JP3842775B2 - Ground improvement device and ground improvement method using the same - Google Patents

Ground improvement device and ground improvement method using the same Download PDF

Info

Publication number
JP3842775B2
JP3842775B2 JP2003343705A JP2003343705A JP3842775B2 JP 3842775 B2 JP3842775 B2 JP 3842775B2 JP 2003343705 A JP2003343705 A JP 2003343705A JP 2003343705 A JP2003343705 A JP 2003343705A JP 3842775 B2 JP3842775 B2 JP 3842775B2
Authority
JP
Japan
Prior art keywords
soil
ground
shaft
excavation
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003343705A
Other languages
Japanese (ja)
Other versions
JP2005105752A (en
Inventor
満生 原
Original Assignee
エポコラム機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エポコラム機工株式会社 filed Critical エポコラム機工株式会社
Priority to JP2003343705A priority Critical patent/JP3842775B2/en
Publication of JP2005105752A publication Critical patent/JP2005105752A/en
Application granted granted Critical
Publication of JP3842775B2 publication Critical patent/JP3842775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、地盤改良装置及び同装置を用いた地盤改良工法に関する。   The present invention relates to a ground improvement device and a ground improvement method using the same.

従来、地盤改良装置の一形態として、上下方向に伸延する掘削軸体の下端部に掘削刃体を設け、同掘削刃体の上方に位置する掘削軸体の外周面に攪拌翼体を設けて、上記掘削刃体により地盤を掘削し、掘削された土壌を上記攪拌翼体により攪拌しながら所定個所に設けた固化材吐出部より固化材を吐出して、同固化材と掘削された土壌とを混練して固化させることにより地盤改良を行うようにしたものがある(例えば、特許文献1参照)。
特開平3−63312号公報
Conventionally, as one form of the ground improvement device, a drilling blade body is provided at the lower end portion of the drilling shaft body extending in the vertical direction, and a stirring blade body is provided on the outer peripheral surface of the drilling shaft body located above the drilling blade body. The excavation blade body excavates the ground, and the excavated soil is agitated by the agitating blade body, and the solidification material is discharged from the solidification material discharge portion provided at a predetermined location. There is one in which the ground is improved by kneading and solidifying (see, for example, Patent Document 1).
JP-A-3-63312

ところが、上記した地盤改良装置では、掘削刃体により掘削された土壌を、攪拌翼体により攪拌しながら固化材吐出部より吐出された固化材と混練している際に、掘削孔中に供給(吐出)された固化材の量に比例して、掘削された土壌の一部が掘削孔中から地上に排出されればよいが、かかる土壌の排出が円滑になされない場合には、掘削孔中の内容物(土壌と固化材)が増大する結果となり、それに伴って掘削孔周面が外側方へ変位(側方変位)されて、土壌改良地盤の周辺の既設の地中構造物に悪影響を及ぼしたり、地表面が盛り上がる等の不具合が発生する。   However, in the ground improvement device described above, when the soil excavated by the excavating blade body is kneaded with the solidified material discharged from the solidified material discharge portion while being stirred by the stirring blade body, it is supplied into the excavation hole ( In proportion to the amount of solidified material discharged, a portion of the excavated soil may be discharged from the excavation hole to the ground, but if such soil is not discharged smoothly, As a result, the surrounding surface of the excavation hole is displaced outward (lateral displacement), which adversely affects the existing underground structures around the soil improvement ground. It causes problems such as impact and the ground surface rising.

そこで、本発明では、上下方向に伸延する掘削軸体の下端部に掘削刃体を設け、同掘削刃体の上方に位置する掘削軸体の外周面に攪拌翼体を設けて、上記掘削刃体により地盤を掘削し、掘削された土壌を上記攪拌翼体により攪拌しながら所定個所に設けた固化材吐出部より固化材を吐出して、同固化材と掘削された土壌とを混練して固化させることにより地盤改良を行うようにした地盤改良装置において、掘削孔の周面の外側方への変位を検出する地中変位量検出手段を設けると共に、掘削軸体の外周面に、回転動作と停止動作とを選択可能となした排土翼体を設け、同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在になっており、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、前記連動状態位置における回転動作は、掘削軸体と一体的に正回転しながら掘進して掘削土壌の一部を強制的に地上に排出させる動作であり、地中変位量検出手段によって所定の許容変位量以上の変位量を検出した場合に、排土翼体の回転動作により掘削された土壌の一部を地上に排出可能となしたことを特徴とする地盤改良装置を提供するものである。 Therefore, in the present invention, a drilling blade body is provided at the lower end portion of the drilling shaft body that extends in the vertical direction, and a stirring blade body is provided on the outer peripheral surface of the drilling shaft body located above the drilling blade body. The ground is excavated by the body, and the solidified material and the excavated soil are mixed by discharging the solidified material from the solidified material discharging portion provided at a predetermined location while stirring the excavated soil by the stirring blade body. In the ground improvement device designed to improve the ground by solidifying, a ground displacement detection means for detecting the outward displacement of the peripheral surface of the excavation hole is provided, and the outer peripheral surface of the excavation shaft is rotated. The earthing blade body that can be selected from the stop operation is provided, and the earthing blade body is located at the upper position of the outer shaft of the excavation shaft body and above the ground surface in a state not interlocked with the outer shaft. A certain non-interlocking position and the middle part of the outer shaft below the non-interlocking position Between the outer shaft and the interlocking position that is interlocked with the outer shaft, the raising / lowering position can be changed in the vertical direction, and the stop operation is selected at the non-interlocking position, and at the interlocking position The rotation operation is selected, and the rotation operation at the interlocked position is an operation for excavating a part of excavated soil to the ground by excavating while rotating positively integrally with the excavation shaft body. It is possible to discharge a part of the excavated soil to the ground by the rotating action of the soil wing body when the ground displacement detection means detects a displacement greater than the predetermined allowable displacement. A ground improvement device is provided.

また、本発明は、以下の地盤改良工法にも特徴を有する。   Moreover, this invention has the characteristics also in the following ground improvement construction methods.

(1)上下方向に伸延する掘削軸体の下端部に設けた掘削刃体により地盤を掘削し、その掘削された土壌を掘削軸体の外周面に設けた攪拌翼体により攪拌しながら、所定個所に設けた固化材吐出部より吐出させた固化材と混練して固化させる地盤改良工法であって、
掘削軸体の外周面に回転動作と停止動作とを選択可能に設けた排土翼体を用いるものであり、同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在であると共に、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、排土翼体を地盤表面の上方である非連動状態位置に停止させて、掘削された土壌を排土翼体により地上に排出しない土壌非排出工程と、同土壌非排出工程にて掘削孔の周面の外側方への変位につき所定の許容変位量以上の変位量を検出した場合に、排土翼体を連動状態位置に位置させて掘削軸体と一体的に正回転させながら掘進させて、掘削された土壌の一部を強制的に地上に排出する土壌排出工程を有することを特徴とする地盤改良工法。
(1) The ground is excavated by the excavating blade body provided at the lower end portion of the excavating shaft body extending in the vertical direction, and the excavated soil is agitated by the stirring blade body provided on the outer peripheral surface of the excavating shaft body, and predetermined. a solidifying agent and kneaded with ground improvement construction method to solidify the ejected from solidifying material discharge portion provided in a location,
The earthing blade body is provided on the outer peripheral surface of the excavation shaft body so that the rotation operation and the stop operation can be selected. The earthing blade body is the upper position of the outer shaft of the excavation shaft body and the ground surface. Between the non-interlocking state position that is in the non-interlocking state with the outer shaft and the interlocking state position that is in the middle portion of the outer shaft below the non-interlocking state position and in the interlocking state with the outer shaft. The raising / lowering position can be changed in the vertical direction, the stop operation is selected at the non-interlocking position, and the rotation operation is selected at the interlocking position. The soil is not discharged to the ground by the earth wing body, and the soil is not discharged to the ground by the soil wing body. If a displacement greater than the predetermined allowable displacement is detected for each displacement, By positioning the blade member to the interlock state position by excavation while integrally rotates forward with the drilling shaft, and having a soil discharging step of forcibly discharged to the ground part of the excavated soil Ground improvement method.

(2)上下方向に伸延する掘削軸体の下端部に設けた掘削刃体により地盤を掘削し、その掘削された土壌を掘削軸体の外周面に設けた攪拌翼体により攪拌する掘削・攪拌工程を有しており、所定個所に設けた固化材吐出部より吐出させた固化材と掘削された土壌とを混練して固化させる地盤改良工法であって、掘削軸体の外周面に回転動作と停止動作とを選択可能に設けた排土翼体を用いるものであり、同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在であると共に、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、前記掘削・攪拌工程は、掘削刃体により地盤を掘削している状態で掘削孔の周面の外側方への変位につき所定の許容変位量以上の変位量を検出した場合に、排土翼体を連動状態位置に位置させて掘削軸体と一体的に正回転させながら掘進させて、掘削された不要な土壌を排土翼体により強制的に地上に排出する不要土壌排出工程と、不要土壌排出後に排土翼体を停止させて、掘削された土壌を排土翼体により地上に排出しない土壌非排出工程とを有し、同土壌非排出工程にて、所定個所に設けた固化材吐出部より吐出させた固化材と掘削された土壌とを混練して固化させることを特徴とする地盤改良工法。 (2) Excavation and agitation where the ground is excavated by an excavating blade provided at the lower end of the excavating shaft extending vertically, and the excavated soil is agitated by an agitating blade provided on the outer peripheral surface of the excavating shaft. has a step, a ground improvement method to solidify by kneading a soil excavated with solidified material ejected from the solidifying material discharge portion provided in a predetermined position, the rotation operation to the outer peripheral surface of the drilling shaft The earthing wing body is provided so that it can be selected from the stopping operation and the earthing wing body is located at the upper position of the outer shaft of the excavating shaft body and above the ground surface and is not connected to the outer shaft. The up / down position can be changed in the vertical direction between the non-interlocking state position, which is the interlocking state, and the interlocking state position which is in the middle of the outer shaft below the non-interlocking state position and is interlocking with the outer shaft. And the stop operation is selected at the non-interlocking position, and The rotation operation is selected at a state position, and the excavation / stirring step is performed with a predetermined tolerance for the outward displacement of the peripheral surface of the excavation hole while excavating the ground with the excavation blade body. When a displacement amount greater than the displacement amount is detected, the soil removal blade body is positioned in the interlocked position and moved forward while rotating positively integrally with the excavation shaft body, and the excavated unnecessary soil is removed. An unnecessary soil discharging process forcibly discharging to the ground by the above, and a soil non-discharging process for stopping the excavated soil after discharging the unnecessary soil and not discharging the excavated soil to the ground by the discharging wing body, A ground improvement method characterized by kneading and solidifying a solidified material discharged from a solidified material discharge portion provided at a predetermined location and excavated soil in the soil non-discharge process.

(1)請求項1記載の本発明では、上下方向に伸延する掘削軸体の下端部に掘削刃体を設け、同掘削刃体の上方に位置する掘削軸体の外周面に攪拌翼体を設けて、上記掘削刃体により地盤を掘削し、掘削された土壌を上記攪拌翼体により攪拌しながら所定個所に設けた固化材吐出部より固化材を吐出して、同固化材と掘削された土壌とを混練して固化させることにより地盤改良を行うようにした地盤改良装置において、掘削孔の周面の外側方への変位を検出する地中変位量検出手段を設けると共に、掘削軸体の外周面に、回転動作と停止動作とを選択可能となした排土翼体を設け、同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在になっており、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、
前記連動状態位置における回転動作は、掘削軸体と一体的に正回転しながら掘進して掘削土壌の一部を強制的に地上に排出させる動作であり、地中変位量検出手段によって所定の許容変位量以上の変位量を検出した場合に、排土翼体の回転動作により掘削された土壌の一部を地上に排出可能となしている。
(1) In the present invention described in claim 1, the excavation blade body is provided at the lower end of the excavation shaft body extending in the vertical direction, and the stirring blade body is provided on the outer peripheral surface of the excavation shaft body located above the excavation blade body. The excavated blade body was excavated with the excavating blade body, and the excavated soil was excavated with the solidified material by discharging the solidified material from the solidified material discharge portion provided at a predetermined location while stirring the excavated soil with the stirring blade body. In the ground improvement device adapted to improve the ground by kneading and solidifying the soil, a ground displacement amount detection means for detecting the outward displacement of the peripheral surface of the excavation hole is provided, and the excavation shaft body On the outer peripheral surface, there is provided an earthing blade body that can be selected between a rotating operation and a stopping operation, and the earthing blade body is an upper position of the outer shaft of the excavation shaft body and is located above the ground surface and outside. An unlinked position that is unlinked with the shaft and an outside position below the unlinked position. It is possible to change the raising / lowering position in the up-down direction between the side shaft midway position and the interlocking state position that is interlocking with the outer shaft, and the stop operation is selected at the non-interlocking state position, The rotation operation is selected at the interlocking position,
The rotation operation at the interlocked position is an operation of excavating while rotating positively integrally with the excavation shaft body and forcibly discharging a part of the excavated soil to the ground. When a displacement amount equal to or greater than the displacement amount is detected, a part of the soil excavated by the rotation operation of the soil discharging blade body can be discharged to the ground.

このようにして、掘削刃体により掘削された土壌を、攪拌翼体により攪拌しながら固化材吐出部より吐出された固化材と混練している際に、吐出された固化材の量に比例して掘削された土壌の一部が掘削孔中から地上に排出されればよいが、かかる土壌の排出が円滑になされない場合には、排土翼体を回転させて、掘削された土壌の一部を強制的に地上へ排出させることができる。   In this way, when the soil excavated by the excavating blade body is kneaded with the solidified material discharged from the solidified material discharge unit while being stirred by the stirring blade body, it is proportional to the amount of the solidified material discharged. It is sufficient if a part of the soil excavated in this way is discharged from the excavation hole to the ground. However, if the soil is not discharged smoothly, the soil wing body is rotated to Can be forced to discharge to the ground.

従って、固化材が掘削孔中に供給(吐出)されて、同掘削孔中の内容物(土壌と固化材)が増大したことに伴う掘削孔周面の外側方への変位(側方変位)を、許容範囲内に抑制することができる。   Therefore, when the solidified material is supplied (discharged) into the excavation hole and the contents (soil and solidification material) in the excavation hole increase, the displacement of the peripheral surface of the excavation hole to the outside (lateral displacement) Can be suppressed within an allowable range.

その結果、土壌改良地盤の周辺に設けられた既設の地中構造物に悪影響を及ぼしたり、地表面が盛り上がる等の不具合の発生を確実に防止することができる。   As a result, it is possible to reliably prevent the occurrence of problems such as adversely affecting existing underground structures provided around the soil-improved ground and the ground surface rising.

(2)請求項2記載の本発明は、上下方向に伸延する掘削軸体の下端部に設けた掘削刃体により地盤を掘削し、その掘削された土壌を掘削軸体の外周面に設けた攪拌翼体により攪拌しながら、所定個所に設けた固化材吐出部より吐出させた固化材と混練して固化させる地盤改良工法であって、掘削軸体の外周面に回転動作と停止動作とを選択可能に設けた排土翼体を用いるものであり、同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在であると共に、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、排土翼体を地盤表面の上方である非連動状態位置に停止させて、掘削された土壌を排土翼体により地上に排出しない土壌非排出工程と、同土壌非排出工程にて掘削孔の周面の外側方への変位につき所定の許容変位量以上の変位量を検出した場合に、排土翼体を連動状態位置に位置させて掘削軸体と一体的に正回転させながら掘進させて、掘削された土壌の一部を強制的に地上に排出する土壌排出工程を有している。 (2) this onset light according to claim 2, excavating ground by excavating blade provided at the lower end of the drilling shaft which extends in the vertical direction, provided the excavated soil on the outer peripheral surface of the drilling shaft while stirring by the stirring blade body has, a ground improvement construction method to solidify by kneading a solidifying material ejected from the solidifying material discharge portion provided in a predetermined position, rotation and stop actions in the outer peripheral surface of the drilling shaft The earthing wing body is provided at the upper position of the outer shaft of the excavation shaft body and above the ground surface in a state not interlocked with the outer shaft. The vertical position can be changed in the up and down direction between a certain non-interlocking state position and an outer shaft midway position below the non-interlocking state position and the interlocking state position interlocking with the outer shaft. The stop operation is selected at the non-interlocking position, and the interlocking position is at the position. Being adapted to the rolling operation is selected, the earth removal blade body is stopped in a non-interlocked state position that is above the ground surface, does not discharge excavated soil on the ground by earth removal blade body soil non discharging step In the same soil non-discharge process, when a displacement amount greater than a predetermined permissible displacement amount is detected for the outward displacement of the peripheral surface of the excavation hole, the excavation shaft is positioned at the interlocked position. It has a soil discharging process in which a part of the excavated soil is forcibly discharged to the ground while being excavated while being rotated forward integrally with the body .

このようにして、地盤改良工程において、土壌排出工程と土壌非排出工程とを設けて、必要に応じて土壌排出工程にて掘削された土壌の一部を排土翼体により排出するため、掘削孔周面の外側方への変位(側方変位)を、許容範囲内に抑制することができると共に、不必要な場合には土壌非排出工程にて土壌を排出しないようにしているため、過剰な土壌排出により、掘削孔が周囲の土圧により崩壊するという不具合の発生を確実に防止することができる。   In this way, in the ground improvement process, a soil discharge process and a soil non-discharge process are provided, and if necessary, a part of the soil excavated in the soil discharge process is discharged by the discharging blade body. The displacement to the outside of the hole surface (lateral displacement) can be controlled within the allowable range, and when it is unnecessary, the soil is not discharged in the soil non-discharge process. Occurrence of a problem that the excavation hole collapses due to the surrounding earth pressure can be surely prevented by the proper soil discharge.

(3)請求項3記載の本発明は、上下方向に伸延する掘削軸体の下端部に設けた掘削刃体により地盤を掘削し、その掘削された土壌を掘削軸体の外周面に設けた攪拌翼体により攪拌する掘削・攪拌工程を有しており、所定個所に設けた固化材吐出部より吐出させた固化材と掘削された土壌とを混練して固化させる地盤改良工法であって、掘削軸体の外周面に回転動作と停止動作とを選択可能に設けた排土翼体を用いるものであり、同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在であると共に、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、前記掘削・攪拌工程は、掘削刃体により地盤を掘削している状態で掘削孔の周面の外側方への変位につき所定の許容変位量以上の変位量を検出した場合に、排土翼体を連動状態位置に位置させて掘削軸体と一体的に正回転させながら掘進させて、掘削された不要な土壌を排土翼体により強制的に地上に排出する不要土壌排出工程と、
不要土壌排出後に排土翼体を停止させて、掘削された土壌を排土翼体により地上に排出しない土壌非排出工程とを有し、同土壌非排出工程にて、所定個所に設けた固化材吐出部より吐出させた固化材と掘削された土壌とを混練して固化させるようにしている。
(3) this onset light according to claim 3, excavating ground by excavating blade provided at the lower end of the drilling shaft which extends in the vertical direction, provided the excavated soil on the outer peripheral surface of the drilling shaft A ground improvement method in which the solidification material discharged from the solidification material discharge portion provided at a predetermined location and the excavated soil are mixed and solidified. The excavation shaft body is provided with an earthing blade body that is provided with a rotation operation and a stop operation that can be selected. The earthing blade body is an upper position of the outer shaft of the excavation shaft body and the ground. Between the non-interlocking position that is above the surface and not interlocking with the outer shaft, and the interlocking position that is in the middle of the outer shaft below the non-interlocking position and is interlocking with the outer shaft The up / down position can be freely changed in the vertical direction and the stop position is set at the non-interlocking position. The operation is selected, and the rotation operation is selected at the interlocking position, and the excavation / stirring step is performed on the outer side of the peripheral surface of the excavation hole while excavating the ground with the excavation blade body. When a displacement greater than the predetermined permissible displacement is detected , the excavator is excavated by excavating while the earthing blade is positioned in the interlocked position and rotating positively integrally with the excavation shaft. Unnecessarily soil discharging process for forcibly discharging the soil to the ground by the soil discharging blade body,
The soil wing body is stopped after discharging the unnecessary soil, and the soil excavated soil is not discharged to the ground by the soil wing body. The solidification provided at a predetermined place in the soil non-discharge process The solidified material discharged from the material discharge part and the excavated soil are kneaded and solidified.

このようにして、掘削・攪拌工程において、例えば、腐植土層のように固化材の固化効果を著しく低減させる不要な土壌が存在する場合には、不要な土壌をあらかじめ不要土壌排出工程にて地上に排出しておくことにより、後続の工程において、固化材と掘削された土壌とを混練して化学的に固化させる効果を良好に確保することができる。   In this way, in the excavation and agitation process, for example, when there is unnecessary soil that significantly reduces the solidification effect of the solidified material, such as a humus soil layer, the unnecessary soil is previously grounded in the unnecessary soil discharge process. By discharging in the step, it is possible to satisfactorily ensure the effect of kneading the solidified material and the excavated soil and chemically solidifying them in the subsequent steps.

そして、固化材と掘削された土壌とを混練して固化させる作業は、土壌非排出工程においてなされるため、土壌と混練された固化材が地上に排出されるという無駄が生じないようにすることができ、その結果、効果的にかつ効率良く地盤改良作業を行うことができる。   And the work of kneading and solidifying the solidified material and excavated soil is done in the soil non-discharge process, so that waste that the solidified material kneaded with soil is discharged to the ground does not occur. As a result, the ground improvement work can be performed effectively and efficiently.

以下に、本発明の実施の形態を、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示すAは、本発明に係る地盤改良装置であり、同地盤改良装置Aは、ベースマシン1と固化材供給部2とを装備している。   A shown in FIG. 1 is a ground improvement device according to the present invention, and the ground improvement device A includes a base machine 1 and a solidifying material supply unit 2.

ベースマシン1は、自走可能なベースマシン本体3に上下方向に伸延するリーダ4を設け、同リーダ4にモータ支持体5を昇降自在に取り付け、同モータ支持体5に駆動用モータ6を搭載し、同駆動用モータ6に上下方向に伸延する掘削軸体7の上端部を二重反転歯車機構8を介して着脱自在に取り付け、同掘削軸体7の下部周面に相対撹拌翼体9を取り付けると共に、同掘削軸体7の下端部に掘削刃体10を取り付けている。12は、掘削軸体7を掘削方向に案内する案内体である。   The base machine 1 includes a self-propelled base machine body 3 provided with a leader 4 extending in the vertical direction. A motor support 5 is attached to the leader 4 so as to be movable up and down, and a drive motor 6 is mounted on the motor support 5. Then, the upper end portion of the excavation shaft body 7 extending in the vertical direction is detachably attached to the drive motor 6 via the counter rotating gear mechanism 8, and the relative stirring blade body 9 is attached to the lower peripheral surface of the excavation shaft body 7. The excavation blade body 10 is attached to the lower end portion of the excavation shaft body 7. A guide body 12 guides the excavation shaft body 7 in the excavation direction.

固化材供給部2は、固化材収容タンクと固化材供給ポンプ(図示しない)とを具備し、同固化材供給ポンプに固化材供給ホース11の基端部を接続し、同固化材供給ホース11の先端部を前記掘削軸体7にスイベルジョイント(図示せず)を介して接続している。   The solidification material supply unit 2 includes a solidification material storage tank and a solidification material supply pump (not shown), and connects the base end portion of the solidification material supply hose 11 to the solidification material supply pump. Is connected to the excavation shaft body 7 via a swivel joint (not shown).

掘削軸体7は、図2及び図3にも示すように、上下方向に伸延させて形成した筒状の内側軸20と、同内側軸20の外周を囲繞する状態に上下方向に伸延させて形成した筒状の外側軸21とから内外側二重軸構造に構成しており、内側軸20と外側軸21は、駆動用モータ6により二重反転歯車機構8を介して同一軸芯廻りに相互に反対方向に回転するようにしている。   As shown in FIGS. 2 and 3, the excavation shaft body 7 is vertically extended so as to surround a cylindrical inner shaft 20 formed by extending in the vertical direction and the outer periphery of the inner shaft 20. The formed cylindrical outer shaft 21 forms an inner / outer double shaft structure, and the inner shaft 20 and the outer shaft 21 are arranged around the same axis via a counter rotating gear mechanism 8 by a driving motor 6. They are designed to rotate in opposite directions.

そして、内側軸20中には上下方向に伸延させて形成した筒状体22を挿通して、同筒状体22中に内側固化材供給路23を形成する一方、同筒状体22の外周面と内側軸20の内周面との間に外側固化材供給路24を形成している。   A cylindrical body 22 formed by extending in the vertical direction is inserted into the inner shaft 20 to form an inner solidified material supply path 23 in the cylindrical body 22, while the outer periphery of the cylindrical body 22 is formed. An outer solidified material supply path 24 is formed between the surface and the inner peripheral surface of the inner shaft 20.

しかも、内側軸20の上端部には連通路(図示せず)を形成して、同連通路を介して内側固化材供給路23と外側固化材供給路24とを連通させ、固化材供給ホース11を通して供給される固化材を、内側固化材供給路23と外側固化材供給路24とに分流させて供給することができるようにしている。   Moreover, a communication path (not shown) is formed at the upper end portion of the inner shaft 20, and the inner solidification material supply path 23 and the outer solidification material supply path 24 are communicated with each other via the communication path, thereby solidifying material supply hose. The solidified material supplied through 11 can be divided and supplied to the inner solidified material supply path 23 and the outer solidified material supply path 24.

ここで、内側軸20の下端部には刃体取付体13を介して掘削刃体10を取り付けており、同刃体取付体13に第1固化材吐出部29を設けている。   Here, the excavation blade body 10 is attached to the lower end portion of the inner shaft 20 via the blade body attachment body 13, and the first solidifying material discharge portion 29 is provided on the blade body attachment body 13.

そして、第1固化材吐出部29は、筒状に形成した刃体取付体13の周壁に円形状の第1固化材吐出孔29aを形成し、同第1固化材吐出孔29aを内側固化材供給路23に接続して、同内側固化材供給路23を通して供給される固化材は、第1固化材吐出孔29aより直下方へ向けて吐出されるようにしている。   And the 1st solidification material discharge part 29 forms the circular 1st solidification material discharge hole 29a in the surrounding wall of the blade body attachment body 13 formed in the cylinder shape, and the 1st solidification material discharge hole 29a is made into the inside solidification material. The solidified material connected to the supply path 23 and supplied through the inner solidified material supply path 23 is discharged directly downward from the first solidified material discharge hole 29a.

相対撹拌翼体9は、図2及び図3にも示すように、最内側撹拌翼26と、同最内側撹拌翼26の外周を相対的に反対方向に回転する内側撹拌翼27と、同内側撹拌翼27の外周を相対的に反対方向に回転する外側撹拌翼28とを具備しており、内側撹拌翼27と外側撹拌翼28は、略相似形に形成して、両撹拌翼27,28間に形成される間隙を、両撹拌翼27,28のほぼ全域にわたってほぼ等しい幅員となすことにより、掘削土壌の共回り現象を防止することができると共に、緻密な撹拌機能を発揮させることができるようにしている。   2 and 3, the relative stirring blade body 9 includes an innermost stirring blade 26, an inner stirring blade 27 that rotates the outer periphery of the innermost stirring blade 26 in a relatively opposite direction, The outer periphery of the stirring blade 27 is provided with an outer stirring blade 28 that rotates in a relatively opposite direction, and the inner stirring blade 27 and the outer stirring blade 28 are formed in a substantially similar shape, and both the stirring blades 27, 28 are formed. By making the gap formed between them almost the same width over almost the entire area of both stirring blades 27 and 28, it is possible to prevent the swirling phenomenon of the excavated soil and to exhibit a precise stirring function. I am doing so.

最内側撹拌翼26は、外側軸21の下端部より放射状に突出させて形成しており、外側軸21の下端部の線対称位置に一対設けて、外側軸21と一体的にa方向に回転するようにしている。   The innermost stirring blades 26 are formed so as to protrude radially from the lower end of the outer shaft 21, and are provided at a pair of symmetrical positions at the lower end of the outer shaft 21, and rotate in the direction a integrally with the outer shaft 21. Like to do.

内側撹拌翼27は、掘削軸体7の半径方向に張り出し状に伸延する上下一対の上・下部横翼片27a,27bと、両上・下部横翼片27a,27bの外側端部間に上下方向に伸延させて介設した縦翼片27cとから弧状に形成しており、外側軸21の外周面に回転自在に遊嵌したリング状の翼片支持体30に上部横翼片27aの先端部を取り付ける一方、内側軸20の下端部に下部横翼片27bの先端部を取り付けて、内側軸20と一体的にb方向に回転するようにしている。   The inner stirring blade 27 is vertically moved between the upper and lower pair of upper and lower horizontal blade pieces 27a and 27b extending in the radial direction of the excavation shaft body 7 and the outer ends of the upper and lower horizontal blade pieces 27a and 27b. The tip of the upper horizontal wing piece 27a is attached to a ring-shaped wing piece support 30 that is formed in an arc shape from the longitudinal wing piece 27c that is extended in the direction and freely fitted to the outer peripheral surface of the outer shaft 21. On the other hand, the tip of the lower horizontal wing piece 27b is attached to the lower end portion of the inner shaft 20 so as to rotate integrally with the inner shaft 20 in the b direction.

そして、縦翼片27cの中央部と内側軸20との間には、左右方向に直状に伸延する中間横翼片27dを横架状に形成し、同中間横翼片27d中に固化材導入路33を形成して、同固化材導入路33を通して後述する第2固化材吐出部32と外側固化材供給路24とを接続している。   An intermediate horizontal wing piece 27d extending in a straight line in the left-right direction is formed between the central portion of the vertical wing piece 27c and the inner shaft 20, and is solidified in the intermediate horizontal wing piece 27d. An introduction path 33 is formed, and a second solidified material discharge portion 32 (described later) and the outer solidified material supply path 24 are connected through the solidified material introduction path 33.

このようにして、左右方向に直状の中間翼片27dを増設して掘削土壌の撹拌効率を向上させると共に、かかる直状の中間翼片27d中に固化材導入路33を形成することにより、かかる固化材導入路33を可及的に短くかつ簡単に形成することができて、加工コストを安価にすることができる。   In this way, by adding a straight intermediate blade piece 27d in the left-right direction to improve the stirring efficiency of excavated soil, by forming the solidification material introduction path 33 in the straight intermediate blade piece 27d, Such a solidifying material introduction path 33 can be formed as short and simple as possible, and the processing cost can be reduced.

また、上記した内側撹拌翼27は、内側軸20の下部の線対称位置に一対設けている。31は、縦翼片27cの中途部より外方へ突出させて形成した小翼片である。   Further, a pair of the above-described inner stirring blades 27 is provided at a line-symmetrical position below the inner shaft 20. 31 is a small wing piece formed by projecting outward from the middle part of the vertical wing piece 27c.

外側撹拌翼28は、掘削軸体7の半径方向に張り出し状に伸延する上下一対の上・下部横翼片28a ,28bと、両上・下部横翼片28a,28bの外側端部間に上下方向に伸延させて介設した縦翼片28cとから弧状に形成しており、外側軸21の下端部に上部横翼片28aの先端部を取り付ける一方、内側軸20の外周面に回転自在に遊嵌したリング状の翼片支持体34に下部横翼片28bの先端部を取り付けて、外側軸21と一体的にa方向に回転するようにしている。   The outer stirring blade 28 is vertically moved between the upper and lower pair of upper and lower horizontal blade pieces 28a and 28b extending in the radial direction of the excavating shaft body 7 and the outer ends of the upper and lower horizontal blade pieces 28a and 28b. It is formed in an arc shape from the vertical wing piece 28c that is extended in the direction, and the tip of the upper horizontal wing piece 28a is attached to the lower end portion of the outer shaft 21, while the outer peripheral surface of the inner shaft 20 is rotatable. The tip of the lower horizontal wing piece 28b is attached to the loosely fitted ring-shaped wing piece support 34 so as to rotate integrally with the outer shaft 21 in the direction a.

そして、外側撹拌翼28は、掘削軸体7の下部の円周方向に一定の間隔を開けて三個設けている。35は、縦翼片28cの上部と下部にそれぞれ外方へ突出させて形成した小翼片であり、これら小翼片35,35の回転軌跡は、内側撹拌翼27に設けた小翼片31の回転軌跡と上下方向にオーバーラップするように配置して、相対的に逆回転する内・外側撹拌翼27,28間において、掘削土壌の撹拌が確実に行えるようにしている。   Three outer stirring blades 28 are provided at regular intervals in the circumferential direction below the excavation shaft body 7. 35 is a small blade piece formed by projecting outward at the upper and lower portions of the vertical blade piece 28c, and the rotation trajectory of these small blade pieces 35, 35 is the small blade piece 31 provided on the inner stirring blade 27. It is arranged so as to overlap the rotation trajectory in the vertical direction, so that the excavated soil can be reliably stirred between the inner and outer stirring blades 27 and 28 that rotate in the opposite directions.

また、内側撹拌翼27には、固化材を吐出する第2固化材吐出部32を設けており、以下にかかる第2固化材吐出部32について説明する。   Further, the inner agitation blade 27 is provided with a second solidifying material discharge portion 32 for discharging the solidifying material, and the second solidifying material discharge portion 32 according to the following will be described.

すなわち、図2及び図3に示すように、内側撹拌翼27の縦翼片27cと中間横翼片27dとの交差部には第2固化材吐出部32を設けており、同第2固化材吐出部32は、縦翼片27cの背面(回転方向側の面とは反対側の面)に上下方向に伸延する第2固化材吐出縦長孔32aを形成すると共に、中間横翼片27dの背面(回転方向側の面とは反対側の面)に水平方向に伸延する第2固化材吐出横長孔32bを形成して、両孔32a,32bをT字状に連通させている。   That is, as shown in FIGS. 2 and 3, a second solidifying material discharge section 32 is provided at the intersection of the vertical blade piece 27c and the intermediate horizontal blade piece 27d of the inner stirring blade 27, and the second solidifying material is provided. The discharge part 32 forms a second solidified material discharge vertically elongated hole 32a extending in the vertical direction on the back surface of the vertical blade piece 27c (the surface opposite to the surface on the rotation direction side), and the back surface of the intermediate horizontal blade piece 27d. A second solidified material discharge oblong hole 32b extending in the horizontal direction is formed on the surface (the surface opposite to the surface on the rotation direction side), and both the holes 32a and 32b are communicated in a T-shape.

そして、第2固化材吐出縦・横長孔32a,32bは、中間横翼片27d中に形成した固化材導入路33を通して外側固化材供給路24に接続している。   The second solidified material discharge vertical / horizontal elongated holes 32a and 32b are connected to the outer solidified material supply path 24 through the solidified material introduction path 33 formed in the intermediate horizontal blade piece 27d.

このようにして、軟弱な地盤Gを改良する際には、地盤改良現場にベースマシン1を移動させることにより、リーダ4を建て込み、同リーダ4に沿わせて掘削軸体7を回転させながら下降させることにより、地盤Gを掘削刃体10により掘削すると共に、相対撹拌翼体9により掘削土壌を撹拌する。   In this way, when the soft ground G is improved, the leader machine 4 is built by moving the base machine 1 to the ground improvement site, and the excavation shaft body 7 is rotated along the leader 4. By lowering, the ground G is excavated by the excavating blade body 10 and the excavated soil is agitated by the relative agitating blade body 9.

この際、固化材供給部2より固化材を固化材供給ホース11→スイベルジョイント→掘削軸体7→第1・第2固化材吐出部29,32に供給して、各固化材吐出部29,32より固化材を吐出させるようにしており、かかる固化材を掘削土壌中に均一に撹拌して、掘削土壌を固化させることにより、軟弱な地盤G中に柱状若しくは壁状の地盤改良体を築造して、同地盤Gを改良することができる。   At this time, the solidification material is supplied from the solidification material supply unit 2 to the solidification material supply hose 11 → the swivel joint → the excavation shaft 7 → the first and second solidification material discharge units 29, 32. The solidified material is discharged from 32, and the solidified material is agitated uniformly in the excavated soil to solidify the excavated soil, thereby building a columnar or wall-shaped ground improvement body in the soft ground G. Thus, the ground G can be improved.

特に、外側固化材供給路24に供給された固化材は、固化材導入路33を通して第2固化材吐出部32の第2固化材吐出縦・横長孔32a,32bより吐出させることができるようにしており、第2固化材吐出縦長孔32aは、内側撹拌翼27の回転方向とは反対側の背面に形成しているため、固化材を円滑に吐出させることができると共に、上下縦長孔に形成しているため、固化材を上下縦長の帯状に吐出させることができる。   In particular, the solidified material supplied to the outer solidified material supply path 24 can be discharged from the second solidified material discharge vertical / horizontal holes 32a and 32b of the second solidified material discharge section 32 through the solidified material introduction path 33. The second solidified material discharge vertical hole 32a is formed on the back surface opposite to the rotation direction of the inner stirring blade 27, so that the solidified material can be discharged smoothly and formed in the vertical vertical hole. Therefore, the solidified material can be discharged in the form of a vertically long strip.

しかも、内側撹拌翼27が回転しながら掘削軸体7の掘進方向に移動することから、固化材の膜が円周方向及び上下方向に連続した筒状膜を形成することになり、その結果、掘削土壌中において固化材を掘進方向に満遍なく配置することができる。   Moreover, since the inner stirring blade 27 rotates and moves in the excavation direction of the excavation shaft body 7, the solidified material film forms a continuous cylindrical film in the circumferential direction and the vertical direction. Solidified material can be evenly arranged in the excavation direction in the excavated soil.

さらには、第2固化材吐出横長孔32bは、内側撹拌翼27の回転方向とは反対側の背面に形成しているため、固化材を円滑に吐出させることができると共に、水平方向に横長孔に形成しているため、固化材をリング状に吐出させることができる。   Further, since the second solidified material discharge oblong hole 32b is formed on the back surface opposite to the rotation direction of the inner stirring blade 27, the solidified material can be discharged smoothly and the horizontal oblong hole in the horizontal direction. Therefore, the solidified material can be discharged in a ring shape.

しかも、内側撹拌翼27が回転しながら掘削軸体7の掘進方向に移動することから、固化材の膜が円周方向及び上下方向に連続したスパイラルな帯状膜を形成することになり、その結果、掘削土壌中において固化材を掘進方向に満遍なく配置することができる。   Moreover, since the inner stirring blade 27 rotates and moves in the excavation direction of the excavation shaft body 7, the film of the solidified material forms a spiral belt-like film that is continuous in the circumferential direction and the vertical direction. The solidified material can be evenly arranged in the excavation direction in the excavated soil.

従って、かかる状態にて、互いに内外側に重複状態の内・外側撹拌翼27,28を相互に反対方向に回転させることにより、両撹拌翼27,28間の掘削土壌が反対方向の流動を強制されて、必然的に掘削土壌が両撹拌翼27,28間で交錯してもみ合い、掘削土壌を均一に混練させることができ、かかる均一混練位置に上記した固化材の筒状膜とスパイラルな帯状膜を形成することができることから、掘削土壌と固化材とを効率良く均一に混練させることができる。   Therefore, in this state, the excavated soil between the stirring blades 27 and 28 is forced to flow in the opposite direction by rotating the inner and outer stirring blades 27 and 28 that are overlapped on the inner and outer sides in opposite directions. Inevitably, the excavated soil can be mixed between the two agitating blades 27 and 28, and the excavated soil can be uniformly kneaded. Since a film can be formed, the excavated soil and the solidified material can be efficiently and uniformly kneaded.

ここで、固化材には、合成樹脂製の小断片を適当な数量だけ分散させて混入させることにより、地盤改良体中に合成樹脂製の小断片を混在させることができ、かかる小断片が地盤改良体に作用する水平方向の負荷によって、同地盤改良体に生じる曲げ・引っ張り力に対する耐力の強化に有効に機能し、その結果、地盤改良体の水平方向の負荷耐力を増大させることができる。   Here, in the solidified material, small pieces made of synthetic resin are dispersed and mixed in an appropriate amount, so that the small pieces made of synthetic resin can be mixed in the ground improvement body. The horizontal load acting on the improved body effectively functions to strengthen the yield strength against the bending and pulling force generated in the ground improved body, and as a result, the horizontal load resistance of the ground improved body can be increased.

上記のような構成において、本発明の要旨は、掘削軸体7の外周面に、回転動作と停止動作とを選択可能となした排土翼体40を設けて、同排土翼体40の回転動作により掘削された土壌の一部を地上に排出可能となしたことにある。   In the configuration as described above, the gist of the present invention is that the earthing blade body 40 that can select the rotation operation and the stopping operation is provided on the outer peripheral surface of the excavation shaft body 7. A part of the soil excavated by the rotating motion can be discharged to the ground.

そこで、以下に、第1実施形態としての地盤改良装置Aと、同地盤改良装置Aによる地盤改良工法を説明し、その後に、第2実施形態としての地盤改良装置Aと、同地盤改良装置Aによる地盤改良工法を説明する。   Therefore, the ground improvement device A as the first embodiment and the ground improvement method by the ground improvement device A will be described below, and then the ground improvement device A and the ground improvement device A as the second embodiment. Explains the ground improvement method by.

〔第1実施形態としての地盤改良装置〕
第1実施形態としての地盤改良装置Aに設けた排土翼体40は、図1に示すように、外側軸21の外周面の一部を被覆する筒状支持片41と、同筒状支持片41の外周面に軸線方向に沿わせてスパイラル状に形成した排土翼片42とを具備している。
[Ground improvement device as the first embodiment]
As shown in FIG. 1, a soil removal blade 40 provided in the ground improvement device A as the first embodiment includes a cylindrical support piece 41 that covers a part of the outer peripheral surface of the outer shaft 21, and the cylindrical support. An earth discharging blade piece 42 formed in a spiral shape along the axial direction is provided on the outer peripheral surface of the piece 41.

そして、筒状支持片41の上端部には、連結ピン挿通孔43,43を横断貫通状に形成する一方、外側軸21の外周面の所定の個所に横断係合溝44,44を形成して、各横断係合溝44,44に各連結ピン挿通孔43,43を符合させると共に、各連結ピン挿通孔43,43中に左右方向に軸線を向けた連結ピン45,45を抜き差し自在に挿通することにより、筒状支持片41を外側軸21に連結・解除させるクラッチ手段Cを構成している。   Then, at the upper end of the cylindrical support piece 41, connecting pin insertion holes 43, 43 are formed in a transverse penetrating shape, while transverse engagement grooves 44, 44 are formed at predetermined locations on the outer peripheral surface of the outer shaft 21. The coupling pin insertion holes 43, 43 are aligned with the transverse engagement grooves 44, 44, and the connection pins 45, 45 with the axis line in the left-right direction can be freely inserted into and removed from the connection pin insertion holes 43, 43. The clutch means C for connecting and releasing the cylindrical support piece 41 to and from the outer shaft 21 by inserting is formed.

しかも、排土翼体40は、図4(a)に示すように、外側軸21の上部に嵌合させると共に、案内体12に固定ピン46を介して固定して、同外側軸21と非連結状態(非連動状態;クラッチ切断状態)となした位置と、図4(c)に示すように、外側軸21の中途部に嵌合させると共に、連結ピン45を介して外側軸21に連動連結して、同外側軸21と連結状態(連動状態;クラッチ接続状態)となした位置との間で、上下方向に昇降(スライド)させて位置変更自在となしている。   In addition, as shown in FIG. 4 (a), the earth discharging wing body 40 is fitted to the upper portion of the outer shaft 21, and is fixed to the guide body 12 via a fixing pin 46, so that it is not connected to the outer shaft 21. As shown in FIG. 4 (c), it is fitted in the middle of the outer shaft 21 and linked to the outer shaft 21 via the connecting pin 45, as shown in FIG. 4 (c). The position can be freely changed by moving up and down (sliding) in the vertical direction between the outer shaft 21 and the connected state (interlocking state; clutch connection state).

〔第1実施形態としての地盤改良工法〕
次に、上記した地盤改良装置Aにより地盤改良作業を行うための第1実施形態としての地盤改良工法について、図4を参照しながら説明する。
[Ground improvement method as the first embodiment]
Next, a ground improvement method as a first embodiment for performing ground improvement work by the ground improvement device A described above will be described with reference to FIG.

(1)図4(a)に示すように、掘削刃体10により掘削された土壌を、相対攪拌翼体9により攪拌しながら第1・第2固化材吐出部29,32より吐出された固化材と混練する(地盤改良工程)。   (1) As shown in FIG. 4 (a), the soil excavated by the excavating blade 10 is solidified and discharged from the first and second solidifying material discharge portions 29 and 32 while being stirred by the relative stirring blade body 9. Kneading with material (ground improvement process).

この際、排土翼体40は、案内体12に固定ピン46を介して固定して、外側軸21と非連結状態(非連動状態)となした位置に配置している。   At this time, the earth discharging wing body 40 is fixed to the guide body 12 via the fixing pin 46 and is disposed at a position where it is not connected to the outer shaft 21 (not linked).

ここで、吐出された固化材の量に比例して掘削された土壌の一部が掘削孔H中から地上に排出されればよいが、かかる土壌の排出が円滑になされないことがある。   Here, a part of the soil excavated in proportion to the amount of the solidified material discharged may be discharged from the excavation hole H to the ground, but the discharge of the soil may not be smoothly performed.

(2)そして、図4(b)に示すように、掘削孔H中の内容物(土壌と固化材)が増大したことに伴って、掘削孔Hの周面が外側方へ変位(側方変位)した場合には、掘削孔Hの近傍に配設した地中変位量検出手段47によりその変位量を検出するようにしているが、同地中変位量検出手段47が所定の許容変位量以上の変位量を検出した場合には、図4(c)に示すように、掘削軸体7を所要幅(例えば、排土翼体40の上下幅の略半分に相当する幅)だけ上方へ引き上げ、同状態にて、掘削軸体7の上部に配設されている排土翼体40を地盤Gの表面近傍まで下降させ、各横断係合溝44,44に各連結ピン挿通孔43,43を符合させると共に、各連結ピン挿通孔43,43中に左右方向に軸線を向けた連結ピン45,45を挿通することにより、排土翼体40を外側軸21に連結する(連動状態)。   (2) Then, as shown in FIG. 4 (b), as the contents (soil and solidified material) in the excavation hole H increase, the peripheral surface of the excavation hole H is displaced outward (sideward). When the displacement is detected, the displacement amount is detected by the underground displacement amount detection means 47 disposed in the vicinity of the excavation hole H. The underground displacement amount detection means 47 detects the predetermined allowable displacement amount. When the above displacement amount is detected, as shown in FIG. 4 (c), the excavation shaft body 7 is moved upward by a required width (for example, a width corresponding to approximately half of the vertical width of the earth wing body 40). In the same state, the earth wing body 40 disposed at the upper part of the excavation shaft body 7 is lowered to the vicinity of the surface of the ground G, and the connecting pin insertion holes 43, 43, and connecting the earthing blade body 40 to the outer shaft 21 by inserting the connecting pins 45, 45 having the axis line in the left-right direction into the connecting pin insertion holes 43, 43 (linked state) .

続いて、案内体12に排土翼体40を固定している固定ピン46を引き抜いて、同排土翼体40の固定を解除する。   Subsequently, the fixing pin 46 that fixes the earthing wing body 40 to the guide body 12 is pulled out to release the earthing wing body 40 from being fixed.

(3)図4(c)(d)に示すように、掘削軸体7を正回転させながら掘進させることにより、同掘削軸体7と一体的に排土翼体40を正回転させながら掘進させる。   (3) As shown in FIGS. 4 (c) and 4 (d), the excavation shaft body 7 is excavated while being rotated forward, so that the excavation shaft body 7 is integrally rotated with the excavation shaft body 7 while being rotated forward. Let

そうすると、掘削された土壌の一部が、排土翼体40の排出翼片42により強制的に地上へ排出される(土壌排出工程)。   Then, a part of the excavated soil is forcibly discharged to the ground by the discharge blade piece 42 of the soil discharge blade body 40 (soil discharge step).

従って、固化材が掘削孔H中に供給(吐出)されて、同掘削孔H中の内容物(土壌と固化材)が増大したことに伴う掘削孔H周面の外側方への変位(側方変位)を、許容範囲内に抑制することができる。   Accordingly, when the solidified material is supplied (discharged) into the excavation hole H and the contents (soil and solidification material) in the excavation hole H increase, the displacement (side) of the peripheral surface of the excavation hole H increases. Direction displacement) can be suppressed within an allowable range.

その結果、土壌改良地盤の周辺に設けられた既設の地中構造物に悪影響を及ぼしたり、地表面が盛り上がる等の不具合の発生を確実に防止することができる。   As a result, it is possible to reliably prevent the occurrence of problems such as adversely affecting existing underground structures provided around the soil-improved ground and the ground surface rising.

(4)図4(e)に示すように、所定の深度まで掘削・撹拌作業を行い、その後、掘削軸体7を反転させながら引き上げる。   (4) As shown in FIG. 4 (e), excavation and agitation work is performed to a predetermined depth, and then the excavation shaft body 7 is pulled up while being inverted.

この際、第1・第2固化材吐出部29,32から固化材を吐出させて、掘削された土壌と固化材を相対撹拌翼体9により混練する。   At this time, the solidified material is discharged from the first and second solidified material discharge portions 29 and 32, and the excavated soil and the solidified material are kneaded by the relative stirring blade body 9.

(5)混練した土壌と固化材とを固化させる。   (5) The kneaded soil and the solidified material are solidified.

また、地中変位量検出手段47により検出される地中の変位量が所定の許容変位量未満となったところで、一旦、掘削軸体7の回転を停止させ、同状態にて連結ピン45,45を引き抜いて、同掘削軸体7と排土翼体40との連結を解除し(非連動状態)、同排土翼体40を案内体12に支持させることもできる(土壌非排出工程)。   Further, when the underground displacement detected by the underground displacement detection means 47 becomes less than a predetermined allowable displacement, the rotation of the excavation shaft 7 is temporarily stopped, and the connecting pins 45, 45 can be pulled out, the connection between the excavation shaft body 7 and the earthing blade body 40 can be released (non-interlocking state), and the earthing blade body 40 can be supported by the guide body 12 (soil non-discharge process). .

そして、かかる状態にて掘削軸体7を掘進せながら地盤改良作業(地盤改良工程)を再開することもできる。   And ground improvement work (ground improvement process) can also be restarted while excavating the excavation shaft 7 in such a state.

この際、排土翼体40は、案内体12に支持されて、回転停止状態にあるため、掘削された土壌は排出されることがなく、過剰な土壌排出により掘削孔Hの周面が周囲の土圧により崩壊するという不具合の発生を確実に防止することができる。   At this time, since the earth discharging wing body 40 is supported by the guide body 12 and is in a rotation stopped state, the excavated soil is not discharged, and the peripheral surface of the excavation hole H is surrounded by excessive soil discharge. It is possible to reliably prevent the occurrence of a problem of collapse due to the earth pressure.

また、本実施の形態では、連結ピン45,45の抜き差しにより、排土翼体40を掘削軸体7に連結・解除させるクラッチ手段Cを構成しているが、同クラッチ手段Cは、排土翼体40の回転動作と停止動作とが選択できる構造であればよく、何ら上記した構成に限られるものではない。   In the present embodiment, the clutch means C is configured to connect / release the earthing blade body 40 to / from the excavation shaft body 7 by inserting / removing the connecting pins 45, 45. Any structure can be used as long as the rotating operation and the stopping operation of the wing body 40 can be selected, and the structure is not limited to the above.

図5及び図6は、他の実施の形態としてのクラッチ手段Cの構造を示しており、同クラッチ手段Cは、筒状支持片41の上端部に上方へ向けて拡径状のテーパーガイド体50を設け、同テーパーガイド体50の内周面50aと外側軸21の外周面21aとの間に複数(本実施例では三個)の挟扼体51,51,51を円周方向に一定の間隔を開けて介在させると共に、各挟扼体51の外周面に上記テーパーガイド体50の内周面に沿ったテーパー面51aを形成して、同テーパー面51aをテーパーガイド体50の内周面50aに当接させている。   5 and 6 show the structure of the clutch means C as another embodiment, and the clutch means C has a tapered guide body whose diameter is increased upward at the upper end portion of the cylindrical support piece 41. 50, and a plurality of (three in this embodiment) sandwiching bodies 51, 51, 51 are fixed in the circumferential direction between the inner peripheral surface 50a of the tapered guide body 50 and the outer peripheral surface 21a of the outer shaft 21. And a taper surface 51a is formed on the outer peripheral surface of each sandwiching body 51 along the inner peripheral surface of the taper guide body 50, and the tapered surface 51a is formed on the inner periphery of the taper guide body 50. It is in contact with the surface 50a.

そして、各挟扼体51の上部に突設した二又状の連結片53,53と、筒状支持片41の上部に突設した二又状のシリンダ支持片54,54との間に上下方向に伸縮する電動式の伸縮シリンダ55を介設している。56,57は連結ピンである。   And between the bifurcated connecting pieces 53, 53 projecting from the upper part of each sandwiching body 51 and the bifurcated cylinder supporting pieces 54, 54 projecting from the upper part of the cylindrical support piece 41, An electric telescopic cylinder 55 that extends and contracts in the direction is interposed. Reference numerals 56 and 57 denote connecting pins.

このようにして、各伸縮シリンダ55を伸長作動させることにより、各挟扼体51を上方へ摺動移動させて、テーパーガイド体50の内周面50aと外側軸21の外周面との間に間隙を形成して、上記テーパーガイド体50と外側軸21とを非連結状態(非連動状態;クラッチ切断状態)となすことができるようにしている。   In this way, by extending each telescopic cylinder 55, each clamping body 51 is slid upward and moved between the inner peripheral surface 50a of the tapered guide body 50 and the outer peripheral surface of the outer shaft 21. A gap is formed so that the tapered guide body 50 and the outer shaft 21 can be brought into a non-connected state (non-interlocking state; clutch disengaged state).

また、各伸縮シリンダ55を短縮作動させることにより、各挟扼体51を下方へ摺動移動させて、テーパーガイド体50の内周面と外側軸21の外周面との間に各挟扼体51を圧着状態に介在させて、上記テーパーガイド体50と外側軸21とを連結状態(連動状態;クラッチ接続状態)となすことができるようにしている。   In addition, by shortening each telescopic cylinder 55, each sandwiching body 51 is slid downward so that each sandwiching body is interposed between the inner peripheral surface of the taper guide body 50 and the outer peripheral surface of the outer shaft 21. The taper guide body 50 and the outer shaft 21 can be brought into a connected state (interlocking state; clutch connected state) by interposing 51 in a crimped state.

〔第2実施形態としての地盤改良装置〕
第2実施形態としての地盤改良装置Aでは、図7に示すように、相対撹拌翼体9の直上方に位置する外側軸21の下部に二個の排土翼体40,40を配設しており、下方の排土翼体40は、外側軸21に連結した状態とし、上方の排土翼体40は、第1実施形態の排土翼体40と同様に、必要に応じて外側軸21に連結したり、連結解除したりするようにしている。
[Ground improvement device as the second embodiment]
In the ground improvement device A as the second embodiment, as shown in FIG. 7, two earthing blade bodies 40, 40 are disposed below the outer shaft 21 located directly above the relative stirring blade body 9. The lower earthing wing body 40 is connected to the outer shaft 21, and the upper earthing wing body 40 is connected to the outer shaft as necessary, like the earthing wing body 40 of the first embodiment. It is connected to 21 or disconnected.

このようにして、第2実施形態としての地盤改良装置Aでは、固化材の固化効果を低減させるような不要な土壌を、排土翼体40により予め強制的に排出しておき、その後に、地盤改良作業を効率良くかつ効果的に行うことができるようにしている。   In this way, in the ground improvement device A as the second embodiment, unnecessary soil that reduces the solidification effect of the solidification material is forcibly discharged in advance by the soil discharging blade 40, and then, The ground improvement work can be performed efficiently and effectively.

〔第2実施形態としての地盤改良工法〕
次に、上記した地盤改良装置Aにより地盤改良作業を行うための第2実施形態としての地盤改良工法について、図8を参照しながら説明する。
[Ground improvement method as the second embodiment]
Next, a ground improvement method as a second embodiment for performing ground improvement work by the ground improvement device A described above will be described with reference to FIG.

(1)地盤改良作業を開始する前に、例えば、図7及び図8に示す腐植土層Bのように固化材の固化効果を著しく低減させる不要な土壌が存在するか否かを探査する。   (1) Before starting the ground improvement work, for example, it is investigated whether or not there is unnecessary soil that significantly reduces the solidification effect of the solidified material, such as the humus soil layer B shown in FIGS. 7 and 8.

(2)排土翼体40,40の長さを、腐植土層Bの深度にまで達する長さに設定して、両排土翼体40,40を、掘削軸体7の外側軸21に連結ピン45,45を介して連結しておく(連動状態)。   (2) The lengths of the soil removal blades 40, 40 are set to reach the depth of the humus layer B, and both soil removal blades 40, 40 are attached to the outer shaft 21 of the excavation shaft 7. It connects via the connecting pins 45 and 45 (interlocking state).

(3)図8(a)に示すように、上下方向に伸延する掘削軸体7の下端部に設けた掘削刃体10により地盤Gを掘削し、その掘削された土壌Dを掘削軸体7の外周面に設けた相対攪拌翼体9により攪拌する(掘削・攪拌工程)。   (3) As shown in FIG. 8 (a), the ground G is excavated by the excavation blade body 10 provided at the lower end of the excavation shaft body 7 extending in the vertical direction, and the excavated soil D is excavated by the excavation shaft body 7. Is stirred by a relative stirring blade body 9 provided on the outer peripheral surface (excavation / stirring step).

この際、排土翼体40,40は、外側軸21と一体的に回転して掘削刃体10により掘削された土壌Dの一部を地上に排出する(不要土壌排出工程)。   At this time, the soil discharging blade bodies 40 and 40 rotate integrally with the outer shaft 21 and discharge a part of the soil D excavated by the excavating blade body 10 to the ground (unnecessary soil discharging step).

そして、必要に応じて、第1固化材吐出部29と第2固化材吐出部32から水を吐出させて、掘削・撹拌効率を良好に確保することができる。   Then, if necessary, water can be discharged from the first solidification material discharge part 29 and the second solidification material discharge part 32, and excavation / stirring efficiency can be ensured satisfactorily.

(4)図8(b)(c)に示すように、下段の排土翼体40の下端部が腐植土層Bに達するまで掘削・撹拌作業と排土作業とを継続させ(不要土壌排出工程)、掘削孔H中の腐植土の地上への排出と、腐植土層Bよりも深層部の土壌Dの地上への排出とを確認したところで、掘削・撹拌作業と排土作業を一旦停止させる。   (4) As shown in FIGS. 8 (b) and 8 (c), the excavation / mixing operation and the soil removal operation are continued until the lower end portion of the lower soil discharge blade 40 reaches the humus layer B (unnecessary soil discharge Process), once the humus soil in the excavation hole H is discharged to the ground and the soil D, which is deeper than the humus soil layer B, is discharged to the ground, the excavation / mixing work and the soil removal work are temporarily stopped. Let

(5)図8(c)に示すように、上段の排土翼体40を案内体12に固定ピン46を介して固定すると共に、連結ピン45を引き抜いて同排土翼体40と外側軸21との連結を解除する(非連動状態)。   (5) As shown in FIG. 8 (c), the upper stage discharging wing body 40 is fixed to the guide body 12 through the fixing pin 46, and the connecting pin 45 is pulled out to connect the same earth discharging wing body 40 to the outer shaft. Release connection with 21 (non-linked state).

この際、下段の排土翼体40は、連結ピン45を介して外側軸21に連結したままとする。   At this time, the lower earthing blade body 40 remains connected to the outer shaft 21 via the connecting pin 45.

(6)図8(d)に示すように、掘削・撹拌作業を再開する。   (6) As shown in FIG. 8 (d), the excavation / stirring operation is resumed.

この際、第1・第2固化材吐出部29,32から固化材を吐出させて、掘削された土壌と固化材を相対撹拌翼体9により混練する。   At this time, the solidified material is discharged from the first and second solidified material discharge portions 29 and 32, and the excavated soil and the solidified material are kneaded by the relative stirring blade body 9.

そして、かかる掘削・撹拌工程においては、上段の排土翼体40が回転しないことより、掘削された土壌Dの一部が地上に排出されることがない(土壌非排出工程)。   In the excavation / agitation step, the excavated soil body 40 is not rotated, so that part of the excavated soil D is not discharged to the ground (soil non-discharge step).

なお、下段の排土翼体40は、外側軸21と一体的に回転して、掘削された土壌Dの一部を上方へ搬送するが、上段の排土翼体40とは不連続状態であるため、掘削孔H内を移動するだけで地上まで排出されることはない。   Note that the lower earthing blade body 40 rotates integrally with the outer shaft 21, and conveys a part of the excavated soil D upward, but is discontinuous with the upper earth discharging blade body 40. Therefore, it is not discharged to the ground only by moving in the excavation hole H.

(7)図8(d)(e)に示すように、所定の深度まで掘削・撹拌作業を行い、その後、掘削軸体7を反転させながら引き上げる。   (7) As shown in FIGS. 8 (d) and 8 (e), excavation and agitation work is performed to a predetermined depth, and then the excavation shaft body 7 is pulled up while being inverted.

この際、第1・第2固化材吐出部29,32から固化材を吐出させて、掘削された土壌と固化材を相対撹拌翼体9により混練する。   At this time, the solidified material is discharged from the first and second solidified material discharge portions 29 and 32, and the excavated soil and the solidified material are kneaded by the relative stirring blade body 9.

(8)混練した土壌と固化材とを固化させる。   (8) The kneaded soil and the solidified material are solidified.

このようにして、掘削・攪拌工程において、例えば、腐植土層Bのように固化材の固化効果を著しく低減させる不要な土壌が存在する場合には、不要な土壌をあらかじめ不要土壌排出工程にて地上に排出しておくことにより、後続の工程において、固化材と掘削された土壌とを混練して化学的に固化させる効果を良好に確保することができる。   Thus, in the excavation / stirring process, for example, when there is unnecessary soil that significantly reduces the solidification effect of the solidified material, such as the humus soil layer B, the unnecessary soil is previously removed in the unnecessary soil discharging process. By discharging to the ground, it is possible to satisfactorily ensure the effect of kneading the solidified material and the excavated soil and chemically solidifying them in the subsequent steps.

そして、固化材と掘削された土壌とを混練して固化させる作業は、土壌非排出工程においてなされるため、土壌と混練された固化材が地上に排出されるという無駄が生じないようにすることができ、その結果、効果的にかつ効率良く地盤改良作業を行うことができる。   And the work of kneading and solidifying the solidified material and excavated soil is done in the soil non-discharge process, so that waste that the solidified material kneaded with soil is discharged to the ground does not occur. As a result, the ground improvement work can be performed effectively and efficiently.

図9及び図10は、上記した第2実施形態の地盤改良装置Aの変容例と、変容例としての地盤改良装置Aによる地盤改良工法を示している。   9 and 10 show a modification example of the ground improvement device A according to the second embodiment described above, and a ground improvement method using the ground improvement device A as a modification example.

〔変容例1〕
図9は、変容例1としての地盤改良装置Aとそれによる地盤改良工法を示しており、同地盤改良装置Aは、前記した第2実施形態としての地盤改良装置Aと基本的構造を同じくしているが、一個の排土翼体40の長さを、腐植土層Bの深度にまで達する長さに設定して、同排土翼体40により掘削孔H中の腐植土層Bを排出し、その後は、外側軸21との連結を解除した状態にて案内体12に固定ピン46を介して固定するようにしている点で異なる。
[Transformation Example 1]
FIG. 9 shows a ground improvement device A as a modified example 1 and a ground improvement method using the same, and the ground improvement device A has the same basic structure as the ground improvement device A as the second embodiment described above. However, the length of one soil wing body 40 is set to reach the depth of the humus soil layer B, and the humus soil layer B in the excavation hole H is discharged by the soil wing body 40. Thereafter, the difference is that the guide body 12 is fixed via the fixing pin 46 in a state where the connection with the outer shaft 21 is released.

このようにして、混練工程においては、排土翼体40を外側軸21から完全に連結解除しておくことにより、混練時の排土翼体40による負荷を軽減することができる。   In this way, in the kneading step, the load on the soil removal blade body 40 during the kneading can be reduced by completely releasing the connection of the soil discharge blade body 40 from the outer shaft 21.

〔変容例2〕
図10は、変容例2としての地盤改良装置Aとそれによる地盤改良工法を示しており、同地盤改良装置Aは、前記した第2実施形態としての地盤改良装置Aと基本的構造を同じくしているが、一個の排土翼体40の長さを、腐植土層Bの深度にまで達する長さに設定すると共に、同排土翼体40を外側軸21に連結・固定して、同排土翼体40により掘削孔H中の腐植土層Bを排出し、その後は、外側軸21と連結したままの状態にて掘削・撹拌・混練作業を行うようにしている点で異なる。
[Transformation example 2]
FIG. 10 shows a ground improvement device A as a modification example 2 and a ground improvement method using the ground improvement device A. The ground improvement device A has the same basic structure as the ground improvement device A as the second embodiment described above. However, the length of one earthing wing body 40 is set to a length that reaches the depth of the humus soil layer B, and the earthing wing body 40 is connected to and fixed to the outer shaft 21. The difference is that the humus soil layer B in the excavation hole H is discharged by the earth discharging blade body 40, and thereafter excavation, agitation, and kneading operations are performed while being connected to the outer shaft 21.

このようにして、腐植土の排土を確実に行うと共に、排土翼体40の連結解除作業の手間を省くことができるようにして、作業能率の向上を図っている。   In this manner, the humus soil is surely discharged, and the work of releasing the connection of the soil discharging blade body 40 can be saved, thereby improving the work efficiency.

第1実施形態としての本発明に係る地盤改良装置の側面説明図。Side explanatory drawing of the ground improvement apparatus which concerns on this invention as 1st Embodiment. 掘削軸体と相対撹拌翼体の一部切欠側面図。The partially cutaway side view of a drilling shaft body and a relative stirring blade body. 同平面説明図。FIG. 地盤改良作業の工程説明図。Process explanatory drawing of ground improvement work. 他の実施の形態としてのクラッチ手段の断面平面図。The sectional top view of the clutch means as other embodiments. 図5のI-I線断面図。FIG. 6 is a cross-sectional view taken along the line I-I in FIG. 5. 第2実施形態としての本発明に係る地盤改良装置の側面説明図。Side surface explanatory drawing of the ground improvement apparatus which concerns on this invention as 2nd Embodiment. 同地盤改良装置による地盤改良作業の工程説明図。Process explanatory drawing of the ground improvement work by the ground improvement apparatus. 変容例1としての地盤改良装置による地盤改良作業の工程説明図。Process explanatory drawing of the ground improvement operation | work by the ground improvement apparatus as the modification example 1. FIG. 変容例2としての地盤改良装置による地盤改良作業の工程説明図。Process explanatory drawing of the ground improvement work by the ground improvement apparatus as the modification example 2. FIG.

符号の説明Explanation of symbols

A 地盤改良装置
G 地盤
1 ベースマシン
2 固化材供給部
3 ベースマシン本体
4 リーダ
A Ground improvement device G Ground 1 Base machine 2 Solidification material supply part 3 Base machine body 4 Leader

Claims (3)

上下方向に伸延する掘削軸体の下端部に掘削刃体を設け、同掘削刃体の上方に位置する掘削軸体の外周面に攪拌翼体を設けて、上記掘削刃体により地盤を掘削し、掘削された土壌を上記攪拌翼体により攪拌しながら所定個所に設けた固化材吐出部より固化材を吐出して、同固化材と掘削された土壌とを混練して固化させることにより地盤改良を行うようにした地盤改良装置において、
掘削孔の周面の外側方への変位を検出する地中変位量検出手段を設けると共に、掘削軸体の外周面に、回転動作と停止動作とを選択可能となした排土翼体を設け、
同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在になっており、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、
前記連動状態位置における回転動作は、掘削軸体と一体的に正回転しながら掘進して掘削土壌の一部を強制的に地上に排出させる動作であり、
地中変位量検出手段によって所定の許容変位量以上の変位量を検出した場合に、排土翼体の回転動作により掘削された土壌の一部を地上に排出可能となしたことを特徴とする地盤改良装置。
A drilling blade is provided at the lower end of the drilling shaft extending in the vertical direction, a stirring blade is provided on the outer peripheral surface of the drilling shaft located above the drilling blade, and the ground is excavated by the drilling blade. The ground is improved by mixing the solidified material and the excavated soil by solidification by discharging the solidified material from the solidified material discharge part provided at a predetermined location while stirring the excavated soil with the stirring blade body. In the ground improvement device designed to perform
A ground displacement detection means is provided to detect the outward displacement of the outer surface of the excavation hole, and an earth wing body is provided on the outer peripheral surface of the excavation shaft so that rotation and stop operations can be selected. ,
The earthing blade body is an upper position of the outer shaft of the excavation shaft body, an unlinked position that is above the ground surface and is unlinked with the outer shaft, and an outer shaft below the unlinked position. It is possible to change the raising / lowering position in the vertical direction between the intermediate position and the interlocking position that is interlocked with the outer shaft, and the stop operation is selected at the non-interlocking position, and the interlocking state The rotation operation is selected by position,
The rotation operation in the interlocking position is an operation for excavating while rotating forward integrally with the excavation shaft body and forcibly discharging a part of the excavated soil to the ground.
When a displacement amount greater than a predetermined allowable displacement amount is detected by the underground displacement amount detection means, a part of the soil excavated by the rotating operation of the soil wing body can be discharged to the ground. Ground improvement device.
上下方向に伸延する掘削軸体の下端部に設けた掘削刃体により地盤を掘削し、その掘削された土壌を掘削軸体の外周面に設けた攪拌翼体により攪拌しながら、所定個所に設けた固化材吐出部より吐出させた固化材と混練して固化させる地盤改良工法であって、
掘削軸体の外周面に回転動作と停止動作とを選択可能に設けた排土翼体を用いるものであり、
同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在であると共に、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、
排土翼体を地盤表面の上方である非連動状態位置に停止させて、掘削された土壌を排土翼体により地上に排出しない土壌非排出工程と、
同土壌非排出工程にて掘削孔の周面の外側方への変位につき所定の許容変位量以上の変位量を検出した場合に、排土翼体を連動状態位置に位置させて掘削軸体と一体的に正回転させながら掘進させて、掘削された土壌の一部を強制的に地上に排出する土壌排出工程を有することを特徴とする地盤改良工法。
The ground is excavated by the excavating blade provided at the lower end of the excavating shaft extending in the vertical direction, and the excavated soil is agitated by the agitating blade provided on the outer peripheral surface of the excavating shaft and provided at a predetermined location. a solidified material ejected from the solidifying material discharge unit and kneaded ground improvement construction method to be solidified,
It uses the earthing blade that is provided on the outer peripheral surface of the excavation shaft so that rotation and stop can be selected .
The earthing blade body is an upper position of the outer shaft of the excavation shaft body, an unlinked position that is above the ground surface and is unlinked with the outer shaft, and an outer shaft below the unlinked position. The raising / lowering position can be changed in the vertical direction between the intermediate position and the interlocking position that is interlocked with the outer shaft, and the stop operation is selected at the non-interlocking position. The rotation operation is selected with
A soil non-discharge process in which the soil wing body is stopped at a non-interlocking position above the ground surface, and the excavated soil is not discharged to the ground by the soil wing body;
In the same soil non-discharge process, when a displacement greater than a predetermined permissible displacement is detected for the outward displacement of the peripheral surface of the excavation hole, the excavation shaft body A ground improvement method characterized by having a soil discharging process in which a part of excavated soil is forcedly discharged to the ground by excavating while rotating forward integrally .
上下方向に伸延する掘削軸体の下端部に設けた掘削刃体により地盤を掘削し、その掘削された土壌を掘削軸体の外周面に設けた攪拌翼体により攪拌する掘削・攪拌工程を有しており、
所定個所に設けた固化材吐出部より吐出させた固化材と掘削された土壌とを混練して固化させる地盤改良工法であって、
掘削軸体の外周面に回転動作と停止動作とを選択可能に設けた排土翼体を用いるものであり、
同排土翼体は、掘削軸体の外側軸の上部位置であると共に地盤表面の上方であって外側軸と非連動状態である非連動状態位置と、当該非連動状態位置より下方の外側軸中途部位置であって同外側軸と連動状態である連動状態位置との間で、上下方向に昇降位置変更自在であると共に、前記非連動状態位置で前記停止動作が選択され、前記連動状態位置で前記回転動作が選択されるようになっており、
前記掘削・攪拌工程は、掘削刃体により地盤を掘削している状態で掘削孔の周面の外側方への変位につき所定の許容変位量以上の変位量を検出した場合に、排土翼体を連動状態位置に位置させて掘削軸体と一体的に正回転させながら掘進させて、掘削された不要な土壌を排土翼体により強制的に地上に排出する不要土壌排出工程と、
不要土壌排出後に排土翼体を停止させて、掘削された土壌を排土翼体により地上に排出しない土壌非排出工程とを有し、
同土壌非排出工程にて、所定個所に設けた固化材吐出部より吐出させた固化材と掘削された土壌とを混練して固化させることを特徴とする地盤改良工法。
Excavation and agitation processes are provided in which the ground is excavated by the excavating blade provided at the lower end of the excavating shaft extending in the vertical direction, and the excavated soil is agitated by the agitating blade provided on the outer peripheral surface of the excavating shaft. And
A ground improvement method for solidifying by solidifying the solidified material discharged from the solidified material discharge part provided at a predetermined location and the excavated soil ,
It uses the earthing blade that is provided on the outer peripheral surface of the excavation shaft so that rotation and stop can be selected .
The earthing blade body is an upper position of the outer shaft of the excavation shaft body, an unlinked position that is above the ground surface and is unlinked with the outer shaft, and an outer shaft below the unlinked position. The raising / lowering position can be changed in the vertical direction between the intermediate position and the interlocking position that is interlocked with the outer shaft, and the stop operation is selected at the non-interlocking position. The rotation operation is selected with
The excavation / stirring step is performed when a displacement amount greater than a predetermined allowable displacement amount is detected with respect to the outward displacement of the peripheral surface of the excavation hole while excavating the ground with the excavation blade body. An unnecessary soil discharging step of forcibly discharging the excavated unnecessary soil to the ground by the discharging wing body, and digging while positively rotating integrally with the excavating shaft body .
A soil non-discharge process in which the soil wing body is stopped after unnecessary soil discharge, and the excavated soil is not discharged to the ground by the soil wing body,
A ground improvement method characterized by kneading and solidifying a solidified material discharged from a solidified material discharge portion provided at a predetermined location and excavated soil in the soil non-discharge process.
JP2003343705A 2003-10-01 2003-10-01 Ground improvement device and ground improvement method using the same Expired - Fee Related JP3842775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003343705A JP3842775B2 (en) 2003-10-01 2003-10-01 Ground improvement device and ground improvement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003343705A JP3842775B2 (en) 2003-10-01 2003-10-01 Ground improvement device and ground improvement method using the same

Publications (2)

Publication Number Publication Date
JP2005105752A JP2005105752A (en) 2005-04-21
JP3842775B2 true JP3842775B2 (en) 2006-11-08

Family

ID=34537595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343705A Expired - Fee Related JP3842775B2 (en) 2003-10-01 2003-10-01 Ground improvement device and ground improvement method using the same

Country Status (1)

Country Link
JP (1) JP3842775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442241B1 (en) 2023-08-14 2024-03-04 株式会社Joms Earth removal cover for columnar ground improvement equipment and columnar ground improvement method

Also Published As

Publication number Publication date
JP2005105752A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP2008106426A (en) Method for burying preboring-type precast concrete pile
JP2010270515A (en) Earth drill and pile driver
JP2021169733A (en) Agitation device
JP4234120B2 (en) Facility method for underground wall
JP3842775B2 (en) Ground improvement device and ground improvement method using the same
JP4359931B2 (en) Pile burying method by medium digging method
JP2008063870A (en) Excavating head and soil improving equipment
JP4566805B2 (en) Ground improvement device and ground improvement method
JP4185449B2 (en) Excavation stirrer and ground improvement method
JP2005213790A (en) Jack driving single shaft shield machine
JP2005127095A (en) Open ended steel pipe pile for rotatingly jacking and rotatingly jacking method for open ended steel pipe pile
JP5647292B2 (en) Fluid pipe introducing device and embedding method using the same
JP4206011B2 (en) Ground excavation method
JP5597232B2 (en) Ground improvement device and residual soil discharge suppression body of ground improvement device
JP5573235B2 (en) Jet agitator and ground improvement method
JP3833950B2 (en) Ground improvement device and ground improvement method
JP2007120075A (en) Multi-spindle excavator for diaphragm wall, and diaphragm method using the same
JP7231271B1 (en) Ground improvement method and ground improvement device
JP7302585B2 (en) Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, manufacturing method of the steel pipe pile
JP2020051191A (en) Excavation and agitation device
JP4863725B2 (en) Column row kneader
JP7254608B2 (en) drilling equipment
JP4028803B2 (en) Drilling rig
JP3739620B2 (en) Ground improvement device
JP4452090B2 (en) Drilling rig

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Ref document number: 3842775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees