JP3270239B2 - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JP3270239B2
JP3270239B2 JP04933694A JP4933694A JP3270239B2 JP 3270239 B2 JP3270239 B2 JP 3270239B2 JP 04933694 A JP04933694 A JP 04933694A JP 4933694 A JP4933694 A JP 4933694A JP 3270239 B2 JP3270239 B2 JP 3270239B2
Authority
JP
Japan
Prior art keywords
tuning fork
detection
vibrating
electrode
side tuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04933694A
Other languages
Japanese (ja)
Other versions
JPH07260490A (en
Inventor
登美男 吉田
信久 跡地
俊彦 市瀬
二郎 寺田
惇 大友
治良 太田
紘一郎 太田
実 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Nihon Dempa Kogyo Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Nihon Dempa Kogyo Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Nihon Dempa Kogyo Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04933694A priority Critical patent/JP3270239B2/en
Publication of JPH07260490A publication Critical patent/JPH07260490A/en
Application granted granted Critical
Publication of JP3270239B2 publication Critical patent/JP3270239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車・航空機・船舶
・車両等の移動体の姿勢制御やナビゲーションシステム
に用いる加速度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor used for attitude control of a moving body such as an automobile, an aircraft, a ship, a vehicle, and the like, and a navigation system.

【0002】[0002]

【従来の技術】従来、加速度を検出する方法としてカン
チレバーに歪ゲージを貼りつけた歪ゲージ式センサが主
に使われていた。その例を図16に示す。この歪ゲージ
式センサは、図16に示すように、固定部13、カンチ
レバー14、歪検知抵抗体15で構成されている。これ
らの関連する先行技術として、特開昭61−14457
6号公報がある。
2. Description of the Related Art Conventionally, as a method of detecting acceleration, a strain gauge type sensor in which a strain gauge is attached to a cantilever has been mainly used. An example is shown in FIG. As shown in FIG. 16, the strain gauge sensor includes a fixed portion 13, a cantilever 14, and a strain detecting resistor 15. These related prior arts are disclosed in Japanese Patent Application Laid-Open No. 61-14457.
No. 6 publication.

【0003】一方、半導体のシリコンチップを用いたセ
ンサでは、温度変化に対して温度補償されたものがある
が、広範囲の加速度に対して、シリコンチップの曲げ強
度から実用上、直流に近い低周波の加速度から高加速度
までのフルレンジで検知することは不十分であった。そ
こで、耐衝撃を十分に耐えるカンチレバーの形成が要求
されている。関連技術として特願昭63−74157号
がある。
On the other hand, there is a sensor using a semiconductor silicon chip which is temperature-compensated for a change in temperature. However, for a wide range of acceleration, a low frequency close to DC in practical use is obtained from the bending strength of the silicon chip. It was not sufficient to detect in the full range from high acceleration to high acceleration. Therefore, it is required to form a cantilever that can sufficiently withstand impact resistance. A related technique is Japanese Patent Application No. 63-74157.

【0004】[0004]

【発明が解決しようとする課題】上記のような構成の加
速度センサが種々提案されているが、下記のような問題
があった。加速度センサは、機械的歪を受ける弾性体に
電気的変化に変換する検知部を一体化した2層構造のセ
ンサが主である。このような2層構造の加速度センサ
は、外界の温度変化によって、検知部である歪検知抵抗
体を貼りつけている接着剤やカンチレバーの熱膨張など
の変化を受けるために、これら構造と材料的な要因によ
り、温度ドリフトが大きく、検知動作の安定性に難があ
り、温度変化により出力値が変動するなど、センサ感度
の変化が大きいなどの欠点があった。
Various acceleration sensors having the above-mentioned configuration have been proposed, but have the following problems. The acceleration sensor is mainly a sensor having a two-layer structure in which an elastic body subjected to mechanical strain is integrated with a detection unit that converts the change into an electrical change. The acceleration sensor having such a two-layer structure receives a change in the adhesive or the thermal expansion of the cantilever to which the strain detecting resistor serving as the detecting portion is attached due to a change in the external temperature. Due to various factors, the temperature drift is large, the stability of the detection operation is difficult, and the output value fluctuates due to a temperature change.

【0005】この発明は、広い温度範囲で温度特性に優
れ、高感度、低ドリフトで加速度を検知できる加速度セ
ンサを提供することを目的とする。
It is an object of the present invention to provide an acceleration sensor which has excellent temperature characteristics in a wide temperature range, can detect acceleration with high sensitivity and low drift.

【0006】[0006]

【課題を解決するための手段】本発明の加速度センサ
は、所望の結晶軸とその面内で切り出された水晶ブラン
クに機械的あるいは電気的加工法で加工し、水晶ブラン
クだけで振動腕が面対称的に配置された一対の略U字音
叉形水晶振動子を形成し、それらの一方を駆動側音叉と
し他方を検知側音叉とし、両略U字音叉形水晶振動子の
作用を駆動用と検知用とに分離した一体構成、つまり2
つの略U字音叉形水晶振動子を互いに平行に面対向する
ように、2つの振動腕の基部である支持部において結合
子を介して一体構成したものである。
According to the acceleration sensor of the present invention, a desired crystal axis and a crystal blank cut out in the plane of the crystal axis are mechanically or electrically processed, and the vibrating arm is formed only by the crystal blank. A pair of substantially U-shaped tuning-fork type quartz vibrators are formed symmetrically arranged, one of which is a driving-side tuning fork and the other is a detecting-side tuning fork. Integral configuration separate for detection, ie 2
Two substantially U-shaped tuning-fork type quartz vibrators are integrally formed via a connector at a support portion which is a base of two vibrating arms so as to face each other in parallel to each other.

【0007】結合子の支持部に対する結合部位は、略U
字音叉形水晶振動子の機械的Q値の低下が少なく、かつ
有効に振動を伝達することができる箇所が望ましい。例
えば、支持部において、振動節(意味については後述す
る)を含むある面積をもった領域どうしを結合子を介し
一体構成すればよい。このように、駆動側音叉と検知側
音叉は、支持部に発生する振動節を部分的に含むある面
積をもった領域同士をブロック状の結合子を介して固着
すると、「エネルギー閉じ込め理論」により、音叉振動
の機械的Q値と駆動側音叉から検知側音叉への機械伝達
効率を最大にすることができる。したがって、従来の音
叉結合部の基板における機械的伝達ロスが飛躍的に改善
でき、コリオリの力による角速度検出の感度を格段に向
上させることができる。
[0007] The binding site of the connector with respect to the support is substantially U
It is desirable to have a portion where the mechanical Q value of the character-shaped tuning-fork type quartz vibrator has a small decrease and the vibration can be transmitted effectively. For example, in the support portion, regions having a certain area including a vibrating node (the meaning of which will be described later) may be integrally formed via a connector. As described above, when the drive-side tuning fork and the detection-side tuning fork are fixed to each other with a certain area including the vibrating node generated in the support portion via the block-shaped connector, the energy confinement theory is used. In addition, the mechanical Q value of the tuning fork vibration and the mechanical transmission efficiency from the driving side tuning fork to the detection side tuning fork can be maximized. Therefore, the mechanical transmission loss in the substrate of the conventional tuning fork coupling portion can be remarkably improved, and the sensitivity of the angular velocity detection by the Coriolis force can be remarkably improved.

【0008】なお、支持部の底面など、支持部の他の部
分同士を連結しても、駆動側から検知側へ振動を伝達で
きるので、結合の部位は、上記した振動節に限らないも
のである。上記のように、本発明は、一方の駆動側音叉
が駆動振動(捩じれ振動)を持続するようにし、他方の
検知側音叉はコリオリの力を検出するため、検知側音叉
の2つの振動腕を結ぶ方向(X軸方向)、すなわち加速
度による変位速度の方向(Z′軸方向)に対し、直角方
向の振動成分の電気的信号を検知側音叉で取り出すため
の電極を備え、加速度を検出することにより、温度ドリ
フトが非常に少なく、かつ高精度で安価な加速度センサ
を得ることができるものである。
[0008] Even if other portions of the support portion such as the bottom surface of the support portion are connected to each other, the vibration can be transmitted from the drive side to the detection side. Therefore, the coupling portion is not limited to the above-described vibration node. is there. As described above, according to the present invention, two vibrating arms of the detection-side tuning fork are used so that one of the driving-side tuning forks maintains the driving vibration (torsional vibration) and the other detection-side tuning fork detects the Coriolis force. An electrode for extracting an electric signal of a vibration component in a direction perpendicular to a connecting direction (X-axis direction), that is, a direction of a displacement speed due to acceleration (Z'-axis direction), on a detection-side tuning fork; Accordingly, it is possible to obtain a highly accurate and inexpensive acceleration sensor with very little temperature drift.

【0009】また、振動腕と支持部が一体に連結する略
U字音叉形水晶振動子を用いているので、従来例にみる
圧電素子貼り付け工程などの種々の製造工程がなく、温
度的にばらつきのない安定した加速度センサを得るもの
である。以下、各請求項に対応して説明する。請求項1
記載の加速度センサは、結晶軸X,Y,ZのX軸周りに
回転した新たな結晶軸X,Y′,Z′のY′軸方向を長
手方向にしてX,Y′面内でそれぞれ切り出し、方形断
面の一方および他方の対称な振動腕を支持部で平行一体
に連結した形状をそれぞれ有する略U字音叉形水晶ブラ
ンクの前記一方および他方の振動腕の周面に電極をそれ
ぞれ配設してなる第1および第2の音叉形水晶振動子
を、互いに平行に面対向した状態に結合子を介し前記支
持部において固着したもので、前記第1の音叉形水晶振
動子を、電極を介して交流電圧を印加することにより、
一方および他方の振動腕のY′軸周りに変位する互いに
逆相の捩じれ振動を発生させる駆動側音叉とし、前記第
2の音叉形水晶振動子を、前記結合子を経由して前記第
1の音叉形水晶振動子から伝播した一方および他方の振
動腕のY′軸周りに変位する互いに逆相の捩じれ振動と
Z′軸方向の加速度とに基づくコリオリの力によって発
生する一方および他方の振動腕のX軸方向の互いに逆相
の屈曲振動により生じる交流電圧を電極を介して検出す
る加速度検出用の検知側音叉としたことを特徴とする。
Further, since a substantially U-shaped tuning-fork type quartz vibrator in which the vibrating arm and the supporting portion are integrally connected is used, there are no various manufacturing steps such as a piezoelectric element attaching step as in a conventional example, and the temperature is reduced. It is intended to obtain a stable acceleration sensor without variation. Hereinafter, a description will be given corresponding to each claim. Claim 1
The acceleration sensor described above cuts out in the X, Y 'plane with the Y' axis direction of the new crystal axes X, Y ', Z' rotated around the X axis of the crystal axes X, Y, Z in the longitudinal direction. Electrodes are respectively provided on the peripheral surfaces of the one and the other vibrating arms of a substantially U-shaped tuning fork-shaped quartz blank having a shape in which one and the other symmetric vibrating arms of a rectangular cross section are connected in parallel and integrally by a support portion. The first and second tuning-fork type quartz vibrators are fixed to the support portion via a connector in a state where they face each other in parallel to each other, and the first tuning-fork type quartz vibrator is connected via electrodes. By applying an AC voltage
A drive-side tuning fork for generating torsional vibrations of opposite phases displaced about the Y 'axis of one and the other vibrating arms is provided, and the second tuning-fork type quartz vibrator is connected to the first tuning fork via the coupler. One and other vibrating arms generated by Coriolis force based on torsional vibrations of opposite phases displaced around the Y 'axis of the one and other vibrating arms propagated from the tuning fork crystal resonator and acceleration in the Z' axis direction A detection-side tuning fork for acceleration detection for detecting, via an electrode, an AC voltage generated by bending vibrations having opposite phases in the X-axis direction.

【0010】請求項2記載の加速度センサは、請求項1
記載の加速度センサにおいて、駆動側音叉の一方および
他方の振動腕のY′軸周りに変位する互いに逆相の捩じ
れ振動の共振周波数と検知側音叉の一方および他方の振
動腕のX軸方向の互いに逆相の屈曲振動の共振周波数と
がほぼ等しく、かつ前記駆動側音叉の一方および他方の
振動腕のX軸方向に変位する互いに逆相の屈曲振動の共
振周波数と前記検知側音叉の一方および他方の振動腕の
Y′軸周りに変位する互いに逆相の捩じれ振動の共振周
波数とが異なるように、前記駆動側音叉の振動腕と前記
検知側音叉の振動腕とを異なる形状寸法に設定したこと
を特徴とする。
[0010] The acceleration sensor according to the second aspect is the first aspect.
In the acceleration sensor described above, the resonance frequencies of the torsional vibrations of opposite phases displaced around the Y 'axis of one and the other vibrating arms of the drive-side tuning fork and the resonance frequencies of the one and the other vibrating arms of the detection-side tuning fork in the X-axis direction are different from each other. The resonance frequencies of the opposite-phase bending vibrations are substantially equal to each other, and the resonance frequencies of the opposite-phase bending vibrations displaced in the X-axis direction of one and the other vibrating arms of the drive-side tuning fork and one and the other of the detection-side tuning fork. The vibrating arm of the drive-side tuning fork and the vibrating arm of the detection-side tuning fork are set to have different shapes and sizes so that the resonance frequencies of the torsional vibrations of opposite phases displaced around the Y 'axis of the vibrating arm of the present invention are different from each other. It is characterized by.

【0011】請求項3記載の加速度センサは、請求項1
記載の加速度センサにおいて、駆動側音叉の一方および
他方の振動腕のX軸方向に変位する互いに逆相の屈曲振
動の共振周波数とY′軸周りに変位する互いに逆相の捩
じれ振動と検知側音叉の一方および他方の振動腕のX軸
方向の互いに逆相の屈曲振動の共振周波数とY′軸周り
に変位する互いに逆相の捩じれ振動の共振周波数とが互
いに隔離して異なるように、前記駆動側音叉の振動腕と
前記検知側音叉の振動腕とを異なる形状寸法に設定した
ことを特徴とする。
The acceleration sensor according to the third aspect is the first aspect.
In the acceleration sensor described above, the resonance frequency of the opposite-phase bending vibration displaced in the X-axis direction of the one and the other vibrating arms of the drive-side tuning fork and the opposite-phase torsional vibration displaced around the Y 'axis and the detection-side tuning fork The one and the other vibrating arms are driven so that the resonance frequency of the bending vibration of the opposite phase in the X-axis direction and the resonance frequency of the torsional vibration of the opposite phase displaced around the Y ′ axis are different from each other. The vibrating arm of the side tuning fork and the vibrating arm of the detection side tuning fork are set to have different shapes and sizes.

【0012】請求項4記載の加速度センサは、請求項1
記載の加速度センサにおいて、駆動側音叉の一方および
他方の振動腕の周面に配設する電極は、Z′軸方向に見
て前記一方および他方の振動腕の表裏面にそれぞれ周方
向に3分割された状態でそれぞれ設けてあり、前記一方
および他方の振動腕の表裏面の3分割されて外側にある
電極を外電極とし中側にある電極を中側電極とし内側に
ある電極を内電極としたとき、一方の振動腕の表面内電
極と表面外電極と裏面中側電極と他方の振動腕の裏面内
電極と裏面外電極と表面中側電極とを共通接続し、かつ
他方の振動腕の表面内電極と表面外電極と裏面中側電極
と一方の振動腕の裏面内電極と裏面外電極と表面中側電
極とを共通接続したことを特徴とする。
According to a fourth aspect of the present invention, there is provided the acceleration sensor according to the first aspect.
In the acceleration sensor described above, the electrodes arranged on the peripheral surface of one and the other vibrating arms of the drive-side tuning fork are respectively divided into three in the circumferential direction on the front and back surfaces of the one and the other vibrating arms when viewed in the Z′-axis direction. Each of the one and the other vibrating arms is divided into three, and the outer and inner surfaces of the vibrating arm are divided into three, the outer electrode is the outer electrode, the middle electrode is the middle electrode, and the inner electrode is the inner electrode. In this case, the inner surface electrode, the outer surface electrode, and the middle back electrode of one vibrating arm, the inner back electrode, the outer back electrode, and the middle surface electrode of the other vibrating arm are commonly connected, and the other vibrating arm has The inner electrode on the front surface, the outer electrode on the front surface, the middle electrode on the back surface, the inner electrode on the back surface of one vibrating arm, the outer back electrode, and the middle electrode on the front surface are commonly connected.

【0013】請求項5記載の加速度センサは、請求項1
記載の加速度センサにおいて、検知側音叉の一方および
他方の振動腕の周面に配設する電極は、Z′軸方向に見
て前記一方および他方の振動腕の表裏および両側の4周
面にそれぞれ4つの稜線部分で周方向に4分割された状
態にそれぞれ設けてあり、前記一方の振動腕の表裏面電
極と前記他方の振動腕の両側面電極とを共通接続し、前
記他方の振動腕の表裏面電極と前記一方の振動腕の両側
面電極とを共通接続したことを特徴とする。
According to a fifth aspect of the present invention, there is provided the acceleration sensor according to the first aspect.
In the acceleration sensor described above, the electrodes disposed on the circumferential surface of one and the other vibrating arms of the detection-side tuning fork are respectively provided on the four circumferential surfaces on the front and back sides and on both sides of the one and the other vibrating arms when viewed in the Z′-axis direction. The four vibrating arms are provided in a state of being divided into four in the circumferential direction. The front and back electrodes of the one vibrating arm and the both side electrodes of the other vibrating arm are connected in common. It is characterized in that the front and rear electrodes and both side electrodes of the one vibrating arm are commonly connected.

【0014】請求項6記載の加速度センサは、請求項1
記載の加速度センサにおいて、結合子は、両端面がある
面積を有する柱状であって、両端面が駆動側音叉および
検知側音叉の支持部に生成される振動節を部分的に含む
表面に接着されていることを特徴とする。請求項7記載
の加速度センサは、請求項1記載の加速度センサにおい
て、駆動側音叉および検知側音叉は、支持部に生成され
る振動節を部分的に含むある面積をもった貫通孔をそれ
ぞれ有し、結合子は、柱状であって、両端部が前記貫通
孔に貫挿した状態に前記駆動側音叉および検知側音叉の
支持部に接着されていることを特徴とする。
According to the sixth aspect of the present invention, there is provided an acceleration sensor according to the first aspect.
In the acceleration sensor described above, the connector has a columnar shape with both end faces having an area, and both end faces are bonded to a surface partially including a vibrating node generated in a support portion of the drive-side tuning fork and the detection-side tuning fork. It is characterized by having. According to a seventh aspect of the present invention, in the acceleration sensor according to the first aspect, each of the driving-side tuning fork and the detection-side tuning fork has a through-hole having an area partially including a vibration node generated in the support portion. The connector has a columnar shape, and is bonded to the supporting portions of the drive-side tuning fork and the detection-side tuning fork in a state where both ends are inserted through the through holes.

【0015】請求項8記載の加速度センサは、方形断面
の一方および他方の対称な振動腕を支持部で平行一体に
連結した形状をそれぞれ有する略U字音叉形水晶ブラン
クの前記一方および他方の振動腕の周面に電極をそれぞ
れ配設してなる第1および第2の音叉形水晶振動子を、
互いに平行に面対向した状態に結合子を介し前記支持部
において固着したもので、前記第1の音叉形水晶振動子
を、電極を介して交流電圧を印加することにより、一方
および他方の振動腕の長手方向の周りに変位する互いに
逆相の捩じれ振動を発生させる駆動側音叉とし、前記第
2の音叉形水晶振動子を、前記結合子を経由して前記第
1の音叉形水晶振動子から伝播した一方および他方の振
動腕の長手方向の周りに変位する互いに逆相の捩じれ振
動と前記一方および他方の振動腕の並び方向と直交する
方向の加速度とに基づくコリオリの力によって発生する
一方および他方の振動腕の並び方向の互いに逆相の屈曲
振動により生じる交流電圧を電極を介して検出する加速
度検出用の検知側音叉としたことを特徴とする。
According to an eighth aspect of the present invention, the one and other vibrations of the substantially U-shaped tuning-fork type quartz blank having a shape in which one and the other symmetric vibrating arms of a rectangular cross section are connected in parallel and integrally by a support portion are provided. First and second tuning-fork type quartz resonators each having electrodes disposed on the peripheral surface of the arm,
The first tuning-fork type quartz vibrator is fixed to the supporting portion via a connector in a state where the vibrating arms are parallel to each other and faced to each other by applying an AC voltage via an electrode. A drive-side tuning fork that generates torsional vibrations of opposite phases displaced around the longitudinal direction of the first tuning-fork type quartz vibrator from the first tuning-fork type quartz vibrator via the coupler. One and the other generated by Coriolis force based on torsional vibrations of opposite phases displaced around the longitudinal direction of the propagated one and other vibrating arms and acceleration in a direction orthogonal to the direction in which the one and other vibrating arms are arranged. A detection-side tuning fork for detecting an acceleration that detects, via an electrode, an AC voltage generated by bending vibrations of opposite phases in the arrangement direction of the other vibrating arms.

【0016】[0016]

【作用】請求項1記載の構成によれば、駆動側音叉であ
る第1の音叉形水晶振動子に電極を介して交流電圧を印
加することにより、駆動側音叉に一方および他方の振動
腕のY′軸周りに変位する互いに逆相の捩じれ振動が発
生する。このY′軸周りに変位する互いに逆相の捩じれ
振動は、一方および他方の振動腕にZ′軸方向の加速度
が加えられる(当然第2の音叉形水晶振動子も同じ加速
度が与えられる)と、Z′軸方向の加速度に基づくコリ
オリの力によって第1の音叉形水晶振動子の一方および
他方の振動腕のX軸方向の互いに逆相の屈曲振動が発生
する。この第1の音叉形水晶振動子の一方および他方の
振動腕のX軸方向の互いに逆相の屈曲振動により生じる
交流電圧を電極を介して検出する。この交流電圧はZ′
軸方向の加速度に比例した値をとるので、上記の交流電
圧からZ′軸方向の加速度が検出できる。
According to the first aspect of the present invention, an AC voltage is applied to the first tuning-fork type quartz vibrator serving as the driving-side tuning fork via an electrode, so that one of the vibrating arms of the other tuning arm is applied to the driving-side tuning fork. Torsional vibrations of opposite phases displaced about the Y 'axis are generated. The torsional vibrations of opposite phases displaced around the Y 'axis are caused when an acceleration in the Z' axis direction is applied to one and the other vibrating arms (of course, the same tuning is given to the second tuning-fork type quartz vibrator). , And Z'-axis direction, Coriolis force generates bending vibrations of one and the other vibrating arms of the first tuning-fork type quartz vibrator having phases opposite to each other in the X-axis direction. An AC voltage generated by bending vibrations of one and the other vibrating arms of the first tuning-fork type quartz vibrator having mutually opposite phases in the X-axis direction is detected via the electrodes. This AC voltage is Z '
Since the value is proportional to the acceleration in the axial direction, the acceleration in the Z'-axis direction can be detected from the AC voltage.

【0017】請求項2記載の構成によれば、駆動側音叉
の一方および他方の振動腕のX軸方向の屈曲振動の共振
周波数と検知側音叉の一方および他方の振動腕のX軸方
向の互いに逆相の屈曲振動の共振周波数とがほぼ等し
く、かつ駆動側音叉の一方および他方の振動腕のX軸方
向に変位する互いに逆相の屈曲振動の共振周波数と検知
側音叉の一方および他方の振動腕のY′軸周りに変位す
る互いに逆相の捩じれ振動の共振周波数とが異なること
により、駆動側音叉を共振駆動した場合において、検知
側音叉では、一方および他方の振動腕のY′軸周りに変
位する互いに逆相の捩じれ振動とZ′軸方向の加速度に
基づくコリオリの力によって検知側音叉の一方および他
方の振動腕に発生するX軸方向の互いに逆相の屈曲振動
を効率良く抽出するとともに、Y′軸周りに変位する互
いに逆相の捩じれ振動の影響が小さくなる。この結果、
Y′軸周りに変位する互いに逆相の捩じれ振動により生
じる交流電圧の影響を抑えつつ、X軸方向の互いに逆相
の屈曲振動により生じる交流電圧を有効に検出できるこ
とになり、精度よくZ′軸方向の加速度を検出すること
が可能となる。
According to the second aspect of the present invention, the resonance frequency of the bending vibration in the X-axis direction of one and the other vibrating arms of the drive-side tuning fork and the mutual resonance frequency of the one and the other vibrating arms of the detection-side tuning fork in the X-axis direction. The resonance frequencies of the opposite-phase bending vibrations are substantially equal to each other, and the resonance frequencies of the opposite-phase bending vibrations displaced in the X-axis direction of one and the other vibrating arms of the drive-side tuning fork and one and the other vibration of the detection-side tuning fork. When the driving-side tuning fork is driven to resonate due to the fact that the resonance frequencies of torsional vibrations of opposite phases displaced about the Y 'axis of the arm are different from each other, the detection-side tuning fork is rotated around the Y' axis of one and the other vibrating arms. A phase-dependent bending vibration in the X-axis direction generated on one and the other vibrating arms of the tuning fork on the detection side is efficiently extracted by a Coriolis force based on the torsional vibration of the opposite phase and the Coriolis force based on the acceleration in the Z'-axis direction. Both the influence of opposite phases of torsional vibration is displaced about Y 'axis is reduced. As a result,
It is possible to effectively detect the AC voltage generated by the opposite-phase bending vibrations in the X-axis direction while suppressing the influence of the AC voltage generated by the opposite-phase torsional vibration displaced around the Y 'axis, and to accurately detect the Z'-axis. It is possible to detect the acceleration in the direction.

【0018】請求項3記載の構成によれば、駆動側音叉
の一方および他方の振動腕のX軸方向に変位する互いに
逆相の屈曲振動の共振周波数とY′軸周りに変位する互
いに逆相の捩じれ振動と検知側音叉の一方および他方の
振動腕のX軸方向の互いに逆相の屈曲振動の共振周波数
とY′軸周りに変位する互いに逆相の捩じれ振動の共振
周波数とが互いに隔離して異なることにより、駆動側音
叉を共振駆動した場合において、検知側音叉では、一方
および他方の振動腕のY′軸周りに変位する互いに逆相
の捩じれ振動とZ′軸方向の加速度に基づくコリオリの
力によって検知側音叉の一方および他方の振動腕に発生
するX軸方向の互いに逆相の屈曲振動に対して、Y′軸
周りに変位する互いに逆相の捩じれ振動が影響すること
がなくなる。この結果、Y′軸周りに変位する互いに逆
相の捩じれ振動により生じる交流電圧の影響を抑えつ
つ、X軸方向の互いに逆相の屈曲振動により生じる交流
電圧を有効に検出できることになり、精度よくZ′軸方
向の加速度を検出することが可能となる。
According to the third aspect of the present invention, the resonance frequencies of the oppositely displaced bending vibrations displaced in the X-axis direction of the one and the other vibrating arms of the drive-side tuning fork and the opposite phases displaced about the Y 'axis. The resonance frequency of the torsional vibration of the detecting side tuning fork and the resonance frequency of the bending vibration of the opposite phase in the X axis direction of the one and the other vibrating arms of the detecting side tuning fork and the resonance frequency of the torsional vibration of the opposite phase displaced around the Y 'axis are separated from each other. In the case where the drive-side tuning fork is driven in resonance, the detection-side tuning fork is driven by Coriolis based on torsional vibrations in opposite phases displaced around the Y 'axis of one and the other vibrating arms and acceleration in the Z' axis direction. The opposite phase torsional vibrations displaced around the Y 'axis do not affect the X-axis bending vibrations in the X-axis direction generated on one and the other vibrating arms of the detection-side tuning fork due to the force of. As a result, it is possible to effectively detect the AC voltage generated by the opposite-phase bending vibrations in the X-axis direction while suppressing the influence of the AC voltage generated by the opposite-phase torsional vibration displaced around the Y 'axis, and to accurately detect the AC voltage. The acceleration in the Z'-axis direction can be detected.

【0019】請求項4記載の構成によれば、駆動側音叉
の共通接続した2組の電極間に交流電圧を加えて一方お
よび他方の振動腕のY′軸周りに変位する互いに逆相の
捩じれ振動を起こさせる。この際、交流電圧の周波数
は、一方および他方の振動腕のY′軸周りに変位する互
いに逆相の捩じれ振動の共振周波数に近いものとし、駆
動側音叉を共振駆動する。
According to the fourth aspect of the present invention, an alternating voltage is applied between the two sets of commonly connected electrodes of the driving-side tuning fork, and the torsions having opposite phases are displaced around the Y 'axis of one and the other vibrating arms. Causes vibration. At this time, the frequency of the AC voltage is close to the resonance frequencies of the torsional vibrations of opposite phases displaced around the Y 'axis of the one and the other vibrating arms, and the drive-side tuning fork is driven in resonance.

【0020】請求項5記載の構成によれば、検知側音叉
の共通接続した2組の電極間には、一方および他方の振
動腕に発生するX軸方向の互いに逆相の屈曲振動に伴う
交流電圧が生じることになる。請求項6記載の構成によ
れば、駆動側音叉の一方および他方の振動腕のX軸方向
の互いに逆相の屈曲振動が、駆動側音叉の機械的Q値が
低下することなく、効率よく検知側音叉に伝達されるこ
とになる。
According to the fifth aspect of the present invention, between the two sets of commonly connected electrodes of the detection-side tuning fork, an alternating current generated by one and the other vibrating arms due to bending vibrations having opposite phases in the X-axis direction. Voltage will result. According to the configuration of the sixth aspect, bending vibrations of one phase and the other vibrating arm of the driving-side tuning fork in the X-axis direction, which are in opposite phases to each other, are efficiently detected without lowering the mechanical Q value of the driving-side tuning fork. It will be transmitted to the side tuning fork.

【0021】請求項7記載の構成によれば、駆動側音叉
の一方および他方の振動腕のX軸方向の互いに逆相の屈
曲振動が、駆動側音叉の機械的Q値が低下することな
く、効率よく検知側音叉に伝達されることになる。請求
項8記載の構成によれば、駆動側音叉および検知側音叉
の切り出し方向が任意であるので、切り出し方向の違い
による特性の違いはあるものの、本質的には、請求項1
と同様に作用する。
According to the seventh aspect of the present invention, the bending vibrations of the one and the other vibrating arms of the driving-side tuning fork in the X-axis direction are opposite to each other without lowering the mechanical Q value of the driving-side tuning fork. This is transmitted to the detection-side tuning fork efficiently. According to the configuration of claim 8, since the cut-out direction of the drive-side tuning fork and the detection-side tuning fork is arbitrary, there is a difference in characteristics due to a difference in the cut-out direction.
Works in the same way as

【0022】ここで、2つの略U字音叉形水晶振動子を
結合子を介して連結して一体化している理由について説
明する。音叉形水晶振動子において、今仮に、音叉形水
晶振動子のZ′軸に加速度を加えたとすると、加速度に
よる変位速度vにより、各振動腕には、コリオリの力が
X軸線対称の方向に発生する。このとき、発生するX軸
線対称方向の振動は、Y′軸の周りの捩じれ振動とZ軸
の加速度方向と直交するX軸方向成分に振動をすること
になる。すなわち、加速度検知の原理は、一方および他
方の振動腕がY′軸周りに変位する互いに逆相の捩じれ
振動を生じているとき、振動腕に加速度による変位速度
vが印加されたとすると、コリオリの力はZ軸方向と直
交するX軸方向に屈曲振動として新たに発生する。この
屈曲振動の成分を検出することにより、加速度を検出す
ることが可能となる。
Here, the reason why the two substantially U-shaped tuning-fork type quartz vibrators are connected and integrated via a connector will be described. If an acceleration is applied to the Z 'axis of the tuning-fork crystal unit, a Coriolis force is generated in each vibrating arm in a direction symmetric to the X-axis due to the displacement speed v due to the acceleration. I do. At this time, the generated vibration in the X-axis symmetric direction vibrates in the torsional vibration around the Y 'axis and the X-axis direction component orthogonal to the Z-axis acceleration direction. In other words, the principle of acceleration detection is that when one and the other vibrating arms generate torsional vibrations of opposite phases displaced about the Y 'axis, if a displacement speed v due to acceleration is applied to the vibrating arms, Coriolis The force is newly generated as bending vibration in the X-axis direction orthogonal to the Z-axis direction. The acceleration can be detected by detecting the component of the bending vibration.

【0023】しかしながら、単一の音叉形水晶振動子に
おいては、共振駆動のY′軸周りに変位する互いに逆相
の捩じれ振動の共振周波数と、これに同期して新たに発
生するX軸方向の互いに逆相の屈曲振動の非共振周波数
は、同一周波数であるので分離することは一般に困難で
ある。これは、仮に分離電極配置等の工夫によりこの2
モードをうまく分離し検出することができたとしても、
共振駆動の強いレベルに対して、検出レベルは極めて低
いレベルであることから、誘導等により検出レベルがマ
スクされ、あるいは影響を受けて、もとより正確な検出
ができないことに起因している。かくして、周波数の差
異によって、駆動と検出を分離する何らかの解決手段が
望まれていた。
However, in the case of a single tuning-fork type quartz resonator, the resonance frequency of the torsional vibrations of opposite phases displaced around the Y 'axis of the resonance drive and the newly generated X-axis direction Since the non-resonant frequencies of the bending vibrations having opposite phases are the same frequency, it is generally difficult to separate them. This is due to provision of the separation electrode and the like.
Even if the mode can be separated and detected well,
Since the detection level is extremely low with respect to the strong level of the resonance drive, the detection level is masked by the influence of induction or the like, or is affected by the detection level, so that accurate detection cannot be performed. Thus, some solution for separating drive and detection by frequency differences was desired.

【0024】そこで、本発明は、2個の略U字音叉形水
晶振動子を結合子を介して接合することにより、駆動側
と検知側に分離し、この困難性を解決したものである。
本発明においては、水晶振動子そのものが一対の振動腕
を面対称的に配置したものであり、音叉形状を有する略
U字音叉形水晶振動子の2つのうち一方を駆動側音叉と
し、他方を検知側音叉とし、結合子で一体化したもので
ある。
Therefore, the present invention solves this difficulty by joining two substantially U-shaped tuning-fork type quartz vibrators via a connector to separate them into a drive side and a detection side.
In the present invention, the crystal resonator itself has a pair of vibrating arms arranged in plane symmetry, and one of two substantially U-shaped tuning fork-shaped crystal resonators having a tuning fork shape is a driving side tuning fork, and the other is a driving side tuning fork. It is a detection-side tuning fork and integrated with a connector.

【0025】そして、これらの音叉の素材として、水晶
を用いることにより、加速度検知感度が高く、熱的膨張
係数が小さく、電極配置によりY′軸周りに変位する互
いに逆相の捩じれ振動をさせることにより加速度検知を
可能とし、温度変化に対する水晶の周波数依存性がより
小さくなり、結果的には加速度センサの温度ドリフト低
減につながり、小さくなるのである。また、駆動側の駆
動信号成分の検知側へ不要信号成分としての混入が小さ
く、駆動時の共振周波数変動が小さく、同期検波時の位
相ずれ変化が小さいという作用効果を得る。そして結果
的には、広い温度範囲で温度特性に優れた加速度センサ
を得ることができるのである。
By using quartz as a material of these tuning forks, high sensitivity of acceleration detection, small thermal expansion coefficient, and torsional vibrations of opposite phases displaced around the Y 'axis by electrode arrangement are provided. Accordingly, acceleration can be detected, and the frequency dependence of the crystal with respect to a temperature change becomes smaller. As a result, the temperature drift of the acceleration sensor is reduced, and the temperature is reduced. In addition, the driving signal component on the driving side is less mixed into the detection side as an unnecessary signal component, the resonance frequency fluctuation at the time of driving is small, and the phase shift change at the time of synchronous detection is small. As a result, an acceleration sensor having excellent temperature characteristics in a wide temperature range can be obtained.

【0026】ここで、本発明の作用についてもう少し説
明する。これは大きく振動している特定の駆動モード
(この場合はXモード)で共振振動している音叉に、コ
リオリの力による新しい振動モード(この場合はZモー
ド)が(絶対に共振ではなく)発生するので、この発生
した新しい振動モード(この場合はZモード、但し、周
波数は駆動モードと同期しているので駆動モードと同一
である)をモード共振により選択的(一種のメカニカル
なフィルタリングです)に検出するものである。
Here, the operation of the present invention will be described a little more. This means that a new vibration mode (in this case, Z mode) due to Coriolis force is generated (absolutely not resonance) in a tuning fork that vibrates in a specific driving mode (in this case, X mode) that vibrates greatly. Therefore, the generated new vibration mode (in this case, Z mode, but the frequency is synchronized with the drive mode, so it is the same as the drive mode) is selectively (a kind of mechanical filtering) by mode resonance. It is to detect.

【0027】つまり、検知側音叉に駆動側振動モードが
混在すると、誤検出となる恐れがありますので(レベル
が100dBと隔絶しているので)、駆動の振動モード
に対し検出の振動モードを選択できるよう、検出側音叉
の電極構造を駆動側音叉と異なるものとし、また共振周
波数に対し共振選択特性を付与すべく振動腕の形状寸法
を異ならしめているのである。検知側音叉においては、
駆動モードを可能な限り抑制して、検出モードのみを可
能な限り効率よく検出するのである。
In other words, if the drive side vibration mode is mixed with the detection side tuning fork, erroneous detection may occur (because the level is isolated to 100 dB), so that the detection vibration mode can be selected from the drive vibration mode. As described above, the electrode structure of the detection-side tuning fork is different from that of the driving-side tuning fork, and the shape and size of the vibrating arm are different so as to provide resonance selection characteristics with respect to the resonance frequency. In the detection side tuning fork,
The drive mode is suppressed as much as possible, and only the detection mode is detected as efficiently as possible.

【0028】この発明では、複数の振動モードを取り扱
うので、それらに対する対策が重要なポイントとなって
いる。すなわち、このX軸方向に変位する互いに逆相の
屈曲振動は、駆動側音叉の第1の音叉形水晶振動子の支
持部から結合子を介して検知側音叉である第2の音叉形
水晶振動子の支持部に一部伝播するが、第2の音叉のX
軸方向に変位する互いに逆相の屈曲振動と共振周波数が
一致せず共振しないように設定されてあるから、大部分
は駆動側音叉に閉じ込められる。このときに、第1の音
叉形水晶振動子にY′軸周りの回転角速度が与えられる
(当然第2の音叉形水晶振動子も同じ回転角速度が与え
られる)と、コリオリの力とによって、第1の音叉形水
晶振動子の一方及び他方の振動腕のZ′軸方向の互いに
逆相の屈曲振動が新たに発生する。このZ′軸方向の互
いに逆相の屈曲振動は結合子を介して第2の音叉形水晶
振動子に伝播するが、Z′軸方向の互いに逆相の屈曲振
動の共振周波数とほぼ等しく設定してあると、効率よく
検出することができる。
In the present invention, since a plurality of vibration modes are handled, measures against them are important points. That is, the bending vibrations having opposite phases displaced in the X-axis direction are transmitted from the support portion of the first tuning-fork type quartz vibrator of the driving-side tuning fork via the coupler to the second tuning-fork type quartz vibrating which is the detection-side tuning fork. Partially propagated to the support of the child, but the X of the second tuning fork
Since it is set so that the resonance frequency and the bending vibration of the opposite phases displaced in the axial direction do not coincide with each other and do not resonate, most are confined in the drive-side tuning fork. At this time, if the rotation angular velocity around the Y 'axis is given to the first tuning fork crystal resonator (the same rotation angular velocity is given to the second tuning fork crystal resonator as a matter of course), the first tuning fork crystal resonator is given the second rotation by the Coriolis force. Bending vibrations having opposite phases in the Z'-axis direction of one and the other vibrating arms of the tuning fork-shaped quartz resonator 1 are newly generated. The flexural vibrations having opposite phases in the Z'-axis direction propagate to the second tuning-fork type quartz vibrator through the coupler, and are set to be substantially equal to the resonance frequency of the flexural vibrations having opposite phases in the Z'-axis direction. If it is, it can be detected efficiently.

【0029】共振現象を利用した検出は高感度、高能率
であるから、小型化・高精度に好適であるが、他の信号
妨害を受け易い欠点も持っている。また、X軸方向の互
いに逆相の屈曲振動、あるいはZ′軸方向の互いに逆相
の屈曲振動などの、多数の異なる振動を利用しようとす
る場合、不要振動による干渉を排除しと抑制することに
特に留意しなければならない。比較的容易な対策は、多
少感度を犠牲にしても互いの共振周波数を隔離しあるい
は近接を避けるよう設定することである。
The detection using the resonance phenomenon has high sensitivity and high efficiency, so it is suitable for miniaturization and high accuracy. However, it has a disadvantage that it is easily affected by other signal interference. In addition, when a large number of different vibrations such as bending vibrations having opposite phases in the X-axis direction or bending vibrations having opposite phases in the Z'-axis direction are to be used, it is necessary to eliminate and suppress interference due to unnecessary vibration. Special attention must be paid to A relatively easy countermeasure is to set the resonance frequencies apart from each other or to avoid proximity, at the expense of some sensitivity.

【0030】幸いにして、これら各種振動は互いに直交
していて境界条件が独立な関係にあるから、相互干渉も
なく制御しやすい利点がある。例えば、Z′軸方向に変
位する屈曲振動とX軸方向に変位する屈曲振動は、振動
腕の長さを周波数決定の共通境界条件としているが、他
方、厚みと幅を他の境界条件としているので、圧電定数
の差異と併せ、厚みと幅を異ならしめることによりきわ
めて容易にそれら共振周波数を隔離し異なるよう設定す
ることができる。
Fortunately, since these various vibrations are orthogonal to each other and the boundary conditions are independent of each other, there is an advantage that they are easy to control without mutual interference. For example, the bending vibration displacing in the Z′-axis direction and the bending vibration displacing in the X-axis direction use the length of the vibrating arm as a common boundary condition for frequency determination, while the thickness and width are other boundary conditions. Therefore, by making the thickness and the width different from each other in addition to the difference between the piezoelectric constants, the resonance frequencies can be very easily isolated and set differently.

【0031】[0031]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は本発明の第1の実施例の加速度センサ
の斜視図を示している。同図(a)は組み立て状態の斜
視図、同図(b)は分解状態の斜視図である。図1にお
いて、21は方形断面の一方および他方の対称な振動腕
24,25を支持部23で平行一体に連結した形状をそ
れぞれ有する略U字音叉形水晶ブランクからなる第1の
音叉形水晶振動子(以下、駆動側音叉という)で、電気
的加工または機械的加工によって切り出され、一方およ
び他方の振動腕24,25の周面に駆動用電極22を配
設している。26は同じく方形断面の一方および他方の
対称な振動腕29,30を支持部28で平行一体に連結
した形状をそれぞれ有する略U字音叉形水晶ブランクか
らなる第2の音叉形水晶振動子(以下、検知側音叉とい
う)で、一方および他方の振動腕29,30の周面に検
知用電極27を配設している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of an acceleration sensor according to a first embodiment of the present invention. FIG. 1A is a perspective view in an assembled state, and FIG. 1B is a perspective view in an exploded state. In FIG. 1, reference numeral 21 denotes a first tuning fork-shaped quartz vibrator made of a substantially U-shaped tuning fork-shaped quartz blank having a shape in which one and the other symmetrical vibrating arms 24 and 25 having a rectangular cross section are connected in parallel and integrally by a support portion 23, respectively. The drive electrode 22 is cut out by a working (hereinafter referred to as a drive-side tuning fork) by electric processing or mechanical processing, and driving electrodes 22 are arranged on the peripheral surfaces of the one and the other vibrating arms 24 and 25. Reference numeral 26 denotes a second tuning-fork type crystal resonator (hereinafter, referred to as a second tuning-fork type crystal resonator) comprising a substantially U-shaped tuning-fork type crystal blank having a shape in which one and the other symmetrical vibrating arms 29 and 30 having the same rectangular cross section are connected in parallel and integrally by the support portion 28. , A detection-side tuning fork), and a detection electrode 27 is disposed on the peripheral surface of one and the other vibrating arms 29, 30.

【0032】31は水晶からなる方形断面の結合子で、
両端面を駆動側音叉21および検知側音叉26のそれぞ
れの駆動側支持部23および検知側支持部28の略中央
部表面に位置する駆動側振動節を部分的に含む接合部3
2と検知側振動節を部分的に含む接合部33とを接着に
より結合して加速度センサを構成している。この場合、
駆動側音叉21と検知側音叉26とは、互いに平行に面
対向した状態になっている。この結合子31は、駆動側
音叉21の振動を検知側音叉26に伝達させる機能を有
しているが、それは、結合子31が駆動側音叉21およ
び検知側音叉26とともに音叉を構成しているからであ
ると考えられる。
Numeral 31 is a connector having a rectangular cross section made of quartz.
A joint portion 3 partially including a drive-side vibrating node whose both end surfaces are located substantially at the center surfaces of the drive-side support portions 23 and the detection-side support portions 28 of the drive-side tuning fork 21 and the detection-side tuning fork 26, respectively.
2 and a joint 33 partially including the detection-side vibrating node are bonded by an adhesive to form an acceleration sensor. in this case,
The drive-side tuning fork 21 and the detection-side tuning fork 26 are in parallel with each other and face each other. The connector 31 has a function of transmitting the vibration of the drive-side tuning fork 21 to the detection-side tuning fork 26, and the connector 31 forms a tuning fork together with the drive-side tuning fork 21 and the detection-side tuning fork 26. It is considered that

【0033】以下に、要部である駆動側音叉21および
検知側音叉26に用いる略U字音叉形水晶ブランクにつ
いて説明する。図2は駆動側音叉21および検知側音叉
26に用いる略U字音叉形水晶ブランクの斜視図であ
る。図2において、34は駆動側音叉21および検知側
音叉26に用いる略凹形状を有する略U字音叉形水晶ブ
ランクである。この水晶ブランク34は結晶軸X,Y,
Zに対して、X軸周りで角度θ(=1〜3°)回転した
新たな結晶軸X,Y′,Z′のY′軸方向を長手方向に
してX,Y′面内で切り出したものであり、平行な2つ
の振動腕35A,35Bを支持部35Cで結合した構造
である。
A substantially U-shaped tuning fork crystal blank used for the driving tuning fork 21 and the detection tuning fork 26, which are essential parts, will be described below. FIG. 2 is a perspective view of a substantially U-shaped tuning fork crystal blank used for the driving tuning fork 21 and the detection tuning fork 26. In FIG. 2, reference numeral 34 denotes a substantially U-shaped tuning fork crystal blank having a substantially concave shape used for the driving tuning fork 21 and the detection tuning fork 26. This crystal blank 34 has crystal axes X, Y,
A new crystal axis X, Y ', Z' rotated around the X axis by an angle θ (= 1 to 3 °) with respect to Z is cut out in the X, Y 'plane with the Y' axis direction as a longitudinal direction. This is a structure in which two parallel vibrating arms 35A and 35B are connected by a support 35C.

【0034】ここで、略U字音叉形水晶振動子を構成す
る水晶ブランクの寸法の一例について説明する。例え
ば、第1の実施例として、駆動側音叉および検知側音叉
の振動腕は、水晶をU字形状に長さ(L)10mm×厚み
(t)2.5mm×幅(W)3.5mmの寸法で図2に示し
たカット方向にて成型加工される。駆動側音叉および検
知側音叉の寸法は、上記の例に限らず、両音叉の寸法は
同じである必要はなく、Y′軸周りに変位する互いに逆
相の捩じれ振動およびX軸方向の互いに逆相の屈曲振動
の共振周波数に応じて適宜設定される。
Here, an example of the dimensions of the crystal blank constituting the substantially U-shaped tuning fork crystal resonator will be described. For example, as a first embodiment, the vibrating arms of the drive-side tuning fork and the detection-side tuning fork are made of quartz in a U-shape having a length (L) of 10 mm, a thickness (t) of 2.5 mm, and a width (W) of 3.5 mm. It is molded in the cut direction shown in FIG. The dimensions of the drive-side tuning fork and the detection-side tuning fork are not limited to the above example, and the dimensions of both tuning forks need not be the same, and are opposite torsional vibrations displaced around the Y 'axis and opposite to each other in the X-axis direction. It is set appropriately according to the resonance frequency of the bending vibration of the phase.

【0035】この略U字音叉形水晶ブランク34を図1
に示した加速度センサの駆動側音叉21および検知側音
叉26に用いる場合、駆動側音叉21のY′軸周りに変
位する互いに逆相の捩じれ振動の共振周波数と検知側音
叉26のX軸方向の互いに逆相の屈曲振動との共振周波
数が等しく、かつ、駆動側音叉21のX軸方向の互いに
逆相の屈曲振動の共振周波数と検知側音叉26のY′軸
周りに変位する互いに逆相の捩じれ振動の共振周波数が
異なるような形状寸法で切り出して用いている。
The substantially U-shaped tuning fork crystal blank 34 is shown in FIG.
When used for the drive-side tuning fork 21 and the detection-side tuning fork 26 of the acceleration sensor shown in (1), the resonance frequencies of torsional vibrations of opposite phases displaced around the Y 'axis of the drive-side tuning fork 21 and the X-axis direction of the detection-side tuning fork 26 The resonance frequencies of the opposite-phase bending vibrations are equal to each other, and the resonance frequencies of the opposite-phase bending vibrations in the X-axis direction of the drive-side tuning fork 21 and the opposite-phase displacement of the detection-side tuning fork 26 around the Y 'axis are different. It is cut out and used in such a shape and size that the resonance frequency of the torsional vibration is different.

【0036】上記の駆動側音叉21は、駆動用電極22
を介して交流電圧を印加することにより、一方および他
方の振動腕24,25のY′軸周りに変位する互いに逆
相の捩じれ振動を発生させる。この場合、交流電圧の周
波数は、Y′軸周りに変位する互いに逆相の捩じれ振動
の共振周波数にほぼ一致した周波数として、共振駆動を
行う。
The drive-side tuning fork 21 is connected to a drive electrode 22
To generate torsional vibrations of opposite phases, which are displaced around the Y 'axis of the one and other vibrating arms 24 and 25. In this case, the resonance drive is performed with the frequency of the AC voltage substantially equal to the resonance frequency of the torsional vibrations of opposite phases displaced around the Y 'axis.

【0037】また、検知側音叉26は、結合子31を経
由して駆動側音叉21から伝播したY′軸周りに変位す
る互いに逆相の捩じれ振動とZ′軸方向の加速度に基づ
くコリオリの力によって発生する一方および他方の振動
腕29,30のX軸方向の互いに逆相の屈曲振動により
生じる交流電圧を電極を介して検出する。以下に、要部
である駆動用電極22の具体構成について説明する。図
3は、要部である駆動側音叉21の一方および他方の振
動腕の周面に形成された駆動用電極22の結線図であ
る。図3において、36a,36b,36cは一方の振
動腕24のZ′軸方向から見て表面に形成された外側、
中側、内側の駆動用電極、36d,36e,36fは一
方の振動腕24のZ′軸方向から見て裏面に形成された
外側、中側、内側の駆動用電極である。37a,37
b,37cは他方の振動腕25のZ′軸方向から見て表
面に形成された内側、中側、外側の駆動用電極、37
d,37e,37fは他方の振動腕25のZ′軸方向か
ら見て裏面に形成された内側、中側、外側の駆動用電極
であり、図1に示した通り、Z′軸方向に見て一方およ
び他方の振動腕の表裏面にそれぞれ周方向に3分割され
た状態にそれぞれ設けてある。
The detection-side tuning fork 26 is a Coriolis force based on torsional vibrations of opposite phases displaced around the Y 'axis propagated from the driving-side tuning fork 21 via the connector 31 and acceleration in the Z'-axis direction. The AC voltage generated by the bending vibrations of the one and the other vibrating arms 29 and 30 in the opposite phases in the X-axis direction generated by the vibration arms 29 and 30 is detected via the electrodes. Hereinafter, a specific configuration of the driving electrode 22 as a main part will be described. FIG. 3 is a connection diagram of a driving electrode 22 formed on the peripheral surface of one and the other vibrating arms of the driving-side tuning fork 21 as a main part. In FIG. 3, 36a, 36b, and 36c are outer portions formed on the surface of one vibrating arm 24 when viewed from the Z 'axis direction.
The middle and inside drive electrodes 36d, 36e and 36f are outside, middle and inside drive electrodes formed on the back surface of one vibrating arm 24 as viewed from the Z 'axis direction. 37a, 37
b, 37c are inner, middle, and outer drive electrodes 37 formed on the surface of the other vibrating arm 25 viewed from the Z 'axis direction.
Reference numerals d, 37e, and 37f denote inner, middle, and outer drive electrodes formed on the back surface of the other vibrating arm 25 when viewed from the Z'-axis direction. As shown in FIG. Each of the vibrating arms is provided on the front and back surfaces of the other vibrating arm so as to be divided into three in the circumferential direction.

【0038】そして、一方の振動腕24の表裏面の駆動
用電極36a,36c,36eと他方の振動腕25の両
側面の駆動用電極37b,37d,37fとを共通接続
し、他方の振動腕25の表裏面の駆動用電極37a,3
7c,37eと一方の振動腕24の両側面の駆動用電極
36b,36d,37fとを共通接続している。駆動用
電極36a,36c,36e,37b,37d,37f
の共通接続、ならびに駆動用電極36b,36d,,3
6f,37a,37c,37eの共通接続は、振動腕2
4,25の周面上で電極パターンを延長形成することに
より行っている。
The driving electrodes 36a, 36c, 36e on the front and back surfaces of one vibrating arm 24 and the driving electrodes 37b, 37d, 37f on both side surfaces of the other vibrating arm 25 are commonly connected, and the other vibrating arm 24 is connected. 25 drive electrodes 37a, 3 on the front and back
7c, 37e and the driving electrodes 36b, 36d, 37f on both sides of one vibrating arm 24 are commonly connected. Driving electrodes 36a, 36c, 36e, 37b, 37d, 37f
And the driving electrodes 36b, 36d, 3
6f, 37a, 37c and 37e are connected to the vibrating arm 2
This is performed by extending the electrode pattern on the peripheral surfaces of the layers 4 and 25.

【0039】38は共通接続した駆動用電極36a,3
6c,36e,37b,37d,37fに接続された共
通線路、39は共通接続した駆動用電極36b,36
d,,36f,37a,37c,37eに接続された共
通線路である。以上のように構成された駆動用電極22
の動作について説明すると、共通線路38,39間に駆
動信号(交流電圧)を印加して共振駆動を行えば、一方
および他方の振動腕24,25のY′軸周りに変位する
互いに逆相の捩じれ振動が発生し、駆動音叉21の一方
の振動腕24、他方の振動腕25が互いに逆方向に捩じ
れるのである。
Reference numeral 38 denotes driving electrodes 36a, 3 which are connected in common.
6c, 36e, 37b, 37d, 37f are connected to a common line, and 39 is a commonly connected drive electrode 36b, 36.
d, 36f, 37a, 37c, 37e. The driving electrode 22 configured as described above
When the resonance drive is performed by applying a drive signal (AC voltage) between the common lines 38 and 39, the one and the other vibrating arms 24 and 25 are displaced around the Y 'axis in opposite phases. A torsional vibration occurs, and one vibrating arm 24 and the other vibrating arm 25 of the driving tuning fork 21 are twisted in directions opposite to each other.

【0040】以下に、要部である検知用電極27の具体
構成について説明する。図4は、要部である検知側音叉
26の一方および他方の振動腕の表裏および両側の4周
面に形成された検知用電極27の結線図である。図4に
おいて、40a,40cは一方の振動腕29のZ′軸方
向から見て表面および裏面にそれぞれ形成された検知用
電極、40b,40dは一方の振動腕29のZ′軸方向
から見て両側面にそれぞれ形成された検知用電極であ
る。41a,41cは他方の振動腕30のZ′軸方向か
ら見て表面および裏面にそれぞれ形成された検知用電
極、41b,41dは他方の振動腕30のZ′軸方向か
ら見て両側面にそれぞれ形成された検知用電極であり、
図1に示した通り、Z′軸方向に見て一方および他方の
振動腕の表裏および両側の4周面にそれぞれ4つの稜線
部分で周方向に4分割された状態にそれぞれ設けてあ
る。
Hereinafter, a specific configuration of the detection electrode 27 which is a main part will be described. FIG. 4 is a connection diagram of the detection electrodes 27 formed on the four peripheral surfaces on the front and back sides and both sides of one and the other vibrating arms of the detection-side tuning fork 26 which is a main part. In FIG. 4, reference numerals 40a and 40c denote detection electrodes formed on the front and back surfaces of one vibrating arm 29 when viewed from the Z'-axis direction, and reference numerals 40b and 40d denote detection electrodes viewed from the Z'-axis direction of the one vibrating arm 29. These are detection electrodes formed on both side surfaces. 41a and 41c are detection electrodes formed on the front and back surfaces of the other vibrating arm 30 when viewed from the Z 'axis direction, and 41b and 41d are formed on both side surfaces when viewed from the Z' axis direction of the other vibrating arm 30 respectively. Formed sensing electrode,
As shown in FIG. 1, when viewed in the Z'-axis direction, the one and the other vibrating arms are provided on the front and back surfaces and on the four circumferential surfaces on both sides, respectively, in a state of being divided into four by four ridges in the circumferential direction.

【0041】そして、一方の振動腕29の表裏面の検知
用電極40a,40cと他方の振動腕30の両側面の検
知用電極41b,41dとを共通接続し、他方の振動腕
30の表裏面の検知用電極41a,41cと一方の振動
腕29の両側面の検知用電極40b,40dとを共通接
続している。検知用電極40a,40c,41b,41
dの共通接続、ならびに検知用電極40b,40d,4
1a,41cの共通接続は、振動腕29,30の周面上
で電極パターンを延長形成することにより行っている。
The detection electrodes 40a and 40c on the front and back surfaces of one vibrating arm 29 and the detection electrodes 41b and 41d on both side surfaces of the other vibrating arm 30 are commonly connected, and the front and back surfaces of the other vibrating arm 30 are connected. And the detection electrodes 40b and 40d on both sides of one vibrating arm 29 are commonly connected. Detection electrodes 40a, 40c, 41b, 41
d, and the detection electrodes 40b, 40d, 4
The common connection of 1a and 41c is performed by extending the electrode pattern on the peripheral surfaces of the vibrating arms 29 and 30.

【0042】42は共通接続した検知用電極40a,4
0c,41b,41dに接続された共通線路、43は共
通接続した検知用電極40b,40d,41a,41c
に接続された共通線路である。以下に、図1において駆
動側振動節32および検知側振動節33として示した振
動節について詳しく説明する。図5は、略U字音叉形水
晶ブランク34の側面図で、振動節の検出のための構成
を示している。図6(a)は振動節の位置を示す略U字
音叉形水晶ブランク34の斜視図、図6(b)は同じく
正面図、図6(c)は同じく側面図である。
Reference numeral 42 denotes commonly connected detection electrodes 40a, 4
Common lines connected to Oc, 41b, 41d, 43 are commonly connected detection electrodes 40b, 40d, 41a, 41c.
It is a common line connected to. Hereinafter, the vibration nodes shown as the driving-side vibration nodes 32 and the detection-side vibration nodes 33 in FIG. 1 will be described in detail. FIG. 5 is a side view of the substantially U-shaped tuning fork crystal blank 34, showing a configuration for detecting vibration nodes. FIG. 6A is a perspective view of a substantially U-shaped tuning fork crystal blank 34 showing the position of a vibrating node, FIG. 6B is a front view thereof, and FIG. 6C is a side view thereof.

【0043】図5において、略U字音叉形水晶ブランク
34の支持部35Cを挟み込むように対称なピンポイン
ト支持具43で略U字音叉形水晶ブランク34を保持
し、この略U字音叉形水晶ブランク34に電気信号を与
えて、図6(a),(b)の矢印方向(X軸方向)に示
すように、振動腕35A,35Bが開閉する方向、つま
り、Xモードの屈曲振動を与えて、屈曲振動(共振)の
機械的先鋭度(以下、「機械的Q値」と記す。)を測定
し、機械的Q値の減少が少ない点を測定する。図6
(a),(b),(c)に示す曲線AMB,BNCより
下側の斜線部は、機械的Q値の減少が数%以内に留まる
部分を示している。
In FIG. 5, the substantially U-shaped tuning fork crystal blank 34 is held by a symmetrical pinpoint support 43 so as to sandwich the supporting portion 35C of the substantially U-shaped tuning fork crystal blank 34. An electric signal is given to the blank 34 to give a direction in which the vibrating arms 35A and 35B open and close, that is, an X-mode bending vibration, as shown in the arrow direction (X-axis direction) in FIGS. Then, the mechanical sharpness of bending vibration (resonance) (hereinafter referred to as “mechanical Q value”) is measured, and a point at which the mechanical Q value decreases little is measured. FIG.
The hatched portions below the curves AMB and BNC shown in (a), (b) and (c) indicate portions where the decrease of the mechanical Q value remains within several%.

【0044】上記曲線AMB,BNCを便宜上、振動節
と定義している。つまり、略U字音叉形水晶ブランク3
4が振動している部分と振動していない部分の境界線に
近いラインをイメージしている。つまり、それを含むよ
うにある面積の結合子で2つの略U字音叉形水晶ブラン
クを結合したときに、一方の略U字音叉形水晶ブランク
の屈曲振動がよく行われ、かつ一方の略U字音叉形水晶
ブランクの屈曲振動が他方の略U字音叉形水晶ブランク
に伝わりやすい部分が振動節である。
The curves AMB and BNC are defined as vibrating nodes for convenience. That is, a substantially U-shaped tuning fork crystal blank 3
4 represents a line near the boundary between the vibrating part and the non-vibrating part. That is, when two substantially U-shaped tuning fork-shaped quartz blanks are joined by a connector having a certain area so as to include the same, bending vibration of one substantially U-shaped tuning fork-shaped quartz blank is performed well, and one substantially U-shaped tuning fork-shaped quartz blank is performed. A vibrating node is a portion where the bending vibration of the U-shaped tuning fork crystal blank is easily transmitted to the other approximately U-shaped tuning fork crystal blank.

【0045】図6(b),(c)にはXモードの振動状
態を点線で示しているが、略U字音叉形水晶ブランクの
側面は表裏面に比べて下の方まで振動していることを示
している。振動腕と支持部の寸法にもよるが、支持部が
十分大きいなら、M点はおよそ中点にある。また、N点
は支持部の80%〜90%のところにある。M点を通る
音叉の対称軸上で斜線内で結合すれば、駆動側音叉とな
る略U字音叉形水晶ブランクの共振Q値の減少は少ない
が、検知側音叉となる略U字音叉形水晶ブランクへの振
動エネルギーの伝達が非常に悪い。
6 (b) and 6 (c) show the vibration state in the X mode by dotted lines, and the side surface of the substantially U-shaped tuning fork crystal blank vibrates to the lower side as compared to the front and back surfaces. It is shown that. Depending on the dimensions of the vibrating arm and the support, if the support is sufficiently large, point M is approximately at the midpoint. The N point is at 80% to 90% of the support. If the coupling is performed in the oblique line on the symmetry axis of the tuning fork passing through the point M, the resonance Q value of the substantially U-shaped tuning fork crystal blank serving as the driving side tuning fork is small, but the substantially U-shaped tuning fork crystal serving as the detection side tuning fork is reduced. The transmission of vibration energy to the blank is very poor.

【0046】したがって、その曲線AMBからなる振動
節を含むある面積をもった結合子で結合すれば、有効な
振動の授受が可能となる。例えば、M点を中心とした矩
形PQRS(図6(b)参照)を接着面積とする柱状の
結合子で結合すればよい。その矩形PQRSの面積の大
きさは支持部の大きさと考え合わせ、設計上の事項であ
る。
Therefore, if coupling is performed with a connector having a certain area including the vibrating node formed by the curve AMB, effective vibration can be transmitted and received. For example, they may be connected by a columnar connector having a rectangular PQRS centered at the point M (see FIG. 6B) as an adhesive area. The size of the area of the rectangular PQRS is a matter of design in consideration of the size of the support.

【0047】図7および図8はピンポイント支持位置
(x)に対する機械的Q値の減少の度合いを示す一つの
実験例を示すものである。実験に使用した略U字音叉形
水晶ブランクのサンプルの寸法とカット軸を図7
(a),(b)に示す。図7(a),(b)において、
寸法z1 は95mm、z2 は25mm、z3 は70mm、z4
は5mm、z5 は15mmである。図7(a),(b)の略
U字音叉形水晶ブランクについて、Xモードの振動を起
こさせ、ピンポイント支持位置を、h線上、g線上、
h′線上、i線上をそれぞれ移動させて、機械的Q値の
減少の度合いを測定した。その実験結果を図8に示す。
図8の実験結果の縦軸は略U字音叉形水晶ブランクの底
(x=0)は支持できないので、x=2mmのデータで基
準化した。図8において、実線はg線上の特性を示し、
破線はh線上およびh′線上の特性を示し、一点鎖線は
i線上の特性を示している。この図より、略U字音叉形
水晶ブランクの振動腕および支持部の側面は表裏面より
かなり下の方までピンポイント支持の影響が現れている
ことがわかる。
FIGS. 7 and 8 show one experimental example showing the degree of reduction of the mechanical Q value with respect to the pinpoint support position (x). Fig. 7 shows the dimensions and cut axis of the sample of the substantially U-shaped tuning fork crystal blank used in the experiment.
(A) and (b) show. In FIGS. 7A and 7B,
Dimensions z 1 is 95 mm, z 2 is 25 mm, z 3 is 70 mm, z 4
Is 5mm, z 5 is 15mm. With respect to the substantially U-shaped tuning fork-shaped quartz blanks shown in FIGS. 7A and 7B, X-mode vibration is caused, and the pinpoint support positions are set on the h line, the g line,
The degree of reduction of the mechanical Q value was measured by moving on the h 'line and the i line. FIG. 8 shows the experimental results.
The vertical axis of the experimental results shown in FIG. 8 cannot support the bottom (x = 0) of the substantially U-shaped tuning fork-shaped quartz blank, so that the vertical axis was standardized using data of x = 2 mm. In FIG. 8, the solid line indicates the characteristic on the g line,
The broken lines indicate the characteristics on the h line and the h 'line, and the alternate long and short dash line indicates the characteristics on the i line. From this figure, it can be seen that the side of the vibrating arm and the supporting portion of the substantially U-shaped tuning fork crystal blank is affected by the pinpoint support far below the front and back surfaces.

【0048】また、h,h′上では、支持点をかなり振
動腕に近づけても機械的Q値に影響を与えないことがわ
かる。以上のように構成された加速度センサの動作原理
について、以下に説明する。図9(a)は、本発明の加
速度センサの原理を示す図である。図9(a)におい
て、XY面に対し面対称な±Z軸方向に加速度を加え、
そのとき、質量2mの角柱体が変位した速度をvとす
る。角柱体の変位がY軸周りに角速度ベクトルωの捩じ
れ振動をしているとすると、XY面に対し面対称な±Z
軸方向に加速度を加えると、これら角柱体には、2mω
×vのベクトル外積で表現されるコリオリの力Fが発生
する。
On h and h ', it can be seen that the mechanical Q value is not affected even if the supporting point is considerably close to the vibrating arm. The operation principle of the acceleration sensor configured as described above will be described below. FIG. 9A is a diagram illustrating the principle of the acceleration sensor of the present invention. In FIG. 9A, an acceleration is applied in the ± Z-axis direction that is plane-symmetric with respect to the XY plane,
At this time, the speed at which the prism having a mass of 2 m is displaced is defined as v. Assuming that the displacement of the prism body is torsional vibration of the angular velocity vector ω around the Y axis, ± Z which is plane symmetric with respect to the XY plane
When acceleration is applied in the axial direction, these prisms have 2 mΩ
A Coriolis force F expressed by a vector cross product of × v is generated.

【0049】このコリオリの力Fは、ベクトルω、vの
なす平面に右座標垂直方向であるから、この発生したコ
リオリの力のベクトルFを検出することにより、印加し
た加速度を直接検出することができるのである。このコ
リオリの力の大きさ|F|は、角柱体の変位を d=Asin Ωt とすると、速度|v|は、 |v|=dd/dt=AΩcos Ωt であるから、力|F|は、 |F|=2mAΩ|ω| と求められる。
Since the Coriolis force F is perpendicular to the plane defined by the vectors ω and v in the right coordinate direction, the applied acceleration can be directly detected by detecting the generated Coriolis force vector F. You can. Assuming that the displacement of the prism is d = A sin Ωt, the velocity | v | is | v | = dd / dt = AΩ cos Ωt, and the force | F | | F | = 2 mAΩ | ω |.

【0050】ここで、加速度センサの出力信号、力|F
|に比例した形で出力されるので、加速度センサの出力
信号から加速度が分かる。ここで、図9(b)は、本発
明の要部である水晶ブランク34の動作原理を示す図で
あり、同図(a)の原理図に対応するものである。図9
(b)において、振動腕35A,35BがY′軸周りに
変位する互いに逆相の捩じれ振動(角速度ω)をするも
のとすると、水晶ブランク34のZ軸の方向に加速度が
加わったときに、それぞれの振動腕35A,35BにX
軸方向にコリオリの力Fが発生する。
Here, the output signal of the acceleration sensor, the force | F
Is output in proportion to |, the acceleration can be known from the output signal of the acceleration sensor. Here, FIG. 9B is a diagram showing the operation principle of the crystal blank 34 which is a main part of the present invention, and corresponds to the principle diagram of FIG. 9A. FIG.
In (b), assuming that the vibrating arms 35A and 35B perform torsional vibrations (angular velocities) of opposite phases in which the vibrating arms 35A and 35B are displaced around the Y 'axis, when acceleration is applied in the Z axis direction of the crystal blank 34, X is attached to each vibrating arm 35A, 35B.
A Coriolis force F is generated in the axial direction.

【0051】以下に、本発明の第1の実施例の加速度セ
ンサの動作について説明する。図10は、動作を説明す
るための加速度センサをY′軸方向から見た状態の平面
図である。主として、以下のような動作をする。駆動側
音叉21にY′軸周りに変位する互いに逆相の捩じれ振
動を持続させるように振動駆動手段(図示せず)を用い
て振動腕24,25の駆動用電極に上記した通りに交流
電圧を加えて振動腕24,25を捩じれ振動させると、
コリオリの力により他のモードの振動が生じ、検知側音
叉26に伝播する。検知側音叉26に結合子31を通じ
て伝播した振動成分により検知側音叉26がY′軸周り
に変位する互いに逆相の捩じれ振動をする。一方、検知
側音叉26のX軸方向の互いに逆相の屈曲振動の振動成
分の電気的信号、すなわち、コリオリの力を検知側音叉
26の振動腕29,30の表面に設けた検知用電極から
上記した通りに交流信号を信号検知手段(図示せず)に
より取り出すことにより、駆動側音叉21,検知側音叉
26の回転角速度に対応した加速度信号が得られる。な
お、以下のような動作もする。駆動側音叉21にY′軸
周りに変位する互いに逆相の捩じれ振動を持続させるよ
うに振動駆動手段(図示せず)を用いて振動腕24,2
5の駆動用電極に上記した通りに交流電圧を加えて振動
腕24,25を捩じれ振動させると、検知側音叉26に
結合子31を通じて伝播した振動成分により検知側音叉
26がY′軸周りに変位する互いに逆相の捩じれ振動を
する。一方、検知側音叉26の振動方向に対して、直角
方向のX軸方向の互いに逆相の屈曲振動の振動成分の電
気的信号、すなわち、コリオリの力を検知側音叉26の
振動腕29,30の表面に設けた検知用電極から上記し
た通りに交流信号を信号検知手段(図示せず)により取
り出すことにより、駆動側音叉21,検知側音叉26の
回転角速度に対応した加速度信号が得られる。
The operation of the acceleration sensor according to the first embodiment of the present invention will be described below. FIG. 10 is a plan view of the acceleration sensor for explaining the operation when viewed from the Y′-axis direction. The following operation is mainly performed. As described above, the AC voltage is applied to the driving electrodes of the vibrating arms 24 and 25 by using vibration driving means (not shown) so that the driving-side tuning fork 21 maintains torsional vibrations of opposite phases displaced around the Y 'axis. When the vibrating arms 24 and 25 are torsionally vibrated by adding
Another mode of vibration is generated by the Coriolis force and propagates to the detection-side tuning fork 26. Due to the vibration component propagated through the connector 31 to the detection-side tuning fork 26, the detection-side tuning fork 26 is displaced around the Y 'axis torsionally vibrates in opposite phases. On the other hand, the electric signal of the vibration component of the bending vibration having the opposite phase in the X-axis direction of the detection-side tuning fork 26, that is, the Coriolis force is transmitted from the detection electrodes provided on the surfaces of the vibrating arms 29 and 30 of the detection-side tuning fork 26. By extracting the AC signal by the signal detecting means (not shown) as described above, an acceleration signal corresponding to the rotational angular velocity of the driving tuning fork 21 and the detection tuning fork 26 can be obtained. The following operation is also performed. The vibrating arms 24 and 2 are provided to the driving-side tuning fork 21 using vibration driving means (not shown) so as to maintain torsional vibrations of opposite phases displaced around the Y 'axis.
When the AC voltage is applied to the drive electrode 5 as described above and the vibrating arms 24 and 25 are torsionally vibrated, the detection-side tuning fork 26 moves around the Y 'axis due to the vibration component propagated through the connector 31 to the detection-side tuning fork 26. Displaced torsional vibrations of opposite phases occur. On the other hand, the electric signals of the vibration components of the flexural vibrations of the opposite phases in the X-axis direction perpendicular to the vibration direction of the detection-side tuning fork 26, that is, the Coriolis force, are used as the vibration arms 29 and 30 of the detection-side tuning fork 26. As described above, an AC signal is extracted from the detection electrode provided on the surface by the signal detection means (not shown), whereby an acceleration signal corresponding to the rotational angular velocity of the drive-side tuning fork 21 and the detection-side tuning fork 26 is obtained.

【0052】この実施例の加速度センサによれば、駆動
側音叉21および検知側音叉26としてそれぞれ従来例
のような貼り合わせタイプではない振動腕24,25;
29,30と支持部25;28とがそれぞれ一体となっ
た略U字音叉形水晶ブランクを用いているので、広い温
度範囲で温度特性に優れかつ各種ばらつきが少なく高精
度に加速度を検出することができる。
According to the acceleration sensor of this embodiment, the vibrating arms 24 and 25, which are not the bonding type as in the conventional example, are used as the drive-side tuning fork 21 and the detection-side tuning fork 26;
Since a substantially U-shaped tuning-fork type crystal blank in which the 29, 30 and the support portions 25; 28 are integrated respectively is used, the acceleration can be detected with high temperature characteristics over a wide temperature range, with little variation, and with high accuracy. Can be.

【0053】また、駆動側音叉21の一方および他方の
振動腕24,25のY′軸周りに変位する互いに逆相の
捩じれ振動の共振周波数と検知側音叉26のX軸方向の
互いに逆相の屈曲振動の共振周波数とをほぼ等しく、か
つ駆動側音叉21の一方および他方の振動腕のX軸方向
に変位する互いに逆相の屈曲振動の共振周波数と検知側
音叉26の一方および他方の振動腕29,30のY′軸
周りに変位する互いに逆相の捩じれ振動の共振周波数と
を異ならせているので、駆動側音叉21を共振駆動した
場合において、Y′軸周りに変位する互いに逆相の捩じ
れ振動とZ′軸方向の加速度に基づくコリオリの力によ
って一方および他方の振動腕29,30に発生するX軸
方向の互いに逆相の屈曲振動を効率良く抽出するととも
に、Y′軸周りに変位する互いに逆相の捩じれ振動の影
響を小さくできる。この結果、Y′軸周りに変位する互
いに逆相の捩じれ振動により生じる交流電圧の影響を抑
えつつ、X軸方向の互いに逆相の屈曲振動により生じる
交流電圧を有効に検出できることになり、精度よくZ′
軸方向の加速度を検出することが可能となる。
The resonance frequencies of the torsional vibrations of the opposite phases displaced around the Y 'axis of one and the other vibrating arms 24 and 25 of the drive-side tuning fork 21 are opposite to those of the detection-side tuning fork 26 in the X-axis direction. The resonance frequencies of the bending vibrations which are substantially equal to the resonance frequency of the bending vibration and which are displaced in the X-axis direction of the one and the other vibration arms of the drive-side tuning fork 21 and the one and the other vibration arms of the detection-side tuning fork 26 are opposite to each other. Since the resonance frequencies of the torsional vibrations of the opposite phases displaced around the Y 'axis of the 29 and 30 are different from each other, when the drive-side tuning fork 21 is driven in resonance, the opposite phases displaced about the Y' axis. The torsional vibration and the Coriolis force based on the acceleration in the Z'-axis direction efficiently extract the opposite-phase bending vibrations in the X-axis direction generated in the one and the other vibrating arms 29, 30 and around the Y'-axis. Coordinating possible to reduce the influence of the reverse phase of the torsional vibration each other. As a result, it is possible to effectively detect the AC voltage caused by the opposite-phase bending vibrations in the X-axis direction while suppressing the effect of the AC voltage caused by the opposite-phase torsional vibration displaced around the Y ′ axis, and with high accuracy. Z '
Axial acceleration can be detected.

【0054】また、結合子31の両端面を駆動側音叉2
1および検知側音叉26の支持部23,28に生成され
る振動節を部分的に含む表面に接着しているので、駆動
側音叉21のY′軸周りに変位する互いに逆相の捩じれ
振動を、駆動側音叉21の機械的Q値を低下させること
なく、最大の機械伝達効率で検知側音叉26に伝達する
ことができるとともに、駆動側音叉21と検知側音叉2
6とを結合子31で簡単に一体化することができ、製造
が容易である。
Further, both end surfaces of the connector 31 are connected to the drive-side tuning fork 2.
1 and the supporting portions 23 and 28 of the detection-side tuning fork 26 are adhered to the surface partially including the vibrating nodes, so that the torsional vibrations of opposite phases displaced around the Y 'axis of the driving-side tuning fork 21 are prevented. It is possible to transmit to the detection-side tuning fork 26 with maximum mechanical transmission efficiency without lowering the mechanical Q value of the driving-side tuning fork 21,
6 can be easily integrated with the connector 31 and the manufacture is easy.

【0055】ここで、上記実施例をもとに、従来例と比
較し、その特性効果について説明する。前記に説明の本
発明の実施例によると、略U字音叉形水晶振動子からな
る駆動側音叉21と検知側音叉26を平行に面対向する
ように結合子31で一体化することにより、機械的な共
振先鋭度(機械的Q値)が高く、角速度検出感度が高
く、熱膨張係数が小さく、駆動周波数が安定し、その結
果、前記に説明したセンサの信号処理における同期整流
の位相ずれ変化が小さく、さらに駆動側の駆動信号成分
の一部が検知部へ不要信号成分として混入することがな
く、結果的には、ドリフト安定度は従来の1/10と優
れた特性を得ることができた。
Here, the characteristics and effects of the above embodiment will be described in comparison with the conventional example. According to the above-described embodiment of the present invention, the drive-side tuning fork 21 and the detection-side tuning fork 26, each of which is formed of a substantially U-shaped tuning fork-shaped crystal unit, are integrated by the connector 31 so as to face each other in parallel. High resonance sharpness (mechanical Q value), high angular velocity detection sensitivity, low thermal expansion coefficient, stable drive frequency, and as a result, the phase shift change of synchronous rectification in the above-described sensor signal processing And a part of the drive signal component on the drive side is not mixed into the detection section as an unnecessary signal component, and as a result, the drift stability can be obtained as excellent as 1/10 of the conventional one. Was.

【0056】図11は本発明の第2の実施例の加速度セ
ンサの斜視図を示している。同図(a)は組み立て状態
の斜視図、同図(b)は分解状態の斜視図である。この
実施例の加速度センサは、図1の角柱状の結合子に代え
て、円柱状の結合子31Aを用いたもので、その他の構
成は図1のものと同様である。この実施例の効果は前記
第1の実施例と同様である。
FIG. 11 is a perspective view of an acceleration sensor according to a second embodiment of the present invention. FIG. 1A is a perspective view in an assembled state, and FIG. 1B is a perspective view in an exploded state. The acceleration sensor of this embodiment uses a columnar connector 31A instead of the prismatic connector of FIG. 1, and the other configuration is the same as that of FIG. The effect of this embodiment is the same as that of the first embodiment.

【0057】図12は本発明の第3の実施例の加速度セ
ンサの斜視図を示している。同図(a)は組み立て状態
の斜視図、同図(b)は分解状態の斜視図である。この
実施例の加速度センサは、駆動側音叉21および検知側
音叉26の支持部23,28に振動節を含むある面積の
円形の貫通孔23a,28aを例えばエッチングにより
設け、結合子31Aを貫通孔23a,28aに貫挿した
状態で接着したものである。その他の構成は図1の実施
例の同様である。
FIG. 12 is a perspective view of an acceleration sensor according to a third embodiment of the present invention. FIG. 1A is a perspective view in an assembled state, and FIG. 1B is a perspective view in an exploded state. In the acceleration sensor of this embodiment, circular through holes 23a and 28a having a certain area including a vibrating node are provided in the support portions 23 and 28 of the drive side tuning fork 21 and the detection side tuning fork 26 by, for example, etching, and the connector 31A is provided with the through hole. It is bonded in a state where it is inserted through 23a and 28a. Other configurations are the same as those of the embodiment of FIG.

【0058】この実施例では、結合子31Aの両端を駆
動側音叉21および検知側音叉26の支持部23,28
に生成される振動節を部分的に含む貫通孔23a,28
aに貫挿した状態で接着しているので、駆動側音叉21
のX軸方向に変位する互いに逆相の屈曲振動を、駆動側
音叉21の機械的Q値を低下させることなく、最大の機
械伝達効率で検知側音叉26に伝達することができると
ともに、駆動側音叉21と結合側音叉26とを結合子3
1Aで強固に一体化で、耐振性に優れている。その他の
効果は第1の実施例と同様である。
In this embodiment, both ends of the connector 31A are supported by the support portions 23, 28 of the drive-side tuning fork 21 and the detection-side tuning fork 26.
Holes 23a, 28 partially including vibrating nodes generated in
a, the drive-side tuning fork 21
Can be transmitted to the detection-side tuning fork 26 with the maximum mechanical transmission efficiency without lowering the mechanical Q value of the driving-side tuning fork 21 and displacing in the X-axis direction. Connecting the tuning fork 21 and the coupling side tuning fork 26 to the connector 3
At 1A, it is strongly integrated and has excellent vibration resistance. Other effects are similar to those of the first embodiment.

【0059】図13は本発明の第4の実施例の加速度セ
ンサの斜視図を示している。同図(a)は組み立て状態
の斜視図、同図(b)は分解状態の斜視図である。この
実施例の加速度センサは、駆動側音叉21および検知側
音叉26の支持部23,28に振動節を含むある面積の
方形の貫通孔23b,28bを例えばえっチングにより
設け、結合子31を貫通孔23b,28bに貫挿した状
態で接着したものである。その他の構成は図11の実施
例の同様である。
FIG. 13 is a perspective view of an acceleration sensor according to a fourth embodiment of the present invention. FIG. 1A is a perspective view in an assembled state, and FIG. 1B is a perspective view in an exploded state. In the acceleration sensor of this embodiment, rectangular through holes 23b and 28b having a certain area including a vibrating node are provided in the support portions 23 and 28 of the drive-side tuning fork 21 and the detection-side tuning fork 26 by, for example, etching. It is bonded in a state where it is inserted into the holes 23b and 28b. Other configurations are the same as those of the embodiment of FIG.

【0060】この実施例では、結合子31の両端を駆動
側音叉21および検知側音叉26の支持部23,28に
生成される振動節を部分的に含む貫通孔23b,28b
に貫挿した状態で接着しているので、駆動側音叉21の
X軸方向に変位する互いに逆相の屈曲振動を、駆動側音
叉21の機械的Q値を低下させることなく、最大の機械
伝達効率で検知側音叉26に伝達することができるとと
もに、駆動側音叉21と結合側音叉26とを結合子31
で強固に一体化で、耐振性に優れている。その他の効果
は第1の実施例と同様である。
In this embodiment, both ends of the connector 31 are connected to the through-holes 23b and 28b partially including vibrating nodes formed in the supporting portions 23 and 28 of the driving-side tuning fork 21 and the detecting-side tuning fork 26.
, The bending vibrations of the opposite phases displaced in the X-axis direction of the driving-side tuning fork 21 without reducing the mechanical Q value of the driving-side tuning fork 21 and the maximum mechanical transmission. The driving fork 21 and the coupling-side tuning fork 26 can be transmitted to the detection-side tuning fork 26 with high efficiency.
It is strongly integrated and has excellent vibration resistance. Other effects are similar to those of the first embodiment.

【0061】なお、前記各実施例では、駆動側音叉の一
方および他方の振動腕のY′軸周りに変位する互いに逆
相の捩じれ振動の共振周波数と検知側音叉の一方および
他方の振動腕のX軸方向の互いに逆相の屈曲振動の共振
周波数とがほぼ等しく、かつ駆動側音叉の一方および他
方の振動腕のX軸方向に変位する互いに逆相の屈曲振動
の共振周波数と検知側音叉の一方および他方の振動腕の
Y′軸周りに変位する互いに逆相の捩じれ振動の共振周
波数とが異なるように、駆動側音叉の振動腕と検知側音
叉の振動腕とを異なる形状寸法に設定していたが、これ
に代えて、第5の実施例として、駆動側音叉の一方およ
び他方の振動腕のY′軸周りに変位する互いに逆相の捩
じれ振動の共振周波数とX軸方向に変位する互いに逆相
の屈曲振動の共振周波数と検知側音叉の一方および他方
の振動腕のY′軸周りに変位する互いに逆相の捩じれ振
動とX軸方向の互いに逆相の屈曲振動の共振周波数とが
互いに隔離して異なるように、駆動側音叉の振動腕と検
知側音叉の振動腕とを異なる形状寸法に設定してもよ
い。上記のように設定する場合には、例えば検知側音叉
を構成する水晶ブランクの振動腕の寸法とし、長さ
(L)10mm×厚み(t)3.5mm×幅(W)2.5mm
とし、図15に示すように、結合一体化する。
In each of the above embodiments, the resonance frequencies of the torsional vibrations of opposite phases displaced around the Y 'axis of the one and the other vibrating arms of the drive-side tuning fork and the one and the other vibrating arms of the detection-side tuning fork. The resonance frequencies of the opposite-phase bending vibrations in the X-axis direction are substantially equal to each other, and the resonance frequencies of the opposite-phase bending vibrations displaced in the X-axis direction of one and the other vibrating arms of the drive-side tuning fork and the resonance frequency of the detection-side tuning fork. The vibrating arm of the driving-side tuning fork and the vibrating arm of the detecting-side tuning fork are set to have different shapes and sizes so that the resonance frequencies of the torsional vibrations of the opposite phases displaced about the Y 'axis of the one and the other vibrating arms are different. However, instead of this, as a fifth embodiment, the resonance frequency of the torsional vibrations of opposite phases, which are displaced around the Y 'axis of one and the other vibrating arms of the drive-side tuning fork, are displaced in the X-axis direction. Resonance of flexural vibrations of opposite phases The resonance frequency of the torsional vibration of the opposite phase and the resonance frequency of the bending vibration of the opposite phase in the X-axis direction, which are displaced around the Y 'axis of the one and the other vibrating arms of the detection-side tuning fork, are separated from each other and different from each other. The vibrating arm of the drive-side tuning fork and the vibrating arm of the detection-side tuning fork may be set to different shapes and sizes. In the case of setting as described above, for example, the size of the vibrating arm of the quartz blank constituting the detection-side tuning fork is set to 10 mm in length (L) × 3.5 mm in thickness (t) × 2.5 mm in width (W).
And integrated as shown in FIG.

【0062】このように構成すると、駆動側音叉21の
一方および他方の振動腕のY′軸周りに変位する互いに
逆相の捩じれ振動の共振周波数とX軸方向に変位する互
いに逆相の屈曲振動の共振周波数と検知側音叉26の一
方および他方の振動腕のY′軸周りに変位する互いに逆
相の捩じれ振動とX軸方向の互いに逆相の屈曲振動の共
振周波数とを互いに隔離して異ならせているので、駆動
側音叉を共振駆動した場合において、Y′軸周りに変位
する互いに逆相の捩じれ振動とZ′軸方向の加速度に基
づくコリオリの力によって検知側音叉26の一方および
他方の振動腕28,29に発生するX軸方向の互いに逆
相の屈曲振動に対して、Y′軸周りに変位する互いに逆
相の捩じれ振動が極端に大きくならないようにできる。
この結果、Y′軸周りに変位する互いに逆相の捩じれ振
動により生じる交流電圧の影響を抑えつつ、X軸方向の
互いに逆相の屈曲振動により生じる交流電圧を有効に検
出できることになり、精度よくZ′軸方向の加速度を検
出することが可能となる。その他の点については、前記
各実施例と同様である。
With this configuration, the resonance frequencies of the torsional vibrations of the opposite phases displaced around the Y 'axis of the one and the other vibrating arms of the drive-side tuning fork 21 and the bending vibrations of the opposite phases displaced in the X-axis direction. And the resonance frequency of the opposite-phase torsional vibration displaced around the Y 'axis of one and the other vibrating arms of the detection-side tuning fork 26 and the resonance frequency of the opposite-phase bending vibration in the X-axis direction are different from each other. Therefore, when the drive-side tuning fork is driven by resonance, one and the other of the detection-side tuning fork 26 are driven by Coriolis force based on the torsional vibration of the opposite phase displaced around the Y 'axis and the acceleration in the Z' axis direction. With respect to the bending vibrations of the opposite phases in the X-axis direction generated in the vibrating arms 28 and 29, the torsional vibrations of the opposite phases displaced around the Y 'axis can be prevented from becoming extremely large.
As a result, it is possible to effectively detect the AC voltage generated by the opposite-phase bending vibrations in the X-axis direction while suppressing the influence of the AC voltage generated by the opposite-phase torsional vibration displaced around the Y 'axis, and to accurately detect the AC voltage. The acceleration in the Z'-axis direction can be detected. Other points are the same as those of the above-described embodiments.

【0063】なお、駆動側音叉および検知側音叉の支持
部における振動節ではなく、支持部の例えば下底部同士
を結合子を介して結合しても、駆動側音叉から検知側音
叉へ振動を有効に伝達することができ、このような構成
も実施例として含まれる。つまり、音叉振動の機械的振
動先鋭度が低下せずに、振動エネルギーの一部を伝達さ
せる部位なら支持部のどこを結合してもよい。また、結
合は1箇所で行っているが、2個以上の結合子を用いる
ことにより、2箇所以上で行ってもよいのは当然であ
る。
It should be noted that even if the lower bottom portions of the support portions are connected to each other via a connector instead of the vibration nodes in the support portions of the drive side tuning fork and the detection side tuning fork, vibration is effective from the drive side tuning fork to the detection side tuning fork. , And such a configuration is also included as an example. In other words, any part of the support portion may be connected as long as it transmits a part of the vibration energy without decreasing the mechanical vibration sharpness of the tuning fork vibration. In addition, the bonding is performed at one place, but it is obvious that the bonding may be performed at two or more places by using two or more connectors.

【0064】また、駆動側音叉21,検知側音叉26の
電極構造は、上記各実施例に示したものに限らず、種々
変更可能であり、要は屈曲振動とコリオリの信号成分を
検出することができればよいものである。例えば検知用
電極としては、振動腕の4つの稜線にそれぞれ跨がって
形成した4個の電極でもよいし、振動腕の両側面にそれ
ぞれ周方向に2分割した電極でもよい。
The electrode structures of the drive-side tuning fork 21 and the detection-side tuning fork 26 are not limited to those shown in the above-described embodiments, but can be variously changed. In other words, it is necessary to detect bending vibration and Coriolis signal components. It is something that can be done. For example, the detection electrodes may be four electrodes formed so as to straddle the four ridges of the vibrating arm, or may be two electrodes circumferentially divided on both side surfaces of the vibrating arm.

【0065】なお、上記実施例では、結晶軸X,Y,Z
のX軸周りに2〜3度程度回転した新たな結晶軸X,
Y′,Z′のY′軸方向を長手方向にしてX,Y′面内
で切り出した水晶ブランクを使用したが、結晶軸X,
Y,ZのY軸方向を長手方向にして切り出した水晶ブラ
ンクを使用することもできる。したがって、特許請求の
範囲における「結晶軸X,Y,ZのX軸周りに回転した
新たな結晶軸X,Y′,Z′」の表現には、回転角度が
0度の場合、つまり、結晶軸X,Y,Zと結晶軸X,
Y′,Z′とが重なっている場合も含まれる。また、上
記の結晶軸の回転角度2〜3度以外の角度でもよい。つ
まり、駆動側音叉21,検知側音叉26の切り出し方向
は、図2に示したものに限らず、結晶軸X,Y,ZのY
軸方向を長手方向にしてX,Y面内でそれぞれ切り出し
ても、所期の効果は達成できる。ただ、図1および図2
の実施例に比べると、切り出し方向の違いから多少効果
は落ちるが、特に問題はない。また、長手方向とする軸
は、Y,Y′にかぎらず、X,X′軸、Z,Z′軸で
も、所期の効果は得られる。
In the above embodiment, the crystal axes X, Y, Z
New crystal axis X rotated about 2 to 3 degrees around the X axis of
A crystal blank cut out in the X, Y 'plane with the Y' axis direction of Y ', Z' as the longitudinal direction was used.
It is also possible to use a quartz blank cut out with the Y-axis direction of Y and Z taken as the longitudinal direction. Therefore, the expression of “new crystal axes X, Y ′, Z ′ rotated around the X axes of the crystal axes X, Y, Z” in the claims indicates that the rotation angle is 0 degree, that is, Axis X, Y, Z and crystal axis X,
The case where Y 'and Z' overlap each other is also included. The rotation angle of the crystal axis may be other than the angle of 2 to 3 degrees. That is, the cut-out directions of the drive-side tuning fork 21 and the detection-side tuning fork 26 are not limited to those shown in FIG.
The desired effect can be achieved even if each is cut out in the X and Y planes with the axial direction as the longitudinal direction. However, FIGS. 1 and 2
Compared with the embodiment, the effect is slightly reduced due to the difference in the cutting direction, but there is no particular problem. The desired effect can be obtained not only in the Y and Y 'axes but also in the X and X' axes and the Z and Z 'axes.

【0066】[0066]

【発明の効果】以上説明したように、本発明によれば、
不要信号成分が低減され、広い温度範囲でかつ、直流に
近い低周波の加速度検知も可能となり、急激な温度変化
に対しても特性変化のきわめて少ない安定した加速度セ
ンサを得ることができる。また、駆動側音叉と検知側音
叉を、支持部に発生する振動節を部分的に含むある面積
をもったブロック結合子を介して固着すれば、、音叉振
動の機械的Q値と駆動側音叉から検知側音叉への機械的
伝達効率を最も向上させることができる。
As described above, according to the present invention,
Unnecessary signal components are reduced, low-frequency acceleration near DC can be detected in a wide temperature range, and a stable acceleration sensor with very little characteristic change even with a rapid temperature change can be obtained. Further, if the drive-side tuning fork and the detection-side tuning fork are fixed via a block connector having a certain area partially including a vibration node generated in the support portion, the mechanical Q value of the tuning-fork vibration and the drive-side tuning fork can be obtained. The efficiency of mechanical transmission from the to the detection-side tuning fork can be maximized.

【0067】したがって、両音叉を結合する際の機械的
伝達ロスが飛躍的に改善でき、コリオリ力による加速度
検出の感度を向上させることができる。そして、構成が
簡単な構造であるため、低コスト化を図ることができ、
工業的価値が大である。そして、構成が簡単な構造であ
るため、低コスト化を図ることができ、工業的価値が大
である。
Therefore, the mechanical transmission loss at the time of connecting both tuning forks can be remarkably improved, and the sensitivity of acceleration detection by Coriolis force can be improved. And since it is a structure with a simple structure, cost reduction can be achieved,
Great industrial value. And since it is a structure with a simple structure, cost reduction can be achieved and industrial value is large.

【0068】以下、各請求項毎の効果について説明す
る。請求項1記載の加速度センサによれば、駆動側音叉
および検知側音叉としてそれぞれ従来例のような貼り合
わせタイプではない振動腕と支持部とが一体となった略
U字音叉形水晶ブランクを用いているので、広い温度範
囲で温度特性に優れかつ各種ばらつきが少なく高精度に
加速度を検出することができる。
Hereinafter, the effects of each claim will be described. According to the acceleration sensor of the present invention, a substantially U-shaped tuning-fork type crystal blank in which a vibrating arm and a supporting portion, which are not a bonded type as in the conventional example, are integrally used as the driving-side tuning fork and the detection-side tuning fork, respectively. Therefore, the acceleration can be detected with high accuracy over a wide temperature range, with little variation, and with high accuracy.

【0069】請求項2記載の加速度センサによれば、駆
動側音叉の一方および他方の振動腕のY′軸周りに変位
する互いに逆相の捩じれ振動の共振周波数と検知側音叉
の一方および他方の振動腕のX軸方向の互いに逆相の屈
曲振動の共振周波数とをほぼ等しく、かつ駆動側音叉の
一方および他方の振動腕のX軸方向に変位する互いに逆
相の屈曲振動の共振周波数と検知側音叉の一方および他
方の振動腕のY′軸周りに変位する互いに逆相の捩じれ
振動の共振周波数とを異ならせているので、駆動側音叉
を共振駆動した場合において、検知側音叉では、Y′軸
周りに変位する互いに逆相の捩じれ振動とZ′軸方向の
加速度に基づくコリオリの力によって検知側音叉の一方
および他方の振動腕に発生するX軸方向の互いに逆相の
屈曲振動を大きくできるとともに、Y′軸周りに変位す
る互いに逆相の捩じれ振動を小さくできる。この結果、
Y′軸周りに変位する互いに逆相の捩じれ振動により生
じる交流電圧の影響を抑えつつ、X軸方向の互いに逆相
の屈曲振動により生じる交流電圧を有効に検出できるこ
とになり、精度よくZ′軸方向の加速度を検出すること
が可能となる。
According to the acceleration sensor of the present invention, the resonance frequencies of torsional vibrations of opposite phases displaced around the Y 'axis of one and the other vibrating arms of the drive-side tuning fork and one and the other of the detecting-side tuning fork. Resonance frequencies of bending vibrations of the opposite phases displaced in the X-axis direction of one and the other vibrating arms of the driving-side tuning fork are substantially equal to the resonance frequencies of the bending vibrations having the opposite phases in the X-axis direction of the vibrating arm. Since the resonance frequencies of the torsional vibrations of opposite phases displaced about the Y 'axis of one and the other vibrating arms of the side tuning fork are made different, when the driving side tuning fork is driven to resonance, the detection side tuning fork has Y The opposite-phase torsional vibrations displaced around the '-axis and the opposite-phase bending vibrations in the X-axis direction generated on one and the other vibrating arms of the tuning-side tuning fork by the Coriolis force based on the acceleration in the Z'-axis direction are increased. With wear, it is possible to reduce the opposite phases of torsional vibrations displaced about Y 'axis. As a result,
It is possible to effectively detect the AC voltage generated by the opposite-phase bending vibrations in the X-axis direction while suppressing the influence of the AC voltage generated by the opposite-phase torsional vibration displaced around the Y 'axis, and to accurately detect the Z'-axis. It is possible to detect the acceleration in the direction.

【0070】請求項3記載の加速度センサによれば、駆
動側音叉の一方および他方の振動腕のY′軸周りに変位
する互いに逆相の捩じれ振動の共振周波数とX軸方向に
変位する互いに逆相の屈曲振動の共振周波数と検知側音
叉の一方および他方の振動腕のY′軸周りに変位する互
いに逆相の捩じれ振動の共振周波数とX軸方向の互いに
逆相の屈曲振動の共振周波数とを互いに隔離して異なら
せているので、駆動側音叉を共振駆動した場合におい
て、Y′軸周りに変位する互いに逆相の捩じれ振動と
Z′軸方向の加速度に基づくコリオリの力によって一方
および他方の振動腕に発生するX軸方向の互いに逆相の
屈曲振動に対して、Y′軸周りに変位する互いに逆相の
捩じれ振動を抑圧することができる。この結果、Y′軸
周りに変位する互いに逆相の捩じれ振動により生じる交
流電圧の影響を抑えつつ、X軸方向の互いに逆相の屈曲
振動により生じる交流電圧を有効に検出できることにな
り、精度よくZ′軸方向の加速度を検出することが可能
となる。
According to the acceleration sensor of the third aspect, the resonance frequencies of torsional vibrations of opposite phases displaced around the Y 'axis of one and the other vibrating arms of the drive-side tuning fork and the opposite directions displaced in the X-axis direction. The resonance frequency of the phase bending vibration, the resonance frequency of the opposite phase torsional vibration displaced around the Y 'axis of one and the other vibrating arms of the detection side tuning fork, and the resonance frequency of the phase opposite bending vibration in the X axis direction Are separated from each other, so that when the driving-side tuning fork is driven in resonance, one and the other are caused by the torsional vibrations of opposite phases displaced around the Y 'axis and the Coriolis force based on the acceleration in the Z' axis direction. In contrast to the bending vibrations of the opposite phases in the X-axis direction generated in the vibrating arm of the first embodiment, the torsional vibrations of the opposite phases displaced around the Y'-axis can be suppressed. As a result, it is possible to effectively detect the AC voltage generated by the opposite-phase bending vibrations in the X-axis direction while suppressing the influence of the AC voltage generated by the opposite-phase torsional vibration displaced around the Y 'axis, and to accurately detect the AC voltage. The acceleration in the Z'-axis direction can be detected.

【0071】請求項4記載の加速度センサによれば、振
動腕の表裏面に電極を形成しているのみであるので、電
極の形成が容易であり、製造が容易である。請求項5記
載の加速度センサによれば、検知側音叉の電極が一対の
振動腕の表裏および両側面にそれぞれ1個ずつ形成して
いるだけであるので、電極の形成が容易であり、製造が
容易である。
According to the acceleration sensor of the fourth aspect, since only the electrodes are formed on the front and back surfaces of the vibrating arm, the electrodes are easily formed and the manufacture is easy. According to the acceleration sensor according to the fifth aspect, since only one electrode is formed on the detection-side tuning fork on each of the front and back surfaces and both side surfaces of the pair of vibrating arms, the electrodes can be easily formed, and the manufacturing is easy. Easy.

【0072】請求項6記載の加速度センサによれば、駆
動側音叉の一方および他方の振動腕のY′軸周りに変位
する互いに逆相の捩じれ振動を、駆動側音叉の機械的Q
値を低下させることなく、最大の機械伝達効率で検知側
音叉に伝達することができるとともに、駆動側音叉と結
合側音叉とを結合子で簡単に一体化することができ、製
造が容易である。
According to the acceleration sensor of the sixth aspect, the torsional vibrations of opposite phases displaced around the Y 'axis of one and the other vibrating arms of the driving-side tuning fork are transmitted to the mechanical Q of the driving-side tuning fork.
The value can be transmitted to the detection-side tuning fork with maximum mechanical transmission efficiency without reducing the value, and the driving-side tuning fork and the coupling-side tuning fork can be easily integrated with the coupling, which facilitates manufacturing. .

【0073】請求項7記載の加速度センサによれば、駆
動側音叉の一方および他方の振動腕のY′軸周りに変位
する互いに逆相の捩じれ振動を、駆動側音叉の機械的Q
値を低下させることなく、最大の機械伝達効率で検知側
音叉に伝達することができるとともに、駆動側音叉と結
合側音叉とを結合子で強固に一体化で、耐振性に優れて
いる。
According to the acceleration sensor of the present invention, the torsional vibrations of opposite phases displaced around the Y 'axis of one and the other vibrating arms of the drive-side tuning fork are transmitted to the mechanical Q of the drive-side tuning fork.
The value can be transmitted to the detection-side tuning fork with maximum mechanical transmission efficiency without decreasing the value, and the driving-side tuning fork and the coupling-side tuning fork are firmly integrated with a connector, and are excellent in vibration resistance.

【0074】請求項8記載の構成によれば、駆動側音叉
および検知側音叉としてそれぞれ従来例のような貼り合
わせタイプではない振動腕と支持部とが一体となった略
U字音叉形水晶ブランクを用いているので、請求項1の
場合と程度の差はあるが、広い温度範囲で温度特性に優
れかつ各種ばらつきが少なく高精度に加速度を検出する
ことができる。
According to the eighth aspect of the invention, a substantially U-shaped tuning-fork type crystal blank in which a vibrating arm and a supporting portion, which are not a bonding type as in the prior art, are integrated as a driving-side tuning fork and a detecting-side tuning fork, respectively. Is used, the acceleration can be detected with high accuracy over a wide temperature range with excellent temperature characteristics and little variation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の加速度センサの斜視図
である。
FIG. 1 is a perspective view of an acceleration sensor according to a first embodiment of the present invention.

【図2】略U字音叉形水晶ブランクの切り出し方向を示
す概略図である。
FIG. 2 is a schematic view showing a cutting direction of a substantially U-shaped tuning fork crystal blank.

【図3】駆動側音叉に設けた駆動用電極の様子を示す概
略図である。
FIG. 3 is a schematic diagram showing a state of a drive electrode provided on a drive-side tuning fork.

【図4】検知側音叉に設けた検知用電極の様子を示す概
略図である。
FIG. 4 is a schematic diagram showing a state of a detection electrode provided on a detection-side tuning fork.

【図5】略U字音叉形水晶ブランクのピンポイント支持
位置を示す概略図である。
FIG. 5 is a schematic view showing pinpoint support positions of a substantially U-shaped tuning fork-shaped quartz blank.

【図6】振動節を説明するための略U字音叉形水晶ブラ
ンクの概略図である。
FIG. 6 is a schematic view of a substantially U-shaped tuning fork-shaped crystal blank for explaining a vibrating node.

【図7】略U字音叉形水晶ブランクのサンプルの寸法と
カット軸を示す概略図である。
FIG. 7 is a schematic diagram showing dimensions and cut axes of a sample of a substantially U-shaped tuning fork-shaped quartz blank.

【図8】本発明の加速度センサのピンポイント支持位置
の違いによる機械的Q値の違いを示す特性図である。
FIG. 8 is a characteristic diagram showing a difference in mechanical Q value due to a difference in a pinpoint support position of the acceleration sensor of the present invention.

【図9】本発明の第1の実施例の加速度センサにおいて
加速度検出の原理を示す概略図である。
FIG. 9 is a schematic diagram illustrating the principle of acceleration detection in the acceleration sensor according to the first embodiment of the present invention.

【図10】本発明の第1の実施例の加速度センサにおい
て加速度検出の動作を示す概略図である。
FIG. 10 is a schematic diagram showing an operation of acceleration detection in the acceleration sensor according to the first embodiment of the present invention.

【図11】本発明の第2の実施例の加速度センサを示す
斜視図である。
FIG. 11 is a perspective view showing an acceleration sensor according to a second embodiment of the present invention.

【図12】本発明の第3の実施例の加速度センサを示す
斜視図である。
FIG. 12 is a perspective view showing an acceleration sensor according to a third embodiment of the present invention.

【図13】本発明の第4の実施例の加速度センサを示す
斜視図である。
FIG. 13 is a perspective view showing an acceleration sensor according to a fourth embodiment of the present invention.

【図14】本発明の第5の実施例の加速度センサの水晶
ブランクの切り出し方向を示す概略図である。
FIG. 14 is a schematic diagram showing a cutting direction of a quartz crystal blank of an acceleration sensor according to a fifth embodiment of the present invention.

【図15】同じく本発明の第5の実施例の加速度センサ
の概略図である。
FIG. 15 is a schematic diagram of an acceleration sensor according to a fifth embodiment of the present invention.

【図16】従来の加速度センサの一例を示す斜視図であ
る。
FIG. 16 is a perspective view showing an example of a conventional acceleration sensor.

【符号の説明】[Explanation of symbols]

21 駆動側音叉 22 電極 23 支持部 24 一方の振動腕 25 他方の振動腕 26 検知側音叉 27 電極 28 支持部 29 一方の振動腕 30 他方の振動腕 31 結合子 32 振動節を含む接合部 33 振動節を含む接合部 36a〜36d 駆動用電極 37a〜37d 駆動用電極 38,39 共通線路 40a〜40d 検知用電極 41a〜41d 検知用電極 42,43 共通線路 31A 結合子 23a,28a 貫通孔 23b,28b 貫通孔 50a〜50d 検知用電極 51a〜51d 検知用電極 DESCRIPTION OF SYMBOLS 21 Drive side tuning fork 22 Electrode 23 Support part 24 One vibrating arm 25 The other vibrating arm 26 Detection side tuning fork 27 Electrode 28 Support part 29 One vibrating arm 30 The other vibrating arm 31 Coupler 32 Joining part including vibrating node 33 Vibration Joints including nodes 36a to 36d Driving electrodes 37a to 37d Driving electrodes 38, 39 Common lines 40a to 40d Detection electrodes 41a to 41d Detection electrodes 42, 43 Common lines 31A Connectors 23a, 28a Through holes 23b, 28b Through holes 50a to 50d Detection electrodes 51a to 51d Detection electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市瀬 俊彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 寺田 二郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 大友 惇 埼玉県狭山市上広瀬1275−2 日本電波 工業株式会社 狭山事業所内 (72)発明者 太田 治良 埼玉県狭山市上広瀬1275−2 日本電波 工業株式会社 狭山事業所内 (72)発明者 太田 紘一郎 埼玉県狭山市上広瀬1275−2 日本電波 工業株式会社 狭山事業所内 (72)発明者 石原 実 埼玉県狭山市上広瀬1275−2 日本電波 工業株式会社 狭山事業所内 (56)参考文献 特開 平7−260488(JP,A) 特開 平7−260489(JP,A) 特開 平7−260491(JP,A) 特開 平4−324311(JP,A) 特開 昭60−73414(JP,A) 特開 平3−291517(JP,A) 特開 平3−113310(JP,A) 特開 平4−361165(JP,A) 特開 昭54−148392(JP,A) 特開 昭56−136014(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01C 19/56 G01P 9/04 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Toshihiko Ichise 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Atsushi Otomo 1275-2 Kamihirose, Sayama City, Saitama Prefecture Nippon Dempa Kogyo Co., Ltd.Sayama Office (72) Inventor Jira Ota 12275-2 Kamihirose, Sayama City, Saitama Prefecture Nippon Dempa Industry Co., Ltd. 72) Inventor Koichiro Ota 12275-2 Kamihirose, Sayama City, Saitama Prefecture Nippon Denpa Kogyo Co., Ltd., Sayama Plant (72) Inventor Minoru Ishihara 125-2 Kamihirose, Sayama City, Saitama Prefecture Nippon Dempa Kogyo Co., Ltd., Sayama Plant (56) References JP-A-7-260488 (JP, A) JP-A-7-260489 (JP, A) JP-A-7-260491 (JP, A) JP-A-4-324311 (JP, A) JP-A-60-73414 (JP, A) JP-A-3-291517 (JP, A) JP-A-3-113310 (JP, A) JP-A-4-361165 (JP JP, A) JP-A-54-148392 (JP, A) JP-A-56-136014 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01C 19/56 G01P 9/04

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶軸X,Y,ZのX軸周りに回転した
新たな結晶軸X,Y′,Z′のY′軸方向を長手方向に
してX,Y′面内でそれぞれ切り出し、方形断面の一方
および他方の対称な振動腕を支持部で平行一体に連結し
た形状をそれぞれ有する略U字音叉形水晶ブランクの前
記一方および他方の振動腕の周面に電極をそれぞれ配設
してなる第1および第2の音叉形水晶振動子を、互いに
平行に面対向した状態に結合子を介し前記支持部におい
て固着した加速度センサであって、 前記第1の音叉形水晶振動子を、電極を介して交流電圧
を印加することにより、一方および他方の振動腕のY′
軸周りに変位する互いに逆相の捩じれ振動を発生させる
駆動側音叉とし、 前記第2の音叉形水晶振動子を、前記結合子を経由して
前記第1の音叉形水晶振動子から伝播した一方および他
方の振動腕のY′軸周りに変位する互いに逆相の捩じれ
振動とZ′軸方向の加速度とに基づくコリオリの力によ
って発生する一方および他方の振動腕のX軸方向の互い
に逆相の屈曲振動により生じる交流電圧を電極を介して
検出する加速度検出用の検知側音叉としたことを特徴と
する加速度センサ。
1. A new crystal axis X, Y ', and Z' rotated around the X axis of the crystal axes X, Y, and Z are respectively cut out in the X, Y 'plane with the Y' axis direction as a longitudinal direction. Electrodes are arranged on the peripheral surfaces of the one and the other vibrating arms of a substantially U-shaped tuning fork-shaped quartz blank, each having a shape in which one and the other symmetric vibrating arms of a rectangular cross section are connected in parallel and integrally by a support portion. An acceleration sensor in which first and second tuning-fork type quartz vibrators are fixed to the support portion via a connector in a state where the first and second tuning-fork type quartz vibrators face each other in parallel with each other. By applying an AC voltage through the first and second vibrating arms.
A drive-side tuning fork that generates torsional vibrations of opposite phases displaced around an axis, wherein the second tuning-fork type quartz vibrator propagates from the first tuning-fork type quartz vibrator via the coupler And the other vibrating arm, which is generated by Coriolis force based on the torsional vibration displaced around the Y 'axis and the acceleration in the Z' axis direction, of the one and other vibrating arms in the opposite phase in the X axis direction. An acceleration sensor characterized in that it is a tuning-side tuning fork for acceleration detection that detects an AC voltage generated by bending vibration via an electrode.
【請求項2】 駆動側音叉の一方および他方の振動腕の
Y′軸周りに変位する互いに逆相の捩じれ振動の共振周
波数と検知側音叉の一方および他方の振動腕のX軸方向
の互いに逆相の屈曲振動の共振周波数とがほぼ等しく、
かつ前記駆動側音叉の一方および他方の振動腕のX軸方
向に変位する互いに逆相の屈曲振動の共振周波数と前記
検知側音叉の一方および他方の振動腕のY′軸周りに変
位する互いに逆相の捩じれ振動の共振周波数とが異なる
ように、前記駆動側音叉の振動腕と前記検知側音叉の振
動腕とを異なる形状寸法に設定したことを特徴とする請
求項1記載の加速度センサ。
2. The resonance frequencies of torsional vibrations of opposite phases displaced around the Y 'axis of one and the other vibrating arms of the drive-side tuning fork and opposite to each other in the X-axis direction of the one and the other vibrating arms of the detection-side tuning fork. The resonance frequency of the phase bending vibration is approximately equal,
In addition, the resonance frequencies of the opposite-phase bending vibrations displaced in the X-axis direction of the one and the other vibrating arms of the drive-side tuning fork and the opposite ones displaced around the Y 'axis of the one and the other vibrating arms of the detection-side tuning fork. 2. The acceleration sensor according to claim 1, wherein the vibrating arm of the drive-side tuning fork and the vibrating arm of the detection-side tuning fork are set to have different shapes and sizes so that the resonance frequency of the torsional vibration of the phase is different.
【請求項3】 駆動側音叉の一方および他方の振動腕の
X軸方向に変位する互いに逆相の屈曲振動の共振周波数
とY′軸周りに変位する互いに逆相の捩じれ振動と検知
側音叉の一方および他方の振動腕のX軸方向の互いに逆
相の屈曲振動の共振周波数とY′軸周りに変位する互い
に逆相の捩じれ振動の共振周波数とが互いに隔離して異
なるように、前記駆動側音叉の振動腕と前記検知側音叉
の振動腕とを異なる形状寸法に設定したことを特徴とす
る請求項1記載の加速度センサ。
3. The resonance frequencies of bending vibrations of the opposite phases displaced in the X-axis direction of one and the other vibrating arms of the drive-side tuning fork, and torsional vibrations of the opposite phase displaced around the Y 'axis, and of the detection-side tuning fork. The driving side so that the resonance frequency of the bending vibration of the opposite phase in the X-axis direction of the one and the other vibrating arms and the resonance frequency of the torsional vibration of the opposite phase displaced around the Y 'axis are different from each other. The acceleration sensor according to claim 1, wherein the vibrating arm of the tuning fork and the vibrating arm of the detection-side tuning fork are set to have different shapes and sizes.
【請求項4】 駆動側音叉の一方および他方の振動腕の
周面に配設する電極は、Z′軸方向に見て前記一方およ
び他方の振動腕の表裏面にそれぞれ周方向に3分割され
た状態でそれぞれ設けてあり、前記一方および他方の振
動腕の表裏面の3分割されて外側にある電極を外電極と
し中側にある電極を中側電極とし内側にある電極を内電
極としたとき、一方の振動腕の表面内電極と表面外電極
と裏面中側電極と他方の振動腕の裏面内電極と裏面外電
極と表面中側電極とを共通接続し、かつ他方の振動腕の
表面内電極と表面外電極と裏面中側電極と一方の振動腕
の裏面内電極と裏面外電極と表面中側電極とを共通接続
したことを特徴とする請求項1記載の加速度センサ。
4. An electrode disposed on the peripheral surface of one and the other vibrating arms of the drive-side tuning fork is divided into three in the circumferential direction on the front and back surfaces of the one and the other vibrating arms when viewed in the Z 'axis direction. Each of the one and the other vibrating arms is divided into three, and the outer electrode is an outer electrode, the inner electrode is an inner electrode, the inner electrode is an inner electrode, and the inner electrode is an inner electrode. When the inner electrode on the front surface, the outer electrode on the front surface, the inner electrode on the back surface of the one vibrating arm, the inner electrode on the back surface, the outer electrode on the back surface, and the inner electrode on the front surface of the other vibrating arm are commonly connected, and the surface of the other vibrating arm is 2. The acceleration sensor according to claim 1, wherein the inner electrode, the outer surface electrode, the inner rear electrode, and the inner rear electrode, the outer rear electrode, and the inner front electrode of one vibrating arm are commonly connected.
【請求項5】 検知側音叉の一方および他方の振動腕の
周面に配設する電極は、Z′軸方向に見て前記一方およ
び他方の振動腕の表裏および両側の4周面にそれぞれ4
つの稜線部分で周方向に4分割された状態にそれぞれ設
けてあり、前記一方の振動腕の表裏面電極と前記他方の
振動腕の両側面電極とを共通接続し、前記他方の振動腕
の表裏面電極と前記一方の振動腕の両側面電極とを共通
接続したことを特徴とする請求項1記載の加速度セン
サ。
5. An electrode provided on the peripheral surface of one and the other vibrating arms of the detecting-side tuning fork has four electrodes on the four peripheral surfaces on the front and back sides and on both sides of the one and the other vibrating arms when viewed in the Z'-axis direction.
Are provided in a state divided into four in the circumferential direction at two ridge lines, and the front and back electrodes of the one vibrating arm and the both side electrodes of the other vibrating arm are connected in common, and the surface of the other vibrating arm is connected. The acceleration sensor according to claim 1 , wherein the back electrode and both side electrodes of the one vibrating arm are connected in common.
【請求項6】 結合子は、両端面がある面積を有する柱
状であって、両端面が駆動側音叉および検知側音叉の支
持部に生成される振動節を部分的に含む表面に接着され
ていることを特徴とする請求項1記載の加速度センサ。
6. The connector has a columnar shape with both end surfaces having an area, and both end surfaces are bonded to a surface partially including a vibrating node generated in a supporting portion of the drive-side tuning fork and the detection-side tuning fork. The acceleration sensor according to claim 1, wherein
【請求項7】 駆動側音叉および検知側音叉は、支持部
に生成される振動節を部分的に含むある面積をもった貫
通孔をそれぞれ有し、結合子は、柱状であって、両端部
が前記貫通孔に貫挿した状態に前記駆動側音叉および検
知側音叉の支持部に接着されていることを特徴とする請
求項1記載の加速度センサ。
7. The drive-side tuning fork and the detection-side tuning fork each have a through-hole having a certain area partially including a vibrating node generated in the support portion, and the connector has a columnar shape. 2. The acceleration sensor according to claim 1, wherein the first through-hole and the second through-hole are adhered to the supporting portions of the driving-side tuning fork and the detection-side tuning fork.
【請求項8】 方形断面の一方および他方の対称な振動
腕を支持部で平行一体に連結した形状をそれぞれ有する
略U字音叉形水晶ブランクの前記一方および他方の振動
腕の周面に電極をそれぞれ配設してなる第1および第2
の音叉形水晶振動子を、互いに平行に面対向した状態に
結合子を介し前記支持部において固着した加速度センサ
であって、 前記第1の音叉形水晶振動子を、電極を介して交流電圧
を印加することにより、一方および他方の振動腕の長手
方向の周りに変位する互いに逆相の捩じれ振動を発生さ
せる駆動側音叉とし、 前記第2の音叉形水晶振動子を、前記結合子を経由して
前記第1の音叉形水晶振動子から伝播した一方および他
方の振動腕の長手方向の周りに変位する互いに逆相の捩
じれ振動と前記一方および他方の振動腕の並び方向と直
交する方向の加速度とに基づくコリオリの力によって発
生する一方および他方の振動腕の並び方向の互いに逆相
の屈曲振動により生じる交流電圧を電極を介して検出す
る加速度検出用の検知側音叉としたことを特徴とする加
速度センサ。
8. An electrode is formed on the peripheral surface of said one and other vibrating arms of a substantially U-shaped tuning fork-shaped quartz blank having a shape in which one and the other symmetric vibrating arms of a rectangular cross section are connected in parallel and integrally by a support portion. First and second respectively arranged
An acceleration sensor in which the tuning fork-shaped quartz resonator of the first aspect is fixed to the support portion via a connector in a state where the tuning fork-shaped quartz resonators are faced in parallel with each other, and an AC voltage is applied to the first tuning fork-shaped quartz resonator through an electrode. A drive-side tuning fork that generates torsional vibrations of opposite phases that are displaced around the longitudinal direction of one and the other vibrating arms by being applied, and the second tuning-fork type quartz vibrator passes through the coupler. Opposite torsional vibrations displaced around the longitudinal direction of the one and other vibrating arms propagated from the first tuning-fork type quartz vibrator and acceleration in a direction orthogonal to the direction in which the one and other vibrating arms are arranged A tuning fork for acceleration detection, which detects, via an electrode, an AC voltage generated by bending vibrations of opposite phases in the arrangement direction of one and the other vibrating arms generated by the Coriolis force based on An acceleration sensor according to claim.
JP04933694A 1994-03-18 1994-03-18 Acceleration sensor Expired - Fee Related JP3270239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04933694A JP3270239B2 (en) 1994-03-18 1994-03-18 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04933694A JP3270239B2 (en) 1994-03-18 1994-03-18 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH07260490A JPH07260490A (en) 1995-10-13
JP3270239B2 true JP3270239B2 (en) 2002-04-02

Family

ID=12828159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04933694A Expired - Fee Related JP3270239B2 (en) 1994-03-18 1994-03-18 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP3270239B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335122B2 (en) 1998-05-06 2002-10-15 松下電器産業株式会社 Angular velocity sensor
CN115585879B (en) * 2022-10-10 2023-08-18 国网山东省电力公司高密市供电公司 Acoustic wave detection device for monitoring vibration amplitude of power equipment

Also Published As

Publication number Publication date
JPH07260490A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
US6046531A (en) Vibrator, vibratory gyroscope, and linear accelerometer
US6321598B1 (en) Angular velocity sensor device having oscillators
EP0649002B1 (en) Vibration-sensing gyro
WO2005085758A1 (en) Tuning fork vibrator for angular velocity sensor, angular velocity sensor using the vibrator, and vehicle using the angular velocity sensor
JP3421720B2 (en) Angular velocity detection circuit
EP1302744A2 (en) Angular velocity sensor
US20060201248A1 (en) Vibrating gyro element
EP0574143A1 (en) Angular rate sensor and method of production thereof
JP4599848B2 (en) Angular velocity sensor
JP4529203B2 (en) Angular velocity sensor
US8869615B2 (en) Element vibrating in two uncoupled modes, and use in vibrating rate gyroscope
JP3270239B2 (en) Acceleration sensor
JP3244924B2 (en) Angular velocity sensor
JP3244925B2 (en) Angular velocity / acceleration sensor
JP3244923B2 (en) Angular velocity sensor
JP3736257B2 (en) Vibrator and angular velocity detection device
JP3674013B2 (en) Angular velocity detector
JP4552253B2 (en) Angular velocity sensor
JPH03120415A (en) Vibration gyro
JP3310029B2 (en) Vibrator
JPH07167662A (en) Detecting circuit
JP3371609B2 (en) Vibrating gyro
JPH10253363A (en) Angular velocity sensor element and angular velocity sensor using the same
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JPH0341312A (en) Angular velocity sensor and detecting device therefore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees