JP3843839B2 - Angular velocity sensor - Google Patents

Angular velocity sensor Download PDF

Info

Publication number
JP3843839B2
JP3843839B2 JP2001400138A JP2001400138A JP3843839B2 JP 3843839 B2 JP3843839 B2 JP 3843839B2 JP 2001400138 A JP2001400138 A JP 2001400138A JP 2001400138 A JP2001400138 A JP 2001400138A JP 3843839 B2 JP3843839 B2 JP 3843839B2
Authority
JP
Japan
Prior art keywords
electrode extension
detection
detection electrode
drive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001400138A
Other languages
Japanese (ja)
Other versions
JP2003194544A (en
Inventor
正数 畑中
幸二 山本
昌良 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001400138A priority Critical patent/JP3843839B2/en
Publication of JP2003194544A publication Critical patent/JP2003194544A/en
Application granted granted Critical
Publication of JP3843839B2 publication Critical patent/JP3843839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、航空機・車両などの移動体の姿勢制御やナビゲーションシステム等に用いられる角速度センサに関するものである。
【0002】
【従来の技術】
従来のこの種の角速度センサとしては特開平11−51658号公報に開示されたものが知られている。
【0003】
以下、従来の角速度センサについて、図面を参照しながら説明する。
【0004】
図7は従来の角速度センサの斜視図である。
【0005】
図7において、1は音叉で、一対の柱部2と、この柱部2の端部を接続する固着部3とにより構成されている。そして、前記音叉1における一対の柱部2のそれぞれの上面には第1の駆動電極4が設けられるとともに、この第1の駆動電極4と同一面上に第2の駆動電極5を設けている。そしてまた、前記音叉1は、一対の柱部2における第1の駆動電極4および第2の駆動電極5を設けた面と同一面上にモニター電極6および分極検知電極7を設けるとともに、一対の柱部2のそれぞれの外側面には検出電極8を設けている。9は支持部で、前記音叉1における固着部3を支持している。10は基台で、上面に凸部11を設けるとともに、この凸部11の上面に支持部9の下面を固着している。また、前記基台10には上面から下面にわたって絶縁物12を介して挿通する端子13を設けており、そしてこの端子13は、音叉1における第1の駆動電極4、第2の駆動電極5、モニター電極6および検出電極8にワイヤー線14により電気的に接続されている。
【0006】
以上のように構成されている従来の角速度センサについて、次に、その動作を説明する。
【0007】
音叉1における第1の駆動電極4および第2の駆動電極5に交流電圧を印加することにより音叉1が駆動方向の固有振動数で駆動方向に速度Vで屈曲振動する。この状態において、音叉1が音叉1の中心軸回りに角速度ωで回転すると、音叉1における一対の柱部2にF=2mV・ωのコリオリ力が発生する。このコリオリ力により検出電極8に発生する電荷を増幅し、出力電圧として外部コンピュータ等(図示せず)で測定することにより角速度を検出していた。
【0008】
ここで、音叉1に強い振動が長時間にわたって加わることにより、第1の駆動電極4および第2の駆動電極5と基台10における端子13とを結ぶワイヤー線14が外れた場合、従来の角速度センサにおいては、音叉1が振動しなくなるため、ワイヤー線14の断線を検知することができるものであった。
【0009】
【発明が解決しようとする課題】
しかしながら上記従来の構成においては、角速度センサに強い振動が加わることにより、音叉1における一方の検出電極8と端子13とを結ぶワイヤー線14が外れてしまうと、出力電圧が半減するため、あたかも角速度センサに半分の角速度が加わっているように誤認してしまうこととなり、その結果、ワイヤー線14の断線を検知することができないため、誤まった角速度を検出してしまうという課題を有していた。
【0010】
本発明は上記従来の課題を解決するもので、誤った角速度を検出するということがなく、断線を確実に検知することができる角速度センサを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を有するものである。
【0012】
本発明の請求項1に記載の発明は、特に、一対の駆動電極および一対の検出電極を設けた振動体と、この振動体における一対の駆動電極および一対の検出電極を延出させて形成した一対の駆動電極延出部および一対の検出電極延出部を有する固着部とからなる音叉と、この音叉における固着部を固着するとともに少なくとも4つの端子を挿通させた基台と、この基台における端子と前記音叉の固着部における駆動電極延出部あるいは検出電極延出部とを電気的に接続するワイヤー線とを備え、前記音叉の振動体における駆動電極と検出電極との間隙を略同一にすることにより、駆動電極と両隣の検出電極との間に生じる静電容量を略同一にするとともに、音叉における固着部に駆動電極を延出させて形成した駆動電極延出部の両隣に、この駆動電極延出部との間隙が略同一になるように検出電極延出部を延出形成することにより、駆動電極延出部と両隣の検出電極延出部との間に生じる静電容量を略同一にしたもので、この構成によれば、角速度センサに角速度を付与しない状態において、音叉における一方の検出電極と端子とを結ぶワイヤー線が外れてしまうと、駆動電極から発生する高周波成分によるクロストークノイズは他方の検出電極のみに誘電体よりなる振動体を伝わって到達することになり、その結果、クロストークノイズにより一対の検出電極に発生する電荷が互いに打ち消しあうことはなくなるため、常時、他方の検出電極に電圧が発生することになり、これにより、一方の検出電極と端子とを結ぶワイヤー線の断線を検知することができるという作用効果を有するとともに、クロストークノイズにより発生する電荷が駆動電極延出部から誘電体よりなる固着部を伝わって検出電極延出部に到達することになるため、音叉における一方の検出電極延出部と電気的に接続された検出電極と端子とを結ぶワイヤー線が外れてしまうと、駆動電極延出部から発生する高周波成分によるクロストークノイズが他方の検出電極延出部のみに誘電体よりなる固着部を伝わって到達することになり、その結果、クロストークノイズにより一対の検出電極延出部に発生する電荷が互いに打ち消しあうことはなくなるため、常時、他方の検出電極延出部に発生する電圧は大となり、これにより、一方の検出電極と端子とを結ぶワイヤー線の断線を確実に検知することができるという作用効果を有するものである。
【0013】
本発明の請求項に記載の発明は、特に、音叉における固着部に一方の駆動電極を延出させて形成した一方の駆動電極延出部に一方の検出電極延出部を沿わせるとともに、前記固着部に他方の駆動電極を延出させて形成した他方の駆動電極延出部に他方の検出電極延出部を沿わせ、かつ前記一方の駆動電極延出部に一方の検出電極延出部を沿わせる距離およびそれらの間隙と、他方の駆動電極延出部に他方の検出電極延出部を沿わせる距離およびそれらの間隙とを略同一にすることにより、一方の駆動電極延出部と一方の検出電極延出部との間に生じる静電容量および他方の駆動電極延出部と他方の検出電極延出部との間に生じる静電容量を互いに略同一にしたもので、この構成によれば、駆動電極延出部に検出電極延出部が沿う距離がさらに長くなるため、クロストークノイズが検出電極延出部に到達することにより発生する電荷が大となり、その結果、一方の検出電極と端子とを結ぶワイヤー線の断線を、さらに確実に検知することができるという作用効果を有するものである。
【0014】
本発明の請求項に記載の発明は、特に、駆動電極延出部を枝部を有する櫛形状に形成するとともに、検出電極延出部を枝部を有する櫛形状に形成し、さらに前記駆動電極延出部における枝部と前記検出電極延出部における枝部とを互いに交差させたもので、この構成によれば、クロストークノイズが駆動電極延出部における枝部から検出電極延出部における枝部に到達するため、固着部の長さを長くすることなく、検出電極延出部に発生する電圧を大きくすることができ、その結果、一方の検出電極と端子とを結ぶワイヤー線の断線を、さらに、確実に検知することができるという作用効果を有するものである。
【0015】
本発明の請求項に記載の発明は、特に、上面および下面に一方の駆動電極を設けるとともに両側面に一対の検出電極を設けた第1の振動体と、この第1の振動体と平行に設けられるとともに上面にモニター電極を設け、かつ下面に駆動電極を設け、さらに両側面に検出電極を設けた第2の振動体と、前記第1の振動体の一端部と第2の振動体の一端部とを接続するとともに、上面に第1の振動体における駆動電極、検出電極、第2の振動体におけるモニター電極、駆動電極および検出電極をそれぞれ延出させて駆動電極延出部、検出電極延出部およびモニター電極延出部を形成した固着部とからなる音叉と、この音叉における固着部を上面に固着するとともに少なくとも5つの端子挿入孔を設け、この端子挿入孔に少なくとも5つの端子を挿通させた基台と、この基台における端子と前記音叉の固着部における駆動電極延出部、検出電極延出部およびモニター電極延出部とを電気的に接続するワイヤー線とを備え、前記第1の振動体および第2の振動体における駆動電極と検出電極との間隙を略同一にすることにより、第1の振動体および第2の振動体における駆動電極と両隣の検出電極との間に生じる静電容量を略同一にするとともに、音叉における固着部に駆動電極を延出させて形成した第1の振動体あるいは第2の振動体における駆動電極延出部の両隣に、この駆動電極延出部との間隙が略同一になるように第1の振動体あるいは第2の振動体における検出電極延出部を延出形成することにより、駆動電極延出部と両隣の検出電極延出部との間に生じる静電容量を略同一にしたもので、この構成によれば、角速度センサに角速度を付与しない状態において、音叉における一方の検出電極と端子とを結ぶワイヤー線が外れてしまうと、駆動電極から発生する高周波成分によるクロストークノイズが他方の検出電極のみに誘電体よりなる振動体を伝わって到達することになり、その結果、クロストークノイズにより一対の検出電極に発生する電荷が互いに打ち消しあうことはなくなるため、常時、他方の検出電極に電圧が発生することになり、これにより、一方の検出電極と端子とを結ぶワイヤー線の断線を検知することができるとともに、クロストークノイズにより発生する電荷が駆動電極延出部から誘電体よりなる固着部を伝わって検出電極延出部に到達することになるため、音叉における一方の検出電極延出部と電気的に接続された検出電極と端子とを結ぶワイヤー線が外れてしまうと、駆動電極延出部から発生する高周波成分によるクロストークノイズが他方の検出電極延出部のみに誘電体よりなる固着部を伝わって到達することになり、その結果、クロストークノイズにより一対の検出電極延出部に発生する電荷が互いに打ち消しあうことはなくなるため、常時、他方の検出電極延出部に発生する電圧は大となり、これにより、一方の検出電極と端子とを結ぶワイヤー線の断線を確実に検知することができるという作用効果を有するものである。
【0016】
本発明の請求項に記載の発明は、特に、固着部に駆動電極を延出させて形成した第1の振動体における駆動電極延出部に第1の振動体における検出電極延出部を沿わせるとともに、前記固着部に駆動電極を延出させて形成した第2の振動体における駆動電極延出部に第2の振動体における検出電極延出部を沿わせ、かつ前記第1の振動体における駆動電極延出部に検出電極延出部を沿わせる距離およびそれらの間隙と、第2の振動体における駆動電極延出部に検出電極延出部を沿わせる距離およびそれらの間隙とを略同一にすることにより、駆動電極延出部と検出電極延出部との間に生じる静電容量を互いに略同一にしたもので、この構成によれば、駆動電極延出部に検出電極延出部が沿う距離がさらに長くなるため、クロストークノイズが検出電極延出部に到達することにより発生する電荷が大となり、その結果、一方の検出電極と端子とを結ぶワイヤー線の断線を、さらに確実に検知することができるという作用効果を有するものである。
【0017】
本発明の請求項に記載の発明は、特に、駆動電極延出部を枝部を有する櫛形状に形成するとともに、検出電極延出部を枝部を有する櫛形状に形成し、さらに前記駆動電極延出部における枝部と前記検出電極延出部における枝部とを互いに交差させたもので、この構成によれば、クロストークノイズが駆動電極延出部における枝部から検出電極延出部における枝部に到達するため、固着部の長さを長くすることなく、検出電極延出部に発生する電圧を大きくすることができ、その結果、一方の検出電極延出部とワイヤー線との断線を、さらに確実に検知することができるという作用効果を有するものである。
【0018】
【発明の実施の形態】
(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1,2および請求項4,5に記載の発明について説明する。
【0019】
図1は本発明の実施の形態1における角速度センサの斜視図、図2は同角速度センサにおける音叉を基台から取り外した状態を示す音叉の下面図である。
【0020】
図1、図2において、21は互いに結晶軸の異なる単結晶の水晶製の薄板を貼り合わせた誘電体よりなる第1の振動体で、この第1の振動体21は、表面に第1の駆動電極22を設けるとともに、裏面に図2に示すように、第2の駆動電極23を設け、かつ外側面に例えば金、アルミ、ニッケル等からなる第1の検出電極24を設け、さらに内側面に例えば金、アルミ、ニッケル等からなる第2の検出電極25を設けている。26は互いに結晶軸の異なる単結晶の水晶製の薄板を貼り合わせた誘電体よりなる第2の振動体で、この第2の振動体26は、表面に、例えば金、アルミ、ニッケル等からなるモニター電極27を設けるとともに、裏面に第1の振動体21における第1の駆動電極22と電気的に接続された第3の駆動電極28を設け、かつ外側面に第3の検出電極29を設け、さらに内側面に第4の検出電極30を設けている。そして、第1の駆動電極22と第1の検出電極24との間隙を第1の駆動電極22と第2の検出電極25との間隙と略同一にするとともに、第2の駆動電極23と第1の検出電極24との間隙を第2の駆動電極23と第2の検出電極25との間隙と略同一にし、かつモニター電極27と第3の検出電極29との間隙をモニター電極27と第4の検出電極30との間隙と略同一にし、さらに第3の駆動電極28と第3の検出電極29との間隙を第3の駆動電極28と第4の検出電極30との間隙と略同一になるように構成している。31は水晶製の誘電体よりなる固着部で、第1の振動体21の一端と第2の振動体26の一端を接続するとともに、振動しないように構成されている。そして、第1の振動体21、第2の振動体26および固着部31により音叉32を構成している。
【0021】
また、音叉32における固着部31の上面には、第1の振動体21における第1の駆動電極22を延出させて形成した第1の駆動電極延出部33を設けており、かつこの第1の駆動電極延出部33の一方の側には、第1の検出電極24を延出させて形成した第1の検出電極延出部34を設けるとともに、他方の側には、第2の検出電極25を延出させて形成した第2の検出電極延出部35を設けている。そしてまた、第1の振動体21における第1の駆動電極22および第1の駆動電極延出部33をさらに固着部31において延出させて形成した第2の駆動電極延出部36に第2の振動体における第3の検出電極29を延出させて形成した第3の検出電極延出部37を沿わせるとともに、第1の振動体21における第2の駆動電極23および下面の第3の駆動電極延出部38をさらに固着部31において延出させて形成した第4の駆動電極延出部39に前記第1の振動体21における第1の検出電極延出部34を沿わせ、かつ前記第1の振動体21における第2の駆動電極延出部36に第2の振動体26における第3の検出電極延出部37を沿わせる距離およびそれらの間隙と、第1の振動体21における第4の駆動電極延出部39に第1の振動体21における第1の検出電極延出部34を沿わせる距離およびそれらの間隙とを略同一にしている。さらに、前記固着部31の下面に位置するように第1の振動体21における第1の検出電極24を延出させて形成した第4の検出電極延出部40を第1の振動体21における第2の駆動電極23を延出させて形成した第3の駆動電極延出部38に沿わせるとともに、前記固着部31の下面に位置するように第2の振動体26における第3の駆動電極28を延出させて形成した第5の駆動電極延出部41に第2の振動体26における第3の検出電極29を延出させて形成した第5の検出電極延出部42を沿わせ、かつ前記第1の振動体21における第3の駆動電極延出部38に第4の検出電極延出部40を沿わせる距離およびそれらの間隙と、第2の振動体26における第5の駆動電極延出部41に第5の検出電極延出部42を沿わせる距離およびそれらの間隙とを略同一にしている。さらにまた、前記音叉32における固着部31の上面には、モニター電極27を延出させて形成したモニター電極延出部27aを設けている。
【0022】
43は金属製の基台で、この基台43は上面に支持部44を設けており、この支持部44の上面に前記音叉32における固着部31の一部を固着している。また、前記基台43には5つの端子挿入孔45を設けており、そしてこの端子挿入孔45には、第1の駆動電極22、第1の駆動電極延出部33および第2の駆動電極延出部36とワイヤー線46により電気的に接続された第1の駆動用端子47と、第2の駆動電極23、図2に示す第3の駆動電極延出部38および第4の駆動電極延出部39とワイヤー線46により電気的に接続された第2の駆動用端子48と、第1の検出電極24および第1の検出電極延出部34とワイヤー線46により電気的に接続された第1の検出用端子49と、第2の検出電極25、第4の検出電極30と第2の検出電極延出部35とワイヤー線46により電気的に接続された第2の検出用端子50と、モニター電極27およびモニター電極延出部27aとワイヤー線46により電気的に接続されたモニター用端子51とを、それぞれガラスからなる絶縁物52を介して設けている。また、前記第1の振動体21における第1の検出電極24と、第2の振動体26における第3の検出電極29とは第1の検出電極延出部34、ジャンパー用ワイヤー線53および第3の検出電極延出部37を介して電気的に接続されている。
【0023】
以上のように構成された本発明の一実施の形態における角速度センサについて、次に、その組立方法を説明する。
【0024】
まず、互いに結晶層の異なる単結晶からなる水晶製の薄板を貼り合わせることにより第1の振動体21、第2の振動体26および固着部31からなる音叉32を形成する。
【0025】
次に、第1の振動体21の正面に第1の駆動電極22、裏面に第2の駆動電極23、外側面に第1の検出電極24、内側面に第2の検出電極25を、第2の振動体26の正面にモニター電極27、裏面に第3の駆動電極28、内側面に第4の検出電極30、外側面に第3の検出電極29を、さらに固着部31の上面に第1の駆動電極延出部33、第1の検出電極延出部34、第2の検出電極延出部35、第2の駆動電極延出部36、第3の検出電極延出部37および第4の駆動電極延出部39を、固着部31の下面に第4の検出電極延出部40、第3の駆動電極延出部38、第5の駆動電極延出部41および第5の検出電極延出部42を金を蒸着することによりそれぞれ形成する。
【0026】
次に、基台43における端子挿入孔45に第1の駆動用端子47、第2の駆動用端子48、第1の検出用端子49、第2の検出用端子50およびモニター用端子51をそれぞれ挿通させた後、それぞれの端子挿入孔45にガラスからなる絶縁物52を充填する。
【0027】
次に、音叉32における固着部31を基台43における支持部44の上面に固着した後、基台43における第1の駆動用端子47に音叉32における第2の駆動電極延出部36を、第2の駆動用端子48に第4の駆動電極延出部39を、第1の検出用端子49に第1の検出電極延出部34を、第2の検出用端子50に第2の検出電極延出部35を、モニター用端子51にモニター電極延出部27aを、それぞれ金からなるワイヤー線46を介してワイヤーボンディングにより電気的に接続する。
【0028】
次に、音叉32における固着部31の上面で、第1の検出電極延出部34を第3の検出電極延出部37にジャンパー用ワイヤー線53を介してワイヤーボンディングにより電気的に接続する。
【0029】
以上のようにして組み立てられた本発明の実施の形態1における角速度センサについて、次に、その動作を説明する。
【0030】
基台43における第1の駆動用端子47および第2の駆動用端子48に実効値約300mvの交流電圧を印加する。このとき、まず、第2の駆動用端子48および第4の駆動電極延出部39を介して、図3に示すように、第1の振動体21における第2の駆動電極23に正電圧を印加するとともに、第1の駆動用端子47、第2の駆動電極延出部36および第1の駆動電極延出部33を介して第1の駆動電極22に負電圧を印加すると、第1の検出電極24側では、水晶製の薄板における結晶軸の方向と電荷の方向が一致するため、伸びることになり、一方、第2の検出電極25側では、結晶軸の方向と電荷の方向が反対になるため、縮むことになり、その結果、第1の振動体21が第2の振動体26側に傾く。次に、第2の駆動用端子48、第4の駆動電極延出部39および第3の駆動電極延出部38を介して、図4に示すように、第1の振動体21における第2の駆動電極23に負電圧を印加するとともに、第1の駆動用端子47、第2の駆動電極延出部36および第1の駆動電極延出部33を介して第1の駆動電極22に正電圧を印加すると、第1の検出電極24側では、水晶製の薄板における結晶軸の方向と電荷の方向が反対になるため、縮むことになり、一方、第2の検出電極25側では、結晶軸の方向と電荷の方向が一致するため、延びることになり、その結果、第1の振動体21が外側、すなわち、第2の振動体26とは反対側の方向に傾く。
【0031】
そして、第2の振動体26における第3の駆動電極28およびモニター電極27にも同様に交流電圧を印加すると、第1の振動体21と第2の振動体26は固着部31により機械的に接続されているため、第1の振動体21および第2の振動体26は固着部31の長手方向に駆動方向の固有振動数において速度Vで屈曲振動する。そしてまた、この第1の振動体21および第2の振動体26が屈曲振動している状態において、音叉32が音叉32の長手方向の中心軸周りに角速度ωで回転すると、第1の振動体21および第2の振動体26にF=2mvωのコリオリ力が発生する。このコリオリ力により、第1の検出電極24に発生する電荷を第1の検出電極延出部34を介して第1の検出用端子49に、第2の検出電極25および第4の検出電極30に発生する電荷を第2の検出電極延出部35を介して第2の検出用端子50に、第3の検出電極29に発生する電荷を第3の検出電極延出部37、ジャンパー用ワイヤー線53および第1の検出電極延出部34を介して第1の検出用端子49に入力し、さらに、第1の検出用端子49および第2の検出用端子50の出力電圧を差動増幅器(図示せず)を介して相手側のコンピューター(図示せず)に差動の出力電圧を入力することにより、角速度を検出するものである。
【0032】
ここで、角速度が角速度センサに負荷されない状態において、強い振動が角速度センサに加わり、第2の検出電極延出部35からワイヤー線46が外れた場合を考えて見ると、本発明の実施の形態1における角速度センサにおいては、第1の駆動電極22から発生する高周波成分によるクロストークノイズは誘電体よりなる第1の振動体21の容量結合を介して第1の検出電極24および第2の検出電極25に伝わるが、第2の検出電極延出部35からワイヤー線46が外れているため、第1の検出電極24に発生した電圧約3Vのみが第1の検出電極延出部34および第1の検出用端子49を介して差動増幅器(図示せず)に入力されることになる。この場合、本発明の実施の形態1においては、第1の振動体21における第1の駆動電極22と、第1の検出電極24および第2の検出電極25との間隙を略同一にすることにより、第1の振動体21における第1の駆動電極22と両隣に位置する第1の検出電極24および第2の検出電極25との間に生じる静電容量を略同一にしているため、角速度センサに角速度を付与しない状態において、音叉32における第2の検出電極25と第2の検出用端子50とを第2の検出電極延出部35を介して結ぶワイヤー線46が外れてしまうと、第1の駆動電極22から発生する高周波成分によるクロストークノイズは第1の検出電極24のみに誘電体よりなる第1の振動体21を伝わって到達することになり、その結果、クロストークノイズにより第1の検出電極24および第2の検出電極25に発生する電荷が互いに打ち消しあうことはなくなるため、常時、第2の検出電極25に電圧が発生することになり、これにより、第2の検出電極延出部35と第2の検出用端子50とを結ぶワイヤー線46の断線を検知することができるという作用効果を有するものである。
【0033】
また、第1の駆動電極延出部33から発生する高周波成分によるクロストークノイズは誘電体よりなる固着部31の容量結合を介して第1の検出電極延出部34および第2の検出電極延出部35に伝わるが、第2の検出電極延出部35からワイヤー線46が外れているため、第1の検出電極延出部34に発生した電圧約1.5Vのみが第1の検出電極延出部34および第1の検出用端子49を介して差動増幅器(図示せず)に入力されることになる。そして、前述した第1の駆動電極22から第1の検出電極24に入力される約3Vに加算した合計約4.5Vが第1の検出用端子49を介して差動増幅器(図示せず)に入力されることになる。この場合、本発明の実施の形態1においては、固着部31に第1の振動体21における第1の駆動電極22を延出させて形成した第1の駆動電極延出部33の両隣に、この第1の駆動電極延出部33との間隙が略同一になるように第1の振動体21における第1の検出電極延出部34および第2の検出電極延出部35を延出形成することにより、第1の駆動電極延出部33と両隣の第1の検出電極延出部34および第2の検出電極延出部35との間に生じる静電容量を略同一にしているため、第1の駆動電極延出部33からクロストークノイズにより発生する電荷は誘電体よりなる固着部31を伝わって第1の検出電極延出部34および第2の検出電極延出部35に到達することになり、その結果、音叉32における第2の検出電極25と電気的に接続された第2の検出電極延出部35と第2の検出用端子50とを結ぶワイヤー線46が外れてしまうと、第1の駆動電極延出部33から発生する高周波成分によるクロストークノイズは第1の検出電極延出部34のみに誘電体よりなる固着部31を伝わって到達することになり、これにより、クロストークノイズにより第1の検出電極延出部34および第2の検出電極延出部35に発生する電荷が互いに差動増幅器(図示せず)において打ち消しあうことはなくなるため、常時、第1の検出電極延出部34に発生する電圧は大となり、その結果、第2の検出電極25と電気的に接続された第2の検出電極延出部35と第2の検出用端子50とを結ぶワイヤー線46の断線を確実に検知することができるという作用効果を有するものである。
【0034】
次に、例えば100deg/secの角速度が角速度センサに負荷されている場合を考えて見ると、本発明の実施の形態1における角速度センサにおいては、負荷されている角速度の方向により、出力電圧が0.5Vあるいは4.5Vとなる。差動増幅器(図示せず)の出力信号はクランプ回路(図示せず)に入力されている。そして、クランプ回路(図示せず)により、差動増幅器(図示せず)の出力信号が0V以下あるいは5V以上となったときに、ワイヤー線46の断線を検知するように構成されている。前述したように、第2の検出電極延出部35からワイヤー線46が外れると、第1の検出電極24に約3Vの電圧が生じるとともに、第1の検出電極延出部34に約1.5Vの電圧が発生するため、これらを合わせた4.5Vが第1の検出用端子49を介して、差動増幅器(図示せず)に入力されることになる。したがって、角速度の負荷により、出力電圧が約0.5Vになっている状態においても、差動増幅器(図示せず)に入力された4.5Vとの合計が5Vを超えるため、クランプ回路(図示せず)によってクランプされることになり、これにより、第2の検出電極延出部35と第2の検出用端子50とを結ぶワイヤー線46の断線を検知することができるものである。
【0035】
同様に、角速度が角速度センサに負荷されない状態において、強い振動が角速度センサに加わり、第1の検出電極延出部34からワイヤー線46が外れた場合を考えて見ると、本発明の実施の形態1における角速度センサにおいては、第1の駆動電極22から発生する高周波成分によるクロストークノイズは誘電体よりなる第1の振動体21の容量結合を介して第1の検出電極24および第2の検出電極25に伝わるが、第1の検出電極延出部34からワイヤー線46が外れているため、第2の検出電極25に発生した電圧約3Vのみが第2の検出電極延出部35および第2の検出用端子50を介して差動増幅器(図示せず)に入力されることになる。また、第1の駆動電極延出部33から発生する高周波成分によるクロストークノイズは誘電体よりなる固着部31の容量結合を介して第1の検出電極延出部34および第2の検出電極延出部35に伝わるが、第1の検出電極延出部34からワイヤー線46が外れているため、第2の検出電極延出部35に発生した電圧約1.5Vのみがワイヤー線46および第2の検出用端子50を介して差動増幅器(図示せず)に入力されることになる。そして、前述した第1の駆動電極22から第2の検出電極25に入力される電圧約3Vに、第2の検出電極延出部35に発生した電圧約1.5Vを加算した合計約4.5Vの電圧は第2の検出用端子50を介して差動増幅器(図示せず)に入力されることになる。
【0036】
さらに、角速度が角速度センサに負荷されない状態において、強い振動が角速度センサに加わり、ジャンパー用ワイヤー線53が第1の検出電極延出部34から外れた場合を考えて見ると、本発明の実施の形態1における角速度センサにおいては、図2に示すように、第3の駆動電極28から発生する高周波成分によるクロストークノイズが誘電体よりなる第2の振動体26の容量結合を介して第3の検出電極29および第4の検出電極30に伝わるが、第1の検出電極延出部34からジャンパー用ワイヤー線53が外れているため、第4の検出電極30に発生した電圧約3Vのみが第2の検出電極延出部35、ワイヤー線46および第2の検出用端子50を介して差動増幅器(図示せず)に入力されることになる。また、図2に示すように、第3の駆動電極延出部38から発生する高周波成分によるクロストークノイズは誘電体よりなる固着部31の容量結合を介して第4の検出電極延出部40に伝わり、一方、第5の駆動電極延出部41から発生する高周波成分によるクロストークノイズは誘電体よりなる固着部31の容量結合を介して第5の検出電極延出部42に伝わるが、第1の検出電極延出部34からジャンパー用ワイヤー線53が外れているため、第1の検出電極延出部34に発生した電圧約1.7Vのみがワイヤー線46および第1の検出用端子49を介して差動増幅器(図示せず)に入力されることになる。さらに、第2の駆動電極延出部36から発生する高周波成分によるクロストークノイズは誘電体よりなる固着部31の容量結合を介して第3の検出電極延出部37に伝わるとともに、第4の駆動電極延出部39から発生する高周波成分によるクロストークノイズは誘電体よりなる固着部31の容量結合を介して第1の検出電極延出部34に伝わるが、第1の検出電極延出部34からジャンパー用ワイヤー線53が外れているため、第1の検出電極延出部34に発生した電圧約2.4Vのみがワイヤー線46および第1の検出用端子49を介して差動増幅器(図示せず)に入力されることになる。そして、前述した第4の検出電極30に発生した電圧約3Vに、第1の検出電極延出部34に発生した電圧約1.7Vを加算した合計約7.1Vの電圧はワイヤー線46および第1の検出用端子49を介して差動増幅器(図示せず)に入力されることになる。
【0037】
なお、上記本発明の実施の形態1における角速度センサにおいては、第1の振動体21および第2の振動体26のそれぞれの一端を固着部31で接続することにより音叉32を構成したが、四角柱状あるいは三角柱状一つの振動体で音叉を構成しても本発明の実施の形態1と同様の作用効果を有するものである。
【0038】
(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項および請求項に記載の発明について説明する。
【0039】
図5は本発明の実施の形態2における角速度センサの音叉の上面図、図6は同角速度センサの音叉の下面図である。
【0040】
なお、この実施の形態2においては、上記実施の形態1の構成と同様の構成を有するものについては、同一符号を付してその説明を省略し、実施の形態1と異なる点のみを説明する。
【0041】
図5、図6において、音叉32における固着部31の上面には、第1の振動体21における第1の駆動電極22を延出させて形成した枝部61を有する櫛形状の第1の駆動電極延出部33aを設けている。そして、第1の駆動電極延出部33aの一方の側に第1の検出電極24を延出させて形成した枝部62を有する櫛形状の第1の検出電極延出部34aを設けるとともに、他方の側に第2の検出電極25を延出させて形成した枝部63を有する第2の検出電極延出部35aを設けている。そしてまた、これらは第1の駆動電極延出部33aにおける枝部61と第1の検出電極延出部34aにおける枝部62とを互いに交差させるとともに、第1の駆動電極延出部33aにおける枝部61と第2の検出電極延出部35aにおける枝部63とを互いに交差させている。
【0042】
ここで、角速度が角速度センサに負荷されない状態において、強い振動が角速度センサに加わり、第2の検出電極延出部35aからワイヤー線46が外れた場合を考えて見ると、本発明の実施の形態2における角速度センサにおいては、第1の駆動電極延出部33aから発生する高周波成分によるクロストークノイズは誘電体よりなる固着部31の容量結合を介して第1の検出電極延出部34aおよび第2の検出電極延出部35aに伝わるが、第2の検出電極延出部35aからワイヤー線46が外れているため、第1の検出電極延出部34aに発生した電圧約1.3Vのみが第1の検出用端子49を介して差動増幅器(図示せず)に入力されることになる。この場合、本発明の実施の形態2においては、第1の駆動電極延出部33aを枝部61を有する櫛形状に形成するとともに、第1の検出電極延出部34aを枝部62を有する櫛形状に形成し、さらに前記第1の駆動電極延出部33aにおける枝部61と第1の検出電極延出部34aにおける枝部62とを互いに交差させているため、クロストークノイズは第1の駆動電極延出部33aにおける枝部61から第1の検出電極延出部34aにおける枝部62に到達することになり、その結果、固着部31の長さを長くすることなく、第1の検出電極延出部34aに発生する電圧を大きくすることができるため、第2の検出電極延出部35aと第2の検出用端子50とを結ぶワイヤー線46の断線を、さらに確実に検知することができるという作用効果を有するものである。
【0043】
また、本発明の実施の形態2においては、上記本発明の実施の形態1と同様、第1の振動体21における第1の駆動電極22および第1の駆動電極延出部33aをさらに固着部31において延出させて形成した第2の駆動電極延出部36aに第2の振動体26における第3の検出電極29を延出させて形成した第3の検出電極延出部37aを沿わせるとともに、第1の振動体21における第2の駆動電極23および下面の第3の駆動電極延出部38aをさらに固着部31において延出させて形成した第4の駆動電極延出部39aに前記第1の振動体21における第1の検出電極延出部34aを沿わせ、かつ前記第1の振動体21における第2の駆動電極延出部36aに第2の振動体26における第3の検出電極延出部37aを沿わせる距離およびそれらの間隙と、第1の振動体21における第4の駆動電極延出部39aに第1の振動体21における第1の検出電極延出部34aを沿わせる距離およびそれらの間隙とを略同一にし、そして前記第2の駆動電極延出部36aにおける枝部64と、第3の検出電極延出部37aにおける枝部65とを互いに交差させるとともに、第4の駆動電極延出部39aにおける枝部66と、第1の検出電極延出部34aにおける枝部67とを互いに交差させているものである。
【0044】
そしてまた、本発明の実施の形態2においては、図6に示すように、固着部31の下面に位置するように第1の振動体21における第1の検出電極24を延出させて形成した枝部68を有する櫛形状の第4の検出電極延出部40aを第1の振動体21における第2の駆動電極23を延出させて形成した枝部69を有する櫛形状の第3の駆動電極延出部38aに沿わせるとともに、前記固着部31の下面に位置するように第2の振動体26における第3の駆動電極28を延出させて形成した枝部70を有する櫛形状の第5の駆動電極延出部41aに第2の振動体26における第3の検出電極29を延出させて形成した枝部71を有する櫛形状の第5の検出電極延出部42aを沿わせ、かつ前記第1の振動体21における第3の駆動電極延出部38aに第4の検出電極延出部40aを沿わせる距離およびそれらの間隙と、第2の振動体26における第5の駆動電極延出部41aに第5の検出電極延出部42aを沿わせる距離およびそれらの間隙とを略同一にし、そして前記第3の駆動電極延出部38aにおける枝部69と、第4の検出電極延出部40aにおける枝部68とを互いに交差させるとともに、第5の駆動電極延出部41aにおける枝部70と、第5の検出電極延出部42aにおける枝部71とを互いに交差させているものである。
【0045】
【発明の効果】
以上のように本発明の角速度センサによれば、音叉の振動体における駆動電極と検出電極との間隙を略同一にすることにより、駆動電極と両隣に位置する検出電極との間に生じる静電容量を略同一にするとともに、音叉における固着部に一方の駆動電極を延出させて形成した一方の駆動電極延出部に一方の検出電極延出部を沿わせるとともに、前記固着部に他方の駆動電極を延出させて形成した他方の駆動電極延出部に他方の検出電極延出部を沿わせ、かつ前記一方の駆動電極延出部に一方の検出電極延出部を沿わせる距離およびそれらの間隙と、他方の駆動電極延出部に他方の検出電極延出部を沿わせる距離およびそれらの間隙とを略同一にすることにより、一方の駆動電極延出部と一方の検出電極延出部との間に生じる静電容量および他方の駆動電極延出部と他方の検出電極延出部との間に生じる静電容量を互いに略同一にしているため、角速度センサに角速度を付与しない状態において、音叉における一方の検出電極と端子とを結ぶワイヤー線が外れてしまうと、駆動電極から発生する高周波成分によるクロストークノイズは他方の検出電極のみに誘電体よりなる振動体を伝わって到達することになり、その結果、クロストークノイズにより一対の検出電極に発生する電荷が互いに打ち消しあうことはなくなるため、常時、他方の検出電極に電圧が発生することになり、これにより、一方の検出電極と端子とを結ぶワイヤー線の断線を検知することができるという効果を奏するとともに、クロストークノイズにより発生する電荷が駆動電極延出部から誘電体よりなる固着部を伝わって検出電極延出部に到達することになるため、音叉における一方の検出電極延出部と電気的に接続された検出電極と端子とを結ぶワイヤー線が外れてしまうと、駆動電極延出部から発生する高周波成分によるクロストークノイズが他方の検出電極延出部のみに誘電体よりなる固着部を伝わって到達することになり、その結果、クロストークノイズにより一対の検出電極延出部に発生する電荷が互いに打ち消しあうことはなくなるため、常時、他方の検出電極延出部に発生する電圧は大となり、これにより、一方の検出電極と端子とを結ぶワイヤー線の断線を確実に検知することができるという効果を奏するものである。
【図面の簡単な説明】
【図1】 本発明の実施の形態1における角速度センサの斜視図
【図2】 同要部である音叉を基台から取り外した状態を示す下面図
【図3】 同動作を示す断面図
【図4】 同動作を示す断面図
【図5】 本発明の実施の形態2の角速度センサにおける音叉の上面図
【図6】 同要部である音叉の下面図
【図7】 従来の角速度センサの斜視図
【符号の説明】
21 第1の振動体
22 第1の駆動電極
23 第2の駆動電極
24 第1の検出電極
25 第2の検出電極
26 第2の振動体
27 モニター電極
27a モニター電極延出部
28 第3の駆動電極
29 第3の検出電極
30 第4の検出電極
31 固着部
32 音叉
33 第1の駆動電極延出部
33a 櫛形状の第1の駆動電極延出部
34 第1の検出電極延出部
34a 櫛形状の第1の検出電極延出部
35 第2の検出電極延出部
35a 櫛形状の第2の検出電極延出部
36 第2の駆動電極延出部
36a 櫛形状の第2の駆動電極延出部
37 第3の検出電極延出部
37a 櫛形状の第3の検出電極延出部
38 第3の駆動電極延出部
38a 櫛形状の第3の駆動電極延出部
39 第4の駆動電極延出部
39a 櫛形状の第4の駆動電極延出部
40 第4の検出電極延出部
40a 櫛形状の第4の検出電極延出部
41 第5の駆動電極延出部
41a 櫛形状の第5の駆動電極延出部
42 第5の検出電極延出部
42a 櫛形状の第5の検出電極延出部
43 基台
46 ワイヤー線
47 第1の駆動用端子
48 第2の駆動用端子
49 第1の検出用端子
50 第2の検出用端子
51 モニター用端子
53 ジャンパー用ワイヤー線
61,62,63,64,65,66,67 枝部
68,69,70,71 枝部
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an angular velocity sensor used for attitude control of a moving body such as an aircraft or a vehicle, a navigation system, or the like.
[0002]
[Prior art]
  As a conventional angular velocity sensor of this kind, one disclosed in Japanese Patent Laid-Open No. 11-51658 is known.
[0003]
  Hereinafter, a conventional angular velocity sensor will be described with reference to the drawings.
[0004]
  FIG. 7 is a perspective view of a conventional angular velocity sensor.
[0005]
  In FIG. 7, reference numeral 1 denotes a tuning fork, which includes a pair of pillar portions 2 and a fixing portion 3 that connects the end portions of the pillar portions 2. A first drive electrode 4 is provided on the upper surface of each of the pair of column portions 2 in the tuning fork 1, and a second drive electrode 5 is provided on the same plane as the first drive electrode 4. . The tuning fork 1 includes a monitor electrode 6 and a polarization detection electrode 7 on the same surface as the surface on which the first drive electrode 4 and the second drive electrode 5 are provided in the pair of column portions 2, and a pair of A detection electrode 8 is provided on each outer surface of the column part 2. Reference numeral 9 denotes a support portion that supports the fixing portion 3 of the tuning fork 1. Reference numeral 10 denotes a base, and a convex portion 11 is provided on the upper surface, and the lower surface of the support portion 9 is fixed to the upper surface of the convex portion 11. In addition, the base 10 is provided with a terminal 13 inserted through an insulator 12 from the upper surface to the lower surface, and the terminal 13 includes the first drive electrode 4, the second drive electrode 5, and the like in the tuning fork 1. The monitor electrode 6 and the detection electrode 8 are electrically connected by a wire 14.
[0006]
  Next, the operation of the conventional angular velocity sensor configured as described above will be described.
[0007]
  By applying an alternating voltage to the first drive electrode 4 and the second drive electrode 5 in the tuning fork 1, the tuning fork 1 is flexibly vibrated at a natural frequency in the driving direction and at a speed V in the driving direction. In this state, when the tuning fork 1 rotates around the central axis of the tuning fork 1 at an angular velocity ω, a Coriolis force of F = 2 mV · ω is generated in the pair of column portions 2 of the tuning fork 1. The electric charge generated in the detection electrode 8 is amplified by this Coriolis force, and the angular velocity is detected by measuring the output voltage with an external computer or the like (not shown).
[0008]
  Here, when strong vibration is applied to the tuning fork 1 over a long period of time, when the wire wire 14 connecting the first drive electrode 4 and the second drive electrode 5 and the terminal 13 of the base 10 is disconnected, the conventional angular velocity is obtained. In the sensor, since the tuning fork 1 does not vibrate, the disconnection of the wire 14 can be detected.
[0009]
[Problems to be solved by the invention]
  However, in the above-described conventional configuration, if the wire wire 14 connecting one detection electrode 8 and the terminal 13 in the tuning fork 1 is disconnected due to strong vibration applied to the angular velocity sensor, the output voltage is reduced by half. As a result, the sensor is misunderstood as if half the angular velocity is applied. As a result, since the disconnection of the wire 14 cannot be detected, there is a problem that the erroneous angular velocity is detected. .
[0010]
  SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide an angular velocity sensor that can reliably detect a disconnection without detecting an erroneous angular velocity.
[0011]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention has the following configuration.
[0012]
  The invention described in claim 1 of the present invention is particularly formed by extending a vibration body provided with a pair of drive electrodes and a pair of detection electrodes, and a pair of drive electrodes and a pair of detection electrodes in the vibration body. A tuning fork comprising a fixed portion having a pair of drive electrode extending portions and a pair of detection electrode extending portions, a base for fixing the fixed portion of the tuning fork and inserting at least four terminals, A wire wire for electrically connecting the terminal and the drive electrode extension or detection electrode extension in the fixing portion of the tuning fork, and the gap between the drive electrode and the detection electrode in the tuning fork vibrator is substantially the same. By doing so, the capacitance generated between the drive electrode and the adjacent detection electrodes is made substantially the same.In addition, the detection electrode extension is extended on both sides of the drive electrode extension formed by extending the drive electrode to the fixed part of the tuning fork so that the gap with the drive electrode extension is substantially the same. By forming the capacitance, the capacitance generated between the drive electrode extension and the adjacent detection electrode extension is made substantially the same.Thus, according to this configuration, if the wire connecting the one detection electrode and the terminal of the tuning fork is disconnected in a state where no angular velocity is applied to the angular velocity sensor, crosstalk noise due to high frequency components generated from the drive electrode is reduced. Only the other detection electrode reaches the vibration body made of a dielectric material, and as a result, the charges generated in the pair of detection electrodes do not cancel each other due to crosstalk noise. A voltage is generated in the electrode, and this has the effect of detecting the disconnection of the wire connecting the one detection electrode and the terminal.At the same time, the electric charge generated by the crosstalk noise travels from the drive electrode extension portion to the detection electrode extension portion through the fixed portion made of a dielectric, so that it is electrically connected to one detection electrode extension portion of the tuning fork. If the wire connecting the detection electrode connected to the terminal and the terminal is disconnected, the crosstalk noise due to the high-frequency component generated from the drive electrode extension portion causes the fixed detection portion made of a dielectric material only to the other detection electrode extension portion. As a result, the electric charges generated in the pair of detection electrode extensions due to crosstalk noise do not cancel each other, so that the voltage generated in the other detection electrode extension is always large. Thus, the disconnection of the wire connecting the one detection electrode and the terminal can be reliably detected.
[0013]
  Claims of the invention2In particular, the invention described in (1) has one detection electrode extension portion along one drive electrode extension portion formed by extending one drive electrode to a fixation portion in a tuning fork, and the other fixation portion to the other fixation electrode portion. A distance for extending the other detection electrode extension part along the other drive electrode extension part formed by extending the drive electrode, and extending one detection electrode extension part along the one drive electrode extension part; and By making the gap, the distance along which the other detection electrode extension part extends along the other drive electrode extension part, and the gap between them substantially equal, one drive electrode extension part and one detection electrode extension The capacitance generated between the extended portion and the other drive electrode extended portion and the other detected electrode extended portion are substantially the same, and according to this configuration, the drive Since the distance along which the detection electrode extension extends along the electrode extension is further increased, The electric charge generated by the loss talk noise reaching the detection electrode extension increases, and as a result, the disconnection of the wire connecting the one detection electrode and the terminal can be detected more reliably. It is what has.
[0014]
  Claims of the invention3In particular, the drive electrode extension portion is formed in a comb shape having a branch portion, the detection electrode extension portion is formed in a comb shape having a branch portion, and the branch in the drive electrode extension portion is further formed. And the branch part of the detection electrode extension part cross each other. According to this configuration, crosstalk noise reaches the branch part of the detection electrode extension part from the branch part of the drive electrode extension part. Therefore, it is possible to increase the voltage generated at the detection electrode extension without increasing the length of the fixing portion, and as a result, it is possible to further reliably disconnect the wire connecting the one detection electrode and the terminal. It has the effect that it can be detected.
[0015]
  Claims of the invention4In particular, the invention described in 1 is provided with a first vibrating body provided with one drive electrode on the upper surface and the lower surface and a pair of detection electrodes on both side surfaces, and provided in parallel with the first vibrating body and on the upper surface. Connecting a second vibrator having a monitor electrode, a drive electrode on the lower surface, and a detection electrode on both sides, and one end of the first vibrator and one end of the second vibrator In addition, the drive electrode, the detection electrode, the monitor electrode, the drive electrode, and the detection electrode in the second vibrating body are extended on the upper surface to extend the drive electrode, the detection electrode extension, and the monitor, respectively. A tuning fork composed of a fixing portion having an electrode extension portion, a fixing base in which the fixing portion of the tuning fork is fixed to the upper surface, at least five terminal insertion holes are provided, and at least five terminals are inserted into the terminal insertion holes. When A wire wire for electrically connecting a terminal of the base and a drive electrode extension portion, a detection electrode extension portion, and a monitor electrode extension portion in the fixing portion of the tuning fork, the first vibrator and the first By making the gap between the drive electrode and the detection electrode in the two vibration bodies substantially the same, the capacitance generated between the drive electrode and the adjacent detection electrodes in the first vibration body and the second vibration body is substantially reduced. SameIn addition, the gap with the drive electrode extension is substantially the same on both sides of the drive electrode extension in the first vibrator or the second vibrator formed by extending the drive electrode to the fixing part in the tuning fork. The capacitance generated between the drive electrode extension part and the adjacent detection electrode extension part by extending the detection electrode extension part in the first vibrator or the second vibrator so as to become Are almost identicalThus, according to this configuration, if the wire wire connecting one detection electrode and the terminal in the tuning fork is disconnected in a state where the angular velocity is not applied to the angular velocity sensor, crosstalk noise due to high frequency components generated from the drive electrode is generated. Only the other detection electrode reaches the vibration body made of a dielectric material, and as a result, the charges generated in the pair of detection electrodes do not cancel each other due to crosstalk noise. A voltage will be generated in the electrode, which can detect the disconnection of the wire connecting the one detection electrode and the terminal.In both cases, the electric charge generated by the crosstalk noise travels from the drive electrode extension part to the detection electrode extension part through the fixed part made of the dielectric, so that it is electrically connected to one detection electrode extension part of the tuning fork. If the wire connecting the detection electrode connected to the terminal and the terminal is disconnected, the crosstalk noise due to the high-frequency component generated from the drive electrode extension portion causes the fixed detection portion made of a dielectric material only to the other detection electrode extension portion. As a result, the electric charges generated in the pair of detection electrode extensions due to crosstalk noise do not cancel each other, so that the voltage generated in the other detection electrode extension is always large. Thus, the disconnection of the wire connecting the one detection electrode and the terminal can be reliably detected.
[0016]
  Claims of the invention5In particular, the invention described in (1) has the detection electrode extension portion in the first vibrating body along the driving electrode extension portion in the first vibrating body formed by extending the driving electrode in the fixing portion, and the fixing The drive electrode extending portion of the second vibrating body is formed along the drive electrode extending portion of the second vibrating body, and the driving electrode extending portion of the first vibrating body is extended. By making the distance along which the detection electrode extension part runs along the part and the gap between them, and the distance along which the detection electrode extension part runs along the drive electrode extension part in the second vibrator and the gap between them are substantially the same The capacitance generated between the drive electrode extension and the detection electrode extension is substantially the same. According to this configuration, the distance along which the detection electrode extension extends along the drive electrode extension Since it becomes longer, crosstalk noise is generated at the detection electrode extension. Charge becomes large caused by reaching, with the result that those having effect that breakage of the wire line connecting the one detection electrode and the terminal, it is possible to more reliably detected.
[0017]
  Claims of the invention6In particular, the drive electrode extension portion is formed in a comb shape having a branch portion, the detection electrode extension portion is formed in a comb shape having a branch portion, and the branch in the drive electrode extension portion is further formed. And the branch part of the detection electrode extension part cross each other. According to this configuration, crosstalk noise reaches the branch part of the detection electrode extension part from the branch part of the drive electrode extension part. Therefore, it is possible to increase the voltage generated in the detection electrode extension without increasing the length of the fixing portion, and as a result, the disconnection between one detection electrode extension and the wire wire can be more reliably performed. It has the effect that it can be detected.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  (Embodiment 1)
  Hereinafter, using the first embodiment, the present invention is particularly claimed.1, 2And claims4,5Will be described.
[0019]
  FIG. 1 is a perspective view of an angular velocity sensor according to Embodiment 1 of the present invention, and FIG. 2 is a bottom view of the tuning fork showing a state in which the tuning fork in the angular velocity sensor is removed from a base.
[0020]
  In FIGS. 1 and 2, reference numeral 21 denotes a first vibrating body made of a dielectric material in which single crystal quartz thin plates having different crystal axes are bonded to each other. As shown in FIG. 2, the drive electrode 22 is provided, the second drive electrode 23 is provided on the back surface, the first detection electrode 24 made of, for example, gold, aluminum, nickel, or the like is provided on the outer surface, and the inner surface is further provided. The second detection electrode 25 made of, for example, gold, aluminum, nickel or the like is provided. Reference numeral 26 denotes a second vibrating body made of a dielectric material formed by bonding single crystal quartz thin plates having different crystal axes. The second vibrating body 26 is made of, for example, gold, aluminum, nickel or the like on the surface. A monitor electrode 27 is provided, a third drive electrode 28 electrically connected to the first drive electrode 22 in the first vibrating body 21 is provided on the back surface, and a third detection electrode 29 is provided on the outer surface. Further, a fourth detection electrode 30 is provided on the inner surface. The gap between the first drive electrode 22 and the first detection electrode 24 is made substantially the same as the gap between the first drive electrode 22 and the second detection electrode 25, and the second drive electrode 23 and the second detection electrode 25 are The gap between the first detection electrode 24 and the second drive electrode 23 and the second detection electrode 25 is substantially the same as the gap between the monitor electrode 27 and the third detection electrode 29. The gap between the third drive electrode 28 and the third detection electrode 29 is substantially the same as the gap between the third drive electrode 28 and the fourth detection electrode 30. It is configured to be. Reference numeral 31 denotes a fixing portion made of a quartz dielectric, which connects one end of the first vibrating body 21 and one end of the second vibrating body 26 and is configured not to vibrate. The first vibrating body 21, the second vibrating body 26 and the fixing portion 31 constitute a tuning fork 32.
[0021]
  A first drive electrode extending portion 33 formed by extending the first drive electrode 22 of the first vibrating body 21 is provided on the upper surface of the fixing portion 31 of the tuning fork 32. A first detection electrode extension 34 formed by extending the first detection electrode 24 is provided on one side of one drive electrode extension 33, and a second is provided on the other side. A second detection electrode extending portion 35 formed by extending the detection electrode 25 is provided. Further, the second drive electrode extension 36 formed by extending the first drive electrode 22 and the first drive electrode extension 33 in the first vibrating body 21 further in the fixing portion 31 is secondly added. The third detection electrode extension portion 37 formed by extending the third detection electrode 29 in the vibration body is provided along the second drive electrode 23 and the third surface of the lower surface of the first vibration body 21. The first detection electrode extension portion 34 of the first vibrating body 21 is aligned with the fourth drive electrode extension portion 39 formed by further extending the drive electrode extension portion 38 at the fixing portion 31, and The distance along which the third drive electrode extension part 37 of the second vibrator 26 extends along the second drive electrode extension part 36 of the first vibrator 21 and the gap between them, and the first vibrator 21 In the fourth drive electrode extension 39 in FIG. A distance and their gap placed along the first detection electrode extending portion 34 in the body 21 are substantially the same. Further, a fourth detection electrode extending portion 40 formed by extending the first detection electrode 24 in the first vibrating body 21 so as to be positioned on the lower surface of the fixing portion 31 is provided in the first vibrating body 21. The third drive electrode in the second vibrating body 26 is positioned along the third drive electrode extension portion 38 formed by extending the second drive electrode 23 and located on the lower surface of the fixing portion 31. The fifth detection electrode extension portion 42 formed by extending the third detection electrode 29 of the second vibrating body 26 is placed along the fifth drive electrode extension portion 41 formed by extending the number 28. And the distance along which the fourth detection electrode extension 40 extends along the third drive electrode extension 38 in the first vibrator 21 and the gap between them, and the fifth drive in the second vibrator 26 The distance for extending the fifth detection electrode extension 42 to the electrode extension 41 is as follows. Beauty and their gap is substantially the same. Furthermore, a monitor electrode extension portion 27 a formed by extending the monitor electrode 27 is provided on the upper surface of the fixing portion 31 in the tuning fork 32.
[0022]
  Reference numeral 43 denotes a metal base. The base 43 has a support portion 44 provided on the upper surface, and a part of the fixing portion 31 of the tuning fork 32 is fixed to the upper surface of the support portion 44. The base 43 is provided with five terminal insertion holes 45. The terminal insertion holes 45 have a first drive electrode 22, a first drive electrode extension 33, and a second drive electrode. The first drive terminal 47, the second drive electrode 23, the third drive electrode extension 38 and the fourth drive electrode shown in FIG. 2 electrically connected to the extension 36 and the wire 46 The second drive terminal 48 electrically connected by the extension part 39 and the wire line 46, and the first detection electrode 24 and the first detection electrode extension part 34 and the wire line 46 are electrically connected. The first detection terminal 49, the second detection electrode 25, the fourth detection electrode 30, the second detection electrode extension 35, and the second detection terminal electrically connected by the wire 46 50, monitor electrode 27, monitor electrode extension 27a, and wire A monitor terminal 51 which is electrically connected by line 46, respectively provided via an insulator 52 made of glass. In addition, the first detection electrode 24 in the first vibrating body 21 and the third detection electrode 29 in the second vibrating body 26 include a first detection electrode extending portion 34, a jumper wire 53, and a first detection electrode 24. 3 are connected electrically via the three detection electrode extending portions 37.
[0023]
  Next, a method for assembling the angular velocity sensor according to the embodiment of the present invention configured as described above will be described.
[0024]
  First, a tuning fork 32 including a first vibrating body 21, a second vibrating body 26, and a fixing portion 31 is formed by laminating quartz thin plates made of single crystals having different crystal layers.
[0025]
  Next, the first drive electrode 22 on the front surface of the first vibrating body 21, the second drive electrode 23 on the back surface, the first detection electrode 24 on the outer surface, the second detection electrode 25 on the inner surface, Monitor electrode 27 on the front side of the vibrating body 26, the third drive electrode 28 on the back side, the fourth detection electrode 30 on the inner side, the third detection electrode 29 on the outer side, and the third detection electrode 29 on the upper side of the fixing part 31. 1 drive electrode extension 33, first detection electrode extension 34, second detection electrode extension 35, second drive electrode extension 36, third detection electrode extension 37 and first The fourth drive electrode extension 39 is formed on the lower surface of the fixing portion 31, the fourth detection electrode extension 40, the third drive electrode extension 38, the fifth drive electrode extension 41, and the fifth detection. The electrode extending portions 42 are formed by depositing gold.
[0026]
  Next, the first drive terminal 47, the second drive terminal 48, the first detection terminal 49, the second detection terminal 50, and the monitor terminal 51 are respectively inserted into the terminal insertion holes 45 in the base 43. After the insertion, each terminal insertion hole 45 is filled with an insulator 52 made of glass.
[0027]
  Next, after fixing the fixing portion 31 in the tuning fork 32 to the upper surface of the support portion 44 in the base 43, the second drive electrode extending portion 36 in the tuning fork 32 is connected to the first driving terminal 47 in the base 43. The fourth drive electrode extension 39 is formed in the second drive terminal 48, the first detection electrode extension 34 is formed in the first detection terminal 49, and the second detection is performed in the second detection terminal 50. The electrode extension portion 35 is electrically connected to the monitor terminal 51 by the wire bonding via the wire wire 46 made of gold, respectively, to the monitor electrode extension portion 27a.
[0028]
  Next, on the upper surface of the fixing portion 31 in the tuning fork 32, the first detection electrode extension 34 is electrically connected to the third detection electrode extension 37 through the jumper wire 53 by wire bonding.
[0029]
  Next, the operation of the angular velocity sensor according to the first embodiment of the present invention assembled as described above will be described.
[0030]
  An AC voltage having an effective value of about 300 mV is applied to the first drive terminal 47 and the second drive terminal 48 in the base 43. At this time, first, a positive voltage is applied to the second drive electrode 23 in the first vibrating body 21 via the second drive terminal 48 and the fourth drive electrode extension 39 as shown in FIG. When a negative voltage is applied to the first drive electrode 22 via the first drive terminal 47, the second drive electrode extension 36, and the first drive electrode extension 33, the first drive terminal 22 is applied. On the detection electrode 24 side, the direction of the crystal axis and the direction of the charge in the quartz thin plate coincide with each other, and therefore, the direction of the second detection electrode 25 is extended. Therefore, the first vibrating body 21 is inclined toward the second vibrating body 26 as a result. Next, as shown in FIG. 4, the second drive terminal 48 in the first vibrating body 21 is provided via the second drive terminal 48, the fourth drive electrode extension 39, and the third drive electrode extension 38. A negative voltage is applied to the first drive electrode 23, and the first drive electrode 22 is positively applied to the first drive electrode 22 via the first drive terminal 47, the second drive electrode extension 36 and the first drive electrode extension 33. When a voltage is applied, the first detection electrode 24 side contracts because the direction of the crystal axis in the quartz thin plate is opposite to the direction of the charge, while on the second detection electrode 25 side, the crystal is shrunk. Since the direction of the axis coincides with the direction of the charge, it extends, and as a result, the first vibrating body 21 is inclined outward, that is, in the direction opposite to the second vibrating body 26.
[0031]
  Similarly, when an AC voltage is applied to the third drive electrode 28 and the monitor electrode 27 in the second vibrating body 26, the first vibrating body 21 and the second vibrating body 26 are mechanically moved by the fixing portion 31. Since they are connected, the first vibrating body 21 and the second vibrating body 26 bend and vibrate at a speed V in the longitudinal direction of the fixing portion 31 at the natural frequency in the driving direction. Further, when the tuning fork 32 rotates at the angular velocity ω around the longitudinal center axis of the tuning fork 32 in a state where the first vibrating body 21 and the second vibrating body 26 are flexibly vibrating, the first vibrating body. A Coriolis force of F = 2 mvω is generated in 21 and the second vibrating body 26. Due to this Coriolis force, the charge generated in the first detection electrode 24 is transferred to the first detection terminal 49 via the first detection electrode extension 34 and the second detection electrode 25 and the fourth detection electrode 30. The charge generated in the second detection electrode extension part 35 is supplied to the second detection terminal 50, and the charge generated in the third detection electrode 29 is supplied to the third detection electrode extension part 37, the jumper wire. The first detection terminal 49 is input to the first detection terminal 49 via the line 53 and the first detection electrode extension 34, and the output voltages of the first detection terminal 49 and the second detection terminal 50 are differentially amplified. An angular velocity is detected by inputting a differential output voltage to a partner computer (not shown) via a not-shown (not shown).
[0032]
  Here, in the state where the angular velocity is not applied to the angular velocity sensor, when a strong vibration is applied to the angular velocity sensor and the wire wire 46 is detached from the second detection electrode extending portion 35, the embodiment of the present invention is considered. In the angular velocity sensor 1, crosstalk noise due to a high frequency component generated from the first drive electrode 22 is detected by the first detection electrode 24 and the second detection via capacitive coupling of the first vibrating body 21 made of a dielectric. Although transmitted to the electrode 25, since the wire wire 46 is disconnected from the second detection electrode extension portion 35, only the voltage of about 3 V generated at the first detection electrode 24 is applied to the first detection electrode extension portion 34 and the second detection electrode extension portion 34. 1 is input to a differential amplifier (not shown) through one detection terminal 49. In this case, in the first embodiment of the present invention, the gap between the first drive electrode 22 and the first detection electrode 24 and the second detection electrode 25 in the first vibrating body 21 is made substantially the same. As a result, the capacitance generated between the first drive electrode 22 and the first detection electrode 24 and the second detection electrode 25 located on both sides of the first vibrating body 21 is made substantially the same. In a state where no angular velocity is applied to the sensor, if the wire wire 46 that connects the second detection electrode 25 and the second detection terminal 50 in the tuning fork 32 via the second detection electrode extension 35 is disconnected, The crosstalk noise due to the high frequency component generated from the first drive electrode 22 reaches only the first detection electrode 24 through the first vibrating body 21 made of a dielectric, and as a result, crosstalk noise is generated. Yo Since the electric charges generated in the first detection electrode 24 and the second detection electrode 25 do not cancel each other, a voltage is always generated in the second detection electrode 25, whereby the second detection electrode 25 This has the effect of detecting the disconnection of the wire 46 connecting the electrode extension 35 and the second detection terminal 50.
[0033]
  Further, the crosstalk noise due to the high frequency component generated from the first drive electrode extension portion 33 is caused by the first detection electrode extension portion 34 and the second detection electrode extension via the capacitive coupling of the fixing portion 31 made of a dielectric. However, since the wire wire 46 is disconnected from the second detection electrode extension 35, only the voltage of about 1.5 V generated in the first detection electrode extension 34 is the first detection electrode. The signal is input to a differential amplifier (not shown) through the extension 34 and the first detection terminal 49. Then, a total of about 4.5 V added to about 3 V input from the first drive electrode 22 to the first detection electrode 24 is added to the differential amplifier (not shown) via the first detection terminal 49. Will be entered. In this case, in the first embodiment of the present invention, on both sides of the first drive electrode extension portion 33 formed by extending the first drive electrode 22 in the first vibrating body 21 to the fixing portion 31, The first detection electrode extension portion 34 and the second detection electrode extension portion 35 of the first vibrating body 21 are formed to extend so that the gap with the first drive electrode extension portion 33 is substantially the same. As a result, the capacitance generated between the first drive electrode extension 33 and the first detection electrode extension 34 and the second detection electrode extension 35 adjacent to each other is made substantially the same. The electric charge generated by the crosstalk noise from the first drive electrode extension part 33 travels through the fixed part 31 made of a dielectric material and reaches the first detection electrode extension part 34 and the second detection electrode extension part 35. As a result, the second detection electrode 25 in the tuning fork 32 and the electric If the wire 46 that connects the second detection electrode extension 35 and the second detection terminal 50 connected to each other is disconnected, a cross due to a high frequency component generated from the first drive electrode extension 33 The talk noise reaches only the first detection electrode extension portion 34 through the fixed portion 31 made of a dielectric, and thereby the first detection electrode extension portion 34 and the second detection noise are caused by the crosstalk noise. Since the charges generated in the detection electrode extension 35 do not cancel each other in the differential amplifier (not shown), the voltage generated in the first detection electrode extension 34 is always large, and as a result, The effect of being able to reliably detect the disconnection of the wire wire 46 connecting the second detection electrode extension portion 35 electrically connected to the second detection electrode 25 and the second detection terminal 50. Have That.
[0034]
  Next, considering, for example, the case where an angular velocity of 100 deg / sec is loaded on the angular velocity sensor, in the angular velocity sensor according to Embodiment 1 of the present invention, the output voltage is 0 depending on the direction of the loaded angular velocity. .5V or 4.5V. An output signal of a differential amplifier (not shown) is input to a clamp circuit (not shown). The disconnection of the wire 46 is detected when the output signal of the differential amplifier (not shown) becomes 0V or less or 5V or more by a clamp circuit (not shown). As described above, when the wire wire 46 is disconnected from the second detection electrode extension 35, a voltage of about 3 V is generated in the first detection electrode 24, and about 1.V is generated in the first detection electrode extension 34. Since a voltage of 5V is generated, 4.5V including these is input to the differential amplifier (not shown) via the first detection terminal 49. Therefore, even when the output voltage is about 0.5V due to the load of the angular velocity, the sum of 4.5V input to the differential amplifier (not shown) exceeds 5V, so the clamp circuit (FIG. Therefore, it is possible to detect the disconnection of the wire 46 that connects the second detection electrode extension 35 and the second detection terminal 50.
[0035]
  Similarly, in the state where the angular velocity is not applied to the angular velocity sensor, when a strong vibration is applied to the angular velocity sensor and the wire wire 46 is detached from the first detection electrode extension 34, the embodiment of the present invention is considered. In the angular velocity sensor 1, crosstalk noise due to a high frequency component generated from the first drive electrode 22 is detected by the first detection electrode 24 and the second detection via capacitive coupling of the first vibrating body 21 made of a dielectric. Although transmitted to the electrode 25, since the wire wire 46 is disconnected from the first detection electrode extension 34, only the voltage of about 3 V generated at the second detection electrode 25 is applied to the second detection electrode extension 35 and the second detection electrode 35. The signal is input to a differential amplifier (not shown) via two detection terminals 50. Further, the crosstalk noise due to the high frequency component generated from the first drive electrode extension portion 33 is caused by the first detection electrode extension portion 34 and the second detection electrode extension via the capacitive coupling of the fixing portion 31 made of a dielectric. However, since the wire wire 46 is disconnected from the first detection electrode extension portion 34, only the voltage of about 1.5 V generated at the second detection electrode extension portion 35 is applied to the wire wire 46 and the first detection electrode extension portion 34. The signal is input to a differential amplifier (not shown) via two detection terminals 50. Then, a total of about 4 V, which is obtained by adding the voltage of about 1.5 V generated in the second detection electrode extension 35 to the voltage of about 3 V input to the second detection electrode 25 from the first drive electrode 22 described above. The voltage of 5V is input to a differential amplifier (not shown) via the second detection terminal 50.
[0036]
  Furthermore, when the angular velocity is not applied to the angular velocity sensor, a strong vibration is applied to the angular velocity sensor, and the case where the jumper wire 53 is disconnected from the first detection electrode extension 34 is considered. In the angular velocity sensor in the first mode, as shown in FIG. 2, the crosstalk noise due to the high frequency component generated from the third drive electrode 28 is generated through the capacitive coupling of the second vibrating body 26 made of a dielectric. Although it is transmitted to the detection electrode 29 and the fourth detection electrode 30, since the jumper wire 53 is disconnected from the first detection electrode extension 34, only the voltage of about 3V generated at the fourth detection electrode 30 is the first. The signal is input to a differential amplifier (not shown) through the two detection electrode extending portions 35, the wire line 46, and the second detection terminal 50. Further, as shown in FIG. 2, the crosstalk noise due to the high frequency component generated from the third drive electrode extending portion 38 is caused by the fourth detection electrode extending portion 40 via the capacitive coupling of the fixed portion 31 made of a dielectric. On the other hand, the crosstalk noise due to the high frequency component generated from the fifth drive electrode extension 41 is transmitted to the fifth detection electrode extension 42 via the capacitive coupling of the fixed portion 31 made of a dielectric. Since the jumper wire 53 is disconnected from the first detection electrode extension 34, only the voltage of about 1.7 V generated in the first detection electrode extension 34 is applied to the wire 46 and the first detection terminal. 49 to be input to a differential amplifier (not shown). Further, the crosstalk noise due to the high frequency component generated from the second drive electrode extension 36 is transmitted to the third detection electrode extension 37 through the capacitive coupling of the fixed portion 31 made of a dielectric, and the fourth Crosstalk noise due to high frequency components generated from the drive electrode extension 39 is transmitted to the first detection electrode extension 34 via the capacitive coupling of the fixed portion 31 made of a dielectric, but the first detection electrode extension Since the jumper wire 53 is disconnected from the wire 34, only a voltage of about 2.4 V generated in the first detection electrode extension 34 is supplied to the differential amplifier (through the wire wire 46 and the first detection terminal 49. (Not shown). Then, the voltage of about 7.1 V generated by adding the voltage of about 1.7 V generated at the first detection electrode extension 34 to the voltage of about 3 V generated at the fourth detection electrode 30 described above is the total voltage of about 7.1 V. The signal is input to a differential amplifier (not shown) via the first detection terminal 49.
[0037]
  In the angular velocity sensor according to the first embodiment of the present invention, the tuning fork 32 is configured by connecting one end of each of the first vibrating body 21 and the second vibrating body 26 with the fixing portion 31. Even if the tuning fork is constituted by a single columnar or triangular columnar vibrating body, the same effects as those of the first embodiment of the present invention are obtained.
[0038]
  (Embodiment 2)
  Hereinafter, the second embodiment is used to particularly claim the present invention.3And claims6Will be described.
[0039]
  FIG. 5 is a top view of the tuning fork of the angular velocity sensor according to Embodiment 2 of the present invention, and FIG. 6 is a bottom view of the tuning fork of the angular velocity sensor.
[0040]
  In the second embodiment, components having the same configurations as those of the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only differences from the first embodiment are described. .
[0041]
  5 and 6, a comb-shaped first drive having a branch portion 61 formed by extending the first drive electrode 22 of the first vibrating body 21 on the upper surface of the fixing portion 31 of the tuning fork 32. An electrode extension 33a is provided. A comb-shaped first detection electrode extension 34a having a branch 62 formed by extending the first detection electrode 24 is provided on one side of the first drive electrode extension 33a. On the other side, a second detection electrode extending portion 35a having a branch portion 63 formed by extending the second detection electrode 25 is provided. In addition, they cross the branch 61 in the first drive electrode extension 33a and the branch 62 in the first detection electrode extension 34a, and branch in the first drive electrode extension 33a. The part 61 and the branch part 63 in the second detection electrode extension part 35a intersect each other.
[0042]
  Here, in the state where the angular velocity is not applied to the angular velocity sensor, when a strong vibration is applied to the angular velocity sensor and the wire wire 46 is detached from the second detection electrode extending portion 35a, the embodiment of the present invention is considered. In the angular velocity sensor 2, crosstalk noise due to the high frequency component generated from the first drive electrode extension 33 a is caused by the first detection electrode extension 34 a and the second through the capacitive coupling of the fixed part 31 made of a dielectric. However, since the wire wire 46 is disconnected from the second detection electrode extension portion 35a, only the voltage of about 1.3 V generated at the first detection electrode extension portion 34a is transmitted. The signal is input to a differential amplifier (not shown) via the first detection terminal 49. In this case, in the second embodiment of the present invention, the first drive electrode extension portion 33a is formed in a comb shape having the branch portions 61, and the first detection electrode extension portion 34a has the branch portions 62. Since the first driving electrode extending portion 33a and the first detecting electrode extending portion 34a intersect with each other, the branch portion 61 in the first drive electrode extending portion 33a and the branch portion 62 in the first detecting electrode extending portion 34a intersect each other. The branch part 61 in the drive electrode extension part 33a reaches the branch part 62 in the first detection electrode extension part 34a, and as a result, the first fixing electrode 31 is not lengthened. Since the voltage generated in the detection electrode extension 34a can be increased, the disconnection of the wire 46 that connects the second detection electrode extension 35a and the second detection terminal 50 is more reliably detected. Action that can It is those having the results.
[0043]
  Further, in the second embodiment of the present invention, as in the first embodiment of the present invention, the first drive electrode 22 and the first drive electrode extending portion 33a in the first vibrating body 21 are further fixed. The third detection electrode extension portion 37a formed by extending the third detection electrode 29 of the second vibrating body 26 is made to extend along the second drive electrode extension portion 36a formed by extension at 31. In addition, the second drive electrode 23 of the first vibrating body 21 and the third drive electrode extension portion 38a on the lower surface are further extended at the fixing portion 31 to the fourth drive electrode extension portion 39a. A third detection in the second vibrating body 26 is made along the first detection electrode extending portion 34a in the first vibrating body 21 and in the second driving electrode extending portion 36a in the first vibrating body 21. The distance along the electrode extension 37a And the distance between the first drive electrode extension portion 39a of the first vibrating body 21 and the distance between the first detection electrode extension portion 34a of the first vibration body 21 and the gap therebetween. The branch part 64 in the second drive electrode extension part 36a and the branch part 65 in the third detection electrode extension part 37a intersect with each other, and in the fourth drive electrode extension part 39a. The branch part 66 and the branch part 67 in the first detection electrode extension part 34a intersect each other.
[0044]
  In the second embodiment of the present invention, as shown in FIG. 6, the first detection electrode 24 in the first vibrating body 21 is formed to extend so as to be positioned on the lower surface of the fixing portion 31. Comb-shaped third drive having a branch portion 69 formed by extending the second drive electrode 23 of the first vibrating body 21 from the comb-shaped fourth detection electrode extension portion 40a having the branch portion 68. A comb-shaped first portion having a branch portion 70 formed by extending the third drive electrode 28 in the second vibrating body 26 so as to be along the electrode extension portion 38 a and to be located on the lower surface of the fixing portion 31. A comb-shaped fifth detection electrode extension portion 42a having a branch portion 71 formed by extending the third detection electrode 29 of the second vibrating body 26 to the five drive electrode extension portions 41a, And the 3rd drive electrode extension part 3 in the said 1st vibrating body 21 A distance along which the fourth detection electrode extending portion 40a extends along a and a gap between them, and a fifth drive electrode extending portion 41a in the second vibrating body 26 along the fifth detection electrode extending portion 42a. The distance and the gap between them are substantially the same, and the branch 69 in the third drive electrode extension 38a and the branch 68 in the fourth detection electrode extension 40a intersect each other, and the fifth The branch part 70 in the drive electrode extension part 41a and the branch part 71 in the fifth detection electrode extension part 42a cross each other.
[0045]
【The invention's effect】
  As described above, according to the angular velocity sensor of the present invention, the gap between the drive electrode and the detection electrode in the vibrating body of the tuning fork is made substantially the same, so that the static electricity generated between the drive electrode and the detection electrode located on both sides can be obtained. Capacity is almost the sameAt the same time, one drive electrode extension portion formed by extending one drive electrode to the fixed portion of the tuning fork extends along one detection electrode extension portion, and the other drive electrode extends to the fixed portion. The distance between the other drive electrode extension part formed along the other detection electrode extension part and the one drive electrode extension part along the one detection electrode extension part, and the gap between them, The distance between the other drive electrode extension part and the other detection electrode extension part and the gap between them are made substantially the same so that the distance between one drive electrode extension part and one detection electrode extension part And the capacitance generated between the other drive electrode extension and the other detection electrode extension are substantially the same.Therefore, in the state where no angular velocity is applied to the angular velocity sensor, if the wire connecting the one detection electrode and the terminal in the tuning fork is disconnected, the crosstalk noise due to the high frequency component generated from the drive electrode is detected by the other detection electrode. As a result, the electric charges generated in the pair of detection electrodes do not cancel each other due to the crosstalk noise, so that the voltage is always applied to the other detection electrode. As a result, the disconnection of the wire connecting the one detection electrode and the terminal can be detected.In addition, since the electric charge generated by the crosstalk noise travels from the drive electrode extension part to the detection electrode extension part through the fixed part made of a dielectric material, If the wire connecting the sensing electrode and the terminal connected to each other is disconnected, the crosstalk noise caused by the high-frequency component generated from the drive electrode extension is fixed only to the other detection electrode extension. As a result, the charges generated in the pair of detection electrode extensions will not cancel each other due to crosstalk noise, so the voltage generated in the other detection electrode extension is always As a result, it is possible to reliably detect the disconnection of the wire connecting the one detection electrode and the terminal.
[Brief description of the drawings]
FIG. 1 is a perspective view of an angular velocity sensor according to Embodiment 1 of the present invention.
FIG. 2 is a bottom view showing a state in which the tuning fork as the main part is removed from the base.
FIG. 3 is a sectional view showing the same operation
FIG. 4 is a cross-sectional view showing the same operation
FIG. 5 is a top view of a tuning fork in the angular velocity sensor according to the second embodiment of the present invention.
FIG. 6 is a bottom view of the tuning fork which is the main part of the same.
FIG. 7 is a perspective view of a conventional angular velocity sensor.
[Explanation of symbols]
  21 First vibrator
  22 First drive electrode
  23 Second drive electrode
  24 first detection electrode
  25 Second detection electrode
  26 Second vibrator
  27 Monitor electrode
  27a Monitor electrode extension
  28 Third drive electrode
  29 Third detection electrode
  30 Fourth detection electrode
  31 Adhering part
  32 Tuning Fork
  33 First drive electrode extension
  33a Comb-shaped first drive electrode extension part
  34 First detection electrode extension
  34a Comb-shaped first detection electrode extension part
  35 Second detection electrode extension
  35a Comb-shaped second detection electrode extension part
  36 Second drive electrode extension
  36a Comb-shaped second drive electrode extension
  37 Third detection electrode extension
  37a Comb-shaped third detection electrode extension
  38 Third drive electrode extension
  38a Comb-shaped third drive electrode extension
  39 Fourth drive electrode extension
  39a Comb-shaped fourth drive electrode extension
  40 Fourth detection electrode extension
  40a Comb-shaped fourth detection electrode extension
  41 Fifth drive electrode extension
  41a Comb-shaped fifth drive electrode extension
  42 5th detection electrode extension part
  42a Comb-shaped fifth detection electrode extension
  43 base
  46 wire wire
  47 First drive terminal
  48 Second drive terminal
  49 First detection terminal
  50 Second detection terminal
  51 Monitor terminal
  53 Jumper wire
  61, 62, 63, 64, 65, 66, 67 Branch
  68, 69, 70, 71 branch

Claims (6)

一対の駆動電極および一対の検出電極を設けた振動体と、この振動体における一対の駆動電極および一対の検出電極を延出させて形成した一対の駆動電極延出部および一対の検出電極延出部を有する固着部とからなる音叉と、この音叉における固着部を固着するとともに少なくとも4つの端子を挿通させた基台と、この基台における端子と前記音叉の固着部における駆動電極延出部あるいは検出電極延出部とを電気的に接続するワイヤー線とを備え、前記音叉の振動体における駆動電極と検出電極との間隙を略同一にすることにより、駆動電極と両隣の検出電極との間に生じる静電容量を略同一にするとともに、音叉における固着部に駆動電極を延出させて形成した駆動電極延出部の両隣に、この駆動電極延出部との間隙が略同一になるように検出電極延出部を延出形成することにより、駆動電極延出部と両隣の検出電極延出部との間に生じる静電容量を略同一にした角速度センサ。A vibration body provided with a pair of drive electrodes and a pair of detection electrodes, a pair of drive electrode extensions formed by extending the pair of drive electrodes and the pair of detection electrodes in the vibration body, and a pair of detection electrodes A tuning fork comprising a fixing portion having a portion, a base to which the fixing portion of the tuning fork is fixed and at least four terminals are inserted, and a drive electrode extending portion at a fixing portion of the terminal and the tuning fork of the base or A wire wire that electrically connects the detection electrode extension, and by making the gap between the drive electrode and the detection electrode in the vibrating body of the tuning fork substantially the same, in addition to substantially the same electrostatic capacitance generated, on both sides of the drive electrodes extending portion which is formed by extending the driving electrodes secured portion of the tuning fork, so that the gap between the drive electrodes extending portion is substantially the same By extending form the detection electrode extending portions, the angular velocity sensors at substantially the same electrostatic capacitance generated between the detection electrode extension portion of the driving electrode extending portion and both sides. 音叉における固着部に一方の駆動電極を延出させて形成した一方の駆動電極延出部に一方の検出電極延出部を沿わせるとともに、前記固着部に他方の駆動電極を延出させて形成した他方の駆動電極延出部に他方の検出電極延出部を沿わせ、かつ前記一方の駆動電極延出部に一方の検出電極延出部を沿わせる距離およびそれらの間隙と、他方の駆動電極延出部に他方の検出電極延出部を沿わせる距離およびそれらの間隙とを略同一にすることにより、一方の駆動電極延出部と一方の検出電極延出部との間に生じる静電容量および他方の駆動電極延出部と他方の検出電極延出部との間に生じる静電容量を互いに略同一にした請求項1記載の角速度センサ。  Formed by extending one drive electrode to one of the drive electrodes extended to the fixed portion of the tuning fork and extending the other drive electrode to the fixed portion The distance between the other driving electrode extension part along the other detection electrode extension part and the one driving electrode extension part along the one detection electrode extension part, the gap between them, and the other drive By making the distance along which the other detection electrode extension part extends along the electrode extension part and the gap between them substantially the same, static electricity generated between one drive electrode extension part and one detection electrode extension part is generated. 2. The angular velocity sensor according to claim 1, wherein the capacitance and the capacitance generated between the other drive electrode extension and the other detection electrode extension are substantially the same. 駆動電極延出部を枝部を有する櫛形状に形成するとともに、検出電極延出部を枝部を有する櫛形状に形成し、さらに前記駆動電極延出部における枝部と前記検出電極延出部における枝部とを互いに交差させた請求項または請求項記載の角速度センサ。The drive electrode extension is formed in a comb shape having branches, the detection electrode extension is formed in a comb shape having branches, and the branch in the drive electrode extension and the detection electrode extension The angular velocity sensor according to claim 1 or 2, wherein the branch portions in the crossing each other. 上面および下面に一方の駆動電極を設けるとともに両側面に一対の検出電極を設けた第1の振動体と、この第1の振動体と平行に設けられるとともに上面にモニター電極を設け、かつ下面に駆動電極を設け、さらに両側面に検出電極を設けた第2の振動体と、前記第1の振動体の一端部と第2の振動体の一端部とを接続するとともに、上面に第1の振動体における駆動電極、検出電極、第2の振動体におけるモニター電極、駆動電極および検出電極をそれぞれ延出させて駆動電極延出部、検出電極延出部およびモニター電極延出部を形成した固着部とからなる音叉と、この音叉における固着部を上面に固着するとともに少なくとも5つの端子挿入孔を設け、この端子挿入孔に少なくとも5つの端子を挿通させた基台と、この基台における端子と前記音叉の固着部における駆動電極延出部、検出電極延出部およびモニター電極延出部とを電気的に接続するワイヤー線とを備え、前記第1の振動体および第2の振動体における駆動電極と検出電極との間隙を略同一にすることにより、第1の振動体および第2の振動体における駆動電極と両隣の検出電極との間に生じる静電容量を略同一にするとともに、音叉における固着部に駆動電極を延出させて形成した第1の振動体あるいは第2の振動体における駆動電極延出部の両隣に、この駆動電極延出部との間隙が略同一になるように第1の振動体あるいは第2の振動体における検出電極延出部を延出形成することにより、駆動電極延出部と両隣の検出電極延出部との間に生じる静電容量を略同一にした角速度センサ。A first vibrating body provided with one drive electrode on the upper surface and the lower surface and a pair of detection electrodes on both side surfaces, a monitor electrode provided on the upper surface, provided in parallel with the first vibrating body, and on the lower surface A second vibrating body provided with a drive electrode and further provided with detection electrodes on both side surfaces is connected to one end of the first vibrating body and one end of the second vibrating body. Fixing in which drive electrode, detection electrode, monitor electrode, drive electrode and detection electrode in second vibrator are extended to form drive electrode extension, detection electrode extension and monitor electrode extension, respectively. A tuning fork consisting of a portion, a base in which the fixing portion of the tuning fork is fixed to the upper surface, at least five terminal insertion holes are provided, and at least five terminals are inserted into the terminal insertion holes, and terminals in the base A drive electrode extending portion, a detection electrode extending portion, and a monitor electrode extending portion in the fixing portion of the tuning fork, and a wire wire that electrically connects the driving electrode extending portion, and driving in the first vibrating body and the second vibrating body By making the gap between the electrode and the detection electrode substantially the same, the capacitance generated between the drive electrode and the adjacent detection electrodes in the first and second vibrating bodies is made substantially the same, and the tuning fork In the first vibrating body or the second vibrating body formed by extending the driving electrode to the fixing portion in the second vibrating body, the gap with the driving electrode extending portion is substantially the same on both sides of the driving electrode extending portion. By forming the detection electrode extension in the first vibrating body or the second vibration body, the capacitance generated between the drive electrode extension and the adjacent detection electrode extension is made substantially the same. angular velocity sensors. 固着部に駆動電極を延出させて形成した第1の振動体における駆動電極延出部に第1の振動体における検出電極延出部を沿わせるとともに、前記固着部に駆動電極を延出させて形成した第2の振動体における駆動電極延出部に第2の振動体における検出電極延出部を沿わせ、かつ前記第1の振動体における駆動電極延出部に検出電極延出部を沿わせる距離およびそれらの間隙と、第2の振動体における駆動電極延出部に検出電極延出部を沿わせる距離およびそれらの間隙とを略同一にすることにより、駆動電極延出部と検出電極延出部との間に生じる静電容量を互いに略同一にした請求項記載の角速度センサ。The detection electrode extension portion of the first vibrating body extends along the drive electrode extension portion of the first vibrating body formed by extending the drive electrode to the fixing portion, and the driving electrode extends to the fixing portion. The drive electrode extension in the second vibrator is formed along the detection electrode extension in the second vibrator, and the detection electrode extension in the drive electrode extension in the first vibrator. The driving electrode extension and the detection are made substantially the same by the distance along the gap and the gap between them and the distance and the gap along which the detection electrode extension extends along the driving electrode extension in the second vibrating body. The angular velocity sensor according to claim 4 , wherein capacitances generated between the electrode extension portions are substantially the same. 駆動電極延出部を枝部を有する櫛形状に形成するとともに、検出電極延出部を枝部を有する櫛形状に形成し、さらに前記駆動電極延出部における枝部と前記検出電極延出部における枝部とを互いに交差させた請求項または請求項記載の角速度センサ。The drive electrode extension is formed in a comb shape having branches, the detection electrode extension is formed in a comb shape having branches, and the branch in the drive electrode extension and the detection electrode extension The angular velocity sensor according to claim 4 or 5, wherein the branch portions in the crossing each other.
JP2001400138A 2001-12-28 2001-12-28 Angular velocity sensor Expired - Fee Related JP3843839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400138A JP3843839B2 (en) 2001-12-28 2001-12-28 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400138A JP3843839B2 (en) 2001-12-28 2001-12-28 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JP2003194544A JP2003194544A (en) 2003-07-09
JP3843839B2 true JP3843839B2 (en) 2006-11-08

Family

ID=27604861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400138A Expired - Fee Related JP3843839B2 (en) 2001-12-28 2001-12-28 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3843839B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830488B2 (en) * 2005-12-28 2011-12-07 パナソニック株式会社 Angular velocity sensor
JP2009186305A (en) * 2008-02-06 2009-08-20 Epson Toyocom Corp Physical quantity sensor
US20170059393A1 (en) 2015-08-26 2017-03-02 Seiko Epson Corporation Physical Quantity Detection Device, Manufacturing Method For Physical Quantity Detection Device, Electronic Apparatus, And Moving Object

Also Published As

Publication number Publication date
JP2003194544A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US6119518A (en) Angular velocity sensor
JP4386073B2 (en) Angular velocity measuring device
US10119821B2 (en) Angular velocity sensor
EP2012087B1 (en) Vibration gyro
CN102192735B (en) Vibration gyro element, vibration gyro sensor, electronic device, and method of detecting physical quantity of vibration
CN107003129B (en) Sensor device, gyro sensor, and electronic apparatus
KR20070015010A (en) Angular velocity sensor
JP5772286B2 (en) Bending vibration piece and electronic device
US20190376789A1 (en) Sensor element, angular velocity sensor, and multi-axis angular velocity sensor
JP3843839B2 (en) Angular velocity sensor
JPH08159776A (en) Angular velocity sensor
JP6337443B2 (en) Vibrating piece, angular velocity sensor, electronic device and moving object
JPH11173850A (en) Angular velocity sensor
KR960034990A (en) Vibrating gyroscope
US20210247187A1 (en) Sensor element and angular velocity sensor
US20210254976A1 (en) Sensor element and angular velocity sensor
US20200249021A1 (en) Sensor element and angular velocity sensor
JPH09273934A (en) Vibration gyro
JPH0760093B2 (en) Vibrating gyro
JP4600590B2 (en) Angular velocity sensor
JP3270239B2 (en) Acceleration sensor
JPS60239613A (en) Angular velocity sensor
JP3244925B2 (en) Angular velocity / acceleration sensor
JP3244924B2 (en) Angular velocity sensor
JP5516119B2 (en) Vibrating gyro element, vibrating gyro sensor, and angular velocity detection method using vibrating gyro sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees