JP3843509B2 - Plate reactor - Google Patents

Plate reactor Download PDF

Info

Publication number
JP3843509B2
JP3843509B2 JP29639396A JP29639396A JP3843509B2 JP 3843509 B2 JP3843509 B2 JP 3843509B2 JP 29639396 A JP29639396 A JP 29639396A JP 29639396 A JP29639396 A JP 29639396A JP 3843509 B2 JP3843509 B2 JP 3843509B2
Authority
JP
Japan
Prior art keywords
plate
flow path
separator plate
gas flow
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29639396A
Other languages
Japanese (ja)
Other versions
JPH10139402A (en
Inventor
実 古賀
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP29639396A priority Critical patent/JP3843509B2/en
Publication of JPH10139402A publication Critical patent/JPH10139402A/en
Application granted granted Critical
Publication of JP3843509B2 publication Critical patent/JP3843509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二種の流体が隔壁により仕切られ、その間の熱交換により反応を促進又は制御するプレート式反応器に関する。
【0002】
【従来の技術】
二種の流体間の熱交換により反応を促進或いは制御する反応器として、燃料電池用の改質器(リフォーマ)、シフトコンバータ、等が知られている。更に、かかる改質器やシフトコンバータの反応室を平板状の隔壁で仕切りこれを複数積層した反応器が一部で提案され、既に実施されている。以下、かかかる反応器を「プレート式反応器」と呼ぶ。
【0003】
図7〜図9は、リン酸型(PAFC)燃料電池発電システム(図7)、溶融炭酸塩型(MCFC)燃料電池発電システム(図8)及び固体高分子型(SOFC)燃料電池システム(図9)を示している。これらの発電システムには、従来から、プレート式反応器が適用されている。例えば、PAFC発電システムでは、改質器、高温及び低温シフトコンバータ、MCFC発電システムでは改質器、SOFC発電システムでは改質器及び低温シフトコンバータが対象となる。
【0004】
【発明が解決しようとする課題】
図10は、従来のプレート式反応器であるプレートリフォーマ(改質器)の構造図である。この図において、高温段と低温段は平板状の隔壁1で仕切られており、この隔壁1に多数のパイプ2が点付溶接され、この隔壁1とパイプ2とによって形成される空間に充填材3が充填されている。なお、この図で5は、穴開板(パンチ板)等で構成された仕切り部材であり、内部に充填された触媒等の流出を防止しかつ内部とのガスの流通を可能にしている。
【0005】
しかし、この構造のプレートリフォーマは、▲1▼サイドバー4とパイプ2の高さを高精度に製作する必要があるため、多数のパイプ2を機械加工する必要があり、かつ▲2▼隔壁1と多数のパイプ2の位置決め及び溶接に多大の時間を要する、等の問題点があり、このため製作費が高く、大幅なコストダウンが要望されていた。
【0006】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、二種の流体間を仕切る複数の隔壁を有し、その間の熱交換を効率よく行い、所定の反応を促進或いは制御することができ、かつ機械加工なしで高精度かつ低コストで効率よく製造できるプレート式反応器を提供することにある。
【0007】
本発明によれば、表裏に多数の突起部を有するプレス成形によるセパレータ板と、該突起部の先端に密着する平板と、を有し、該セパレータ板と平板とが交互に積層され、その間に高温ガス流路及び低温ガス流路を形成し、前記セパレータ板と該セパレータ板の表側の突起部先端に密着する平板との間に低温ガス流路が形成され、該セパレータ板と該セパレータ板の裏側の突起部先端に密着する平板との間に高温ガス流路が形成されている、ことを特徴とするプレート式反応器が提供される。
【0008】
この構成により、プレス成形によるセパレータ板と平板とを交互に積層することにより、従来のように多数のパイプの機械加工や溶接が不要であり、機械加工なしで高精度かつ低コストで効率よくプレート式反応器を製造することができ、かつ反応器の軽量化、及び組立工数の低減を図ることができる。
なお、プレート式反応器を改質器として使用する場合に、低温ガス流路に改質触媒を充填し、この流路に炭化水素と水蒸気の混合ガスを流し、高温ガス流路に伝熱促進材(すなわち、アルミナボール)を充填し、燃焼ガス等を流すことにより、低温ガス流路の炭化水素を高温ガス流路からの伝熱により水素とCOに改質することができる。プレート式反応器をシフトコンバータとして使用する場合も同様である。
【0009】
本発明の好ましい実施形態によれば、前記セパレータ板は、高温ガス流路及び低温ガス流路に反応触媒、反応触媒+伝熱促進材、伝熱促進材のいずれかの充填材をブリッジ形成なしで充填できる波型形状を有する。ブリッジ形成なしで充填できる波型形状とは、例えば、▲1▼円型エンボス、▲2▼楕円型エンボス等である。また、反応触媒及び伝熱促進材は、ガス通路内でブリッジを形成しない粒径及び形状であるのがよい。この構成により、プレート式反応器を分解することなく、反応触媒及び伝熱促進材を交換することができる。
【0010】
また、前記波型形状は、互いに隣接した凸型エンボスと凹型エンボスからなり、セパレータ板の平面内で交互に繰り返されている。この構成により、プレス成形により1枚の平板から容易にセパレータ板を高精度に量産することができる。
【0011】
更に、前記エンボスと接触することなく高温ガス流路又は低温ガス流路を仕切る充填材止と、該仕切られた流路に充填材を充填する充填材投入孔とを有し、該充填材止は、ガスを該流路内のガスの流通を可能にする貫通穴を有し、かつ前記仕切られた各流路に異なる充填材が充填される。
この構成により、各ガス通路内に複数の充填材を区分けして充填することができ、プレート式反応器における伝熱を制御し、プレート式反応器における反応を促進或いは制御することができる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
図1は、本発明によるプレート式反応器の全体構成図である。この図において、(A)は部分縦断面図、(B)は(A)のB−B線における断面図、(C)は(A)のC−C線における断面図、(D)は(B)のD矢視である。すなわち、(B)は低温段(低温ガス流路)の平面図、(C)は高温段(高温ガス流路)の平面図である。
【0013】
この図に示すように、本発明のプレート式反応器10は、表裏に多数の突起部11を有するプレス成形によるセパレータ板12と、突起部11の先端に密着する平板13と、を有し、セパレータ板12と平板13とが交互に積層され、その間に高温ガス流路14及び低温ガス流路15を形成するようになっている。なお、この図で4は、サイドバーであり、セパレータ板12と平板13の周囲を溶接等により気密に連結するようになっている。
【0014】
また、(B)(C)に示すように、高温ガス流路14及び低温ガス流路15のガス流入部及びガス流出部には、穴開板(パンチ板)等で構成された仕切り部材5が取り付けられ、内部に充填された触媒等の流出を防止しかつ内部とのガスの流通を可能にしている。
【0015】
更に、プレート式反応器(プレート型改質器及びシフトコンバータ)の充填層内に生ずる温度分布を改善するため、高温ガス及び低温ガスの流れが対称となるようにヘッダ17を左右対称になるように設置している。隔壁(セパレータ板12)は一体プレス成形されているので、反応器の軽量化、組立及び仮付溶接工数の低減を図ることができる。
【0016】
なお、この図は、プレート式反応器を改質器として使用する場合を示しており、低温ガス流路15に改質触媒を充填し、この流路に炭化水素と水蒸気の混合ガスを流し、高温ガス流路14に伝熱促進材(すなわち、アルミナボール)を充填し、高温ガス等を流すことにより、低温ガス流路の炭化水素を高温ガス流路からの伝熱により水素とCOに改質することができる。また、この図のプレート式反応器をシフトコンバータとしてそのまま使用することもできる。
【0017】
図2はプレス成形によるセパレータ板12を示す。図1に示したように、セパレータ板12の表裏にプレス成形により形成された多数の突起部11は波型形状をしており、この波型形状は、互いに隣接した凸型エンボスと凹型エンボスからなる。図2において、凸形エンボスは○印で示し、●印は凹形エンボスを示している。凸形エンボスの隣接エンボスは必ず凹形であり、セパレータ板の平面内で交互に繰り返されている。この構成により、プレス成形により1枚の平板から容易にセパレータ板を高精度に量産することができる。
【0018】
図3は低温シフトコンバータの実施例を示す。低温シフト反応触媒は、Cu−Zn系である。図4は高温シフトコンバータの実施例を示す。高温板の上流側は高温ガスが流れるため、高温シフト反応触媒がシンタリングし活性が低下する可能性があり、この部分にはアルミナボールを充填できるようにしている。高温シフト反応触媒はFe−Cr系である。
【0019】
図4(B)において、エンボス11と接触することなく高温ガス流路を仕切る充填材止18と、この仕切られた流路に充填材を充填する充填材投入孔19とを有する。また充填材止18は、流路内のガスの流通を可能にする貫通穴を有している。この構成により、仕切られた各流路に異なる充填材(例えば、反応触媒と伝熱促進材)を充填することにより、プレート式反応器における反応を制御することができる。
【0020】
図5は上下段の熱的対称性を確保するため、上下端に断熱層を設けた実施例であり、構造強度の安定性確保及びヘッダ取り付けスペースの確保を目的としている。図6は、断熱段の平面図である。
【0021】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0022】
【発明の効果】
上述したように、本発明のプレート式反応器は、従来のように多数のパイプの機械加工や溶接が不要であり、機械加工なしで高精度かつ低コストで効率よくプレート式反応器を製造することができ、かつ反応器の軽量化、及び組立工数の低減を図ることができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明によるプレート式反応器の全体構成図である。
【図2】プレス成形によるセパレータ板の平面図である。
【図3】低温シフトコンバータの実施例を示す図である。
【図4】高温シフトコンバータの実施例を示す図である。
【図5】上下端に断熱層を設けた実施例である。
【図6】断熱段の平面図である。
【図7】リン酸型燃料電池発電システムの構成図である。
【図8】溶融炭酸塩型燃料電池発電システムの構成図である。
【図9】固体高分子型燃料電池システムの構成図である。
【図10】従来のプレート式反応器の構造図である。
【符号の説明】
1 隔壁
2 パイプ
3 充填材
4 サイドバー
10 プレート式反応器
11 突起部
12 セパレータ板
13 平板
14 高温ガス流路
15 低温ガス流路
17 ヘッダ
18 充填材止
19 充填材投入孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plate reactor in which two kinds of fluids are partitioned by a partition wall and the reaction is promoted or controlled by heat exchange therebetween.
[0002]
[Prior art]
As a reactor for promoting or controlling the reaction by heat exchange between two kinds of fluids, a reformer (reformer) for a fuel cell, a shift converter, and the like are known. Furthermore, some reactors in which the reaction chambers of such reformers and shift converters are divided by flat partition walls and a plurality of them are stacked have been proposed and implemented. Hereinafter, such a reactor is referred to as a “plate reactor”.
[0003]
7-9 show a phosphoric acid type (PAFC) fuel cell power generation system (FIG. 7), a molten carbonate type (MCFC) fuel cell power generation system (FIG. 8), and a solid polymer type (SOFC) fuel cell system (FIG. 7). 9). Conventionally, plate type reactors are applied to these power generation systems. For example, a PAFC power generation system is a reformer, a high temperature and low temperature shift converter, a MCFC power generation system is a reformer, and a SOFC power generation system is a reformer and a low temperature shift converter.
[0004]
[Problems to be solved by the invention]
FIG. 10 is a structural diagram of a plate reformer (reformer) which is a conventional plate reactor. In this figure, the high temperature stage and the low temperature stage are partitioned by a flat partition wall 1, and a number of pipes 2 are spot welded to the partition wall 1, and a filler is formed in the space formed by the partition wall 1 and the pipe 2. 3 is filled. In this figure, reference numeral 5 denotes a partition member constituted by a perforated plate (punch plate) or the like, which prevents outflow of a catalyst or the like filled therein and allows gas to flow therethrough.
[0005]
However, in the plate reformer of this structure, (1) since the height of the side bar 4 and the pipe 2 needs to be manufactured with high precision, it is necessary to machine a large number of pipes 2 and (2) the partition wall There is a problem that it takes a lot of time to position and weld 1 and a large number of pipes 2. Therefore, the manufacturing cost is high, and a significant cost reduction has been demanded.
[0006]
The present invention has been made to solve such problems. That is, an object of the present invention is to have a plurality of partition walls that partition between two kinds of fluids, to efficiently perform heat exchange between them, to promote or control a predetermined reaction, and to achieve high accuracy without machining. Another object of the present invention is to provide a plate reactor that can be produced efficiently at low cost.
[0007]
According to the present invention, there is a separator plate formed by press molding having a large number of protrusions on the front and back, and a flat plate that is in close contact with the tip of the protrusion, and the separator plate and the flat plate are alternately laminated, A high temperature gas flow path and a low temperature gas flow path are formed , and a low temperature gas flow path is formed between the separator plate and a flat plate that is in close contact with the front end of the protrusion on the separator plate. There is provided a plate reactor characterized in that a hot gas flow path is formed between a flat plate in close contact with the tip of the protrusion on the back side .
[0008]
With this structure, separator plates and flat plates by press molding are alternately stacked, eliminating the need for machining and welding of many pipes as in the past, and providing high-precision, low-cost, efficient plates without machining. The reactor can be manufactured, and the weight of the reactor can be reduced and the number of assembly steps can be reduced.
When a plate reactor is used as a reformer, the reforming catalyst is filled in the low-temperature gas flow path, a mixed gas of hydrocarbon and steam is flowed into the flow path, and heat transfer is promoted through the high-temperature gas flow path. By filling a material (that is, alumina balls) and flowing a combustion gas or the like, hydrocarbons in the low temperature gas channel can be reformed to hydrogen and CO by heat transfer from the high temperature gas channel. The same applies when a plate reactor is used as a shift converter.
[0009]
According to a preferred embodiment of the present invention, the separator plate does not form a bridge with a filler of any one of a reaction catalyst, a reaction catalyst + heat transfer promoting material, and a heat transfer promoting material in the high temperature gas flow path and the low temperature gas flow path. It has a corrugated shape that can be filled with. Examples of the corrugated shape that can be filled without forming a bridge include (1) circular embossing, (2) elliptical embossing, and the like. Further, the reaction catalyst and the heat transfer promoting material may have a particle size and a shape that do not form a bridge in the gas passage. With this configuration, the reaction catalyst and the heat transfer promoting material can be exchanged without disassembling the plate reactor.
[0010]
The corrugated shape is composed of a convex emboss and a concave emboss adjacent to each other, and is repeated alternately in the plane of the separator plate. With this configuration, the separator plate can be easily mass-produced with high accuracy from one flat plate by press molding.
[0011]
And a filler stopper that partitions the hot gas channel or the cold gas channel without contacting the emboss, and a filler inlet hole that fills the partitioned channel with the filler. Has a through hole that allows gas to flow in the flow path, and the partitioned flow paths are filled with different fillers.
With this configuration, a plurality of fillers can be divided and filled in each gas passage, heat transfer in the plate reactor can be controlled, and reaction in the plate reactor can be promoted or controlled.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.
FIG. 1 is an overall configuration diagram of a plate reactor according to the present invention. In this figure, (A) is a partial longitudinal sectional view, (B) is a sectional view taken along line BB in (A), (C) is a sectional view taken along line CC in (A), and (D) is ( It is a D arrow view of B). That is, (B) is a plan view of a low temperature stage (low temperature gas flow path), and (C) is a plan view of a high temperature stage (high temperature gas flow path).
[0013]
As shown in this figure, the plate reactor 10 of the present invention has a separator plate 12 formed by press molding having a large number of protrusions 11 on the front and back sides, and a flat plate 13 that is in close contact with the tips of the protrusions 11. Separator plates 12 and flat plates 13 are alternately stacked, and a high-temperature gas passage 14 and a low-temperature gas passage 15 are formed therebetween. In this figure, reference numeral 4 denotes a side bar which connects the periphery of the separator plate 12 and the flat plate 13 in an airtight manner by welding or the like.
[0014]
Further, as shown in (B) and (C), a partition member 5 constituted by a perforated plate (punch plate) or the like is provided in the gas inflow portion and the gas outflow portion of the high temperature gas flow path 14 and the low temperature gas flow path 15. It is attached and prevents the catalyst filled in the inside from flowing out and allows gas to flow inside.
[0015]
Furthermore, in order to improve the temperature distribution generated in the packed bed of the plate reactor (plate type reformer and shift converter), the header 17 is made symmetrical so that the flow of the hot gas and the cold gas is symmetric. It is installed in. Since the partition wall (separator plate 12) is integrally press-molded, it is possible to reduce the weight of the reactor, reduce assembly, and reduce the number of tack welding welding.
[0016]
This figure shows a case where a plate reactor is used as a reformer. The low-temperature gas channel 15 is filled with a reforming catalyst, and a mixed gas of hydrocarbon and water vapor is caused to flow through this channel. By filling the high-temperature gas channel 14 with a heat transfer promoting material (ie, alumina balls) and flowing a high-temperature gas or the like, hydrocarbons in the low-temperature gas channel are changed to hydrogen and CO by heat transfer from the high-temperature gas channel. Can be quality. Further, the plate reactor shown in this figure can be used as it is as a shift converter.
[0017]
FIG. 2 shows a separator plate 12 formed by press molding. As shown in FIG. 1, a large number of protrusions 11 formed by press molding on the front and back of the separator plate 12 have a corrugated shape, and this corrugated shape is formed by a convex emboss and a concave emboss adjacent to each other. Become. In FIG. 2, the convex emboss is indicated by a circle and the ● mark indicates a concave emboss. The adjacent embosses of the convex emboss are necessarily concave and are repeated alternately in the plane of the separator plate. With this configuration, the separator plate can be easily mass-produced with high accuracy from one flat plate by press molding.
[0018]
FIG. 3 shows an embodiment of a low temperature shift converter. The low temperature shift reaction catalyst is a Cu-Zn system. FIG. 4 shows an embodiment of a high temperature shift converter. Since high temperature gas flows on the upstream side of the hot plate, there is a possibility that the high temperature shift reaction catalyst will sinter and its activity may be lowered, and this portion can be filled with alumina balls. The high temperature shift reaction catalyst is Fe-Cr type.
[0019]
In FIG. 4 (B), it has the filler stop 18 which partitions a high temperature gas flow path without contacting the embossing 11, and the filler injection | throwing-in hole 19 which fills this partitioned flow path with a filler. The filler stopper 18 has a through hole that allows gas to flow in the flow path. With this configuration, the reaction in the plate-type reactor can be controlled by filling each partitioned flow path with different fillers (for example, a reaction catalyst and a heat transfer promoting material).
[0020]
FIG. 5 shows an embodiment in which heat insulating layers are provided on the upper and lower ends in order to ensure the thermal symmetry of the upper and lower stages, and the purpose is to ensure the stability of the structural strength and the header mounting space. FIG. 6 is a plan view of the heat insulation stage.
[0021]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0022]
【The invention's effect】
As described above, the plate reactor of the present invention does not require machining and welding of a large number of pipes as in the prior art, and can produce a plate reactor efficiently with high accuracy and low cost without machining. And has excellent effects such as reduction in the weight of the reactor and reduction in the number of assembly steps.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a plate reactor according to the present invention.
FIG. 2 is a plan view of a separator plate formed by press molding.
FIG. 3 is a diagram showing an embodiment of a low temperature shift converter.
FIG. 4 is a diagram showing an embodiment of a high temperature shift converter.
FIG. 5 is an embodiment in which a heat insulating layer is provided on the upper and lower ends.
FIG. 6 is a plan view of an adiabatic stage.
FIG. 7 is a configuration diagram of a phosphoric acid fuel cell power generation system.
FIG. 8 is a configuration diagram of a molten carbonate fuel cell power generation system.
FIG. 9 is a configuration diagram of a solid polymer fuel cell system.
FIG. 10 is a structural diagram of a conventional plate reactor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Partition 2 Pipe 3 Filler 4 Side bar 10 Plate type reactor 11 Protrusion part 12 Separator plate 13 Flat plate 14 Hot gas flow path 15 Low temperature gas flow path 17 Header 18 Filler stop 19 Filler input hole

Claims (5)

表裏に多数の突起部を有するプレス成形によるセパレータ板と、該突起部の先端に密着する平板と、を有し、該セパレータ板と平板とが交互に積層され、その間に高温ガス流路及び低温ガス流路を形成し、
前記セパレータ板と該セパレータ板の表側の突起部先端に密着する平板との間に低温ガス流路が形成され、該セパレータ板と該セパレータ板の裏側の突起部先端に密着する平板との間に高温ガス流路が形成されている、ことを特徴とするプレート式反応器。
A separator plate formed by press molding having a large number of protrusions on the front and back, and a flat plate that is in close contact with the tip of the protrusion, and the separator plate and the flat plate are alternately laminated, and a high-temperature gas flow path and a low temperature between them Forming a gas flow path ,
A low-temperature gas flow path is formed between the separator plate and a flat plate that is in close contact with the front end of the protrusion on the separator plate, and between the separator plate and a flat plate that is in close contact with the front end of the protrusion of the separator plate. A plate reactor in which a hot gas flow path is formed .
前記セパレータ板は、高温ガス流路及び低温ガス流路に反応触媒、反応触媒+伝熱促進材、伝熱促進材のいずれかの充填材をブリッジ形成なしで充填できる波型形状を有する、ことを特徴とする請求項1に記載のプレート式反応器。  The separator plate has a corrugated shape capable of filling the high-temperature gas flow path and the low-temperature gas flow path with any one of a reaction catalyst, a reaction catalyst + heat transfer promotion material, and a heat transfer promotion material without forming a bridge. The plate reactor according to claim 1. 前記波型形状は、互いに隣接した凸型エンボスと凹型エンボスからなり、セパレータ板の平面内で交互に繰り返されている、ことを特徴とする請求項1又は2に記載のプレート式反応器。  The plate reactor according to claim 1 or 2, wherein the corrugated shape is composed of a convex embossment and a concave embossment adjacent to each other and is alternately repeated in a plane of a separator plate. 前記エンボスと接触することなく高温ガス流路又は低温ガス流路を仕切る充填材止と、該仕切られた流路に充填材を充填する充填材投入孔とを有し、該充填材止は、ガスを該流路内のガスの流通を可能にする貫通穴を有し、かつ前記仕切られた各流路に異なる充填材が充填される、ことを特徴とする請求項2乃至3に記載のプレート式反応器。  A filler stopper for partitioning the hot gas channel or the cold gas channel without contacting the emboss, and a filler charging hole for filling the partitioned channel with the filler, 4. The gas supply device according to claim 2, further comprising a through-hole that allows gas to flow in the flow path, and each of the partitioned flow paths is filled with a different filler. Plate reactor. 前記セパレータ板によって高温ガス流路と低温ガス流路が分離されており、The separator plate separates the hot gas channel and the cold gas channel,
前記セパレータ板には、仮想直線上に間隔を置いて表側の突起部と裏側の突起部が交互に間隔をおいて配置されており、前記仮想直線上に配置された表側の各突起部及び裏側の各突起部を通り前記仮想直線と垂直な各仮想直線上にも表側の突起部と裏側の突起部が交互に配置されている、ことを特徴とする請求項1に記載のプレート式反応器。  In the separator plate, the front side protrusions and the back side protrusions are alternately arranged at intervals on the imaginary straight line, and the front side protrusions and the back side arranged on the imaginary straight line. 2. The plate reactor according to claim 1, wherein projections on the front side and projections on the back side are alternately arranged also on each virtual line perpendicular to the virtual line through each projection of .
JP29639396A 1996-11-08 1996-11-08 Plate reactor Expired - Fee Related JP3843509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29639396A JP3843509B2 (en) 1996-11-08 1996-11-08 Plate reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29639396A JP3843509B2 (en) 1996-11-08 1996-11-08 Plate reactor

Publications (2)

Publication Number Publication Date
JPH10139402A JPH10139402A (en) 1998-05-26
JP3843509B2 true JP3843509B2 (en) 2006-11-08

Family

ID=17832972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29639396A Expired - Fee Related JP3843509B2 (en) 1996-11-08 1996-11-08 Plate reactor

Country Status (1)

Country Link
JP (1) JP3843509B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036757B1 (en) 1999-03-15 2004-05-12 Matsushita Electric Industrial Co., Ltd. Hydrogen generating apparatus
AU746468B2 (en) * 1999-04-09 2002-05-02 Mitsubishi Heavy Industries, Ltd. Device for decomposing organic halogen compound and fluid heating device
JP4639472B2 (en) * 2001-01-05 2011-02-23 日産自動車株式会社 Reactor
KR100711893B1 (en) 2005-06-24 2007-04-25 삼성에스디아이 주식회사 Reformer for Fuel Cell
JP5018179B2 (en) * 2007-03-30 2012-09-05 Tdk株式会社 Reactor
EP2522624A4 (en) * 2010-01-05 2018-01-03 Panasonic Intellectual Property Management Co., Ltd. Fuel treatment device
JP5997590B2 (en) * 2012-11-15 2016-09-28 川崎重工業株式会社 Heat exchanger and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10139402A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
US6470569B1 (en) Method for producing a compact catalytic reactor
US8187559B2 (en) Heat exchanger system comprising fluid circulation zones which are selectively coated with a chemical reaction catalyst
US20010018140A1 (en) Catalytic burner element inside a fuel cell with structured catalytic coated surfaces
US20030044331A1 (en) Annular heat exchanging reactor system
WO2003098725A2 (en) Method and apparatus for vaporizing fuel for a reformer fuel cell system
JP5581028B2 (en) Catalytic reactor
EP2859607B1 (en) Solid oxide fuel cell
KR20060059840A (en) Catalytic reactor/heat exchanger
US20040163800A1 (en) Heat exchanger for heating of fuel cell combustion air
EP2013560B1 (en) Heat exchanger, heat-exchange reformer, and methods of producing heat-exchanger and heat-exchange reformer
US20090258259A1 (en) Catalytic heat exchangers and methods of operation
JP3843509B2 (en) Plate reactor
US20020131919A1 (en) Modular fuel processing system for plate reforming type units
US6893619B1 (en) Plate-frame heat exchange reactor with serial cross-flow geometry
JP3739044B2 (en) Heat exchanger and heat exchange reactor using the same
US20050242157A1 (en) Reactor structure as a heat exchanger layer stacking construction and method of making same
JP3968686B2 (en) Methanol reformer
JPH08283002A (en) Fuel reforming device
US20100143755A1 (en) Multi-Channel Fuel Reformer with Augmented Heat Transfer
JPH0450246B2 (en)
WO2014165037A1 (en) Heat exchanger
EP2719447B1 (en) Combined heat exchanging and fluid mixing apparatus
US20020106596A1 (en) Catalytic burner element inside a fuel cell with structured catalytic coated surfaces
CN218452172U (en) Methanol hydrogen production plate type reforming reactor
JPS6219240A (en) Catalytic reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees