risk of causing deterioration of propagation characteristics due to resonance, and it is possible to suppress mutual interference between adjacent waveguide paths 7. In addition, when the partition wall 9 is not sufficiently wide and the partition wall 9 is provided with the second groove 10, the thickness between the first groove 5 and the second groove 10 and in two rows The problem that the thickness between the second grooves 10 arranged in a staggered manner is thin and the processing is difficult or the strength is insufficient can be solved. In particular, when only one row of the second grooves 10 arranged in a staggered manner in two rows is provided on the first metal plate 1, the partition walls between the second grooves 10 are eliminated, and the processing and strength are increased. More advantageous.
[0018]
【The invention's effect】
As described above, according to the present invention, a groove is provided in the joint surface between the first metal plate and the partition wall formed between the waveguides, and the depth of the second groove is set according to the freedom of the high frequency signal. Even when it cannot be formed as deep as about ¼ of the spatial propagation wavelength λ, the mutual interference between the adjacent waveguides can be reduced by setting it to at least 10 times the distance of the gap 8 , and good propagation characteristics can be obtained. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a waveguide converter according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of the waveguide converter according to the first embodiment of the present invention, taken along the line AA ′ in FIG.
3 is a cross-sectional view of the waveguide converter according to the first embodiment of the present invention, taken along the line BB ′ in FIG.
FIG. 4 is a plan view showing a first metal plate of the waveguide converter according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing a configuration of a waveguide converter according to a third embodiment of the present invention.
6 is a cross-sectional view taken along the line CC ′ in FIG. 5 of a waveguide converter according to a third embodiment of the present invention.
FIG. 7 is a perspective view showing a configuration of a waveguide converter according to a fifth embodiment of the present invention.
8 is a cross-sectional view taken along the line DD ′ in FIG. 7 of a waveguide converter according to a fifth embodiment of the present invention.
FIG. 9 is a plan view showing a first metal plate of a waveguide converter according to a fifth embodiment of the present invention.
FIG. 10 is a perspective view showing a configuration of a waveguide converter according to a sixth embodiment of the present invention.
FIG. 11 is a cross-sectional view taken along line EE ′ in FIG. 10 of a waveguide converter according to a sixth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st metal plate, 2 Waveguide opening part, 3rd metal plate, 4 Waveguide opening part, 1st groove | channel, 6 Screw, 7 Waveguide path, 8 Gap, 9 Bulkhead, 10 Second groove

Claims (5)

第一の金属板と第二の金属板との結合面に複数の導波管路を形成し、位置の異なる複数の導波管開口部を有し、高周波信号の送受信を行う高周波デバイスもしくはアンテナ等の機器間の高周波信号の伝送を行う導波管変換器において、
前記第一の金属板には、前記機器の一方の導波管開口部と対向する位置に
複数の導波管開口部を設け、
前記第二の金属板には、前記機器のもう一方の導波管開口部と対向する位置
に複数の導波管開口部を設け、前記第一の金属板と前記第二の金属板夫々の導波管開口部の間を連結する導波管路となる第一の溝を設け、この第一の溝が隣接する箇所において、隣接する前記第一の溝の間の隔壁の前記第一の金属板との接合面に、深さが前記導波管路を伝搬する高周波信号の自由空間伝搬波長の1/4未満で、前記第一の金属板と前記第二の金属板との接合面の間隙の少なくとも10倍以上の第二の溝を設けたことを特徴とする導波管変換器。
A high-frequency device or antenna that forms a plurality of waveguide paths on the coupling surface between the first metal plate and the second metal plate, has a plurality of waveguide openings at different positions, and transmits and receives a high-frequency signal In a waveguide converter that transmits high-frequency signals between devices such as
The first metal plate is provided with a plurality of waveguide openings at positions facing one waveguide opening of the device,
The second metal plate is provided with a plurality of waveguide openings at positions facing the other waveguide opening of the device, and each of the first metal plate and the second metal plate is provided. A first groove serving as a waveguide path that connects between the waveguide openings is provided, and the first groove of the partition between the adjacent first grooves is provided at a location where the first groove is adjacent. A junction surface between the first metal plate and the second metal plate, the depth of which is less than ¼ of the free space propagation wavelength of the high-frequency signal propagating through the waveguide, on the junction surface with the metal plate A waveguide converter characterized in that a second groove at least 10 times the gap is provided.
前記第二の溝を、隣接する前記第一の溝の間の隔壁と対向する前記第一の金属板の接合面に設けたことを特徴とする請求項1記載の導波管変換器。2. The waveguide converter according to claim 1, wherein the second groove is provided on a joint surface of the first metal plate facing a partition wall between the adjacent first grooves. 前記第二の溝の長さを、前記導波管路を伝搬する高周波信号の自由空間伝搬波長の概略1/2の整数倍からオフセットさせた寸法としたことを特徴とする請求項1もしくは請求項2に記載の導波管変換器。Wherein the length of the second groove, claim 1 or claims, characterized in that the dimensions are offset from integer multiples of the outline half the free-space propagation wavelength of the high frequency signal propagating through the waveguide path Item 3. The waveguide converter according to Item 2 . 前記第二の溝の長さを、前記導波管路を伝搬する高周波信号の自由空間伝搬波長の1/2未満とし、二列の千鳥配置としたことを特徴とする請求項1記載の導波管変換器。Wherein the length of the second groove, the waveguide path is less than half of the free space propagation wavelength for high-frequency signal propagated, guide according to claim 1, characterized in that a staggered arrangement of the two rows Wave tube converter. 前記二列の千鳥配置とする前記第二の溝の内の少なくともいずれか一列を隣接する前記第一の溝の間の隔壁と対向する前記第一の金属板の接合面に設けたことを特徴とする請求項4記載の導波管変換器。At least one of the second grooves arranged in a staggered arrangement of the two rows is provided on a joint surface of the first metal plate facing a partition wall between the adjacent first grooves. The waveguide converter according to claim 4 .
JP2003004022A 2003-01-10 2003-01-10 Waveguide converter Expired - Fee Related JP3843946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004022A JP3843946B2 (en) 2003-01-10 2003-01-10 Waveguide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004022A JP3843946B2 (en) 2003-01-10 2003-01-10 Waveguide converter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006153706A Division JP4333696B2 (en) 2006-06-01 2006-06-01 Waveguide converter

Publications (2)

Publication Number Publication Date
JP2004221718A JP2004221718A (en) 2004-08-05
JP3843946B2 true JP3843946B2 (en) 2006-11-08

Family

ID=32895117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004022A Expired - Fee Related JP3843946B2 (en) 2003-01-10 2003-01-10 Waveguide converter

Country Status (1)

Country Link
JP (1) JP3843946B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035434A1 (en) 2008-12-26 2010-07-08 Mitsubishi Electric Corporation Waveguide structure, antenna device using the waveguide structure, and vehicle radar device using a waveguide structure or an antenna device
US8169363B2 (en) 2009-03-10 2012-05-01 Kabushiki Kaisha Toshiba Antenna device and radar apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645664B2 (en) 2008-03-06 2011-03-09 株式会社デンソー High frequency equipment
JP4687731B2 (en) 2008-03-06 2011-05-25 株式会社デンソー High frequency equipment
EP2261514A4 (en) * 2008-03-25 2013-06-26 Mitsubishi Electric Corp Stacked conduit assembly and screw fastening method for conduit part
JP4592786B2 (en) 2008-06-18 2010-12-08 三菱電機株式会社 Antenna device and radar
JP4679617B2 (en) 2008-08-26 2011-04-27 三菱電機株式会社 Waveguide device, antenna, and vehicle radar device
JP4825250B2 (en) * 2008-09-10 2011-11-30 三菱電機株式会社 Waveguide bend
JP2010252092A (en) * 2009-04-16 2010-11-04 Tyco Electronics Japan Kk Waveguide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035434A1 (en) 2008-12-26 2010-07-08 Mitsubishi Electric Corporation Waveguide structure, antenna device using the waveguide structure, and vehicle radar device using a waveguide structure or an antenna device
US8633790B2 (en) 2008-12-26 2014-01-21 Mitsubishi Electric Corporation Waveguide structure, antenna apparatus that uses that waveguide structure, and vehicle radar apparatus in which a waveguide structure or an antenna apparatus is used
US8169363B2 (en) 2009-03-10 2012-05-01 Kabushiki Kaisha Toshiba Antenna device and radar apparatus

Also Published As

Publication number Publication date
JP2004221718A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP3498597B2 (en) Dielectric line conversion structure, dielectric line device, directional coupler, high frequency circuit module, and transmission / reception device
JP3843946B2 (en) Waveguide converter
JP5885775B2 (en) Transmission line and high frequency circuit
JP2016111459A (en) Millimeter wave band transmission path conversion structure
US8054142B2 (en) Plural rectangular waveguides having longer cross-sectional lengths based on shorter waveguide line lengths
JP2010074794A (en) Coupler and communication device
JP4825250B2 (en) Waveguide bend
JPWO2018189834A1 (en) Connection structure of dielectric waveguide
JP7129263B2 (en) converter
JP2010114650A (en) Waveguide structure
US11394095B2 (en) Dielectric filter, array antenna device
JP4333696B2 (en) Waveguide converter
US7561013B2 (en) Small NRD guide bend
US7423497B2 (en) Device for coupling suspended stripline and NRD guides
JP6778703B2 (en) Higher mode coupler
JP2007228036A (en) Waveguide/microstrip line converter
JP4572838B2 (en) Slot array antenna
JP2016082308A (en) Electronic circuit
WO2013027268A1 (en) Electromagnetic wave propagation medium
JP5053245B2 (en) 180 degree hybrid
Hussain Short-slot hybrid coupler in gap waveguide at 38 GHz
CN113612000B (en) Rectangular waveguide I-shaped isolation network double-microstrip converter
JP4869306B2 (en) Transmission line structure
EP3796465A1 (en) Radio frequency device
WO2020115820A1 (en) Waveguide planar line converter and high-frequency module

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R151 Written notification of patent or utility model registration

Ref document number: 3843946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees